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Abstract

The 21 cm transition of neutral hydrogen is opening an observational window into the Cosmic Dawn of the
universe—the epoch of first star formation. We use 28 hr of data from the Owens Valley Radio Observatory Long
Wavelength Array to place upper limits on the spatial power spectrum of 21cm emission at z ~ 18.4
(As; £ 10*mK), and within the absorption feature reported by the EDGES experiment. In the process we
demonstrate the first application of the double Karhunen-Lo¢ve transform for foreground filtering, and diagnose
the systematic errors that are currently limiting the measurement. We also provide an updated model for the
angular power spectrum of low-frequency foreground emission measured from the northern hemisphere, which can
be used to refine sensitivity forecasts for next-generation experiments.
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1. Introduction

The Cosmic Dawn of star formation is one of the final
unexplored epochs of the universe. During this time (approxi-
mately 25 2 z > 15) the first generation of stars and galaxies
formed and brought an end to the Dark Ages. Lya emission
from this early star formation couples the excitation temper-
ature of the 21 cm hyperfine structure transition (i.e., the spin
temperature) to the local gas temperature of the intergalactic
medium (IGM; Wouthuysen 1952; Field 1958). This allows the
highly redshifted 21 cm transition to be used as a probe of the
density, temperature, and ionization state of the IGM (e.g.,
Furlanetto et al. 2006; Pritchard & Loeb 2012).

The first possible detection of high-redshift (z ~ 17) atomic
hydrogen in the globally averaged sky temperature was recently
reported by the Experiment to Detect the Global EoR Signature
(EDGES) experiment at 78 MHz (Bowman et al. 2018). This
measurement was remarkable for its extreme amplitude
(~500 mK), and unusual width and shape. A plethora of new
ideas have been proposed to explain the amplitude of the
absorption trough. These new theories generally fall into two
categories: those that invoke new physics to cool the IGM at a
rate faster than pure adiabatic cooling would otherwise allow
(e.g., Barkana 2018; Fialkov et al. 2018), and those that posit a
new radio background originating from z 2 20 (e.g., Dowell &
Taylor 2018; Ewall-Wice et al. 2018). Distinguishing between
these alternatives and confirming the existing measurement (e.g.,
some concerns about the detection have been raised by Hills
et al. 2018) now motivate a number of experiments.

The Large-Aperture Experiment to Detect the Dark Ages
(LEDA; Price et al. 2018) and SARAS 2 (Singh et al. 2018)
experiments are in the process of attempting to directly confirm

the EDGES detection in the global sky temperature using
radiometric dipole antennas. Notably, each of these experi-
ments employs materially different antenna designs, which
will, in principle, help address concerns regarding the role of
the antenna beam and its potential to introduce spectral
structure into the measurement. As noted by Bowman et al.
(2018), these independent measurements with independent
processing pipelines will be an important verification of an
exceptionally difficult measurement. The primary observing
challenge faced by global-detection experiments—such as
EDGES, LEDA, and SARAS 2—is controlling systematic
errors introduced by foreground radio emission, instrumental
effects, and the interaction between them. Although these
experiments calibrate their antennas and electronics with great
care, they must rely on external models of the foreground radio
emission to model many types of systematic errors.

In contrast, interferometers generally have the ability to self-
calibrate and build self-consistent models for the sky emission
(Readhead & Wilkinson 1978), even with the extremely wide
fields of view common for low-frequency interferometers (e.g.,
Eastwood et al. 2018). However, interferometers are generally
not used to measure the globally averaged sky brightness
(Venumadhav et al. 2016), but instead measure the three-
dimensional spatial power spectrum of the 21 cm brightness
temperature fluctuations. The global average and the spatial
power spectrum are both statistics of the same field and
therefore a measurement of the spatial power spectrum can also
provide evidence to support or reject a putative detection in the
global average. A detection of the spatial power spectrum will
—with some modeling—provide independent constraints on
the temperature of the IGM and the timing of early star and
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galaxy formation (e.g., Greig & Mesinger 2017). The spatial
power spectrum carries additional information about the scale
of the brightness temperature fluctuations, which may be used
to constrain, for example, the amplitude of Lyman—Werner
feedback (Fialkov et al. 2013) and the spectral hardness of
early X-ray sources (Fialkov et al. 2014) that heat the IGM.

At lower redshifts corresponding to the epoch of reionization
(EoR), constraints on the 21 cm spatial power spectrum have
been published by the Precision Array for Probing the Epoch of
Reionization (PAPER) experiment (Ali et al. 2015), Low-
frequency Array (LOFAR; Patil et al. 2017), the Murchison
Widefield Array (MWA; Beardsley et al. 2016), and the Giant
Metrewave Radio Telescope (GMRT; Paciga et al. 2013). At
redshifts corresponding to the Cosmic Dawn, this measurement
has been attempted by Ewall-Wice et al. (2016) using 6 hr of
data from the MWA, and Gebhlot et al. (2018) using 14 hr of
data from the LOFAR-Low Band Antenna array. The under-
construction Hydrogen Epoch of Reionization Array (HERA)
experiment will aim to place the most sensitive limits to date on
the 21 cm brightness temperature spatial power spectrum from
both the EoR and Cosmic Dawn due to its large collecting area
and design lessons inherited from the PAPER experiment
(DeBoer et al. 2017). Similarly, the Square Kilometre Array
(SKA) will build on the development of its pathfinder arrays to
measure the spatial power spectrum and image the three-
dimensional structure of the universe through the 21cm
transition (Mellema et al. 2013; Koopmans et al. 2015).

In this paper we present the first attempted measurement of the
spatial power spectrum of 21 cm brightness temperature fluctua-
tions with the Owens Valley Radio Observatory Long Wavelength
Array (OVRO-LWA). In the process, we model, derive, and
(where appropriate) measure the contribution of thermal noise,
foreground emission, and the 21 cm signal to the full covariance
matrix of the data. This is possible due to the application of
m-mode analysis (Shaw et al. 2014, 2015), which introduces
sparsity into the covariance matrices without which it would not
be possible to store the full covariance matrix of the data. We
also analyze the systematic sources of error that currently limit
the measurement through simulation, which allows us to derive
quantitative requirements for instrumental calibration errors.

In Section 2 we describe the observations, the calibration
strategy, and point-source removal routines used in this work. In
Section 3 we describe the m-mode analysis formalism and a new
strategy for compressing the representation of the transfer matrix.
In Section 4 we derive, model, and measure the contribution of
noise, foreground emission, and the cosmological 21 cm signal to
the full covariance matrix of the measured data. These covariance
matrices are applied to filter the foreground emission in Section 5,
where we also build physical intuition for the action of the
foreground filters derived by Shaw et al. (2014, 2015). These
foreground filters are applied to 28 hr of data from the OVRO-
LWA to estimate the 21 cm power spectrum in Section 6, where
we also analyze the limiting systematic errors in our measurement.
Finally, in Section 7 we present our conclusions. Unless stated
otherwise, we adopt the set of cosmological parameters measured
by Planck Collaboration et al. (2016).

2. Observations

We collected 28 hr of continuous data using the OVRO-
LWA beginning at 2017 February 17 12:00:00 UTC. The
OVRO-LWA is a low-frequency radio interferometer with a
bandpass covering 27-85 MHz (50 2 z 2 16), and is currently
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composed of 288 dual-polarization dipole antennas (G. Hallinan
et al. 2019, in preparation). A total of 251 of these antennas are
arranged within a dense 200 m diameter core in a configuration
optimized for sidelobe levels in snapshot images; 32 additional
expansion antennas are placed outside of the core, expanding the
maximum baseline length to 1.5km. The remaining five
antennas are equipped with radiometric front-ends for total
power measurements of the sky as part of LEDA (Price et al.
2018). The LEDA correlator (Kocz et al. 2015) serves as the
back-end for the OVRO-LWA, and cross-correlates 512 inputs
with 58 MHz instantaneous bandwidth. In this configuration the
OVRO-LWA performs full cross-correlation of 256 antennas
(512 signal paths), and 32 antennas (64 signal paths) are unused.
We selected the correlator’s integration time to be 13s as this
evenly divides the sidereal day to within 0.1s. In snapshot
images, the OVRO-LWA can capture the entire visible hemi-
sphere at 10’ resolution (e.g., Anderson et al. 2018), and this
same data set was used to generate maps of the sky north of
6 = —30° (Eastwood et al. 2018).

At low radio frequencies, propagation effects through the
ionosphere are important. During this observing period,
however, geomagnetic and ionospheric conditions were mild.
At 73 MHz, bright point sources were observed to refract by up
to 4’ on 10 minutes timescales, and the apparent flux of point
sources varied by up to 10% on 13 s timescales (averaging over
24 kHz bandwidth) due to ionospheric conditions.

In this work we selected data from an instrumental subband
centered at 73.152 MHz with 2.6 MHz bandwidth (z = 18.4,
Az = 0.8). This subband is contained within the absorption
feature observed by Bowman et al. (2018), and contains the
73.0-74.6 MHz band allocated for radio astronomy in the
United States. There is additionally a gap in television
broadcasting between 72 MHz (the upper edge of channel 4)
and 76 MHz (the lower edge of channel 5) that this observing
band takes advantage of. Additionally, in previous work we
published an updated low-frequency sky map at 73.152 MHz
(Eastwood et al. 2018), which is available online at the Legacy
Archive for Microwave Background Data Analysis.

When measuring the power spectrum of 21 cm fluctuations, it
is common to make the implicit assumption that the 21 cm
power spectrum is not evolving along the line-of-sight direction
(see the Appendix). Greig & Mesinger (2018) simulated this
effect and found that for volumes of equal comoving radial
distance, this light-cone effect is more severe during the Cosmic
Dawn than during the EoR. Near z ~ 18 and a volume with
Az ~ 3, the recovered spatial power spectrum is suppressed by a
factor <2. While the light-cone effect can limit the usable
bandwidth for estimating the 21 cm spatial power spectrum, we
conclude that 2.6 MHz of bandwidth is permissible for this initial
analysis. Future studies of 21 cm fluctuations of the Cosmic
Dawn, however, should instead consider estimating the multi-
frequency angular power spectrum (Datta et al. 2007), which is a
statistic that is less common in the literature, but can be
measured without assuming that the statistics of the fluctuations
are not evolving along the line of sight.

A summary of the analysis steps performed in this work—
including the instrumental calibration and 21cm power
spectrum reduction—can be seen in Figure 1. In particular, a
gain calibration was derived from a 45 minute track of data
beginning at 2017 February 17 17:46:28 during which the two
brightest point sources in the northern hemisphere (Cyg A and
Cas A) are near the meridian. The sky model is initially
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Figure 1. Flow chart describing the data analysis steps performed in this paper. Shaded boxes represent processing steps, whereas unshaded boxes represent data.
Radio waves are received by antennas (depicted in the upper-left corner), which are correlated to produce raw visibilities. These visibilities are then flagged, calibrated,
and bright point sources are removed. After a full sidereal day’s worth of data has been collected, these visibilities can be Fourier transformed to compute the measured
m-modes. Separately, an empirical beam model is used to calculate the transfer matrix elements that describe the interferometer’s sensitivity to the sky. Full covariance
matrices are computed for the foreground emission, 21 cm signal, and thermal noise. These matrices are used to compress and filter foreground emission, and whiten
the noise covariance. Finally, the resulting filtered m-modes are used to estimate the spatial power spectrum of 21 cm emission. Images of the sky can be constructed
through the use of Tikhonov-regularized imaging (Eastwood et al. 2018), which are useful for diagnosing errors in the analysis.

composed of Cyg A and Cas A where the absolute spectrum of
Cyg A is given by Baars et al. (1977), and the spectrum of
Cas A is adjusted for its secular decrease of 0.77% per year

(Helmboldt & Kassim 2009). Because this initial sky model is
incomplete on large angular scales, baselines shorter than 15
wavelengths are excluded from the calibration routine. The
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gains are optimized using a variant of alternating least squares
independently described by Mitchell et al. (2008) and Salvini &
Wijnholds (2014). The bandpass amplitude is fit with a fifth-
order polynomial, and the phase is fit with a term for the delay
and a term for dispersion through the ionosphere. Smoothing
the gain calibration in this way helps to avoid modeling errors
during calibration propagating into bandpass errors that can
limit the sensitivity of the interferometer to the 21 cm power
spectrum (Barry et al. 2016; Ewall-Wice et al. 2017). After this
initial calibration and source removal, a model of the diffuse
Galactic emission is constructed using Tikhonov-regularized
m-mode analysis imaging. This model is then used to
recalibrate the data with a more complete model of the sky.

The OVRO-LWA analog signal path is susceptible to
additive common-mode radio frequency interference (RFI). A
model for the common-mode RFI is constructed from the gain-
calibrated visibilities after averaging over the entire 28 hr
observing period with the phase center left at zenith. Averaging
the visibilities in this way smears out the contribution of the
sky along characteristic sidereal tracks. We then select the
dominant components of the averaged visibilities to be used as
templates for the RFIL. The templates are manually inspected for
residual sky emission by imaging each component with
WSCLEAN (Offringa et al. 2014), and checking for features
that are swept along sidereal tracks. These templates are scaled
and subtracted from each integration to suppress the contam-
ination of the common-mode RFL

The top panel of Figure 2 is a dirty image of the sky
constructed from this data set prior to any point source
removal. A handful of bright point sources occupy the northern
sky—namely Cas A, Cyg A, Her A, Hya A, Tau A, Vir A, 3C
123, 3C 353, and the Sun. Each of these sources is removed
from the visibilities by employing a combination of peeling
(direction-dependent calibration) for the brightest sources, and
source fitting and subtraction for the fainter sources. This
source removal strategy is described in greater detail by
Eastwood et al. (2018).

Finally, in order to reduce the data volume and computa-
tional cost of further reductions, we selected only baselines
representable with spherical harmonics with multipole number
I < 300. This effectively selects only baselines from the core of
the OVRO-LWA (23,947 baselines in total), which contain the
majority of the brightness temperature sensitivity. The data
were additionally averaged down to channel widths of
240kHz. At 73 MHz, this averaging effectively smears out
the spatial power spectrum on kj ~ 1 Mpc~! scales, but is
permissible because the expected cosmological signal is small
at these scales.

3. Formalism
3.1. m-mode Analysis

In this paper we apply the m-mode analysis formalism
developed by Shaw et al. (2014, 2015). The interested reader
should consult the aforementioned references for additional
details, but m-mode analysis is briefly summarized below.

The measured quantity in a drift-scanning telescope is a
periodic function of sidereal time. The Fourier transform with
respect to sidereal time of this measured quantity is called an
m-mode, where the value of m indicates how rapidly this mode
varies over the course of a sidereal day. m = O corresponds to
the mean value of the measurement over a sidereal day.
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m = % 1 corresponds to the components that vary once over a
sidereal day. Larger absolute values of m represent contribu-
tions to the measurement that vary on increasingly rapid
timescales.

The primary advantage of making this transformation to
m-modes is that it can be shown that the set of measured
m-modes with a given value for m are a linear combination of
the spherical harmonic coefficients with the same value of m.
This allows the data to be partitioned by m, and each partition
can be manipulated independently of the remaining data set.
Typically this leads to a large reduction in the processing time,
which allows for the application of otherwise infeasible data
analysis techniques that make use of the full covariance matrix
of the data set.

We will adopt the convention that the measured m-modes are
contained in a vector v, and the spherical harmonic coefficients
of the sky brightness are contained in a vector @. The transfer
matrix B describes the interferometer’s response to the sky and
is block-diagonal when both v and a are sorted by the absolute
value of m. If we explicitly decompose the sky in terms of the
high-redshift 21 cm contribution a@,;, and the foreground radio
emission @y, then

v = Bay, + Bay, + n, (1)

where n is the contribution of thermal noise to the
measurement.

The rows of the transfer matrix B fundamentally describe the
response of each baseline to the sky represented by a. The
individual elements of the matrix are computed from spherical
harmonic transforms of each baseline’s fringe pattern (includ-
ing the response of the antenna beams and bandpass).
Eastwood et al. (2018) demonstrated all-sky imaging in a
single synthesis imaging step through inverting Equation (1).
However, that demonstration was restricted to single-channel
imaging due to, in part, the computational and storage
requirements associated with computing B.

3.2. Hierarchical Transfer Matrices

Modern interferometers are composed of large numbers of
antennas (N > 10) arranged in configurations that have both
long and short baselines. For instance, the OVRO-LWA has
over 30,000 baselines. The shortest baseline is 5 m, and the
longest is 1.5 km. Consequently the OVRO-LWA measures a
large range of angular scales. We can exploit this fact to reduce
the computer time and disk space required to compute and store
the transfer matrix B.

The sensitivity of a baseline of length b to spherical
harmonic coefficients with multipole moment / is o j,(27b/ ),
where j is the spherical Bessel function of the first kind, and A
is the wavelength. When [ 2 27b/ )\, the spherical Bessel
functions rapidly drop to zero (see the Appendix for more
details about spherical Bessel functions). Consequently, even
though the transfer matrix is block-diagonal, each diagonal
block of the transfer matrix can also contain a large number of
zero elements.

Therefore, when the columns and rows of each transfer
matrix block B, are sorted by the multipole number / and
baseline length respectively, each block has the following
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Figure 2. Molleweide projection of a Tikhonov-regularized image of the sky constructed from all baselines representable with /,,,x < 200, and 2.6 MHz of bandwidth
centered on 73.2 MHz. The color scale is linear between —1000 K and +1000 K, and logarithmic outside of this range. No cleaning has been performed, so all point
sources are convolved with a point-spread function, and no masking of low declinations has been performed. The resolution of the maps naturally degrades at low
declinations and the regularization scheme naturally encourages the map to be zero below the horizon. Negative rings at the decl. of bright point sources are an artifact
of the fact that m = 0 modes are filtered from the data set due to their susceptibility to RFI and common-mode pickup. Top: before bright point sources are removed

from the data set; bottom: after point source removal.

structure:

2

)3UO] duIEseq

Shaded regions represent elements with nonzero value, whereas
unshaded regions represent elements with approximately zero

value due to the fact that / = 27b/\. This structure makes it
apparent that it is not necessary to store every element of each
transfer matrix block. In fact, by partitioning the array into sets
of baselines with similar length, one can achieve significant
cost savings when computing and storing the transfer matrix
elements.

Ultimately, for the OVRO-LWA we achieve a 58%
compression of the transfer matrix by not storing elements
that are approximately zero.

3.3. Data Compression

Further data compression is desirable because it reduces the
computational costs of all subsequent analysis steps. We
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implement the singular value decomposition (SVD) compres-
sion described by Shaw et al. (2014, 2015). The SVD factorizes
a matrix into a unitary matrix U, a diagonal matrix 3, and
another unitary matrix V such that

B =UZV* 3)

The diagonal elements of X are called singular values and, in
this case, represent the amplitude of the response of the
interferometer to the corresponding singular vectors (i.e., the
columns of U). The data can therefore be compressed by
selecting all singular values above a given threshold and
computing

R=|" w wyy @)

Veompressed = R*V, (5)

where u; is a column of U whose singular value passes the
threshold, and v is the vector of measured m-modes. The
transfer matrix is similarly transformed Beompressed = R*B, and
covariance matrices become Ceompressed = R*CR.

This compression is especially effective for the OVRO-
LWA because the compactness of the interferometer leads to
many partial redundancies between similar baselines. This is
simply a statement that the number of baselines used in the
calculation Np,selines 1S larger than the number of unknowns in
each transfer matrix block. In this paper, we adopted
Imax = 300 as the maximum value of the multipole number.
For the OVRO-LWA Npaselines > 300, so there are many
redundancies in the data set even though no pair of baselines is
individually redundant. In total this compression reduces the
volume of data to a mere 0.6% of its original size (before
discarding any singular values).

4. Covariance Matrices

We model the covariance of the observations C = (vv*) with
contributions from thermal noise C,se, foreground emission
Ci,, and the cosmological 21 cm signal itself Cy;:

<VV*> =C= C21 + Cfg + Cnoise’ (6)

where this expression implicitly assumes that the sky is an
isotropic Gaussian-random field, and that the sky covariance
should be understood as an average over realizations of the sky.

We will begin with a detailed description of the models,
measurements, and calculations used to compute each of these
covariance matrices.

4.1. Thermal Noise Covariance

The 21 cm signal is expected to be unpolarized,'* so we form
Stokes-/ visibilities from the mean of the xx and yy visibilities.
Under this convention, the covariance of the complex-valued
Stokes-I visibilities is (see Chapter 9 of Taylor et al. 1999):

2kB nys )21

Cnoise = | (7)
[ NAett V2AUT

12 Venumadhav et al. (2017) find that circular polarization may be used to
measure primordial magnetic fields, but the amplitude of this effect is too small
to consider measuring with existing low-frequency telescopes.
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where kg is the Boltzmann constant, Ty is the system
temperature, 7 is the antenna efficiency, A is the effective
collecting area (each assumed to be the same for all antennas),
Av is the bandwidth, and 7 is the total integration time. The
effective collecting area of the antenna is related to the solid
angle of the primary beam € through A = A\?/. At 73 MHz,
the OVRO-LWA dipoles have primary beams with 2 ~ 2.4 sr
or A ~ 7 m>.

OVRO-LWA dipoles are designed to be sky-noise domi-
nated (=6 dB between 20 and 80 MHz; Hicks et al. 2012).
More precisely, the system temperature is given by

Tiys =~ Ny + Tpre—amps (8)

where 7 is the antenna efficiency, Ty, is the averaged
brightness temperature of the sky (primarily the Galactic
synchrotron emission) weighted by the primary beam pattern,
and Tpreamp 18 the noise temperature of the first amplifier in the
analog signal path. We expect Tpre.amp ~ 250K and 1 < 0.5
(Hicks et al. 2012).

The LEDA experiment hosted at the OVRO-LWA measured
the brightness temperature of the diffuse Galactic emission in
the northern hemisphere using the five radiometric antennas
(Price et al. 2018). At 70 MHz, the brightness temperature
varies between 1700K and 3200K with a relatively flat
spectral index that varies between —2.28 and —2.38. In the
southern hemisphere, the EDGES experiment measured that the
brightness temperature of the sky at 150 MHz varies between
257K and 842K with a spectral index that varies between
—2.50 and —2.62 (Mozdzen et al. 2017). Extrapolating to
70 MHz, we expect the beam-weighted sky brightness temp-
erature in the southern hemisphere to vary between 1700 K and
6200 K. The maximum brightness temperature corresponds to
sidereal time when the Galactic center transits.

We measured the system temperature as a function of
frequency and sidereal time using a five-point stencil to
suppress the contribution of the sky emission to the measured
visibilities:

A(w,t)=4V(w,t) — V(v — 24kHz,t) — V(v, t — 13 s)

—V(w+24kHz,t) — V(v,t 4+ 13 9),

where A(v, 1) is a quantity whose variance is 20 times larger
than that of the measured visibilities V(v, f) at the given
frequency v and time ¢ Note that 24 kHz is the native
frequency resolution of the OVRO-LWA and 13s is the
integration time. Therefore this stencil takes the difference
between each measured visibility and the bilinear interpolation
from adjacent frequency channels and time integrations. We
then estimated the system temperature from the variance of A.
The measured system temperature is shown in Figure 3
compared to the sky temperature measured by LEDA and
extrapolated from EDGES. As expected, the system temper-
ature increases at lower frequencies due to the increasing sky
brightness temperature, and varies sidereally reaching a
maximum as the Galactic center transits the meridian. These
measurements suggest that the antenna efficiency 7 ~ 0.25.
Although the system temperature varies with time and frequency,
we adopt a constant system temperature of 35007 K when
computing the sensitivity of the OVRO-LWA. We expect this
approximation to potentially introduce errors of ~10% to the
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Figure 3. System temperature T (scaled by the antenna efficiency 7) measured as a function of frequency (left panel, solid black line), and local sidereal time (right
panel, solid black line). The hatched region denotes the range of sky temperatures measured by the LEDA experiment (Price et al. 2018). The shaded region denotes
the range of sky temperatures measured by the EDGES experiment in the southern hemisphere (Mozdzen et al. 2017).

computed sensitivity and error bars, which does not materially
impact the results presented in this paper. In Section 6.5 we
additionally simulate the impact of the implicit assumption of
stationary thermal noise and conclude that it also does not bias our
results.

4.2. Foreground Covariance

Under the assumption of a Gaussian random field, the
covariance contributed by the sky can be computed from the
multi-frequency angular power spectrum:

(am W) ajty W) = Cw, V") & Spms )

where the angled brackets denote an ensemble average over
realizations of the sky, a;,(v) is the spherical harmonic
coefficient of the sky brightness at frequency v, Ci(v, V) is
the multi-frequency angular power spectrum at the multipole
moment I/, and between the frequencies v and +/. The
Kronecker delta is represented by 6. The transfer matrix B
describes how to relate the covariance of the spherical
harmonic coefficients to the covariance of the measurements
themselves, such that

Cyy = BC),B*, (10)

where Cyy is a term in Equation (6), and Cs'ky is a matrix whose
elements are specified by Equation (9).

A common parameterization of C/(vy, v,) for foreground
radio emission is (Santos et al. 2005)

—; —03.
l 778
v =Saf;) (%)
i 0

N2
x exp[—W], (11)
1
where A; represents the overall amplitude of a foreground
component; ¢«; determines its angular spectrum, and [;
determines its frequency spectrum. Finally, (; controls the
degree to which nearby frequency channels are correlated. The
statement that foreground emission is spectrally smooth here
implies Ciz > log?(v / V') for each component. This parameter-
ization allows for multiple power-law foreground components

and ensures that the covariance matrix is positive definite. Because
the fractional bandwidth is small, in this paper we assume
¢ 12 > log?(v / v'"). For simplicity when measuring the foreground
covaraiance, we will additionally assume a single foreground
component such that Equation (11) can be written as

CE(w, v) = CEw)CEW, (12)

where C®(v) = C¥(v, v) is the single-frequency angular
power spectrum.

We measured the angular power spectrum of the foreground
emission at each frequency channel using a quadratic estimator
(Tegmark 1997). The angular power spectrum is given by

CEw) = [F'(qg — b, (13)

where F is the Fisher information matrix, ¢ is a quadratic
function of the input data, and b is the bias due to thermal
noise. The elements of the Fisher matrix F are given by

Fll’ = Z |wl>r):<1Cr;1wl’m |2’ (14)
m

where Fy is the Fisher matrix element corresponding to the
multipole numbers / and /', wy,, is the column of the transfer
matrix corresponding to / and the azimuthal quantum number
m, and C,, is the covariance matrix block corresponding to m.
The convention | - | is used here to indicate the magnitude of a
complex number. The elements of ¢ and b are given by

Z |wlm m Vm (15)
Z lem 1C11((1%em||2’ (16)

where v, is the vector of m-modes corresponding to the given
value of m, and Cyise.n 18 the corresponding block of the noise
covariance matrix. The convention ||-|| is used here to indicate
the magnitude of a complex vector (the usual Euclidean norm).

The result of applying this quadratic estimator to the data set at
73.260 MHz (a representative channel) can be seen in Figure 4.
Broadly, the data can be described with a power law in /, but the
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Figure 4. Angular power spectrum of the sky as measured by the OVRO-LWA at 73.260 MHz. Measurements (with 95% uncertainty) are indicated with red bars. The
uncertainty is dominated by sample variance. The dashed black line is the best-fit power-law spectrum, and the solid black line is the best-fit solution when the power-
law index is allowed to run. The dashed—dotted line is a model derived, in part, from the Haslam 408 MHz sky map (Haslam et al. 1981, 1982; Santos et al. 2005). The
feature at / ~ 30 is sensitive to the choice of covariance matrix, and is therefore likely instrumental.

quality of the fit is somewhat poor. A single power-law fit gives

l —2.5
C ~ 92. x (W) K2 17)

In fact, while this is a reasonable fit at [ > 75, a shallower
power-law index is preferred I < 75. If we allow for the power-
law index to run, the best-fit model becomes

C ~ 85. x (— K2 (18)

—32+1/2717.
100 )

A comparison of these two models can be seen in Figure 4 in
addition to a model of the Galactic synchrotron emission
derived by Santos et al. (2005), which appears to underestimate
the amplitude of C; by an order of magnitude. Because the
fractional bandwidth of this measurement is small, essentially
all reasonable spectral indices are permitted. We adopt a
fiducial spectral index of —2.5 as a compromise between the
spectral indices measured by LEDA and EDGES. We will
discuss the potential impact of an error in the spectral index in
Section 6.4 as part of a broader discussion of calibration and
bandpass errors.

4.3. Signal Covariance

Given the isotropic three-dimensional spatial power spec-
trum of the 21 cm brightness temperature Pfl(k) with the
wavenumber k and at the redshift z, the multi-frequency
angular power spectrum Cy(v, /) is given by

2 . .
Gy = = [P2 ) jithr) k) K2k, (19)

where r, is the comoving distance to the redshift z (specified by
the frequency v), and j(x) is the spherical Bessel function of the
first kind. In the flat-sky approximation, Equation (19) can be
simplified to

1

T, ry'

21
G v)=

[Pk ky cos Ak, (20)

where k; = [/r, and kj = \Jk* — k?. See the Appendix for a
derivation of this approximation and the assumptions that must
be satisfied for it to be a reasonable approximation.

If PZ21 (ki, k) is additionally assumed to be a piecewise linear
function, Equation (20) can be evaluated analytically. Under
this assumption, Pfl(kL, k|) can be represented using linear hat
functions (triangular functions in two dimensions), such that

P2k, kp = > p, x hata(ki, k) Q21
(e}

Pl V') ~ —— 3" p Ha(Ar) (22)
Trzrz’ S

where H,(Ar) = [hato(k., k) cos (k| Ar) dk;.

The flat-sky approximation is valid only when the power
spectrum is smooth enough for rapid oscillations in the
spherical Bessel functions to cancel out. The hat functions
are non-differentiable, and so we must compute the error
associated with this pixelization of the power spectrum.
Figure 5 gives the relative error on the computed angular
power spectrum for a fiducial hat function power spectrum.
Generally the error is 10~*, but can reach to 107! at values
where C; = 0. This is an acceptable error in the context of this
paper, but future experiments may wish to experiment with
differentiable basis functions.

When selecting a fiducial model for the 21 cm power
spectrum we prefer to remain unopinionated, and therefore
adopt a flat power spectrum with a single free parameter, the
overall amplitude of the dimensionless power spectrum Ay;:

2m?
Pf%c}ucial (k) = ?

A3, (23)
Prior to the recent detection of an absorption feature centered at
78 MHz by Bowman et al. (2018), the amplitude of the power
spectrum was generally predicted to be A, < 20mK at
7z~ 20 (e.g., Fialkov et al. 2014). However, more recent
predictions in the context of the measured 78 MHz absorption
feature predict a much brighter power spectrum (e.g.,
Barkana 2018; Kaurov et al. 2018). However, we adopt
A, = 20mK as a fiducial power spectrum amplitude in order
to be somewhat conservative.
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Figure 5. Relative error involved in making the flat-sky approximation for a
hat function power spectrum (i.e., the relative difference between
Equations (19) and (20)) with / = 10 (solid line) and / = 100 (dashed line).
The hat function is centered at kj = 0.1 Mpc~! with a domain that extends from
0.095 Mpc™' to 0.105Mpc~'. The spikes in relative error correspond to
when G (Av) ~ 0.

The amplitude of the fiducial 21 cm signal is primarily used
to determine which modes should be kept by the foreground
filter described in the following section. Therefore, if readers
are skeptical of this selection of the power spectrum amplitude,
they may simply choose to interpret the results as if the
foreground filter is stronger or weaker than expected. A
foreground filter that is weaker than expected could lead to a
biased power spectrum estimate, but a foreground filter that is
stronger than expected will lead to a conservative result with
error bars that may be larger than necessary.

5. Foreground Filtering

In the preceding sections, we have derived and, where
appropriate, measured the contribution of thermal noise,
foreground emission, and the cosmological 21 cm emission to
the complete covariance matrix of the data. This was possible
because the transfer matrix B is block-diagonal with respect to
m, and we assumed that the sky emission is a Gaussian-random
field (i.e., there are no correlations between different values of
m). Without these properties the full covariance matrix is
generally too large to represent and manipulate on any existing
computer. Shaw et al. (2014, 2015) were therefore able to
derive a new foreground filtering technique that exploits
knowledge of the full covariance matrix. This filter is called the
double Karhunen-Lo¢ve transform (double KL transform). In
this section we will briefly summarize the action of this
foreground filter and demonstrate its application to the OVRO-
LWA. We will finally attempt to develop an intuitive
understanding by relating its behavior to the “foreground
wedge” commonly seen in the literature (e.g., Parsons et al.
2012; Vedantham et al. 2012; Thyagarajan et al. 2015).

The KL transform is closely related to the generalized
eigenvalue problem. For two Hermitian, positive-definite
matrices G, C, € C¥, we would like to find all pairs of
eigenvalues ); and eigenvectors v; for which

Clvi = >\i Cz V. (24)

Because both matrices are Hermitian, it quickly follows that the
eigenvalues ); must be real. Because both matrices are
additionally positive definite, it follows that the eigenvalues
A; must all be positive. Furthermore we can select the

Eastwood et al.

normalization of the eigenvectors such that
v¥Cv = \; (25)
vi*szi =1. (26)

Under this convention the eigenvalues have a simple
interpretation as the ratio of the mode power contained in G
relative to C,. All N eigenvalues and eigenvectors can be
conveniently found with a single call to LAPACK (Anderson
et al. 1990).

In Section 4.2 we derived and measured a model for the
foreground contribution to the data covariance Cg. In
Section 4.3 we projected a fiducial model 21 cm power
spectrum to a multi-frequency angular power spectrum, and
therefore derived its contribution to the data covariance C,;.
We can solve the generalized eigenvalue problem for the
eigenvectors (arranged as columns within the matrix L) that
simultaneously diagonalize both matrices (called the KL
transform):

LCi,I¥ = A 27)
LG\ L =1, (28)

where A is a diagonal matrix, and I is the identity matrix. The
foreground filter is simply constructed by selecting only the
eigenvectors for which the corresponding eigenvalue (i.e.,
the foreground—signal power ratio) is less than some value €ge,
selected by the observer. The application of this filter to a
fiducial set of models can be seen in the second row of
Figure 6. The signal covariance matrix has been diagonalized
and the power in each remaining mode is greater than the
surviving power in the foreground covariance matrix. The off-
diagonal elements in the foreground covariance matrix are due
to numerical errors. The possible effect of these numerical
errors on the efficacy of the foreground filter is noted here, but
is out of the scope of the current work.

Much emphasis has been placed on maintaining the integrity
of the “foreground wedge” in the next generation of 21 cm
telescopes. In its simplest form, the existence of the foreground
wedge is a statement that most foreground radio emission that
observers have to contend with when trying to detect the
cosmological 21 cm is spectrally smooth. A simple Fourier
transform of an image cube therefore leads to most contamina-
tion occupying the space where kj (the line-of-sight wave-
number) is small. However, due to the chromatic nature of
interferometers (specifically that the fringe spacing o b/A
where b is the baseline length and A is the wavelength), this
contamination is spread out into a wedge-like structure.
Additional chromaticity in, for example, the bandpass or
antenna primary beam leads to the contamination even leaking
out of the wedge. In the event of too much leakage, the
observer has lost the ability to measure the cosmological 21 cm
transition.

In contrast, the KL transform automatically finds the optimal
linear combination of the data set for separating foregrounds
using all available information built into the models. This
includes information on the frequency spectrum of the
foregrounds as well as their angular structure, which can lead
to scenarios where the KL transform can filter foreground
emission that cannot be avoided with a delay filter. There is, of
course, a caveat that the KL transform requires sufficiently
detailed models for the instrument and foreground emission.
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Figure 6. Illustration of the action of foreground filtering on each of the covariance matrices discussed in Section 4. The left column corresponds to the noise
covariance matrix, the middle column corresponds to the high-redshift 21 cm contribution to the covariance, and the right column corresponds to the foreground
covariance matrix. The top row is before any filtering has been applied, the middle row is after the first KL transform, and the bottom row is after the second KL
transform. The color gives the logarithm (base 10) of the absolute value of the matrix element. Prior to any filtering, baselines are ordered by length and then by
frequency. The apparent structure in the signal and foreground covariances is due to this ordering combined with the downsampling of the matrices necessary to
produce this graphic. After filtering and whitening, the rows/columns are ordered by the magnitude of the corresponding eigenvalues. This diagram illustrates which
matrices are diagonal, and the relative amplitude of the matrix elements after each stage in the processing.

However, it is not necessarily optimal to remain completely
apathetic to the structure of foreground emission, and most
collaborations are expending significant effort to characterize
their instruments.

A single KL transform, however, leads to large off-diagonal
elements in the noise covariance matrix (see the second row of
Figure 6). Therefore Shaw et al. (2014, 2015) introduced a
second KL transform that diagonalizes the noise covariance
matrix. This second matrix composed of eigenvectors will be
denoted by W. In total we therefore have

Cﬁltered = W*L*CZILW + W*L*(Cfg + Cnoise)LW’
S I

(29)

where Cijereq is the data covariance matrix after applying the
double KL transform foreground filter, S is a real diagonal

10

matrix, and I is the identity matrix. The diagonal elements of S
give the expected signal-noise ratio in each mode. The
foreground filter is applied to the measured m-modes by
simply computing

Veilered = W¥L*v. (30)

In this paper we will repeat the analysis using three different
values for the foreground filtering foreground—signal threshold
€hrer- Lhis will allow us to assess the performance of the
foreground filter and degree to which residual foreground
contamination may be affecting the measurement. We will
adopt the terminology ‘“‘strong,” “moderate,” and “mild” to
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Now we will build a physical intuition for understanding the
operation of the double KL transform foreground filter.

Figure 7 illustrates the fractional increase in error bars
associated with applying the moderate foreground filter. In the
space of a cylindrically binned power spectrum, the action of
the filter is to discard linear combinations of the data set with
low k; and low k,. This manifests itself as a decrease in
sensitivity—equivalently an increase in the error bars—in this
region of parameter space. High k; modes are computed from
rapid frequency differences, whereas low k| modes are slowly
varying in frequency. Because the foreground emission is
spectrally smooth, it tends to corrupt modes with low k. The
pattern of this contamination is known as the foreground
wedge. However, the foreground filter additionally removes
emission on large angular scales (low k). This arises because
the foreground filter is aware that the foreground emission is
brighter on larger angular scales (see Figure 4 and
Equation (18)).

As illustrated in Figure 8, the foreground filter also tends to
remove emission in two separate parts of the sky: low
declinations that are never seen at high elevations from the
OVRO-LWA, and high declinations around the north celestial
pole (NCP). This filtering of high and low declinations can be
seen in Figure 9, which is a Tikhonov-regularized image of the
sky constructed from the post-filtered data.

The OVRO-LWA is a zenith pointing drift-scanning
instrument. Therefore foreground emission located far from
zenith has a large path difference between antennas. This large
path difference leads to additional frequency structure that
allows the foreground emission to contaminate higher values of
k (Morales et al. 2012). Similarly, Thyagarajan et al. (2015)
derived the impact of widefield effects on the foreground
contamination and found that baseline foreshortening can lead
to additional Galactic synchrotron emission on large angular
scales contaminating the measurement. This foreground
emission from low elevations is problematic. The double KL
transform suppresses the contribution of these low elevations to
the measurement.
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1

Figure 8. Mollweide projected illustration of the sky where shaded regions are
down-weighted by the foreground filter. More precisely, we measured the rms
along rings of constant decl. after foreground filtering. Shaded regions are
where the rms is less than 1% of the maximum rms. From darkest to lightest,
these regions of the sky are filtered by the mild, moderate, and strong
foreground filters respectively.

Emission from the vicinity of the NCP is characterized by its
low fringe rate. As the Earth rotates, emission located here
moves slowly through the fringes of the interferometer.
Therefore this emission is predominantly characterized by
low values of m. The foreground emission, however, is
brightest relative to the cosmological 21 cm emission at low
values of / (large angular scales). Because m < [ for a given
value of /, low values of m are disproportionately contaminated
by the brightest diffuse components of the foreground
emission. In fact, for the fiducial foreground and signal models
presented in Sections 4.2 and 4.3 respectively, the the
foreground—signal ratio of the most favorable mode is
ocm 3. This is a reflection of the fact that emission with a
higher fringe rate tends to be smaller in angular extent.
Consequently, the foreground filter aggressively discards
information from small values of m and the emission located
at the NCP is collateral damage because it can be difficult to
separate from the diffuse foreground emission. This can be
seen in Figure 8 where increasing the strength of the
foreground filter increases the area around the NCP that is
down-weighted.

6. Results and Error Analysis

We will use a quadratic estimator to measure the spatial
power spectrum of 21 cm fluctuations (Tegmark 1997). In
particular we estimate the coefficients p,, defined in
Equation (21). As described by Padmanabhan et al. (2003),
the observer may tune the estimator by selecting a windowing
function that produces the desired properties. For example,
given the measured data v, the full covariance matrix C, and the
Fisher information matrix F, the unwindowed and minimum
variance estimates of the power spectrum amplitude are

ﬁ;:nwindowed _ Z[Fil]m’i (C]g . b(j) (31)
B
-1
ﬁ(:nin. variance = Z Faﬁ (Qg _ bﬂ)’ (32)

I3
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Figure 9. Top: Mollweide projected image of the sky after point source removal and moderate foreground filtering. The dominant residual feature in the residuals is
associated with the Sun. Bottom: the power spectrum estimated without (left) and with (right) point source removal at a range of filter strengths. Points correspond to
the estimated power spectrum amplitude and the dashed lines correspond to the computed thermal noise (95% confidence). Mild foreground filtering is red, moderate
foreground filtering is black, and strong foreground filtering is blue. The shaded region represents the sensitivity required to detect or rule out optimistic models for the

21 cm power spectrum.

where
q, = v*C*IEC’Iv (33)
op,
b, = tr(C‘la—CC‘lCnoise) (34)
op,
Fpg=tr C718_CC718_C . (35)

Directly computing F, s from its definition is computationally
expensive, and so we compute an approximation of the Fisher
information matrix using the iterative Monte Carlo scheme
described by Padmanabhan et al. (2003) and Dillon et al.
(2013).

We will make exclusive use of the minimum variance
estimator in this paper because it is relatively insensitive to
errors in the Fisher information matrix, which are inevitable
due to the Monte Carlo computation. Additionally, the

12

unwindowed estimator can compound numerical errors when
the condition number of F is large."?

In Figure 9 we present the results of the quadratic estimator
with and without point source removal, and across the range of
foreground filter strengths. These estimates are, across the
board, severely limited by systematic errors. This is readily
apparent due to the extreme amplitude of the estimated power.
We therefore interpret these measurements as upper limits
A3, < (10*mK)? at k ~ 0.10 Mpc .

As the strength of the foreground filter is increased more
information is lost by the filter. This is seen in the window
functions of the quadratic estimator. With mild foreground
filtering, the window functions are rou%hly evenly spaced
between k = 0.10 Mpc~! and 0.35Mpc™~'. With strong fore-
ground filtering, all of the measurements are instead concen-
trated around k = 0.15 Mpc_l, which reflects the loss of
information at other values of the wavenumber k.

'3 The condition number of a matrix A is 5(A) = ||A|| ||A~!|| and describes the
error introduced when solving the linear equation Ax = b for the vector x. As a
general rule of thumb, if log,lOH(A) = N, one can expect to lose N digits of
precision after computing A~'b.



THE ASTRONOMICAL JOURNAL, 158:84 (20pp), 2019 August

After initial calibration and stationary component removal,
we attempted to subtract the eight brightest point sources in the
northern hemisphere in addition to the Sun. The brightest of
these sources were removed with direction-dependent calibra-
tions. The fainter sources were simply subtracted after fitting
for their flux and position (attempting to account for iono-
spheric scintillation and refraction). The Sun was removed
using a resolved source model. With mild foreground filtering,
this point source removal leads to a ~2Xx reduction in the
power spectrum amplitude.

However, the efficacy of the foreground filter materially
differs between the data sets where bright point sources have
and have not been removed. Without point source removal,
increasing the strength of the foreground filter leads to a
reduction of the estimated power. This reflects the fact that the
foreground filter is removing increasing amounts of foreground
contamination. In contrast, if point sources have been
subtracted, the power spectrum amplitude is insensitive to the
strength of the foreground filter. While the point source
removal routine leads to less foreground contamination in the
absence of foreground filtering, it also restricts the effectiveness
of the foreground filter. This suggests that the point source
removal routine introduces additional errors into the data set
that inhibit the action of the foreground filter.

We will now attempt to diagnose the source of these residual
systematic errors that limit this measurement. While doing this,
we will adopt the moderate foreground filter as the fiducial
foreground filter due to its action as a compromise between the
amount of foreground emission removed and resolution in the
wavenumber k.

6.1. Even—0dd Jackknife

Errors arising from variations on rapid timescales—the
timescale of a single correlator dump—can be revealed through
a comparison of results obtained data using only even-
numbered integrations and the interleaving odd-numbered
integrations. These two halves of the data set have independent
thermal noise with additional errors due to ionospheric
scintillation, radio frequency interference (RFI), and source
subtraction errors.

In prior work we observed that ionospheric scintillation
generates ~10% fluctuations in the flux of a point source on
13 s timescales at 73 MHz (Eastwood et al. 2018). The position
of a source varies more slowly by up to 4’ on 10 minute
timescales. Therefore comparing even- and odd-numbered
integrations will reveal errors arising from ionospheric
scintillation, but not necessarily from variable ionospheric
refraction.

Figure 10 contains a map of the sky constructed from
differencing the even and odd data sets (after point source
removal). This map is almost featureless. If ionospheric
scintillation was contributing a substantial amount of additional
noise to the measurement, we would expect to see enhanced
residuals in the vicinity of bright point sources. Instead, the
dominant features are a ~50 K residual at the location of the Sun,
and some artifacts at low declinations that do not rise above 10°
elevation (likely generated by RFI). We therefore conclude that
over a long 28 hr integration, the ionospheric scintillation has
averaged down and is not the dominant source of error.

The bottom panel of Figure 10 compares the amplitude of
the estimated power spectrum after differencing the even- and
odd-numbered integrations. Differencing the two halves of the

13
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data set cancels out the majority of the residual contamination
of foreground emission into the measurement. Therefore the
power spectrum decreases in amplitude. The improvement is
roughly one order of magnitude before source subtraction and
only a factor of 2-3 after source subtraction. Point source
removal is conducted independently on each integration;
sporadic errors and source subtraction residuals will therefore
also tend to manifest on the timescale of a single integration.
This measurement therefore suggests that source subtraction
residuals could be a limiting factor for this estimate of the
21 cm power spectrum.

6.2. Day—Night Jackknife

The dominant subtraction residual in the preceding section is
associated with the Sun, which is a difficult source to cleanly
subtract due to its complex structure. We can therefore split the
data into two halves: data collected while the Sun is above
the horizon, and below the horizon. The data collected during
the night have a number of advantages. Specifically, subtraction
residuals associated with the Sun cannot impact data collected
during the night. Additionally the ionospheric total electron
content (TEC) is lower during the night because the Sun acts as a
source of ionization for the ionosphere. Specifically, the median
vertical TEC measured within 200 km of OVRO rose to 20 TECU
(total electron content unit) during the day, but dropped to
6 TECU during the night. There were no geomagnetic storms
during the observing period and the fact that these observations
were collected during the winter months generally contributes to a
reduction in the ionospheric TEC. Finally, due to the time of year,
the sky temperature is lower at night. For these reasons, we
generally expect an improvement in the nighttime data with
respect to the daytime data.

In principle, m-mode analysis requires that data be collected
for a full sidereal day because the m-modes are computed from
the Fourier transform of the visibilities with respect to sidereal
time. We relax that requirement here. When selecting half the
data, we additionally apply a Blackman—Harris window
function to prevent ringing. Tikhonov-regularized images
made from just the daytime and nighttime data can be seen in
Figure 11. These dirty images serve as a proof of concept that
m-mode analysis can reasonably be applied to data sets without
a full sidereal day’s worth of data.

We estimated the power spectrum from each half of data and
the results are presented in Figure 11. Restricting the
observations to nighttime only leads to a substantial improve-
ment in the power spectrum limits both with and without point
source removal. In fact the measurements with and without
point source removal are now comparable. This suggests the
point source subtraction residuals are less of an issue in the
nighttime data due to the fact that (due to the time of year) there
are fewer bright point sources that were removed.

6.3. xx-yy Jackknife

The polarization angle of linearly polarized emission rotates
as it propagates through a magnetized plasma (e.g., Jeli¢ et al.
2014). The rotation angle is oc A%, where \ is the wavelength of
the radiation. Therefore instrumental polarization leakage from
a linear polarization (Stokes-Q or Stokes-U) into total intensity
(Stokes-I) can introduce additional spectral structure into the
foreground emission that is not accounted for in our currently
unpolarized analysis.
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Figure 10. Top: Mollweide projection of the sky in Galactic coordinates after differencing even- and odd-numbered integrations. The Sun is the dominant artifact in
this image due to the sporadic failure of source subtraction. Large residuals are also present at low declinations that do not rise above 10° elevation. These low-
elevation artifacts are generated by RFIL. Bottom: the power spectrum estimated without (left) and with (right) point source removal. Point correspond to the estimated
power spectrum amplitude and the dashed line corresponds to the computed thermal noise (95% confidence). Red and blue points are estimates from the even- and
odd-numbered integrations respectively. Black points are estimates after computing the difference between the two halves of data. The shaded region represents the
sensitivity required to detect or rule out optimistic models for the 21 cm power spectrum.

If Faraday-rotated, linearly polarized emission is a problem,
it will be exacerbated by computing the power spectrum from
the xx correlations and yy correlations separately. For this
comparison, the transfer matrix B must be recomputed using
the correct response pattern for the individual dipoles. An
image of the sky computed from the difference of the xx and yy
correlations is shown in Figure 12. This map is related to the
linear polarization of the sky, but does not account for the full
polarization of the beam, and therefore includes some amount
of instrumental polarization.

We estimated the 21 cm power spectrum from the xx and yy
correlations. This estimate is shown in Figure 12. The estimates
are comparable to the total intensity estimate and we therefore
conclude that polarization leakage is not currently a major
source of systematic error.

6.4. Calibration Errors

Many authors have investigated the impact of calibration
errors on an experiment’s ability to separate foreground
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emission from the cosmological 21 cm signal (Barry et al.
2016; Ewall-Wice et al. 2017). In this section we will compute
the impact of calibration errors on the double KL transform
foreground filter.

In this calculation we will simulate a realistic set of
visibilities for the foreground emission, and introduce errors
into the calibration before applying the double KL transform
filter. Finally we will estimate the power spectrum amplitude as
a way to characterize the amount of contamination associated
with the calibration errors.

The angular structure of the foreground model used here is
measured from the actual data (shown in the bottom panel of
Figure 2), but the frequency dependence of this emission is
chosen to be a power law with a fiducial spectral index of —2.3.
This spectral index was chosen to be consistent with the results
reported by LEDA (Price et al. 2018), but due to the small
fractional bandwidth of this measurement, we expect these
results to be insensitive to the specific choice of spectral
index. The set of m-modes we expect to measure with the
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required to detect or rule out optimistic models for the 21 cm power spectrum.

interferometer Vgmyiaeq 1S computed by
(36)

where B is the transfer matrix, and @gmulaeeq 1S @ vector of the
spherical harmonic coefficients of the foreground model.

At this point the simulated m-modes are corrupted with
calibration errors. We explore two possibilities:

Vsimulated = Ba simulated »

1. each antenna and frequency channel receives an incorrect
gain calibration;

2. each frequency channel receives an incorrect gain
calibration, but this error is coherent across antennas.

In each case, the gain errors are drawn from a complex normal
distribution, and the amplitude of the error is varied between
0.1%, 1%, and 10%. The former case is coined “random gain
errors” to indicate that each antenna is given an error in its
complex gain calibration. The latter case is coined “random
bandpass errors” to indicate that the overall bandpass of the
interferometer is perturbed. The impact of these calibration
errors can be seen in Figure 13.

15

In order to avoid biasing the 21 cm power spectrum, these
results indicate that the gain calibration must be derived to an
accuracy better than 0.1%. A general rule of thumb for the
OVRO-LWA is that, for equal amplitude errors, the foreground
contamination generated by bandpass errors that are coherent
across all antennas are an order of magnitude worse than for the
random gain errors (in units of A3,). Therefore to achieve a
comparable level of foreground contamination, the overall
bandpass of the interferometer must be known to better
than 0.01%.

The data set presented in this paper is systematically limited
at roughly A3 ~ (10*mK)2. These limits are therefore
consistent with ~1% errors in the overall bandpass of the
interferometer. The top panel of Figure 13 therefore presents
the fractional difference in the sky images between two
adjacent frequency channels (after averaging down to 240 kHz
channel resolution). The residuals in this sky map are typically
2%-3%, but generally do not correlate with the sky brightness.
We therefore conclude that between adjacent 240kHz
channels, the bandpass error is less than 1%. In fact, the
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Figure 12. Top: Mollweide projection of the sky in Galactic coordinates after differencing the xx and yy correlations. Note that this is not true linear polarization
because it does not account for the full polarization of the antenna response pattern. Bottom: the power spectrum estimated without (left) and with (right) point source
removal. Points correspond to the estimated power spectrum amplitude and the dashed line corresponds to the computed thermal noise (95% confidence). Red and
blue points are estimates from the xx and yy correlations respectively. Black points are estimates from the mean of the xx and yy correlations. The shaded region
represents the sensitivity required to detect or rule out optimistic models for the 21 cm power spectrum.

structure of the residuals in Figure 13 suggests a different
terrestrial source. Terrestrial sources of radio emission do not
move through the sky at a sidereal rate. Therefore when
constructing images of the sky, this contaminating emission
tends to be smeared along rings of constant decl. These ring-
like structures are clearly visible in Figure 13 alongside some
larger-scale diffuse structures.

However, if we attribute the residual emission entirely to
gain errors, then these simulations suggest that the antenna
gains are known only to within a couple percent, which when
considered alongside the RFI that contaminates the measure-
ment, is likely sufficient to explain the current systematic
limitations of our data set.

The results of this section additionally put some constraints
on the impact of errors in the foreground covariance computed
in Section 4.2. For instance, a ~0.1 error in the spectral index
of the foreground emission may be interpreted as a ~0.5%
spectrally smooth bandpass error that will degrade the
performance of the foreground filter. However, because these
errors are spectrally smooth, the performance degradation is
less than what has been simulated in this section (random
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bandpass errors with no correlation between frequency
channels). We therefore interpret the calculations performed
here as an upper bound. A ~0.1 error in the spectral index of
the foreground emission will lead to systematic errors less than
a comparable ~0.5% spectrally unsmooth error in the
bandpass, which may be inferred from Figure 13.

6.5. Non-stationarity

One implicit assumption of m-mode analysis is that all
measured components are stationary: the foreground emission,
the 21 cm signal, and the thermal noise.

For foreground components, we assumed that the emission is
a Gaussian random field. Shaw et al. (2014, 2015) demon-
strated that under ideal circumstances this assumption on its
own does not substantially bias CHIME estimates of the 21 cm
power spectrum. However, when the antenna beam is not
perfectly measured, foreground emission leaks through the
foreground filters to corrupt the measurement. We also see this
in Section 6.4, where bandpass errors lead to residual
foreground emission contaminating the measurement, but in
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the absence of bandpass errors the real non-Gaussian fore-
ground emission does not directly limit the measurements.

An additional source of non-stationarity can be seen in
Figure 3, which shows that the system temperature varies by
approximately 50% over the course of a sidereal day. We
simulated the impact of this variation in system temperature by
computing visibilities from a realistic sky model (see Figure 2)
and injecting noise into the measured visibilities. No 21 cm
signal is injected into the measurement because we are simply
trying to measure the impact of the injected noise on
foreground filtering and power spectrum estimation. We ran
the simulation twice. In the first case, the system temperature
varied sidereally and was directly sampled from the data
presented in Figure 3. In the second case, the system
temperature was held fixed at the mean system temperature.
After foreground filtering and power spectrum estimation, the
two estimates were indistinguishable within the computed
uncertainties. We therefore conclude that sidereal variation of
the system temperature is not a limiting factor in our
experiment.
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7. Conclusion

In this paper we estimated the amplitude of the 21 cm power
spectrum of the Cosmic Dawn with 28 hr of data from the
OVRO-LWA. This measurement was severely limited by
systematic errors and therefore we interpret our measurements
as upper limits, which are currently the most sensitive at this
epoch and the first measurement at z > 18. We measured
A3, < (10* mK)? at k ~ 0.10 Mpc .

In making this measurement, we demonstrated the first
application of the double KL transform foreground filter to a
measured data set. We demonstrated that the application of this
foreground filter can lead to improved power spectrum limits, and
in combination with Tikhonov-regularized imaging, we developed
a physical intuition for the action of the foreground filter.
The double KL transform derives its action from models for the
foreground and 21 cm signal covariance. We measured the
angular power spectrum of the foreground emission and found
that the power-law index appears to steepen on large angular
scales (I < 50). The 21 cm signal covariance is derived from the
flat-sky approximation, which we derive in the Appendix.
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Although application of the foreground filter leads to some
improvement in our measurement of the 21cm power
spectrum, the improvement was relatively modest. This is
essentially a reflection of the fact that the true covariance of the
data does not match the expectations of the models. We
performed a series of jackknife tests and simulations that
appear to implicate a combination of source subtraction errors,
terrestrial interference, and calibration errors as limiting factors
in this measurement.

If this measurement was thermal noise llmlted, we may have
expected to place limits at the level of A3, ~ (103 mK)? to
(10*° mK) dependmg strongly on the amount of foreground
filtering that is needed to adequately suppress the foreground
contamination. Because the action of the foreground filter is to
exchange thermal noise sensitivity for more comprehensive
removal of foreground emission, extrapolating from here to
find the requisite sensitivity of an interferometer that will be
able to make a detection is difficult. An improved calibration
may greatly reduce the required integration time, while an
increased need for foreground filtering may extend the required
integration time. However, from simple scaling arguments, and
in an optimistic scenario where the experiment does attain its
noise limited sensitivity, the OVRO-LWA could begin to
constrain the brightest models of the 21 cm power spectrum
(A3, ~ (102 mK)?) with between 10° and 10* hr of observing
time. However, a detection of the Cosmic Dawn 21 cm spatial
power spectrum will require that gain errors be restricted to less
than 0.1% and bandpass errors to less than 0.01%. Improved
results will certainly require improving the instrumental
calibration and source removal, which will help to prevent
foreground emission leaking through the measurement and into
the power spectrum estimate.
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Appendix
Converting a Spatial Power Spectrum to an Angular Power
Spectrum

The multi-frequency angular power spectrum Cy(v, /) is
measured from the spherical harmonic coefficients of the sky
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a;m(v) at the frequencies v and v/':

1
21+ 1

1
3 {aplw) a2 ")), (37)

m=—I[

Clw, v =

where the angled brackets should be understood as an ensemble
average over sky realizations. Here the average over m is
indicated with an explicit sum to distinguish it from the
ensemble average.

The spherical harmonic coefficients themselves are com-
puted from an integral over the 21 cm brightness temperature
Tfl(r) over a spherical shell of the universe:

apiw) = [T20) Y 6 — ) d, (38)
where Y, (7) is a spherical harmonic function, and the Dirac
delta function &6(r—r,) is used to pick out the spherical shell of
the universe at the comoving distance r, to the redshift z.

The 21 cm brightness temperature is related to the power
spectrum Pfl(k) through its Fourier transform:

T21(r) —_ fTZI(k) eik-r ﬂ (39)
v 14 (27[_)3
(LI, K)) = 2r)° 8k — k') P2 (k). (40)
Finally, we will need the “plane wave expansion” that
describes a plane wave in terms of spherical harmonics:
ek =4y il (k) Y () Yk, (41)

Im

where the function jj(kr) is the spherical Bessel function of the
first kind.
Putting this all together we can find

< //ffTZI(k)T“*(k’) pilkr—k'r)
m=—I

dk  d
@m? @n)?

Glw, v =

21+ 1
X YER) (P 6(r — 1) 6(r" — 1) dPr dF

47 (—7)!

27;(74—11) < ///TZI(k) T2 T iy (k'r.r) Y (P)
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@m)* @2m)?

m=—I
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X Vi (k) Yin (') ——

Ik dW
@m)? @)

_ (4n* d*k
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[ B0 ke ) Vi) Yl o

m=—I|

In the first two steps we used the plane-wave expansion, and in
the final step we used the definition of the spatial power
spectrum.

At this point if we assume that the power spectrum is
isotropic and has no dependence on the orientation of the wave
vector k, then the angular component of the remaining integral
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can be performed to find

vy =2 f P2I(k) jy (kre) jy (Keer) K2 dk. 42)
m

Typically r, ~ 10,000 Mpc and k ~ 0.1 Mpc ™' so the sphe-
rical Bessel functions j(x) are typically evaluated in the limit of
I < x < I°. Equation (42) is exact for an isotropic power
spectrum, but in practice integrals over the product of two
spherical Bessel functions are numerically challenging due to
their oscillatory behavior, so we will look for a scheme to
approximate this integral. This approximation is simple in the
regimes where x < [ and x > [, because

limj; (x) o< x' =~ 0 (43)
x—0

2

lim j,(x) = L sin (x - 11) + O(l—). (44)
100 x 2 x2

However, we are primarily interested in the intermediate
regime where a better approximation can be obtained using the
method of steepest descent (this method is also used, for
example, to derive Stirling’s approximation to log n! for large
n). Starting with the integral representation of the spherical
Bessel functions, the integration contour is deformed slightly to
pass through saddle points of the integrand, approaching along
paths of steepest descent. This allows the integral to be
approximated as a Gaussian integral, which can be analytically
evaluated to

. 1 . s 1 l X
Jix) = —sin|x) — = + |l + —|arctan| — —,
X 2 2 x| x|

where we have suggestively defined x; = +x? — [?. This
approximation holds for / > 1 and x > [ (see Figure 14). The
product of the two spherical Bessel functions in Equation (42)
therefore results in rapid oscillations on top of a slower beat
frequency. After computing the integral—provided the power
spectrum is sufficiently smooth—the rapid oscillations will
average down. Therefore this integral can be approximated

(45)
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using only the latter term:

1
CH(v, V') ~ [P (kv k)
T, vy
x cos| kjAr, + (l + l) arctan __Arjr dk|,
2 ki /k) + ky/k.

(46)

where k| = \k* — kI, k, =1/r,, and Ar, = ry — r,. Typi-
cally for nearby frequency channels, the argument to the
arctangent will be small, and consequently we arrive at the
“flat-sky approximation” used by Bharadwaj & Ali (2005) and
Datta et al. (2007):

1

Ty

21
G, V)~

f P2 (ky, ky) cos (kjAr) k. (47)
In order to derive this approximation we require [ > 1,
Ar. /r. < kj/ki, and that the power spectrum be smooth on
scales that allow the rapid oscillations of the spherical Bessel
functions to average down. The flat-sky approximation is
advantageous because piecewise linear representations of the
power spectrum can be rapidly evaluated analytically. How-
ever, we separately need to verify that the piecewise linear
representation is smooth enough to permit this approximation.
This assumption is evaluated in Section 4.3 and Figure 5 for a
fiducial piecewise linear power spectrum.
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