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Abstract

Fully turbulent flows are characterized by intermittent formation of very localized and intense velocity
gradients. These gradients can be orders of magnitude larger than their typical value and lead to many
unique properties of turbulence. Using direct numerical simulations of the Navier—Stokes equations
with unprecedented small-scale resolution, we characterize such extreme events over a significant
range of turbulence intensities, parameterized by the Taylor-scale Reynolds number (R)).
Remarkably, we find the strongest velocity gradients to empirically scale as 7' R, with

B = 0.775 + 0.025, where 7 is the Kolmogorov time scale (with its inverse, i, being the rms of
velocity gradient fluctuations). Additionally, we observe velocity increments across very small
distances r < 7, where 77is the Kolmogorov length scale, to be as large as the rms of the velocity
fluctuations. Both observations suggest that the smallest length scale in the flow behaves as R, “, with
a=p- %, which is at odds with predictions from existing phenomenological theories. We find that
extreme gradients are arranged in vortex tubes, such that strain conditioned on vorticity grows on
average slower than vorticity, approximately as a power law with an exponent v < 1, which weakly
increases with R). Using scaling arguments, we get 3 = (2 — ~)~ !, which suggests that 3 would also
slowly increase with Ry. We conjecture that approaching the mathematical limit of infinite R, strain
and vorticity would scale similarly resulting in v = 1and hence extreme events occurring at a scale

nR; '/ corresponding to 3 = 1.

1. Introduction

Quantitative studies of turbulence in incompressible flows reveal that the averaged dissipation rate of turbulent
kinetic energy, (¢), is independent of kinematic viscosity, v, when v — 0 or equivalently when the turbulence
intensity, i.e. the Reynolds number, is very high [1, 2]. This empirical result, also known as the zeroth law of
turbulence, implies that the amplitude of velocity gradients grows on average as ({¢) /v/)!/2. However, the
fluctuations of velocity gradients are orders of magnitude larger than this average value, a phenomenon referred to
as small-scale intermittency [3, 4]. Such extreme events play a crucial role in numerous physical processes in both
nature and engineering, e.g. turbulent dispersion [5], cloud physics [6], turbulent combustion in jet engines [7, 8],
and are also conjectured to be connected to regularity and smoothness of fluid equations [9, 10]. Hence,
understanding their formation and statistical properties is of central importance in developing a complete theory of
turbulence [4]. The complexity of the problem is apparent in figure 1, which shows the structure the velocity
gradients. The strongly intermittent nature of turbulence is clearly visible by the highly inhomogeneous distribution
of the regions of very intense gradients (see also [2]). Fluid turbulence involves a wide range of spatial scales, from
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Figure 1. 3D-contour surfaces (in perspective view) of enstrophy (cyan) and dissipation (red), two common measures of the strength
of the velocity gradients, normalized by their mean values (see section 3.1 for a precise definition). The fields correspond to a randomly
chosen (but representative) instantaneous snapshot from our numerical simulation at Taylor-scale Reynolds number Ry = 650 ona
81927 grid or equivalently of size (40967)°, where 77 is the Kolmogorov length scale. Starting from (a), we successively zoom in and also
increase the contour threshold in (b) and (c), such that all sub-domains share the same center, which corresponds to the strongest
gradient in the snapshot. Approximate domain sizes (in terms of 1)) are indicated in the sub-captions, whereas the contour thresholds
C, are shown on the lower-left side of each panel. The visualizations reveal the presence of numerous vortex tubes (cyan), organized in
avery heterogeneous (intermittent) structure, often accompanied by intense strain (red), over a wide range of scales. More details
about the center region are shown in figure 7 in section 4.

approximately the system size all the way down to the very finest scale, corresponding to the largest gradients. In this
respect, it can be viewed as an emblematic example for other complex dynamical systems, where such extreme
events are also observed [11, 12], including the climate system [13], with its far-reaching implications.

Ever since Kolmogorov formulated and refined his seminal hypotheses [ 14], intermittency in turbulence has been
the subject of many studies [4]. In particular, detailed investigations demonstrate that the very large fluctuations in
velocity gradients become more extreme with increasing Reynolds number [15, 16]. While there have been
theoretical proposals to describe quantitatively the Reynolds number dependence of velocity gradient fluctuations
[17-20], they have remained difficult to verify due to lack of reliable data. In fact, directly measuring the most intense
fluctuations, experimentally or numerically, over a reasonable range of Reynolds number is a very challenging
endeavor, as very high spatial and temporal resolution is required to accurately resolve such fluctuations. As recently
pointed out [21], this demand can be even stricter in numerical simulations than previously expected. Consequently,
such high resolution investigations have been so far restricted to low Reynolds numbers [16, 22].

In this work, we characterize the dependence of the extreme velocity gradients on the Reynolds number, and
illuminate the underlying physical processes. To this end, we use high resolution direct numerical simulations
(DNS) of isotropic turbulence, based on highly accurate Fourier pseudo-spectral methods. To accurately resolve
the extreme gradients, all our simulations were carried out with a small-scale resolution at least 3—4 times higher
than typical turbulence simulations, along with appropriate temporal resolution [21]. Going up to grids of 8192°
points, we have obtained results at Taylor-scale Reynolds number (R)) ranging from 140 to 650.

In order to characterize the gradients, we first consider the probability density functions (PDFs) of square of the
norm of strain and vorticity, which represent the symmetric and skew-symmetric components of the velocity
gradient tensor respectively. They are analogous to dissipation rate and enstrophy and have the same mean values
(within a prefactor) in isotropic turbulence, given by 1/7%, where 7 = (v//(¢))!/? is the Kolmogorov time scale
[16]. Consistent with previous works [15, 23], we observe that the PDFs of these quantities, when normalized by 7x
exhibit tails that become broader with increasing R). By further characterizing these PDFs, we demonstrate that
their tails can be collapsed very well over the range of R, covered here, when instead normalized by the time scale:

Tet = T X R?, B> 0, (1)

which implies that the strongest gradients in the flow correspond to a time scale 7., which increasingly decreases with
respect to T as Ry increases (and hence the strongest gradients in the flow grow as 7¢ lRf\a ). Numerically, we find that
B~ 0.775 % 0.025. The tails of the PDFs of velocity increments 6u,, normalized by the Kolmogorov velocity scale
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Table 1. Simulation parameters for the DNS runs used in the current work: the Taylor-scale Reynolds
number (Ry), the number of grid points (N°), spatial resolution (kmay7)s ratio of large-eddy turnover
time (T%) to Kolmogorov time scale (1), length of simulation (T) in stationary state in terms of
turnover time and the number of instantaneous snapshots (N) used for each run to obtain the
statistics.

R N Kmax) Te/Tic T/Tg N,
140 1024° 5.82 16.0 6.5 24
240 2048° 5.70 30.3 6.0 24
390 4096° 5.81 48.4 2.8 28
650 81923 5.65 74.4 1.1 35

ug (=(v {€))'/*), over distances r < 1 (where n = (3/ (€))!/*is the Kolmogorov length scale), also become broader
when R) increases. On the contrary, when normalized by the rms of velocity fluctuations u//, the tails grow very
slowly. With the understanding that the most intense gradients in the flow occur with velocity increments of order #/
over ascale 77, we conclude that 7., ~ nRy %, withaw = § — %, represents the smallest scale in the flow. The

collapse of the tails of PDFs of éu,, when normalized by either uy R or /R, supports these findings. Comparisons
with existing theoretical predictions [17, 20] point to difficulties in explaining our data. However, these theories utilize
the phenomenological definition that the smallest scales in the flow correspond to a local Reynolds number of unity
[3],which, contrary to the numerical results of [24, 25] and also our own, does not appear to be satisfied at the location
of intense gradients, as utilized in current work to characterize the smallest scales.

Consistent with earlier works [24, 26, 27], we find that the structures corresponding to the largest velocity
gradients to be vortex tubes. We do not find extreme events in strain and vorticity to be colocated [16, 28].
Conditional averaging shows that intense strain is always likely to be accompanied by equally intense vorticity.
However, intense vorticity is found to be accompanied by comparatively less intense strain, with an approximate
power law dependence corresponding to exponent y < 1, which very slowly increases with Ry. With the
interpretation that 7, is the radius of most intense vortex tubes, we use simple scaling arguments to relate it to the
conditional strain, and thereby relate y to (3. This suggests that 3 would also slowly increase with R). We conjecture
thatthelimit 3 = 1 (and o = 0.5), as predicted by some intermittency theories, would only be realized for R, — oc.

The rest of the manuscript is organized as follows. In section 2, we describe our numerical methods. Our
numerical results concerning the scaling of extreme velocity gradients are presented in section 3. The structure
of regions of very intense velocity gradients is investigated in section 4. Section 5 contains a discussion,
comparing our results with existing theories, and then providing an alternative description connected to flow
structure examined in section 4. We briefly discuss the implications of our results on future DNS and
experiments in section 6. Finally, we present our conclusions in section 7.

2. Numerical approach and database

The present work is based on DNS of the incompressible Navier—Stokes equations
Ou/ot + (u-Vyu=—Vp/p + vViu +f, ()

where uis the velocity field (satisfying V - u = 0), p is pressure, and fis the forcing term used to maintain a
stationary state [29, 30]. The equations are solved utilizing a massively parallel implementation of Rogallo’s
pseudo-spectral algorithm [31], whereby the aliasing errors are controlled by a combination of truncation and
phase-shifting [32]. We use explicit second-order Runge—Kutta scheme for time integration, with the time step
Atsubject to a constraint for numerical stability expressed in terms of the Courant number, C = i—;ﬂ [ull)max>
where || - ||, represents the L'-norm and the maximum is taken over all (N®) grid points. The flow simulated is
homogeneous and isotropic with periodic boundary conditions, on a cubic domain of (27)° for all cases.

As stressed earlier, appropriate numerical resolution of the small scales is crucial to our study of extreme
velocity gradients. Spatial resolution in pseudo-spectral DNS is typically measured by the parameter ka7,
where kpax = /2 N /3 is the largest wavenumber resolved and 77 is the Kolmogorov length scale. Equivalently,
one can use the ratio Ax/n (x2.96/kuaxn), where Ax = 27/N is the grid spacing. Most turbulence
simulations, aimed at reaching high Reynolds number, are in the range 1 < k.7 < 2[28, 33]. However,
resolution studies have shown that such a resolution is inadequate for studying extreme events in velocity
gradients [16, 21, 22]. Hence, we have consistently used k.7 & 6 in all the runs shown here. Additionally, we
have also used a Courant number of 0.3, instead of 0.6 in previous studies e.g. [16, 23, 28], as it was recently
found that the latter led to spurious over-prediction of the gradients [21]. Resolution studies presented in [21]
and our own tests confirm that the resolution used here is adequate to address the questions asked in this work.

The database used here and the corresponding simulation parameters are listed in table 1. The Taylor-scale
Reynolds numbers (Ry) considered here are similar to those in some previous works [16, 23], but with amuch
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Figure 2. PDFs of (a) Q and (b) X, normalized by Kolmogorov time scale 7, for various Ry. Data are shown only up to values on the x-
axis where the PDFs are statistically converged. The insets show zoomed in region for moderate events, revealing that the PDFs
approximately superpose for moderate events, e.g. Q7% < 10, £7% < 7,and thereafter start deviate as events get stronger.

higher small-scale resolution as emphasized earlier. These high resolution simulations were recently used in
[21]. In the present work, we simply restarted these runs (which were already in a stationary state) and extended
them to substantially longer times to greatly improve statistical convergence. We list the length of the current
simulation T'in terms of the large-eddy turnover time Tg. The statistical results shown here were obtained by
analyzing N, instantaneous snapshots for each run. Whereas along simulation is typically desirable for sampling
accuracy, finite resources have limited the value of T for the highest resolution runs. Nevertheless, since our
focus is on highly intermittent velocity gradients, one can improve sampling by simply analyzing more
snapshots for a given simulation length as the Reynolds number increases. This is justified, both by the increase
of the ratio of time scales Tg/ 7 with Ry, and also by the increasingly smaller time scales associated with the
extreme events, as discussed in the manuscript.

3. Scaling of extreme velocity gradients

3.1. PDFs of vorticity and strain
In order to study small-scale intermittency, in this sub-section, we characterize the velocity gradient tensor by its
two quadratic invariants [4]:

Q= w;iWi, Y= 25ij5ij> (3)

where w = V x uis the vorticity, and s;; is the strain rate tensor defined as s; = (u; /0x; 4+ Ou;/0x;) /2. The
former is the enstrophy and the latter is simply the dissipation divided by viscosityi.e. ¥ = ¢/v. Inisotropic
turbulence, as considered here, (Q) = (£) = 1/7%, where 7 is the Kolmogorov time scale.

Investigating the extreme events in {2 or X amounts to focusing on the outmost parts of the (wide) tails of
their PDFs. Issues of statistical convergence makes a precise determination of these quantities extremely
difficult. With the available data, we estimated the statistical error in each bin, by looking at the sample to sample
fluctuations across various snapshots used to determine the statistics. We kept only bins with an error less than
20% compared to the mean. These PDFs, converged with respect to both the small-scale resolution [21] and
statistical sampling, allowed us to determine the properties of the extreme events, as presented next.

Figure 2 shows the PDF of (a) Q2 and (b) ¥, normalized by their mean value, 1/7%, at various Reynolds
numbers. We primarily observe that as the Reynolds number increases, the tails of these PDFs get wider and
extend to much higher values. Equivalently, the likelihood of finding a value of Q7% or $7% larger than a given
large value increases with the Reynolds number. This is expected and consistent with previous studies. One
notices, however, that the part of the PDFs, corresponding to events smaller than about 10 times the mean,
appear to approximately collapse for different Reynolds numbers. This can be seen in the insets of figure 2,
which show azoomed in version.

The existence of increasingly large fluctuations, as shown in figure 2, leads us to ask how large are the extreme
gradients and how quickly do they grow with increasing Reynolds number. We propose to answer this by
rescaling the PDFs. Namely, we use a different time scale, 7oy = 7x X R 7 (see equation (1)), to rescale the
extreme values. Denoting f,(€,) and f;(X,) as PDFs of Q, = Q72 and &, = £72, respectively, figure 3 shows
R} fo(€2),and R} f5(Ee). The factor R provides a measure of how rare the largest fluctuations of Q, or &, are,
when R increases. As shown in figure 3, using 3 & 0.775 and 6 & 4.0, the wide tails of rescaled PDFs are almost
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Figure 3. PDFs of © and {2 normalized by 72, as defined by equation (1) with 3 = 0.775 and also rescaled with a factor R{, with
6 &~ 4.0. The dashed lines (cyan) show the corresponding fit by a stretched exponential corresponding to equations (5) and (6), with
b{, ~ 58.0 and by, ~ 46.6.

perfectly collapsed. This indicates that while the average events in Q2 and ¥ scale as 7>, the most extreme events
behave like 7R3

The exponents Fand 6, used in figure 3 to collapse the large tails of the PDFs, can be also empirically
determined by utilizing a functional form of the tails of PDFs of 2 and X. While theories have proposed several
functional forms for the entire range of PDFs [4, 34-36], the stretched exponential function is known to
empirically fit the tails of the PDFs very accurately [15, 16, 21, 37, 38]. Since the tails of the PDFs in figure 3
collapse, we use the following stretched exponential functional form to verify the value of (3:

fx(x) = aexp(—=bx9), 4

where x = Q7% or ©7% (or alternatively Q/ () and ¢ / {¢) respectively in the notation of [16, 21]) and a, b, care
the fitting parameters. Applying a change of variable x, = x X (7 /Tex)?, Where x, = §2, or 3, the PDF of x,
becomes

fxxe) = aRf“e exp (— be’eC x5). (5)
The collapse shown in figure 3 implies that

bR = b/, aRP = o, (6)

such that the constants b’ and a’ are independent of Ry. Thus, the dependence of b/ “as a function of Ry,
provides a direct access to 3.

To determine the coefficients, we simply fit the logarithm of the PDF to the functional form (loga — bx) of
equation (4). We choose the fitting window tobe x > 50, which sufficiently excludes the region around the
mean value, where the PDFs appear to collapse for various R, (as shown in insets of figure 2). We also explicitly
checked by extending the fitting range to smaller values, but found that the results remained virtually
unchanged. The determination of the three parameters a, b and ¢ then leads to a nonlinear regression. However,
since nonlinear regression can be very sensitive to the initial guess values for the fitting parameters—especially
the value of the exponent c in this particular case—determining the parameters directly in such a manner can
result in significant error [39]. On the other hand, if the value of ¢ is known beforehand, then a very robust fit can
be obtained, since the fitting procedure reduces to a linear regression to determine only a and b. The exact values
of aand b would obviously substantially differ for different values of ¢, but this would not matter if they all
provide the same value of 3 (which as shown next, is the case).

The values of the exponent cin previous numerical studies [ 16, 21] were found to be close to the range
0.23-0.25, with a possible scatter within 0.19-0.29 and no clear dependence on Reynolds number (e.g. see table 4
of [16]). Keeping this in mind, we therefore fit the PDF by assuming fixed values of ¢, ranging from 0.19 t0 0.29 in
increments of 0.02, and determine the parameters b and a for PDFs (2 and X for all available R). Note thata
wider range for c may be considered, but this chosen range falls within the error obtained from a naive nonlinear
regression and hence for values outside the chosen range, the quality of fit starts deteriorating. To provide a
measure, for the chosen values of ¢, the coefficient of determination (R?) was greater than 0.995 for every fit.

5
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Figure 4. Plot of logarithm of b' /¢ versus R, corresponding to stretched exponential fits, given by equation (4), to both PDFs of 2 and
3. Fits are performed for fixed values of cranging from 0.19 to 0.29, in increments of Ac = 0.02. For clarity, we have divided the
values of b/ “by its corresponding value at Ry, = 650, so all data points exactly superpose at Ry = 650. The dashed line of slope —1.55
shows the fit by the power law b'/¢ oc R; 2 corresponding to equation (6), with 3 = 0.775. A dotted line of slope —2, corresponding
to 3 = 1 (see discussion in section 5) is also shown.

Additionally for each ¢, the resulting values of a and b are always obtained with greater than 95% confidence,
resulting in negligible error bars. In fact, these values are even found to be quite insensitive to minor variations in
the fitting window, e.g. our fits compare extremely well with those of [16], who considered a fitting window of

5 < x < 100 for R, < 240.In this regard, we make a note that the results of [ 16] can only be trusted for

R, < 240, since the higher R runs were affected by resolution issues, as reported in [21]. Nevertheless, the
excellent quality of fitis evident in figure 3 (also see figure 9 of [ 16] which is also in near perfect agreement with
our fits).

The dependence of the coefficient b'/¢ on R, at various values of ¢ is shown in figure 4. The data points
correspond to curve fits for both 2 and X (thus giving two sets of points for each ¢). For the sake of clarity, the
values of b'/ © are divided by their corresponding values at Ry = 650, which imposes that all the curves shown in
figure 4 pass through 1 at Ry, = 650 (since higher R, provides a larger fitting range and hence can be expected to
be most robust). This also allows us to directly compare the data points for every ¢ value considered. We find that
all sets of points superpose reasonably well, and remarkably point to a similar power law in Ry. This collapse
demonstrates that the determination of the exponent 3is not very sensitive to the precise value of ¢, at least with
the available data. However, weak deviations from scaling cannot be ruled out, especially if an even larger range
of Ry is considered in future. In fact, we will later (in section 5) present arguments supporting a very weak growth
of Swith Ry.

We would like to further clarify that ideally the best curve fits to equation (4) may lead to a dependence of ¢
on the Reynolds number R). However, choosing a fixed ¢ substantially improves the quality of curve fitand also
minimizes the sensitivity to the fitting range. In fact, a fixed value of c also helps in determining the scaling
without ambiguity, since if cis a function of R), the constant b’ in equation (6) will also become a function of R),
which would recursively require additional nonlinear fits to obtain . The minor deviations for different ¢ values
atvarious Ry, can also be possibly explained by this. Nevertheless, the good collapse seen for such a wide range of
cvalues provides clear evidence that the scaling proposed provides a compelling description of our data, at least
over the available range of Ry. We will see that this is also further supported by results shown in section 3.2.
Finally, by fitting a power law through the obtained data points (marked by dashed line), we obtain
B = 0.775 £ 0.025 (where the error bar takes into account the variation across different c values), which was
used in scaling the PDFs in figure 3. The same procedure for the parameter a (not shown) gives ¢ ~ 4.0, with
deviations of approximately 5%—10%. Thus, systematically characterizing the PDFs of 2 and X, we are able to
mathematically determine that the strongest gradients in the flow grow as 7' R, with 8 = 0.775 + 0.025. We
again emphasize that obtaining such a result required statistically well converged PDFs (in turn requiring
adequate spatial and temporal resolutions) over a wide enough range of Reynolds numbers.
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Figure 5. (a) PDFs of the velocity increments, 6u,, normalized by uy for r/n ~ 0.5 at various R). Solid lines for transverse and dashed
lines for longitudinal. The inset focuses on the regions of weak gradients, and demonstrates that mean events (6u, /ux < 1) collapse
well. (b) PDFs of éu,, normalized by u’ (rms of velocity fluctuations) for r/n a2 0.5 at various R). Longitudinal and transverse marked
by Land T respectively. The inset shows the same for /7 ~ 1. (c) Rescaled PDF of Ry §u, /u (or equivalently Ry ® u, /u’), with

[ =0.775(and @ = 8 — 0.5)forr/n ~ 0.5 atvarious R,.Longitudinal and transverse marked by L and T respectively. The inset
shows the same for r/n ~ 1.

3.2. PDFs of velocity increments

In order to further validate the scaling obtained in section 3.1, we next investigate the PDFs of velocity
increments. In simplified notation, velocity increments are given as éu, = u(x + r) — u(x), where the
separation distance r can be either in the direction of u (longitudinal increments) or perpendicular to u
(transverse increments). Over very small distances, the velocity differences essentially reduces to the velocity
gradients (within a constant factor), aside from systematic but small errors introduced by using finite
differencing. Hence, we can expect velocity increments over small distances to show the same scaling as derived
earlier. However, to extract information about the gradients, one still needs to ensure that r is sufficiently small.
We note in this respect that the high resolution of our runs, k.1 = 6, effectively allows us to calculate
increments over a very small distance (r & 7/2). A benefit of using velocity increments is that their 1D
surrogates can be also obtained and verified using experiments [40].

Figure 5(a) shows the PDF of 6u,, normalized by the Kolmogorov velocity scale u, for r/n ~ 0.5, at various
Reynolds numbers. Both the longitudinal and transverse components are shown (in dashed and solid lines
respectively). Since we are interested only in the magnitude of the increments, we take the absolute value of du,.
Consistent with the results shown in figure 2, the initial part of the PDFs, corresponding to moderate events,
superpose very well (see inset of figure 5(a)) and as Reynolds number increases, the tails start growing. Both the
longitudinal and transverse increments show the same behavior, with the transverse component being
expectedlylarger [3].

To further characterize the velocity increments, we next consider the PDFs of du, /1, where 1/ is the rms of
velocity fluctuations. Figure 5(b) shows the PDFs of 6u, /u’ corresponding to r = 7/2, at various Reynolds
numbers and for both longitudinal and transverse components. The corresponding PDFs for r = 7 are shown in
the inset. Even at such a small separations, we observe that the velocity differences can be as high as «//, for the
entire range of Reynolds number considered. This appears to be consistent with the observation of [24, 25] at
R\ < 170. Additionally, it appears that while the probability density for a given du, /1’ decreases with increasing
R), the extent of du, /v’ itself slowly increases.
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Figure 6. Rescaled PDFs of the transverse velocity increments, 6u,, non-dimensionalized by 7,./r. Solid red lines are for Ry = 650,
showing r/n = 0.5, 1, 2,4, 8; and dashed—dotted blue lines are for Ry = 140, showingr/n = 0.5,1,2,3,3.5,6,7.5, 12, 16 (curves for
r/n = 2,3.5,7.5, 16 are shown with dashed lines, see section 5.2 for discussion). Curves for increasing r,/7 shift monotonically from
right to leftateach R). Although not shown, the curves corresponding to the longitudinal increments exhibit similar behavior.

Following similar ideas as in figure 3(b), we determine the PDFs of du, /uk, rescaled by Ry~ A shifted bya
factor R{. The result is shown in figure 5(c) corresponding to r /7 ~ 0.5 for both longitudinal and transverse
components. Note for the PDFs of §u, /1 this corresponds to rescaling by Ry “, with & = 8 — 0.5, since
u' fug ~ Ri/ %3] (the importance of v is discussed later in section 5). We find that the rescaled PDFs collapse
very well for different Reynolds numbers. The scatter towards the very end of the tails (especially for the
transverse component) can be attributed to lack of statistical convergence for the endmost bins. In the inset of
figure 5(c), we repeat the exercise, but now for PDFs corresponding to r/n & 1. The superposition, although
comparatively worse with respect to /1 = 0.5, still remains very good.

An alternative approach to investigate velocity increments is to consider the quantity du,/r, which for
sufficiently small r, is a proxy for the velocity gradient and thus also independent of r. Hence, it is tempting to use
the same scaling based on 7, as before, to collapse the tails of various PDFs of du,/r (as done in figure 5(c)).
Figure 6 shows such rescaled PDFs for several values of /7, at Ry, = 140 and 650. Once again, we find that the
tails of the curves for r/n = 0.5 collapse very well for both Ry. However atr/n ~ 1, the curve for R, = 650 starts
to deviate from this collapse. At r/n ~ 2, the curve for Ry, = 650 significantly deviates from that for R, = 140.
This provides yet further evidence that the resolution of Ax/n = 0.5 is adequate for both Ry. On the other hand,
Ax/n = 1, while adequate for R, = 140, is insufficient for R, = 650. Additionally, we also see thatas r /7
grows, the deviations of the curves at Ry, = 650 increase faster than those at Ry, = 140. This also provides a hint
that the smallest length scale in the flow is actually smaller than 1 and additionally decreasing with increasing R).
This observation will be further analyzed and discussed in section 5.

4. Structure of regions of intense vorticity and strain

In order to gain some understanding on the structure of regions of intense gradients, we first use flow
visualization. Vorticity arranged in tube-like structures has been repeatedly seen in DNS over a very large range
of Reynolds numbers—from very low at Ry & 45[26] all the way to R, =~ 1100 [27] (although the small-scale
resolution in these simulations was limited). Whether such tubes carry the most intense regions of velocity
gradients in the flow, however, has been questioned by a recent study [28], which suggested that the largest
values of (2 and ¥ appear colocated and without any coherent structure. It is important to note that these
observations may have been affected by the numerical artefacts documented in [21]. One of the motivations of
the present work is to revisit the issue. We again stress that the present visualizations are based on DNS at much
higher spatial resolution than previously available.

Figure 7 shows a collection of instantaneous snapshots from the Ry, = 650 run, focusing on the region of
most intense gradients. Since vorticity is in general larger than strain, the domains are chosen such their centers
correspond to the maximum value of (2. The various panels show different contour thresholds (indicated as Cin
sub-figure caption) in cyan for Q7% and in red for ©7%. In the first panel (figure 7(a)), a domain of 301> grid
points or (1501)” is shown with the contour threshold of 50 for both vorticity and strain. Structures consisting of
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Figure 7. 3D-contour surfaces (in perspective view) of Q7% (cyan) and Y% (red) from the 8192 simulation at Ry = 650. The panels
further zoom into the field shown in figure 1. The middle panel of figure 1(c) is reproduced here in (a) for convenience. The domain
size in terms of the Kolmogorov length scale 7, and contour thresholds, C, are indicated in subfigure captions. The maximum value of
Q7% is always at the center of each subcube. No structures for ¥ are present in (d) at the contour threshold chosen.

clusters of vortex tubes, qualitatively similar to e.g. [27], are readily seen. The spacing between neighboring tubes
widely varies: some vortices are relatively isolated, others seem to be more strongly interacting with their
surrounding. Large values of strain are mostly located around large vortices, a phenomenon noticed many times
(see [28] and references therein).

Panel (b) zooms into the region of most intense gradients, showing a domain of (50m)° with a contour
threshold of 300. The structure is composed of two closely interacting vortex tubes, wrapped around by intense
strain. In panels (c) and (d), contour levels are successively increased to 500 and 1500 respectively and we also
further zoom in to show a domain of (257)° in (d). The vortex tube structure becomes very distinct, whereas the
region occupied by strain reduces substantially in (c) and completely disappears in (d). Note, the largest value of
Q7% is equal to about 3000 (at the center of the domain in each panel). In comparison, the largest value of 7% is
about 1800, located in top left corner of domain shown in (c)—and hence no coherent strain region is visible in
(d). Although not explicitly shown here, we also confirmed that the velocity increments around the center of
each panel figure 7 correspond to far tails of PDF of 6u, as shown in figure 5, i.e. 6u, >~ u'.

We analyzed many such flow fields corresponding to different snapshots and virtually all of them showa
qualitatively similar behavior, i.e. as the contour thresholds are increased tube-like vorticity structures become
prominent and high-strain regions shrink and disappear at lower values than the high-vorticity regions. While
not directly evident in figure 7, we also find that the locations of maximum values of vorticity and strain are
typically separated by at least 10—207 and never coincident, e.g. in figure 7(c), These observations confirm that
the largest values of X are much smaller than the large values of {2 and the regions for large values of ¥ and Q2 are
not co-located. Hence, we conclude that visualizations in [16, 28] were also affected by resolution issues reported
in [21]. We remark in this respect that new independent tests at Ry, = 1300 and k.77 = 3, with a time step
twice smaller than in [28]—although not shown here—confirm that the qualitative aspect of the regions of
extreme vorticity/strain are similar to that shown in figure 7.

In order to quantify the relation between strain and vorticity, we next consider their conditional expectations
with respect to each other—shown in figure 8 for various Ry. For low values of {2 or ¥, the conditional
dependencies are very weak, i.e. strain and vorticity appear to be decorrelated. However, for conditional values
greater than unity, i.e. the mean value, the conditional expectations clearly increase, seemingly showing a power
law. Comparison with a dashed line of slope 1 (on log-log coordinates), suggests that (Q|Z) ~ Y. In contrast
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Figure 8. Conditional expectations (a) (©2|X) and (b) (X|(2), appropriately non-dimensionalized by Kolmogorov time scale 7, for
various R). The black dashed line in both panels represents a slope of 1. Inset in (b) shows ~yas a function of Ry, for a power law
(21Q) o Q7 applied in the region Q7% 2 10.
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This implies that intense events in strain are always likely to be accompanied by equally strong events in vorticity,
whereas the strain is comparatively weaker in very intense vortices. This appears to be consistent with the earlier
observations of vorticity being more intermittent than strain [16, 26, 41] and ultimately concerns with the inter-
relationship of vorticity and strain, which is still an open question in turbulence. Note that [16] shows a similar
plotas figure 8, however their curve for (3[$2) spuriously approaches a slope of 1 (for large £2) because of
resolution issues [21].

Interestingly, figure 8(b) also suggests that the exponent vy slowly increases with Ry. By fitting approximate
power laws, we find that vy varies from 0.60 to 0.72 over the range of R considered here (see inset of figure 8(b)),
although the variation appears to get weaker as R) increases. This naturally leads to the question of what the limit
of Ry, — oo entails, which our data is unable to answer conclusively. Theoretical considerations suggest that
~v = linthelarge R limit[4, 42, 43]. Given the very slow increasing trend of , it is evident that extremely high
R, would be necessary to realize y = 1, ifat all possible (a simple sigmoidal or power law extrapolation suggests
~v = 0.99 would be realized for R, 2 20 000). Therefore, the differences between strain and vorticity are
expected to persist, even at the highest turbulence levels on earth. A fundamental understanding of equation (7)
from first principles, i.e. a determination of the strain acting on a given vortex, resulting from the tangle of
vortices as shown in figure 7 is still an open question in turbulence. As we will suggest in section 5.2, the power
law dependence on the strain conditioned on vorticity in fact provides a way to understand the scaling
exponent (3.

5. Theoretical considerations

In this section, we discuss the observation that the extreme velocity gradient fluctuations scale as
Tow = Tx' X R{.We first compare our result with existing theories, especially the multifractal model, and
thereafter provide a new description for the observed scaling which relates to the structure of the flow discussed
earlier in section 4.

In simplest terms, extreme velocity gradients result from large velocity differences over a very small length
scale; the largest velocity gradient in the flow can be written as proportional to 6 max /7,,» Where 0t may is the
largest velocity difference over the smallest length scale 7,,, [19], which given the flow structure, can be
physically interpreted as the radius of the smallest vortex tube [24]. Our notation that the largest velocity
gradients scale as 7, therefore implies

Text ™ Text / Otimax. (®

Thus, the question how large the gradients can grow entails answering how large éu can become over the
smallest length scale 7. Based on earlier resolution studies [ 16, 21] and also on the results presented in

section 3.2, the smallest scale 7., can be defined by the resolution at which the PDFs of the gradients have
converged—which for the present range of Ry, gives /2 < 1,., < 7. Notice that one could formally define
scales smaller than 7),,,, but given a smooth velocity field, the velocity increments at such scales will simply
decrease linearly with the scale size, with respect to those at 7,,, (as also demonstrated by the velocity increment
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PDFsfor r/n = 0.5and 1 at Ry, = 140 in figure 6). Thus, any length scale smaller than 7),,, would show the same
scaling as 7)., itself and would be immaterial for the purpose of present study.

5.1. Comparisons with existing theories

Itis natural to interpret our results using existing theories. To this end, we begin by reviewing the multifractal
model, which provides explicit predictions concerning the smallest scales in the flow. In the multifractal model,
as well as in some other phenomenological approaches, a recurring concept is that of the fluctuating local viscous
cutoff scale, say 7,, defined such that the velocity increment over this scale has alocal Reynolds number of unity
[17,20]:

Sun./v=~l, )

which essentially results from equating the viscous time scale ni / v to the convective time scale 7, /ou. In the
multifractal framework, the velocity increment over a distance ris given as §u, /u’ ~ (r/L)", where Lis the
energy-injection scale, and h is the local Holder exponent within an interval [fpn, fmay ] such thata fractal set D
(h) can be determined for every h. Thereafter, following the derivation of [17], the smallest scale in the flow can
readily be obtained corresponding to the minimum Holder exponent

Nexr ~ NRY ", where o = 21(17—&-—3;;1“;:)’ (10)

where 7 is the Kolmogorov length scale. It also follows
Text ~ TR, *%, 11)
Sthmay ~ 'Ry, (12)

which implies 3 = 2a.

Earlier works have suggested that h,;, = 0[17, 19], which gives &« = 0.5, 3 = 2a = 1and hence
Othmax ~ u'. Thevalue of B ~ 0.775 derived earlier can be obtained by using h,;, =~ 0.06, and would
additionally imply o = 3/2 = 0.39. However, i, ~ 0.06, or rather any non-zero positive value of fiy;p,
implies o < 0.5, and hence suggests that du,,, /1’ would decrease with increasing Ry. In fact, i, > 0 also
suggests that the range of du, /u’ decreases with R), for a fixed r /1. Our observation in figure 5(b), which
demonstrates that the range of 6u, /u’ does not show any sign of decreasing with Ry at r/n < 1—and rather
appears to be slowly increasing, does not unambiguously support the decay of §u ., /1’ implied by the theory.
At the same time, since 77/2 < 7,,, < 7 over the present range of R), the extent of PDFs in figure 5(b) implies
Otimax 2, ' for the strongest gradients. We notice that the probability density for du 2 1’ appears to decrease
slowly with Ry, however, the excellent superposition of the PDFs in figure 5(c) indicates that the decay is at best
algebraic (decreasing as R °), and therefore, the probability should remain finite even as Ry — oc. The above
suggests i, = 0 toallow dupm,, ~ 1/, leadingto 8 = 1(for = 0.5) as suggested by [17, 19], but at odds with
the observed value of 3 = 0.775 (and the corresponding h i, ~ 0.06).

In our view, the inconsistency above is a result of the assumptions built into the extension of the multifractal
theory, originally developed to describe the inertial scales, to far dissipative scales. In particular, the definition in
equation (9) obtained by equating the convective and dissipative time scales, while reasonable for inertial range
(where the rate of energy transfer across scales can be assumed to be constant), does not appear justified at
smallest scales, where dissipation dominates. This is readily observed in figure 5(a), where the local Reynolds
number from the tails (corresponding to strongest gradients residing in vortex tubes) increases steadily with the
R, (much strongly than 7),,, decreases with Ry). In fact, earlier works based on DNS at Ry < 170, have already
have shown that the local Reynolds numbers corresponding to the vortex tubes where the intense gradients are
localized are much larger than unity, and appear to scale differently from the multifractal prediction [24, 25].
Our numerical results at significantly higher R) (and also higher small-scale resolution) further strengthen this
conclusion and puts into question the (phenomenological) criterion that the smallest scale in the flow can be
determined by alocal Reynolds number of order unity and hence, also the relation @ = (3/2. However, an
additional remark is necessary in this context. While we associate the smallest scales of motion with the extreme
gradients (which appear to reside in vortex tubes), the theoretical constructs resulting from multifractal
considerations are based on the local scaling, where the smallest scales simply correspond to the minimum
Holder exponent h,;,, without any explicit connections to the flow structure. As a result, there is no guarantee
that the scales resulting from h,,;,, actually correspond to the structures observed in figure 7, calling for some
caution when comparing our results with the multifractal theory.

An alternative description, which also utilizes equation (9), is that of Yakhot and Sreenivasan [20]. In their
approach, the even moments of the velocity increment (§u,)>" (or the structure functions), each correspond to a
unique dissipative length scale 7,,, such that the smallest possible scale in the flow is obtained for n — co.
Thereafter, again utilizing equation (9), 7, can be related to the anomalous inertial range scaling exponents of
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structure functionsand n — oo results in a similar prediction as that of multifractal theory with h;, = 0, 1.e.
a = 0.5. However, once again, such an approach does not appear as justified given the lack of evidence for
equation (9) to define the smallest scales. In fact, numerical results of [ 16, 22, 44] all suggest that the smallest
scales in fact grow weaker than the prediction of Yakhot—Sreenivasan theory (and hence also that of multifractal
theory for h,;, = 0). This observation is once again reinforced by the results presented in current work.

5.2. Alternative description in light of strain-vorticity dynamics

In view of the apparent shortcomings of intermittency theories reviewed in the previous subsection, we propose,
in order to reconcile our observation concerning the very large velocity differences and the exponent 3 < 1,a
different description that directly relates to the flow structure explored in section 4.

Based on figure 5(b), we propose that the strongest gradients correspond to i, ~ 1’ over the smallest
scale 7.y This is in line with observations of [24, 25] and also h,,;, = 0 as postulated by [17]. Note, this
assumption also essentially implies that the PDFs of velocity (and hence velocity increments) are bounded [9].
Thereafter, substituting dumay ~ ¢’ and Ter = TR, f into equation (8) gives

Next ™~ 77R)Ta> with o = ﬂ - 05, (13)

where we have used v/ /ux ~ R;/ 2 from classical scaling estimate [3]. The value 8 = 0.775 % 0.025 found
numerically leads to a = 0.275 %+ 0.025, which is also the value used in figure 5(c) to collapse the PDFs of
ou, /u' for r = /2 < n,,. Note, the convergence of du, /r to the velocity gradient ensures that the PDFs have a
well-defined limit for r < 1),,,, and hence the PDFs atr < 1), can be simply obtained by linearly rescaling the
PDFatr = 7)ex by a factor r/1ex, which essentially is the same as Rf' forr = 1/2.

This value of @ & 0.275 can be further verified by considering the PDFs shown in figure 6. While for
r < Ny OU, /1 converges to the velocity gradient, systematic deviations arise for r > 1,,,. These deviations from
the gradient can be accordingly quantified by analyzing the higher order terms in a Taylor series expansion of
éu,/rand can be shown to be approximately proportional to /7y [16, 20]. Since 7ex/7 decreases when Ry
increases, at a given value of r /7, the deviations from the PDFs, especially in the tail, from their limiting form at
1 /Mo << 1alsoincreases, as clearly seen in figure 6. In addition, we find that the deviations of the PDF tails at
fixed values of 7 /7,,, to be independent of R. For a ~ 0.275, 7,,, /1 decreases by approximately 1.53 between
R\ = 140 and 650. In contrast, taking the value of a predicted by the multifractal theory, o = §/2 =~ 0.39, leads
to avariation of 1.82 in the ratio 7ey/7. The r/nvalues at Ry, = 140 shown in figure 6 are chosen, as close as
possible, within these factors (of 1.53 and 1.82), compared to the r/nvalues for R, = 650 (the curves
corresponding to 1.53 are shown in dashed—dotted lines, whereas curves corresponding to 1.82 are shown in
dashed lines). As visible, the PDFs corresponding to the factor of 1.53 between the two R cases collapse
remarkably well (especially as r /7 increases), hence providing an alternative means to verify o = 0.275.

Interestingly, alongside some scaling arguments to evaluate «, equation (13)leads to two different limits
(which incidentally also correspond to previously reported cases in literature). The first limit corresponds to
simply assuming that the smallest length scale in the flow is the Kolmogorov length scale, i.e. 7.y, = 7. Using
this, we geta = 0and 8 = 0.5, and hence

Text ~ Tk R V2. (14)

This result was derived in [24, 25], based on the analysis of DNS data at relatively low Reynolds numbers

(R\ < 170), which the present work greatly improves upon. The second limit consists in taking into account the
extreme fluctuations of the velocity gradients. Physically, the smallest scale in a flow can be thought to result
from a balance between viscosity v and strain 3 (=2s;;s;, as defined earlier), which leads to the expression of the
length scale: 1, ~ (v%/ ¥)1/4, familiar in a number of contexts [45]. Assuming 7., = 7, which leads to
equation (14), amounts to a mean field approximation, consisting in replacing the strain by its averaged value (as
nis calculated from the mean dissipation). Taking into account the large fluctuations of X results in 7., being
smaller than 7[18]. In this regard, the second limit can be simply derived by evaluating 7)., using the maximum
value of strain (X ), i-€. o, = W%/ Ymax)'/? . Thereafter, using ¥ ax ~ 7o and Stmay ~ 1/ based on earlier
results, it follows from equation (8)

14 vV u _
Text ™~ —5 — —X 7_KR)\ 1) (15)

u'? é u'?
where we have used v/uf = 7x and ' /ux ~ RAI/ 2, This implies 3 = 1and o = 0.5 from equation (13), as also
predicted by intermittency models discussed earlier [17, 19, 20]. However, this is not completely surprising, as
defining 7)., based on X;.x with 3. ~ VTe_th alsoleads to 8 = 2a, which is essentially the multifractal
prediction, and in conjunction with 3 = « + 0.5 derived in equation (13) gives § = 1 (and o = 0.5).
Additionally for this scenario, the local Reynolds number, which can be written as nﬁxt v~} using equation (8),

ext
comes out to be constant as inherently assumed in intermittency theories discussed earlier.
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The numerically observed value of 3 & 0.775 lies between 3 = 0.5 and 1, which suggests that 7, results
from a strain, intermediate between the two limits considered before. In fact, this is precisely what we observed
in section 4. As noted earlier, equation (7) (and figure 8(b)) suggests that the strain acting on a very intense vortex
tube is significantly weaker than naively expected by postulating 3 o< (2. A simplified estimate consists in
substituting ¥,y in the argument leading to equation (15) by 72 (T% Qmax)? » as suggested by equation (7).
Thereafter, we get

Text ™~ TKR;/‘?, with G = L (16)

2 —v '
Thelimits of 5 = 0.5and 1 correspond toy = 0and 1 respectively. In view of the weak dependence of v shown
in the inset of figure 8(b), equation (16) suggests a dependence of 3 on R). The values of v observed over the
range of R studied here, 0.60 < v < 0.72, implies a variation of Fin the range: 0.72 < 5 < 0.78, which is
quantitatively consistent with 3 ~ 0.775 determined empirically in section 3. The weak variation of #implied by
equation (16) may also explain the slight deviations from scaling seen for Ry, = 140 in figure 4. In fact in figure 4,
considering only data points at R, = 140 and 240, the slope corresponds to 8 ~ 0.73, which appears to be
remarkably consistent with that obtained from v for these R). On the other hand, the interesting possibility that
v — 1when R, — oo would then suggest, in view of equation (16), that § — 1, as originally expected by some
theories (albeit corresponding to a constant local Reynolds number much larger than unity). However, the very
slow variation of v shown the inset of figure 8(b) would indicate that 3 = 1 would be attained at extremely large
values of Ry, likely larger than practically relevant. In this regard, the scope of existing predictions in
understanding finite Reynolds number scaling appears to be severely limited.

Whereas the prediction of the exponent yand its dependence on R, is a very challenging task, we briefly note
that the cascade model of She and Leveque [46] presents a similar idea, though with shortcomings. The model
postulates that the locally averaged dissipation field ¢, at a scale rand the corresponding moment ratios:

e = (el /(eF), are related to the hierarchy of complex structures in the flow. The most singular structures
correspond to €, which in the phenomenology of [46] obeys the power law dependence: > ~ (¢) (L /1),
with pt = 2/3. While their original arguments were postulated for inertial scales, if one were to extend the
cascading process down to smallest scale, i.e. 7 = 1., = (V3/6$°°) W4 itleadsto oo = (Bp) /(8 — 2p). Using
w = 2/3 as proposed by She-Leveque then gives & = 0.3, which is close to our current prediction of

o = 0.275 £ 0.025. However, they also suggest h,;, = 1/9 within the multifractal formalism, which using
equations (10)—(12), gives = 0.3, 5 = 0.6 and Sty ~ W'Ry 92 which are clearly inconsistent with our data.
Ultimately, phenomenological descriptions (as those of [46]) are at best weakly connected to flow structures, and
typically assume a constant value of the exponents such as Jand a, thus ignoring any possible dependence on
R,, as suggested from equation (16) and figure 8. Hence, it appears that the closeness of o between the She—
Leveque model and our current result is only fortuitous.

In conclusion, our analysis of the most intense vortex structures observed in the flow relates the exponent 3
with the properties of the strain acting on vortices, and in particular with the exponent -y defined by equation (7).
The weak variation of ywith Ry, see figure 8, implies that 3should increase with Ry. A very natural conjecture is
that the symmetry between strain and vorticity, clearly broken at finite Ry, will be restored as Ry, — o0, and that
the exponents yand Sboth tend to 1, corresponding to earlier predictions [17, 20]. Understanding the
Ry-dependence of the strain acting on intense vortex tubes appears as an essential question in this regard, that
deserves renewed theoretical attention.

6. Implications for simulations and experiments

The identification of the smallest scale 7,,,, characteristic of the largest velocity gradients in the flow, which
decreases faster than when R) increases, has some obvious consequences for the resolution constraints
required in both DNS and experiments. In DNS, it is typical for most studies based to be performed with a k.7
or Ax/n held constant across the range of R, simulated (e.g. see [33, 47]). On the other hand, in experiments,
the resolution, determined by the probe size or the data acquisition frequency, often gets worse as R), increases
[40]. The present results, however, show that in studies focused on intermittency, one must continuously
improve Ax/nas R) is increased to adequately resolve the smallest scales, i.e. Ax/7.y should be held constant
across various simulations. In fact, this suggestion was also put forward by [20], though their criterion was
stricter than the present numerical results suggest.

The simulations presented here suggest, based on PDFs of various components of the velocity gradient
tensor, thataresolution of Ax/n = 1is sufficient for Ry = 240, but barely insufficient for Ry = 390 (this is also
evident from figure 6). An earlier resolution study at Ry < 240 [16], also supports this. In fact, in [16], the
authors also explored a practical approach to determine the necessary resolution based on calculating the error
between the pth order structure function and its analytic behavior for small distances (obtained from Taylor
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series expansion), such that the result is a function of p and R. However, such expressions are limited to small
values of p, since the derivation retained only a small number of terms in the Taylor expansion and hence also
cannot be generalized to estimate 7.

Nevertheless, based on previous and current results, it follows empirically that Ax/7 to accurately resolve
the velocity gradients should be

Ax/n =~ (Ry/R)™, 17)

where R} 2 300 is the reference Taylor-scale Reynolds number, at which 7, , ~ 7. The above relation provides
a practical resolution criteria for future simulations at even larger problem sizes than considered here. While

a ~ 0.275 for the current range of R), we anticipate newer simulations at higher R\ would progressively update
avand also quantify its dependence on R), (though given the slow growth of a with Ry, a very substantial range of
R might be required). The result provided by equation (17) should also apply to experimental investigations,
which are currently capable of providing data at much higher Ry compared to DNS [40, 48]. A simple estimate
suggests that 1/n,,, = 3 corresponding to these laboratory experiments at Ry ~ 6000—10 000. While this
correction is unlikely to affect the dynamics in wind tunnel experiments [40], it might enhance the quantum
effects in liquid-He experiments at [48]. However, more quantitative studies, even at relatively lower Ry, would
be useful, since currently resolving even 7 in such high R) experiments is an outstanding technical challenge.

7. Conclusions

Using very well-resolved DNS of isotropic turbulence, both in space and time, at Taylor-scale Reynolds number
R, ranging from 140 to 650, we have characterized the extreme fluctuations of the velocity gradients. In
particular, we focused on the square of vorticity, {2 = wiw;, and strain, ¥ = 2s;;s;; (synonymous with enstrophy
and dissipation), which have the same mean value (equal to 1 /7%). Whereas the PDFs of Q7% and Y7
superpose well around their mean values, the extents of their tails strongly grows as R, increases. We find that
these tails can be empirically collapsed by using a smaller time scale Ty, defined as 7oy = 7k X Ry B, implying
that the extreme velocity gradients in the flow grow as
[~ 0.775 £ 0.0025.

The above result is further validated by analyzing the PDFs of velocity increments 6u, at distances r equal to
or less than the Kolmogorov length scale 7. Our results show that §u, can be as large as the velocity rms »/, and

o The numerical results indicate that

slowly increases with Ry. The excellent superposition of the rescaled PDFs of Ry “6u, /u/,witha = § — % over
the range of R, covered in this study, suggests that the largest velocity gradients consist of velocity increments of
approximately u’ over asize 1,,, ~ 1 Ry ®. The existence of scales smaller than 7 is consistent with previous
ideas, although our results do not quantitatively support the existing phenomenological theories. In particular,
the assumption that extreme events correspond to a local Reynolds number of unity does not appear to be
justified in vortex tubes, where extreme gradients are found to reside—as revealed by flow visualizations in
figures 1 and 7 and also consistent with previous studies [24, 27].

Further analysis of flow structures around intense gradients in figure 7 reveals that vorticity and strain are
generally not spatially colocated, as suggested in some earlier studies [ 16, 28]. Conditional averaging shows that
strain acting on intense vorticity, is on average weaker than the vorticity, and shows an approximate power law
behavior given by equation (7). It is important to note that the structures shown in figure 7 taken in isolation do
notlead to a strong vorticity amplification. This suggests that the stretching, necessary to create the very intense
velocity gradients, in a representation of the velocity field in terms of a Biot—Savart equation [49], could originate
from a non-local mechanism. The observation that the strain acting on intense vortices is significantly weaker
than corresponding vorticity (as reflected in exponent y < 1 in equation (7)) can be viewed as a consequence of
this non-locality. Using scaling analysis, we are able to quantitatively relate 3 with the exponent y. The weak
increase in ywith R, suggests the same for 3. This leaves open the possibility that § could asymptote to 1 (and &
t00.5), in the limit of Ry — oo—a simple extrapolation of our data suggests that 5 > 0.99 would require
R, Z 20 000. However, such high Reynolds numbers might not be feasible experimentally or numerically. To
conclude, explaining the scalings discussed here, especially in the light of 7, remains an outstanding theoretical
challenge. Much remains to be learned by analyzing well-resolved data from even higher Reynolds numbers than
considered here, from both DNS and experiments.
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