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SUMMARY

Analysis of gene expression in single cells allows for
decomposition of cellular states as low-dimensional
latent spaces. However, the interpretation and vali-
dation of these spaces remains a challenge. Here,
we present scCoGAPS, which defines latent spaces
from a source single-cell RNA-sequencing (scRNA-
seq) dataset, and projectR, which evaluates these
latent spaces in independent target datasets via
transfer learning. Application of developing mouse
retina to scRNA-Seq reveals intrinsic relationships
across biological contexts and assays while avoiding
batch effects and other technical features. We
compare the dimensions learned in this source data-
set to adult mouse retina, a time-course of human
retinal development, select scRNA-seq datasets
from developing brain, chromatin accessibility data,
and amurine-cell type atlas to identify shared biolog-
ical features. These tools lay the groundwork for
exploratory analysis of scRNA-seq data via latent
space representations, enabling a shift in how we
compare and identify cells beyond reliance on
marker genes or ensemble molecular identity.
Cell Systems 8, 395–411,
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INTRODUCTION

The identity of an individual cell is determined by the combinato-

rial effects of diverse biological processes. Dimension reduction

techniques deconvolve gene expression data into discrete latent

spaces, which may correspond to biological and technical influ-

ences on the transcriptome (Brunet et al., 2004; Cleary et al.,

2017; Kossenkov et al., 2007; Stein-O’Brien et al., 2018; Wagner

et al., 2016; Zhu et al., 2017). Latent space techniques are

frequently used in the context of novel biological discovery

from high-dimensional genomics datasets. Discovery requires

evaluation of both the accuracy of the learned latent space and

interpretation of biological processes from the low dimensional

representation. Both of these tasks are challenging, if not entirely

ineffective, using standard analytical methods, requiring biolog-

ical validation to provide a gold standard (Cleary et al., 2017;

Kiselev et al., 2019; Stein-O’Brien et al., 2018). However, in

many applications, such a gold standard does not exist. None-

theless, multiple datasets and measurement assays of the

same biological system should reflect a similar set of biological

processes. Furthermore, subsets of cellular features may further

be preserved across experimental systems from related biolog-

ical contexts. These properties can be utilized to improve selec-

tion, analysis, and interpretation of diverse biological systems by

leveraging information learned from different data sources. Spe-

cifically, we propose that establishing the biological relevance of
May 22, 2019 ª 2019 The Author(s). Published by Elsevier Inc. 395
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latent spaces requires a 3-fold approach to (1) learn gene-

expression signatures associated with biological processes, (2)

demonstrate their association with specific cellular features in

the dataset fromwhich they are inferred, and (3) test their robust-

ness across related but diverse biological contexts. These latent

spaces are best learned from single-cell measures instead of

bulk measurements where learned latent spaces may reflect

confounded features across cell types and states. The first two

steps of this process are prevalent across single-cell RNA-

sequencing (scRNA-seq) analyses, but the second often relies

on heuristic analysis and expert curation (Zappia et al., 2018).

Transfer-learning approaches can be used to perform the last

two steps, thereby enabling in silico validation, interpretation,

and exploration across diverse types of modern high-throughput

biological data.

The machine-learning subdomain of transfer learning exploits

the fact that if two datasets share common latent spaces, a

feature mapping between the two can identify and characterize

relationships between the data defined by individual latent

spaces (Pan et al., 2008). In this framework, one dataset is the

source in which the latent space representation is learned, and

another is the target that is mapped into the latent spaces

learned in the source. The distribution, domain, or feature space

of the source and target data may differ (Pan et al., 2008; Torrey

and Shavlik, 2009). Thus, transfer-learning techniques are ideally

suited to assess shared latent spaces from one or more sources.

Once the robustness of a biological process is established

across systems, these approaches can also be applied to use

these learned latent spaces to enable exploration of process

use across data platforms, modalities, and studies. The estab-

lished conservation of specific biological processes across sys-

tems, such as common developmental pathways across tissues

or organisms, can be further leveraged to enable cross-study

validation. In this case, the low-dimensional patterns learned

from latent space techniques will be shared in samples with

biologically meaningful relationships between datasets, while

dataset-specific factors and technical artifacts across datasets

will not. The challenge then arises in providing a computational

tool to enable this in silico validation.

We have adapted a transfer-learning approach for high-

throughput genomic data analysis with two new methods,

scCoGAPS and projectR. These tools provided a framework

enabling the identification, evaluation, and exploration of

latent-space features in both source and target datasets. To

demonstrate this workflow across a variety of contexts, we apply

these tools to a time course scRNA-seq dataset from murine

retina development and demonstrate recovery of meaningful

representations of biological features within individual latent

spaces. Application of scCoGAPS identified gene-expression

signatures of discrete cell types and biological processes asso-

ciated with cell-cycle regulation, neurogenesis, and cell-fate

specification. We empirically evaluate our transfer-learning

approach across a diverse collection of single-cell datasets. In

addition to performance assessment, these analyses also

demonstrate a wide range of biological applications. We demon-

strate how to classify learned cell types in a previously published

adult retina scRNA-seq dataset via projectR projection (Ma-

cosko et al., 2015). We further illustrate how transfer learning

can be used to extract meaningful biological insights across
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experimental modalities and species by projecting a bulk RNA

sequencing (RNA-seq) human retinal development time course

(Hoshino et al., 2017) and a mouse bulk Assay for Transpo-

sase-Accessible Chromatin for Sequencing (ATAC-Seq) dataset

into the learned latent spaces from a developing mouse retina

scRNA-seq dataset. To highlight the ability of projected patterns

to recover related biological processes and cell types across

developmentally related systems, we compare pattern usage

between the developing mouse retina and two independent da-

tasets derived from the developing cortex (Nowakowski et al.,

2017; Zhong et al., 2018) and another from the developing

mouse midbrain (La Manno et al., 2016). Finally, to examine

the power of pattern exploration via transfer learning, we identify

shared cellular features across a large collection of single cells

from an atlas of mouse tissues (Tabula Muris Consortium et al.,

2018). In aggregate, these analyses highlight the diversity of

potential applications for transfer-learning approaches to rapidly

identify and describe related components between a source

dataset, in this case derived from the developing mouse retina,

and a variety of independent data sources using learned latent

spaces.

Using a collection of latent spaces, learned from a dataset of

single-cell gene expression estimates, we demonstrate the

utility of a combined reduced dimensional representation and

transfer-learning approach to identify shared cellular attributes

and biological processes across diverse data types in a manner

that avoids the complications of normalization or sample

alignment. Our approach is able to annotate latent spaces and

reveal novel parallels between different tissues, molecular

features, and species. Our approach demonstrates that

projectR can rapidly transfer annotations, classify cells, and iden-

tify the use of biological processes without a priori knowledge or

annotation within the source dataset. While we focus this appli-

cation on low dimensional factors learned with scCoGAPS, proj-

ectR generalizes as an exploratory analysis and biological inter-

pretation method for other dimension reduction techniques that

find latent spaces associated with continuous gene weights.

RESULTS

Adaptive Sparsity for Learning Factors from scRNA-Seq
(scCoGAPS): Theory
ScCoGAPS is a non-negative matrix factorization (NMF) algo-

rithm. NMF algorithms factor a data matrix into two related

matrices containing gene weights, the Amplitude (A) matrix,

and sample weights, the Pattern (P) matrix (Figure 1A). Each

column of A or row of P defines a factor, and together, these

sets of factors define the latent spaces amongst genes and sam-

ples, respectively. Each sample-level relationship in a row of the

pattern matrix is referred to as a pattern and the corresponding

gene weights as an amplitude. In NMF, the values of the ele-

ments in the A and P matrices are required to be greater than

or equal to zero. This constraint simultaneously reflects the

non-negative nature of gene expression data and enforces

additivity of factors, generating solutions that are biologically

intuitive (Lee and Seung, 1999). The concept of up- or down-

regulation reflects a relative difference between two conditions

that can, and often is, described by comparing non-negative

gene weights between patterns.
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Figure 1. Mathematical Core of the scCoGAPS Algorithm

(A) scRNA-Seq data yields a data matrix that has each sample as a column and each observed gene expression value as a row. scCoGAPS decomposes the

preprocessed data matrix into two related matrices. The rows of the amplitude matrix (A) quantify the sources of variation among the genes, and the columns of

the pattern matrix (P) quantify the sources of variation among the cells. The matrix product of A and P approximates the preprocessed input data matrix. The

number of columns of A equals the number of rows inP and represents the number of dimensions in the low-dimensional representation of the data. Theoretically,

each column in the amplitude matrix and the corresponding row of the pattern matrix represents a distinct source of biological, experimental, or technical

variation in each cell. The values in the column of the amplitude matrix then represent the relative weight of each gene and the values in the row of the pattern

matrix its relative role in each cell. Adaptive sparsity is achieved by placing a Poisson prior on the shape parameter in the gamma distribution for each matrix

element ðaAi;j ;aPi;jÞ and a fixed scale parameter for all matrix elements (lA and lP) in A and P, respectively. In expectation, smaller values of ai,jwill result in smaller

values of corresponding matrix element and vice versa for larger values, which will also have a decreased probability of being zero.

(B) Each iteration of the Markov Chain Monte Carlo sampling employed in CoGAPS updates the atomic space, which corresponds to an update in matrix

elements.

(C) There are four possible update steps to the atomic domain that preserve both the prior distribution in (A) and detailed balance: (1) birth to add an atom, (2)

death to remove of an atom, (3) moving an atom from one position to another, and (4) exchanging the mass of two atoms. During the update, the probability of

selecting birth or death is selected based on the Poisson prior reinforcing the adaptive sparsity. All heatmaps are colored on a blue-yellow scale, where yellow

indicates higher expression values and blue lower.
Bayesian NMF techniques can embed biological and technical

structure in the data in prior distributions on theA and Pmatrices

(Kossenkov et al., 2007; Ochs and Fertig, 2012). To accomplish

this for bulk data, we previously developed the Bayesian

NMF Coordinated Gene Activity in Pattern Sets (CoGAPS)

method (Fertig et al., 2010). CoGAPS uses an atomic prior (Sibisi

and Skilling, 1996; Skilling and Sibisi, 1996) to model three

biological constraints: non-negativity reflective of pleiotropy,
sparsity reflective of parsimony, and smoothness reflective of

gene co-regulation and smooth dynamic transitions. The atomic

prior in CoGAPS is unique in enforcing a sample- and gene-spe-

cific sparsity constraint, which we term ‘‘adaptive sparsity.’’ In

the atomic prior, each element of the A and P matrices is either

zero or follows a gamma distribution. Adaptive sparsity is

achieved by placing a Poisson prior on the discrete shape

parameter in the gamma distribution for each matrix element
Cell Systems 8, 395–411, May 22, 2019 397
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Figure 2. Theoretical Core of the projectR

Algorithm

(A) Graphical representation of projection im-

plemented in projectR showing the relationship

between the learned functions, or mappings, and

the datasets being operated on.

(B) Transfer-learning approaches can be adapted to

reveal a variety of insights into both source and

target datasets. The type and directionality of

knowledge transfer enabled via projectR can vary

depending on the experimental question and avail-

able annotation for each dataset.

(C) Diagram of the pipeline used to first learn latent

spaces and then project them to transfer learning as

described.
ðaAi;j;aPi;jÞ and a fixed-scale parameter for all matrix elements (lA
and lP) in A and P, respectively. Smaller values of ai,j result in

smaller values of the corresponding matrix elements and vice

versa for larger values. Thus, the sparsity constraint on values

of latent factors will be relaxed in this model, constraining

some matrix elements away from zero (Figure 1B). Adaptive

sparsity can also model biological structure in the presence of

the technical dropouts and true biological zeros in scRNA-seq.

To accommodate the additional sparsity of scRNA-seq data,

lA and lP are set as proportional to the mean of all non-zero

values in the data. In contrast, lA and lP for bulk RNA-seq

data are set using the means of the entire dataset. A normal prior

on the data enables an empirical solution for the conditional

distributions with this gamma prior, enabling efficient Gibbs

sampling with this sparsity constraint (STAR Methods). This

alsomodels smoothness by grouping closely related dimensions

near each other via move and exchange steps that shift a single

exponential between adjacent matrix elements (Figure 1C). In

practice, these steps retain the global Poisson prior on shape

and the gamma prior on matrix elements while altering the

shape parameters between adjacent matrix elements to model

smoothness.

Parallelization and Data Structures for Cross-Validation
and Efficiency: Theory
Bayesian NMF algorithms such as CoGAPS have substantial

computing costs that limit their application to the large datasets

generated as tissue atlases with scRNA-seq data. As we

describe in the STAR Methods, representing the gamma

distribution as a sum of exponentials enables efficient Gibbs

sampling. We couple this representation with new data struc-

tures for their storage and corresponding calculations that

are more efficient than previous versions of CoGAPS and

greatly reduce the computational cost for scRNA-seq analysis

(Figure S1A).

We can leverage our hypothesis that latent spaces learned

from scRNA-seq data are reflective of relative gene use in

biological processes to enhance the efficiency of Bayesian

NMF methods. In this case, distinct subsets of cells sampled
398 Cell Systems 8, 395–411, May 22, 2019
from the same condition will have similar

factors in a latent space, similar to our pre-

vious observation of similar factors across

distinct subsets of genes in bulk data
(Stein-O’Brien et al., 2018). Inference with Bayesian NMF is par-

allelized for distinct subsets of cells in the input scRNA-seq data.

We selected the ratio of cells in each set to enable inference of

latent space factors in highly skewed distributions of samples

as can occur with rare cell types. As a result, this approach is

a semi-supervised method in which inference of gene weights

in factors is unsupervised. Consensus factors are then created

across the sets as described previously for random sets of genes

(Stein-O’Brien et al., 2018). In addition to gaining efficiency, the

factors estimated in parallel across subsets of cells can also

be compared to enable cross-validation of the inferred latent

spaces (Figure S1B).

Transfer Learning via Dimension Reduction Using
projectR: Theory
In our model, known and latent factors of a biological system can

be used to compare independent, biologically related datasets.

This comparison is made by defining a function from the factors

in one dataset and projecting an independent, biologically

related target dataset into a lower dimensional space that is

common to both. Projection is defined as a mapping or transfor-

mation of points from one space to another, often a lower-

dimensional space. Mathematically, this can be described as a

function 4(x) = y: RD1Rd s.t for d%D, x˛RD, y˛Rd. The inno-

vation of projectR is the use of a mapping function defined from

the latent spaces in a source dataset, which enables the transfer

of associated cellular phenotypes, annotations, and other meta-

data to samples in the target dataset (Figure 2).

We propose that projection of well-defined latent spaces

should capture shared biology across independent datasets. In

this study, we perform projection in the column space defined

by the amplitude matrix from scCoGAPS (factors representing

gene weights). This is accomplished by estimating the patterns

P associated with the amplitude matrix by a generalized least-

squares fit to the target data (Fertig et al., 2013a) (STAR

Methods). We select this projection approach as a computation-

ally efficient method. Moreover, the lack of the orthogonality

constraint allows for greater application of the transfer-learning

approach to non-orthogonal latent spaces, allowing for greater



independence of factor projections. Assuming that a given

dimension is associated with a specific cellular attribute in the

target dataset, the magnitude of the value in this source dataset

can indicate its presence within the target dataset. Inversely, if

the cellular feature is not shared across the datasets, then pro-

jection of the target data into the given latent space will have

no significant value. The significance of each projected pattern

can be calculated using aWald test for each sample:latent space

interaction. Depending on the distribution or number of the pro-

jected sample weights, statistical comparisons between anno-

tated groups can be performed to quantify the presence of these

inferred processes in the target data. For example, the mean

projected pattern weight between two groups can be compared

using standard t tests or regression-based contrasts. Addition-

ally, classifiers can be built using the projected pattern weights,

and the predictive value of each pattern assessed globally. This

information transfer enables rapid and highly scalable compari-

son of very different datasets through the lens of a projected

latent space learned in a reference dataset. This analysis can

leverage the massive amount of publicly available data and their

associated metadata to annotate phenotypes in source data

more efficiently. Further, the ability to evaluate whether the

processes described by latent spaces are shared, despite

significant overall differences in the original high dimensional

datasets, can enable hypothesis generation and integrated

analyses.

Applications
Assessing Latent Spaces and Dimensionality: Lessons

from Bulk RNA-Seq

The developing mammalian retina provides an ideal model sys-

tem to evaluate the degree to which latent spaces reflect known

developmental biology. Features such as discrete cell-type sig-

natures, continuous state transitions, signaling pathway usage,

developmental age, and sex should each be represented in inde-

pendent latent spaces. An open question in retinal development

is how progenitor cells can generate specific subtypes of

neuronal and glial cell types during specific intervals during

development—a phenomenon known as progenitor compe-

tence (Bassett and Wallace, 2012; Javed and Cayouette,

2017). In an effort to identify genes associated with changes in

retinal progenitor cell (RPC) competence, we performed bulk

RNA-seq analysis on replicate populations of fluorescence-acti-

vated cell sorting (FACS)-isolated RPCs and post-mitotic cells,

which were isolated using the Chx10:GFP reporter (Rowan and

Cepko, 2004) and assessed the fidelity of patterns learned in

this bulk analysis across other experimental contexts.

FACS-sorted Chx10:GFP+ RPCs and Chx10:GFP- post-

mitotic retinal neurons (Rowan and Cepko, 2004) were collected

from the developing mouse retina at three time points, embry-

onic day 14 (E14), embryonic day 18 (E18), and postnatal day 2

(P2), and subjected to standard bulk RNA sequencing (Zibetti

et al., 2017).We applied our previous genome-wideGWCoGAPS

pipeline for bulk RNA-Seq to the normalized FPKM gene expres-

sion estimates to identify a latent space consisting of 10 patterns

of co-regulated genes (Stein-O’Brien et al., 2017). Dimension-

ality can be optimized by maximizing the robustness of patterns

between dimensions (Moloshok et al., 2002). Moreover, hierar-

chies of cell types or subtypes can be resolved by comparing
patterns across dimensions (Fertig et al., 2013a). Therefore, we

applied GWCoGAPS to the bulk data using a range of dimen-

sionalizations to identify patterns associated with specific

biological features or cellular states. Final dimensionality was

assessed by comparing factorizations of different dimensions

using the ClutrFree (Bidaut and Ochs, 2004) algorithm (STAR

Methods). Patterns were strongly correlated (r2 > 0.7) between

factorizations at different dimensions, indicating the overall

robustness of the factors across dimensions (Figure S1C). For

example, a pattern broadly associated with all retinal neurons

at a lower dimensionality split into two patterns describing

photoreceptors and inner retinal cells at a higher dimensionality,

as assessed by correlation of cell-type specific marker-gene

expression with individual patterns.

We next evaluated whether patterns identified from bulk RNA-

seq could describe discrete cell-type signatures obtained from a

comprehensive scRNA-seq dataset conducted across retinal

development (Clark et al., 2019). In this study, we isolated

120,804 individual cells from whole mouse retina at 10 develop-

mental time points, ranging from embryonic day 11 (E11) to post-

natal day 14 (P14). scRNA-seq gene expression profiles were

obtained using the 103 Genomics Chromium platform (Clark

et al., 2019). To relate the datasets, the scRNA-seq data was

projected into the factors learned from the bulk RNA-seq (Table

S1) using projectR (STAR Methods). Using the expert-curated

cell-type annotations for each single cell, a random forest classi-

fier was trained using projected sample weights as features.

Sensitivity and specificity scores were calculated for the relation-

ship between each bulk factor and the annotated cell types

detected using scRNA-seq.

While few patterns had high AUC values for specific cell types,

most had moderate values spread across multiple lineages (Fig-

ure S1D). One potential explanation for this is that features

shared across multiple cells types might dominate the latent

spaces found at lower dimensionalization. This finding is consis-

tent with observation that highly expressed genes tend to domi-

nate differential expression analysis in bulk RNA-seq (Ching

et al., 2014). An alternative hypothesis is that latent spaces

learned in aggregate bulk measures may not cleanly define

discrete cell types or states. As bulk RNA-seq is inherently an

aggregation, testing these hypotheses requires independent

measures of each cell. Since scRNA-seq allows for individual

measurements of distinct cells, finding similar latent spaces

directly from these data would provide strong evidence of their

reflection of biological rather than technical variation. This

finding suggests that latent space discovery in scRNA-seq

data will better discern biological processes, as well as true

cell type and state signatures, than bulk gene expression

measurements.

ScCoGAPS Finds Signatures of Cell Types and

Continuous Processes in the Developing Retina

To learn patterns directly from our scRNA-seq data across the

developing mouse retina, scCoGAPS analysis was performed

using the log-transformed, normalized mRNA copies per cell

across a previously selected set of high-variance genes (Fig-

ure 3A) (Clark et al., 2019). Cells were partitioned into 100 sets

of �1,200 cells using a sampling scheme to ensure representa-

tion of all annotated cell types in each set. To eliminate poten-

tially spurious patterns, consensus patterns were derived from
Cell Systems 8, 395–411, May 22, 2019 399
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at least 25% of the independent sets and required an R2 value of

at least 0.7 to the within-cluster mean (STAR Methods).

We identified a total of 80 scCoGAPS patterns across the full

developmental time course (Figure S2; Table S2). Pattern

weights were tested for significant differential cell-type repre-

sentations (Figure 3D) and predictive power (AUC) for each

cell-type annotation (Figure S1F). Because performance biases

based on the choice of classifier were observed, we calculated

a standard contingency table and confusion matrix using the

ROCR Bioconductor package to estimate a conservative AUC

for each combination of pattern and cell-type annotation (Sing

et al., 2005). Learned patterns corresponded to both discrete

cell-type signatures and continuous-state transitions, including

cycling retinal progenitor populations, a transient neurogenic

phase, and intervals of cell-type-specific maturation along

developmental trajectories (Figure 3B).

We identified at least one pattern corresponding to each of the

7 major cell types in the developing retina (Figures 3B and S1F).

For example, patterns with high weights in annotated horizontal

cells (patterns 2 + 16) correlated well and had high predictive po-

wer for our manually annotated horizontal cells, despite the rela-

tively sparse number of cells of this type in our dataset. Learned

patterns also highlighted gene network reuse across discrete

cell types. For example, pattern 37 exhibited high weights in a

subset ofmature retinal ganglion cells (RGCs) and amacrine cells

(AC) (Figure S1F). Additional patterns are specifically associated

with mature RGCs (pattern 15) or recover other phenotypic fea-

tures of these data, such as sex (pattern 36).

The application of scCoGAPS to scRNA-seq data also

captured technical aspects of the data as well. Combinations

of biologically incompatible patterns (e.g., two patterns for

distinct mature cell types within the same cell) can readily delin-

eate doublet cell populations (Figure S5B). In contrast, standard

clustering methods would aggregate doublet cells together and

separately from each discrete cell type and thereby be unable to

recover biological information from them, or otherwise identify

them as a unique, discrete cell type. Finally, we also identified

patterns associated with technical features in our scRNA-seq

dataset such as number of genes expressed (pattern 53) or

batch effects (pattern 38). These pattern-phenotype correlations

indicate that scCoGAPS recovers a collection of meaningful bio-

logical and technical patterns from the developing mouse retina

scRNA-Seq data.

These correlations were able to resolve additional biological

insights from these data not otherwise discernable from other

analysis strategies. For example, pseudotemporal analysis was

unable to resolve more closely related cell types or trajectories

with a high degree of gene reuse (Clark et al., 2019). Correlation

with manual annotation and patternMarker analysis (Stein-

O’Brien et al., 2017) of the associated amplitudes allowed us

to resolve both differentiating horizontal cells from amacrine

cells and rods from cones (Table S3). Additional patterns were
Figure 3. scCoGAPS Analysis of Time Course scRNA-Seq Data from D

(A) UMAP of scRNAseq colored by age (top) and human annotated cell types (bo

(B) Heatmap of correlations of each scCoGAPS pattern to each annotated featu

(C) UMAP of retina development colored by scCoGAPS pattern weights illustrate

(D) Alluvial of cell-type-specific patterns linksmanually annotated cell types to scC

weight of > 0.01.
identified that correspond to continuous biological processes,

i.e., cell-cycle state across RPCs (patterns 14, 31, 33, 62, 49,

and 78, 49), with high degrees of gene reuse (Figures 3B, 3C,

and S3). Additionally, many shared patterns only account for a

small proportion of the cells in later-developing populations,

suggesting that these transcriptional programsmay be transient,

or describe features associated with a subset of cells in a given

lineage (Figure S5A).

To evaluate the performance of scCoGAPS relative to other

commonly used single-cell deconvolution methods, we com-

pared the patterns learned from scCoGAPS with the rotations

learned from singular value decomposition (SVD) and principal-

component analysis (PCA), feature weights from a gradient-

based NMF (Lee and Seung, 2001), and weights extracted

from the Deep Count Autoencoder (DCA) (Eraslan et al., 2018).

All methods were evaluated on the same scRNA-seq dataset

from the developing mouse retina. PCA and SVD fail to capture

individual cell-type patterns and are driven predominantly by

technical features that represent the greatest source of variation

in these data (Figure S5C). Patterns learned from gradient-based

NMF and scCoGAPS are comparable in their maximum correla-

tion; however, the gene weights used to assess biological

features for each pattern are more variable across multiple iter-

ations of the gradient-based NMF. Using the Bayesian approach

implemented in scCoGAPS, we can derive both mean and vari-

ance estimates allowing for variance incorporation into feature

weights for gene-set analysis and more robust pattern annota-

tions (Zyla et al., 2017). Both scCoGAPS and gradient NMF

outperform DCA in the number of cell-type-specific latent

spaces that are identified. Furthermore, DCA does not learn or

export interpretable gene weights, which precludes our ability

to explore the biological features represented in each of the

latent spaces. Indeed, many non-linear deep learning methods

using activation functions disambiguate the relationships be-

tween gene expression and learned patterns in a way that cannot

be easily deconvolved.

We next sought to identify and characterize the specific

cellular attributes captured in each pattern. Geneweights (A-ma-

trix and their uncertainty) for each learned pattern were used as

input for a Gene Ontology (GO) enrichment analysis using the

CoGAPS gene-set test (Fertig et al., 2013b) across all Kyoto

Encyclopedia of Genes and Genomes (KEGG) and GO gene

sets with <100 genes (Figures S1E, S3, and S4). A heatmap of

all significant gene-set statistics for all patterns are provided in

Figures S3 and S4. Patterns that are well correlated with specific

cell types are significantly enriched for appropriate gene ontol-

ogies. These include endothelial cells (9, 10, and 56), which are

associated with angiogenesis and blood vessel patterning, as

well as microglia (5, 6, 24, 25, 27, 57, and 58), which each

showed significant enrichment for immune cell activities and

processes (p < 1 3 10�6, Figure S4; Table S4). Concordant

with their selective expression in rods and cone photoreceptors,
eveloping Mouse Retina

ttom).

re.

cell-type-specific (rods, top) and shared (cell cycle, bottom) patterns.

oGAPS patterns for which at least 75%of the cell of a given type have a pattern
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respectively, patterns 21 and 39 are enriched in phototransduc-

tion, visual perception, photoreceptor cell maintenance, and

photoreceptor outer segment terms (p < 1 3 10�8, Figures 3C

and S4; Table S4). RPC-associated patterns (13, 26, 31, 33,

45, 49, 62, 64, 72, and 78) are enriched for cell-cycle regulators

and embryonic development terms (p < 1 3 10�8, Figure S4;

Table S4). Consistent with the fact that RGCs are the only neuro-

retinal cells that extend long projection axons, as well as the only

cell to undergo high rates of apoptotic cell death during mouse

retinal development (Young, 1984), the RGC-associated pat-

terns 15 and 35 are enriched for axon guidance, with Pattern

15 also enriched for negative regulation of apoptosis.

Single-Cell Patterns Learned in One Dataset Can Be

Transferred to Another via Projection Analysis

To assess whether learned patterns can be meaningfully trans-

ferred across datasets, we used our developing retinal dataset

as the source data and compared it to a previously published

scRNA-seq dataset from P14 mouse retina, established using

a different droplet-based technique (Macosko et al., 2015). The

target Drop-seq single-cell dataset was projected into the space

of the 80 scCoGAPS patterns from the source 103-based retinal

development time-course data.

We hypothesized that shared latent spaces would stratify

target data consistent with their underlying cellular attributes,

while artifacts or data-specific features would not. Projected

pattern weights were tested for AUC for each cell-type annota-

tion in the target Drop-Seq dataset (Figures 4 and S6A). Because

performance biases based on the choice of classifier are known

to exist, a standard contingency table and confusionmatrix were

calculated using the ROCR Bioconductor package to provide a

highly conservative AUC for each combination of annotated

cell types and patterns (Sing et al., 2005). Using the projected

pattern weights and cell types, we evaluated the ability of each

pattern to distinguish cell types in the target dataset. (Fig-

ure S6A). Consistent with our hypothesis, AUC values confirm

that patterns associated with mature cell types present in both

the source and target dataset have significant predictive power

(AUCs > 0.7, Wald test; BH-correction; q < 0.01 ), while those

patterns associated with developmental processes only in the

source data did not exhibit significant projections in the more

mature (P14) target dataset (AUC < 0.7, Wald test; BH-correc-

tion; q > .01). For example, pattern 21, which was strongly asso-

ciated with rods in the retina development time-course data,

selectively marked rod photoreceptors in the P14 retina Drop-

Seq data (Figure 4A, right panel; AUC = 0.83). Other patterns

ofmature cell types included pattern 2 (AUC of 0.95 for horizontal

cells), Pattern 55 (AUC of 0.91 for amarcines), Pattern 15 and 16

(AUC of .93 and .92, respectively, for RGCs), and Pattern 64

(AUC of .99 for astrocytes) (Figure 4B). In contrast, the RPC

pattern 31, whichwas strongly enriched for GO terms associated

with cell cycle, failed to yield any significant signal (Figure 4A,

middle panel), consistent with a lack of cycling progenitors in

the P14 mouse retina.

Using only the significant patterns associated with mature cell

types, we are able to resolve true positive cells from background

expression pattern projections in the target dataset as illustrated

by AUC curves for the predictive power of each weight for each

cell type (Figure 4C) and the distribution of projected pattern

weights (Figure 4D). Patterns with poor predictive power, such
402 Cell Systems 8, 395–411, May 22, 2019
as Pattern 3, exhibited weights centered around zero, while pat-

terns with high predictive potential, such as the rod-specific

pattern 21, exhibit a bimodal distribution (Figure 4D). Cells in

the target dataset annotated as rods, however, exhibit a unimo-

dal distribution overlapping with the higher intensity peak of

projected pattern weights. The cells contributing to the lower in-

tensity peak, therefore, have some degree of the pattern 21 (rod)

signature contributing to their transcriptional profile that likely re-

flects contamination acquired during dissociation and library

preparation. These results validate the biological basis of the

scCoGAPS patterns for mature cell types and demonstrate the

sensitivity and specificity of projectR as a system to transfer an-

notations based on factors containing shared biological features

across datasets.

projectR Recovers Continuous Processes and Temporal

Progression from Disparate Data Types across Species

We next tested whether projection analysis could identify

continuous biological features across organisms. Specifically,

we projected a publicly available time course analysis of human

bulk RNA-Seq from whole retinas into our single-cell scCoGAPS

patterns. Homologous genes were used to map the amplitude

values across species (STAR Methods). Briefly, log2-trans-

formed gene expression values from human retina bulk RNA-

seq data from gestational day (D) 52 to D136 were projected

into the 80 mouse developing patterns. Each projected pattern

was evaluated for predictive power for a given human develop-

mental time point with the expectation that the changes in pre-

dictive power should reflect the change in pattern utilization

over human retinal development. The resulting AUC values

revealed a temporal gradient for cell-type-specific patterns,

which reflects both developmental age and relative abundance

of each cell type in the bulk sample (Figure 5A). Furthermore,

the stereotyped birth order of major retinal cell types (Clark

et al., 2019) was faithfully recapitulated in the progression of

pattern projections in the human time course.

The observed gradient reflects the previously reported three

major gene expression epochs of human retina development

(Hoshino et al., 2017). The first epoch includes genes with high

expression from D52 to D67. Patterns associated with early-

born cell types such as horizontal cells (pattern 1) and RGCs

(pattern 15) peaked early (D57 and D67, respectively) and then

declined, reflecting their decreasing relative abundance as

later-born cell types are generated. Patterns with amplitude

values significantly enriched in RPC-specific processes such

as cell-cycle regulation (Pattern 31) exhibited significant projec-

tion in the first epoch (Wald test; BH-correction; q < .01) with

AUC values greater than 0.7 as well. Furthermore, the increased

resolution of the patterns derived from scRNA-seq allowed a

more granular association of corresponding biological pro-

cesses within the larger epoch. These results indicate that

shared continuous features associated with developmental pro-

grams in both mouse and human retinal development can be

identified via transfer learning with projectR.

Species-specific differences were also apparent in this projec-

tion analysis. For example, genes that markmature cone and rod

photoreceptors are strongly expressed postnatally in mice

(Blackshaw et al., 2001, 2004; O’Brien et al., 2003) but are

detected prenatally in humans. Consistent with this, patterns

39 and 21, which are associated with mouse cones and rods,



Figure 4. projectR Recovers Shared Cell Types in Independent Murine Retina scRNA-Seq Data

(A) UMAP of DropSeq data from P14 mouse retina colored by annotated cell type (left), projected pattern weights in pattern 31 (center), and projected pattern

weights in pattern 21 (right).

(B) Alluvial plot of projected patterns links previously annotated cell types to scCoGAPSpatterns for which at least 75%of the cell of a given type have a significant

projection (Wald test; BH-correction; q < 0.01).

(C) ROC curves for classifiers built using the projected pattern weights for Pattern 21 (right) and projected pattern weights in Pattern 31 (left). Cell types are colored

according to the legend in (A).

(D) Density plots of projected pattern weights for all cell types (black) and rods only (red).
respectively, exhibit high AUC values during the third epoch

of gene expression in our human projection analysis (Fig-

ure 5A) (Hoshino et al., 2017). Previous analysis of the

bulk RNA-seq data had demonstrated that differentially ex-

pressed genes within the the third epoch were enriched for

gene ontology terms related to photoreceptors, synaptic con-

nectivity, and neurotransmission (Hoshino et al., 2017). Mouse

homologs of the genes annotated with these GO terms were

also significantly enriched for higher amplitude values in source

patterns 39 and 21 (p < .001) confirming that projectR recovered
the species-specific temporal differences in the use of these

patterns.

To test the ability of projectR to resolve spatiotemporal pat-

terns, we next projected a separate bulk RNA-Seq time course

of dissected regions of the human retina from Hoshino et al.

(Hoshino et al., 2017). The fovea and macula have been shown

to be developmentally ahead of age-matched nasal central and

peripheral retina (Hendrickson and Drucker, 1992; Hendrickson

et al., 2012; O’Brien et al., 2003) and enriched for both cone

photoreceptors and retinal ganglion cells (Curcio and Allen,
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Figure 5. Projection of Retina Time Course Data Reveal Shared Temporal Dynamics across Species and Platforms

(A) Heatmap of AUC values for projected pattern weights in developing whole human retina recapitulates previously established gene expression epochs.

(B) Average ATAC signal for binned read counts overlapping 200-bp interval extending out 5 kb on either side of the transcription start for all genes (left) or the

subset of genes from which the scCoGAPS patterns were learned (right).

(C) Projection of binned read counts overlapping 200-bp interval extending out 5 kb on either side of the transcription start into scCoGAPS patterns 14 (top left), 31

(top right), 1 (bottom left), and 21 (bottom right).
1990). A previous differential gene expression analysis of macula

versus periphery was underpowered to detect significantly differ-

entially expressed genes at each time point. However, using the
404 Cell Systems 8, 395–411, May 22, 2019
projected values for each sample, we could readily identify signif-

icant differential pattern usage (Wald test; BH-correction across

patterns; q < .01) between the macula and peripheral retina at



days 73 and 132. The fovea and macula are enriched in patterns

specific to mature neurons, particularly retinal ganglion cells and

cones (patterns 1, 15, 39, and 52) and depleted in patterns

specific to retinal progenitor cells (patterns 26, 31, and 78) or

immature neural precursor cells (patterns 17 and 73) relative to

the age-matched peripheral retina (Figure S6B). These results

demonstrate the utility of projectR in recovering spatiotemporally

regulated differences within tissue and/or organ development.

Projection analysis can also determine pattern usage across a

variety of different cellular measurement types. To illustrate this,

we determined whether patterns learned from scRNA-seq

analysis of the developing mouse retina could be used to

identify distinct chromatin accessibility profiles within a mouse

retinal ATAC-seq time series obtained from FACS-isolated

Chx10:GFP+ RPCs (Rowan and Cepko, 2004) collected at two-

day intervals between E10.5 and P2 (Figures 5B, 5C, and S7).

Since ATAC-seq profiles chromatin accessibility, rather than

gene expression, projection analysis enabled identification of

patterns associated with genes whose local chromatin structure

is primed for transcriptional activation. For each gene, ATAC-seq

readswere quantified in 200-bp bins�5Kb to +5Kb around each

canonical transcription start site (TSS) for each time point

sampled (STAR Methods). As expected, the naı̈ve signal shows

global enrichment over TSSs owing to the increased accessibility

at TSSof actively transcribed genes (Buenrostro et al., 2013) (Fig-

ure 5B). Overall signal intensity was highly variable with biological

replicates from the same timepoint demonstrating a strongbatch

effect. These effects persisted when the ATAC-seq data were

subset to the same high-variance genes used to define the scCo-

GAPS patterns (Figure 5B, right). To test the ability of projectR to

overcome these effects, no batch correction or further data

normalization was performed.

Despite the consistent profile of the observed mean enrich-

ment of ATAC-Seq signal at the TSS across samples, projection

of the ATAC-seq into the scCoGAPS patterns revealed several

classes of chromatin accessibility patterns. Different accessi-

bility profiles emerged that are lost in aggregate. Furthermore,

the shape of the accessible peak and ranking of samples is

distinct across different patterns, indicating that projection

analysis can recover discrete signatures of accessibility associ-

ated with latent spaces learned from gene expression profiles,

independent of technical noise. Together, these results suggest

that learned accessibility signatures are associated with specific

biological processes at distinct developmental time points in

the developing mouse retina. Specifically, patterns that reflected

missing processes (including non-neuroretinal cell types such as

microglia that were not sampled in the ATAC-seq) demonstrate

no significant signal in the projection analysis, while shared pro-

cesses are apparent in both the scRNA-seq and the ATAC-seq

data. For those projected patterns with significant ATAC-seq

signal, replicates displayed significantly tighter concordance,

and the amplitudes of the projected accessibility signatures

appropriately reflected temporal progressions.

Broad domains of open chromatin on either side of the tran-

scriptional start site—a hallmark of strongly transcribed

genes—are observed exclusively in patterns associated with

proliferating RPCs (e.g., patterns 14, 45, 72, and 78; Figure 5C,

top left) consistent with the ATAC-Seq sampling of this popula-

tion. Sharp peaks of open chromatin centered on the TSS corre-
sponded to RPC-specific patterns associated with actively

transcribed genes (e.g., patterns 4, 31, and 64; Figure 5C, top

right) as well as a subset of patterns associated with maturing

retinal subtypes, including cones, RGCs, and ACs (e.g. patterns

1, 2, 15, and 39; Figure 5C, bottom left), and immature rod

photoreceptors (pattern 79). Finally, TSS signatures of closed

chromatin are associated with patterns specific to cells that are

not derived from RPCs, such asmicroglia (5 and 24) and erythro-

cytes (28), as well as with the mature rod photoreceptor-specific

Pattern 21Figure 5C, bottom right). These data indicate that pro-

moter regions associatedwith genes specific toRPC-derived cell

types exist in an open and poised state in RPCs, with the notable

exception of genes specific to mature rods.

projectR Enables Latent Space Comparison across

Model Systems from the Developing Retina to the

Developing Brain

The retina is often used asmodel system for neural development.

In particular, both retinal neurogenesis and corticogenesis share

a stereotyped birth order of different lineages from a single pro-

genitor population (Kohwi and Doe, 2013; Miller and Gauthier,

2007). To test the ability of projectR to identify conserved pattern

usage across tissues and model systems, we projected our

retinal scRNA-Seq patterns into two datasets derived from

developing human cortex (Nowakowski et al., 2017) (Zhong

et al., 2018) and an additional dataset of the developing mouse

midbrain (La Manno et al., 2016) (Figure 6). Projection of these

patterns across all cells in each of the datasets completed in

165.6, 56.0, and 3.0 s, respectively, on a single high performance

computing (HPC) node with a 2.5 GHz AMD Opteron Processor

6380 and 40 Gb of RAM. Consistent with a significant degree of

conserved developmental programs and tissue composition be-

tween retina and select other CNS regions, we identified 87.5%

(70 out of 80), 76.3% (61 out of 80), and 98.8% (79 out of 80) of

patterns with significant projection (q < = 0.01; Wald test) in at

least one cell in each of these comparable model systems (Fig-

ures 6 and S9), suggesting that many of the processes described

by these patterns are reused in other CNS regions.

For the human cortical data, patterns 5, 20, 28, 29, 31, 40, 53,

64, and 65 captured 75% of published annotated cell types

(Figure S8A). Consistent with its derivation as a progenitor-asso-

ciated pattern in the developing retina and GO enrichment for

cell cycle, pattern 31 demonstrated significant (AUC > 0.7;

q < = 0.01;Wald Test; BH-corrected) projection to basal interme-

diate progenitor cells (IPCs), IPC-derived neuronal precursors of

the medial ganglionic eminence (MGE), and dividing radial glia in

the cortex (Figure S9A). In cortical data from Nowakowski et al.,

we observed that pattern 43, which is specific to inhibitory

amacrine cells in retina, is also associated with interneurons

(Figures 6A and S9A). Newborn excitatory pyramidal neurons

are enriched for genes found in both the photoreceptor precur-

sor-enriched pattern 79 (Unc119, Meis2, and Cdc43ep3) as

well as the amacrine and horizontal cell-enriched pattern 1

(Nrxn3, Kdm5b, and Dusp1). Additionally, we are able to classify

previously unannotated cells (NA) as neurons via significant pro-

jection of pattern 7, which is enriched for mature neuronal

markers (Nnat, Tubb2b, and Nefl). In data from Zhong et al.,

where progenitors and precursors of GABAergic interneurons

are annotated as a single class, these cells were significantly

associated with patterns specific to GABAergic horizontal and
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Figure 6. Developing Brain scRNA-Seq Projected in scCoGAPS

Patterns of Retina Development

Alluvial plots connecting scCoGAPS patterns to cell types for which at least

25% of all cells are significant (Wald test; BH-correction; q < .01) in a given a

projected scRNAseq of human cortical development from (A) Nowakowski

et al. and (B) Zhong et al. as well as projected scRNAseq of mouse midbrain

development from (C) La Manno et al.
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amacrine cells (2 and 43) and RPCs (49 and 71) (Figure 6B). In the

mouse midbrain, neural progenitor cells were enriched for retinal

progenitor-specific patterns 4, 31, and 78, consistent with their

shared roles in these two tissues (Figure 6C). Notably, Glyc cells

in human cortex and mUnk cells in mouse midbrain—neither of

which could be confidently classified in the original studies—

are both enriched for patterns and genes (Tubb2b, Sox4,

Mapt, and Onecut2) specific to immature amacrine, horizontal,

and/or RGC cells, indicating that these both most likely repre-

sent as yet undescribed neuronal precursor subtypes (Fig-

ure 6C). These associations further demonstrate that projection

analysis can be used to identify and annotate comparable cell

types and shared cellular attributes across disparate model

systems and that information transfer faithfully recovers these

associations across species (Figure S9).

Patterns 5, 6, 24, 25, and 57 are each associated with micro-

glial cells in the original source dataset. We observe significant

differences in the projections of these patterns into microglia

from different CNS regions, as well as across species. Patterns

5, 24, and 25 were consistently associated with microglia in all

three brain region projections (Figures 6A–6C). However, pattern

57 was significantly (q < 0.01; Wald test; BH corrected) associ-

ated with microglia in both human cortical projections but not

in microglia from the mouse midbrain (Figure 6A, 6B, S9A, and

S9B), suggesting a potential difference in microglia signatures

derived from different CNS regions. This pattern projection is

driven in part by the Cathepsin family member genes Ctsb and

Ctsd, as well as Cd9, each of which has been previously shown

to be upregulated in a subclass of cortical microglia (Keren-

Shaul et al., 2017). Thus, pattern 57 may be specifically associ-

ated with the cortically enrichedmicroglia type II and highlighting

a region-specific property of microglia detected via projection

analysis. Additionally, no significant projections for Pattern 6

were identified in either human CNS dataset (Figures 6C and

S8C); 0 out of 68 (0%) annotated microglia in Zhong et al. and

0 out of 77 (0%) microglia in Nowakowski et al. In contrast 76

out of 77 (98.7%) microglia in the human cortical development

study have significant (q < = 0.01; Wald test; BH corrected) pro-

jections into pattern 5. Thus, using projectR, we are able to

discriminate region- and species-specific differences in the tran-

scriptional signatures of discrete cell types.

Shared Latent Spaces Identify Novel Cell-Type

Associations across an Atlas of Adult Mouse Tissues

Given that latent spaces may reflect the signatures of biological

processes in the conditions in which they are learned, we

next asked whether we could identify significant use of these

processes inmore diverse cellular contexts from an atlas of adult

mouse tissue scRNA-seq. The Tabula Muris dataset is a collec-

tion of 70,118 single-cell gene expression profiles from 12

mouse tissues (Wyss-Coray et al., 2018) collected using the

103 Genomics Chromium platform (Figure 7A). Using projectR,

we projected the Tabula Muris dataset into the developing retina
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Figure 7. Projection of Retinal scCoGAPS Patterns into Mouse Non-

neuronal Cell Dataset

(A) UMAP of scRNA-seq data from the Tabular Muris collection of mouse

tissues colored by tissue.

(B) Projected pattern weights in pattern 31.

(C) Boxplot of projected pattern 36 weights stratified by sex demonstrates

statistically significant difference corroborating association with genes

involved in X-inactivation. (p < 2.2e-16, two-way t-test).
latent spaces. This analysis completed in 107 s on a HPC node

with a 2.5 GHz AMD Opteron Processor 6380 and 40 Gb of

RAM. Consistent with our hypothesis that biologically meaning-

ful latent spaces will be shared across diverse cell types, 83.8%

(67 out of 80) of the patterns demonstrated significant projection

(q < 0.0001; Wald test) in at least one cell, and significant projec-

tions were identified in each of the 12 tissues in the Tabula Muris

dataset.

Using only patterns learned in the developing retina, we were

able to identify and annotate a variety of cellular features in these

data. Many progenitor-associated patterns project into adult

tissues with high levels of cell turnover, and specifically within

subsets of cells that are actively proliferating (Figure 7B). Consis-

tent with previous projections, pattern 31 is highly predictive of

actively mitotic cells and can be used as a proliferative index

via projection (AUC > 0.7) in tissues within the TabulaMuris data-

set such as marrow, thymus, and tongue (Figure 7B). As previ-

ously described (Clark et al., 2019), we identified pattern 36 as

specifically associated with sex in our developing retinal source

dataset. This association was confirmed by defining biomarkers

for each factor, computed using the PatternMarker statistic

(STAR Methods) (Stein-O’Brien et al., 2017) (Table S3), and

finding Xist as the sole PatternMarker for pattern 36. Projection

of the Tabula Muris dataset into Pattern 36 almost perfectly

segregated cells by sex (Figure 7C, p value < 2.2e�16, two-way

t-test). While females displayed a range of significant weights,

males had uniformly insignificant projected pattern weights. In

the source data, pattern 36 has highweights in a large proportion

of cells, but sex was not determined a priori. The projection of

pattern 36 across these two datasets provides an example of

how annotations from a target dataset can also be used to anno-

tate latent spaces from the source dataset as well.

Patterns specific to retinal neurons were detected in a number

of peripheral tissues (Figure S9A). In the trachea, Mgp+ goblet

cells expressed genes associated with the neuronal cytoskel-

eton and neurotransmission (Gap43, Sncg, Chgb, and Tac1). In

the tongue, Krt6a/Krt16+ epithelial cells of both the filiform

papillae (pattern 37) and Krt14+ cells of the basal layer (pattern

41) selectively expressed genes associated with the neuronal

cytoskeleton. In the lung, a small number of cells expressed

pattern markers associated with amacrine and horizontal cell-

enriched patterns 16 and 17 (Scg5, Tmsb10, Malat1, and

H3f3a) (Figure S9A). Notably, this lung subpopulation expressed

Ins1 and Ins2 and may thus represent a previously uncharacter-

ized subset of pulmonary neuroendocrine cells (Figures S9B–

S9D). In each of these cases, none of the most highly selective

marker genes of these cells types (Mgp, Krt6a/14/16, and Ins1/

2) were themselves expressed in retina, but rather, the projected

patterns identified more complex similarities in gene expression

between these peripheral cell types and retinal cells. These find-

ings illustrate the power of this approach to identify biological
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processes and cellular attributes shared between otherwise

transcriptionally dissimilar cell types.

DISCUSSION

The rapid expansion of high-throughput biological assays has

generated massive amounts of data. Single-cell experiments

can now involve millions of individual samples adding to the

complexity and scalability required to analyze these data.

Applying latent space approaches to single-cell analyses has

successfully identified and corrected technical errors associated

with mRNA dropout (Eraslan et al., 2018) and enabled analysis of

cell-cell variation (Loos et al., 2018). However, comparing biolog-

ically meaningful molecular features across datasets remains a

critical challenge. Context-dependent biological variation and

technical variation both challenge the ability to make meaningful

interpretations from direct comparisons of biologically distinct

datasets (Lê Cao et al., 2009; Tung et al., 2017). Our approach

extends the latent space concepts used for data processing to

enable the comparison of biological factors across a variety of

experimental paradigms and cellular contexts.

By leveraging the structure generated by the co-regulation of

genes, we are able to find a reduced set of continuous factors

that describe cellular identity, state, and phenotype in a model

system where differential expression analysis and marker genes

are insufficient alone. This result is not unique to our work (Stein-

O’Brien et al., 2018). However, while previous algorithms have

focused on resolving differences between samples or groups of

samples (Brunet et al., 2004; Cleary et al., 2017; Kim et al.,

2017), we focus on optimizing our algorithm’s solution to account

for gene and pathway reuse in scRNAseq data. scCoGAPS iden-

tifies factors using a Bayesian NMF approach with a prior distri-

bution tailored to model the sparsity of scRNA-Seq data. We

developedanewcomputing structure andmethod for paralleliza-

tion across all cells in a dataset to allow for computationally trac-

table factorizations of increasingly larger datasets such as those

proposed by the Human Cell Atlas Project (Rozenblatt-Rosen

et al., 2017). This parallelization strategy also allows for the

independent discovery of patterns across sets of cells or samples

and can be exploited to assess confidence in the learned factors,

which is not available from other methods. Application of

scCoGAPS to time course scRNA-seq data across mouse retina

development identified gene-expression signatures of discrete

cell types and shared gene networks. When compared to other

methods, scCoGAPS outperformed gradient-based NMF and

DCA when learning patterns of shared biological processes and

SVD, PCA, and DCA when learning cell-type-specific patterns.

Because DCA is optimized to denoise data, this use was outside

of the intended scope of the algorithm.

projectR quantifies the extent to which the relationships

between biological processes, inferred by dimensionality reduc-

tion methods, are shared across datasets from different assay

technologies, cellular measurements, and species. Using Proj-

ectR, independent and biologically distinct datasets, such as

mouse retina and human cortex, can be compared with respect

to their use of specific latent spaces. In contrast, existing tools

for comparative analysis rely on consensus clustering using

marker genes (Kiselev et al., 2018) or visualizations independent

of specific molecular features (Cho et al., 2018). CCA (Soneson
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et al., 2010) and other single-cell dataset comparison tools

forcibly align source and target datasets into a common, shared

manifold that does not reflect the native state of either dataset.

Moreover, these techniques have limited applicability for differ-

ences in data dimensionality and distributions (Butler and Satija,

2017; Wang et al., 2015). By mapping target data into a basis

set definedby the source data, projectR allows for the direct eval-

uation of what is shared between, versus what is unique to, the

source and target datasets. A key challenge to such cross-study

comparison arises from technical variation such as batch effects

between datasets, which may be non-linear. In spite of this

complexity, projectR can overcome these confounding factors

to relate features across datasets from disparate measurement

platforms.

Many of the applications of this transfer learning approach

including cell-type inference, comparison of factors across

distinct conditions, feature discovery, and cross-model and

cross-assay integrative analyses are areas of significant future

work. The requirement of a feature map for transfer learning

with projectR currently precludes its use with multi-layer autoen-

coders and other nonlinear methods that do not concurrently

learn gene and sample weights. However, expansion of projectR

to other unsupervised techniques represents an area of current

and future work to bridge this gap and other methods exist

that work exclusively with autoencoders (Taroni et al., 2019).

Likewise, comparison of the least squares projection method

employed in projectR to other orthogonal and non-orthogonal

projection methods are also critical to determine optimal infor-

mation transfer between datasets.

Application of scCoGAPS and projectR allows for exploratory

analysis of high-dimensional biological data through the lenses

of individual biological processes. This approach enables a shift

in how we compare and identify cells beyond reliance on marker

genes or ensemble molecular identity. Here, we demonstrate the

sensitivity of this workflow to recover shared features and anno-

tations across a variety of data types and experimental condi-

tions. Our approach enabled de novo annotation and correction

of existing cell-type annotations in a target retinal scRNA-seq

study. We demonstrate the cross-platform and cross-species

sensitivity of this approach to identify paralogous cell types in

the retina and other tissues and identify meaningful biological

similarities in markedly different cell types in a mouse cell atlas.

This approach provides a strong foundation to develop new

integrative analysis approaches using low dimensional repre-

sentations to describe biological systems and how specific

cellular attributes are shared across biological contexts.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Critical Commercial Assays

RNAeasy Mini kit Qiagen Cat#74134

Illumina TruSeq kit Illumina Cat#RS-122-2001

Deposited Data

Bulk RNAseq of Chx10-Cre:GFP+ cells from a time course

of murine retina

This paper GSE118880

103 scRNAseq time course of murine retina development Clark et al., 2019 GSE118880

ATAC seq of Chx10-Cre:GFP+ cells from a time course of

murine retina development

Zibetti et al., 2017 GSE118880

Tabula Muris data CZI Biohub https://github.com/czbiohub/tabula-muris

Developing human cortex time course Nowakowski et al., 2017 https://cells.ucsc.edu/?ds=cortex-dev

Adult murine retina scRNAseq Macosko et al., 2015 GSE63472

Developing murine midbrain scRNAseq La Manno et al., 2016 GSE76381

Developing human cortex scRNAseq Zhong et al., 2018 GSE104276

Bulk RNAseq time course of human retina development Hoshino et al., 2017 GSE104827

Experimental Models: Organisms/Strains

Mice:CD1.Tg(Chx10-EGFP/cre/-ALPP)2Clc Dr. Connie Cepko; {Rowan

and Cepko, 2004}

RRID:MGI:3838985

Software and Algorithms

R version 3.5 The R project https://www.r-project.org/

scanpy version 1.3 Wolf et al., 2018 https://github.com/theislab/scanpy

scCoGAPS bioconductor https://www.bioconductor.org/packages/

release/bioc/html/CoGAPS.html

projectR This paper https://github.com/genesofeve/projectR

Deep Count Autoencoder (DCA) Eraslan et al., 2018 https://github.com/theislab/dca

NNLM Lee and Seung, 2001 https://cran.r-project.org/web/packages/

NNLM/vignettes/Fast-And-Versatile-NMF.html
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Elana J.

Fertig (ejfertig@jhmi.edu)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Information about the generation and genotyping of the mouse transgenic lines used in this study can be found in the corresponding

original studies: Chx10-Cre:GFP+ (Rowan and Cepko, 2004). All mice weremaintained on a CD-1 background. Animals used for bulk

RNA-seq and ATAC-Seq ranged from embryonic day 10 (E10) to postnatal day 2 (P2). Both males and females were used in this

study. Mice were housed in a climate-controlled pathogen free facility, on a 14 hour-10 hour light/dark cycle (07:00 lights on-

19:00 lights off). All experimental procedures were preapproved by the Institutional Animal Care and Use Committee of the Johns

Hopkins University School of Medicine.

METHOD DETAILS

Single-Cell RNA-Seq Analysis of the Developing Mouse Retina Data Obtained from Clark et al., (2019)
The developmental time series of scRNA-seq from mouse retina was generated as part of our companion manuscript (Clark et al.,

2019), and these data were used for pattern discovery and annotation as described below. UMAP representations (Becht et al., 2018)
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were learned on neighbors calculated from the first 32 PCs using scanpy version 1.3 (Wolf et al., 2018) following data preprocessing

as described in (Zheng et al., 2017).

Target Public Domain Datasets
All data was downloaded from GEO with the exception of the Tabular Muris data which was downloaded from https://github.com/

czbiohub/tabula-muris and the developing human cortex time course from (Nowakowski et al., 2017) which was downloaded from

https://cells.ucsc.edu/?ds=cortex-dev. Accession numbers in order of appearance in themanuscript are GSE63472 (Macosko et al.,

2015), GSE104827 (Hoshino et al., 2017), GSE104276 (Zhong et al., 2018), and GSE76381 (La Manno et al., 2016).

Bulk RNA-Seq of the Developing Mouse Retina
At select developmental time points, cells were collected from biological replicates of FACS-sorted Chx10-Cre:GFP+ mouse retinas

as previously described (Rowan and Cepko, 2004). RNA was isolated using the RNAeasy Mini kit (Qiagen) with on-column DNase

treatment. Isolated total RNA was assessed for integrity on the Bioanalyzer 2100 system, and we required a minimum RNA integrity

number of 7. RNA-Seq libraries were created using the Illumina TruSeq kit (Illumina), quantified via PicoGreen assay and fragment

size distribution was determined using the Bioanalyzer 2100. Libraries were bar-coded, pooled, and run on a HiSeq2500 instrument

to an average sequencing depth of 30.0 million aligned reads per sample. 75–100 bp paired-end reads were mapped to the mouse

reference genome (mm10) using Hisat2 (Kim et al., 2015, 2016). Gene expression estimates for the reference transcriptome

(Gencode vM5) and differential testing were performed using Cuffdiff2 (Trapnell et al., 2013) with default parameters. Data are

available from GEO in GSE118880.

ATAC-Seq of the Developing Mouse Retina Obtained from Zibetti et al., (2017)
Chromatin derived from flow-sorted Chx10:Cre-GFP+ (Rowan and Cepko, 2004) retinal fractions was processed as previously

described (Zibetti et al., 2017). Briefly, chromatin was extracted and processed for Tn5 mediated tagmentation and adapter incor-

poration, according to theManufacturer’s protocol (Nextera DNA sample preparation kit, Illumina) at 37�C for 30min. Reduced-cycle

amplification was carried out in presence of compatible indexed sequencing adapters. Libraries were quantified using the PicoGreen

assay and fragment size distribution was determined using the Bioanalyzer 2100. Up to 4 samples per lane were pooled and run on a

HiSeq2500 Illumina sequencer to produce 50-bp paired ends for each sample.

Bowtie2 (version 2.3.2) was used for ATAC-Seq reads alignment to the mouse genome (mm10) (Langmead and Salzberg, 2012).

Duplicate reads were removed using Picard tools (version 2.10.7)(Wysoker et al., 2013). Improperly mapped reads were removed

using SAMtools (version 1.5). (Li et al., 2009). Read counts for each gene were retrieved using featureCounts program (version

1.5.3). (Liao et al., 2014). Read counts overlapping 200-bp interval extending out 5 kb on either side of the transcription start site

were generated with custom scripts using bedtools (version 2.26.0)(Quinlan and Hall, 2010). Data are available from GEO in

GSE118880.

QUANTIFICATION AND STATISTICAL ANALYSIS

Pattern Discovery via scCoGAPS
Latent spaces were learned using the scCoGAPS function from the CoGAPS v 3.0 Bioconductor 3.7 package from log transformed

cpms of the high variance genes for all samples. Cells were partitioned into 100 sets of �1200 cells using a sampling scheme to

ensure representation of all annotated cell types in each set. Consensus patterns were derived as described in the next section using

the patternMatch4scRNASeq function from the CoGAPS v 3.0 Bioconductor 3.7 package and then rerun across all sets using

scCoGAPS with fixed = TRUE to ensure reciprocity of the learned weights.

CoGAPS Atomic Prior
CoGAPS decomposes a matrix D of G genes (rows) and S samples (columns) into two matrices A˛RG3k and P˛Rk3S using

the model:

pðA;PjD;SÞfpðDjA;P;SÞpðAÞpðPÞ;
where the elements of S represent the corresponding standard deviation of each element in the matrix D. Determining the optimal

value of k remains an open problem for latent space detection. The CoGAPS model assumes each element of D is i.i.d. with

pðDi;j

��Ai;,;P,;j;Si;jÞ a normal distribution with mean mi;j =Ai;,3P,;j and variance s2i;j.

In the case of sequencing data, Di,j is log transformed counts. In cases with replicates, Di,j can be replaced with the mean log

transformed read counts and standard deviation can be computed across these replicates. In cases without replicates, the standard

deviation is assumed to be 10% of the signal in D with a minimum value of 0.1.

CoGAPS uses an atomic prior (Sibisi and Skilling, 1997) for the A and Pmatrices based upon previous work in Bayesian non-nega-

tive NMF for microarrays (Moloshok et al., 2002). The atomic prior (Sibisi and Skilling, 1997) is similar to spike and slab model

(Ishwaran and Rao, 2005), in which only a subset of model parameters are nonzero and those that are have a value distributed

according to some continuous distribution with non-negative support. As a result, this model results in a [0 sparsity constraint on

thesematrices with other constraints depending on the distribution used tomodel nonzero values in thesematrices. The atomic prior
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models each nonzero matrix element of A or Pwith a gamma distribution. The rate lA and lP of this distribution is a parameter that is

fixed for every matrix element in A and P, respectively. The shape of the gamma prior for each matrix element is a separate hyper-

parameter (aA
i;k for each element of A and aP

k;j for each element of P), modeled as a Poisson distribution with a fixed parameter a for

each matrix element. Zero values for aA
i;k or aP

k;j correspond to Ai,j = 0 and Pk,j = 0, modeling the subset of model parameters that

are zero.

The expectation of the Gamma distribution is proportional to the sampled values of aA
i;k or aP

k;j, introducing a further sparsity

constraint on the magnitude of the matrix elements when these values are small. In contrast to standard spike and slab models,

the atomic prior also models smoothness by encoding a correlation structure between matrix elements in A and P during the sam-

pling steps.

Recall thatAi;j � GðaA
i;k ; l

AÞ is equivalent to the sumof aA
i;k independent, exponentially distributed random variables with rate param-

eter lA and similarly for Pk,j. Instead of directly sampling from the Gamma or Poisson distributions, the proposal distribution in the

atomic prior updates a single, exponentially distributed random variable xAi;k;l for A and xPk;j;m for P at each step. The advantage of

sampling a single atom at a time is that the conditional distribution posterior for an exponential prior on each atom and the normal

likelihood is a truncated normal, enabling Gibbs sampling. This single random variable is called an ‘‘atom’’ and the set of all such

atoms is referred to as the ‘‘atomic domain’’. The value of each matrix element of A is then given by

Ai;k =
XaAi;k
l = 1

xAi;k;l

and similarly forP. The atoms in the atomic domain are stored in ordered coordinates on a number line (lAi;k;l forA and lPk;j;m forP), which

is divided into bins that correspond to each matrix element (Main Figure 1). The set of all atoms for one matrix is referred to as the

‘‘atomic domain’’. If the number of atoms is smaller than the number of matrix elements, this data structure reduces the memory

required to keep track of each atom and provides an efficient structure to find all the atoms mapping to a single matrix element.

The prior distribution of atom coordinates is uniform, corresponding to an uniform prior for atommembership in eachmatrix element.

Update Steps for the Atomic Prior
CoGAPS alternates between updating nA atoms in the A and nP atoms in the Pmatrices. The values of nA and nP are sampled from a

Poisson distribution with parameter for the total number of atoms in the atomic domain for A (NA) and in the atomic domain for P (NP),

respectively. Thus, on expectation all atoms in the domain are updated at eachmatrix-level iteration. The total number of such update

steps is input as a parameter nEquil during the burn in stage and nSamp during the sampling stage.

In each of these nA and nP, we perform one of the four update steps to the respective atomic domains (Main Figure 1). We briefly

describe these steps for A below, and note that they are defined similarly for P.

1. create a single new atom in the atomic domain, so that NA )NA + 1.

2. change the value of a single atom xAi;k;l )xAi;k;l � DxAi;k;l, and removing it from the atomic domain so that NA )NA � 1 if xAi;k;l �
DxAi;k;l = 0.

3. changing the location of a single atom (xAi;k;l) to a new location between adjacent atoms (xAm;n;p and xAq;r;s) such that lAi;k;l˛
ðlAm;n;p; l

A
q;r;sÞ on the atomic domain.

4. Moving a portion of the value of a single atom (xAi;k;l) to another, adjacent atom (xAm;n;p) so that xAi;k;l )xAi;k;l +Dx and xAm;n;p )xAi;k;l�
Dx whereDx˛ð� ðxAi;k;l + xAm;n;pÞ;xAi;k;l + xAm;n;pÞ. Atomsmay become small from exchange, but not exactly zero or removed from

the atomic to maintain detailed balance.

At each of the nA or nP iterations, each of these four steps is chosen at random with 1/3 probability of either birth or death, 1/3

probability of move, and 1/3 probability of exchange. The relative probability of selecting birth or death is selected based on the Pois-

son prior. Recall for A that birth implies NA )NA + 1, the sum of Poisson distributed random variables, and that under the Poisson

distribution PðN+ 1jNÞ= ðN=ðN + lÞÞ where l is the Poisson parameter. Together, these three conditions suggest that Pðbirth��NAÞ=
ðNA=ðNA +aGkÞÞ for theA atomic domain and that Pðbirth��NPÞ= ðNP=ðNP +akSÞÞ for theP atomic domain. The probability of death or

resize is then one minus the probability of birth. Metropolis Hastings sampling is used for the move step, whereas Gibbs sampling is

used for the other three steps using the conditional distributions.

Initialization
The atomic domains for both A and P are initialized without any atoms, so that Ai,j = 0 and Pk,l = 0. This limits the initial atomic update

step to birth step, birth or death when there is at least one atom in the domain, and all four update steps when there are at least two

atoms in the domain.

At these initial steps, the estimated fit to the data mi;j =Ai;,P,;j will be zero for most values of i and j. Thus, these initial steps do not

change the likelihood and are all accepted. This initialization effectively results in initial conditions which are a random sampling from

the prior before Gibbs sampling.
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Conditional Distributions for Gibbs Sampling
We would like to sample from Skilling’s atomic domain using Gibbs sampling. We will assume that we are seeking the mass of an

atom xAk;l at Ak;l;j for theAmatrix and xPl;m;j at Pl;m for the Pmatrix. We use the variable x in the derivations below to reduced the number

of indices in the equations, as the associated matrix element can be clearly inferred from the context of each equation. The initial

mass of this atom is x0, which is 0 if we have decided to birth the atom and > 0 if we have decided to kill it. We retain this term so

that we can derive the conditionals for birth and death in a single expression.

Determining the mass of x requires first computing the full conditional distribution pðxjx0;D;A;PÞ. To do this, we will first consider

PðA;PjDÞ and examine the resulting distribution. We will begin by recalling that

pðA;PjDÞfpðDjA;PÞpðA;PÞ:
Putting this in terms of an individual atom, we obtain

pðxjx0;D;A;PÞfpðDjx; x0;A;PÞpðxÞ:
We assume that

pðDjx; x0;A;PÞ � NðM;SÞ;
where M is the mock data matrix given by the product of A and P that incorporates the change in mass of the atom x � x0 in the

updated term. S is the covariance matrix for D. The prior for the mass of each atom x is given by an exponential with parameters

lA and lP, respectively.

In each case, the full conditional distribution simplifies to a normal distribution, which is truncated so the value of the atom x R 0.

Below follows the detailed derivation of this distribution for birth and resizing and exchange.

Conditional Distribution for Birth or Resizing of Atoms
Atomic Domain for A

We will first explore the likelihood in more detail, assuming that the mass of the atom maps to Ak,l

pðDjx; x0;A;PÞ f exp

8<:�P
i

P
j

1

2s2
i;j

 
Di;j �

X
p

Ai;pPp;j � ðx � x0ÞPl;j

!2
9=;:

Since we are only concerned with computing the conditional for changes to Ak,l we note that the other terms in A and P can be

considered as parameters. As a result,

pðDjx; x0;A;PÞ f exp

8<:�P
j

1

2s2
k;j

 
Dk;j �

X
p

Ak;pPp;j � ðx � x0ÞPl;j

!2
9=;:

= exp

(
�P

j

Pl;j

2s2
k;j

�
x �

�
Dk;j �

P
pAk;pPp;j + x0Pl;j

Pl;j

��2
)
:

Let mA
k;l;j =

Dk;j �
P

pAk;pPp;j + x0Pl;j

Pl;j
and sAk;l;j =

P2
l;j

2s2k;j
. Then, the equation above becomes

pðDjx; x0;A;PÞ f exp

(
�P

j

sAk;l;j

�
x � mA

k;l;j

�2)

= exp

(
�P

j

sAk;l;j

�
x2 � 2mA

k;l;jx + mA2
k;l;j

�)

= exp

(
�
 
x2
X
j

sAk;l;j � 2x
X
j

sAk;l;jm
A
k;l;j +

X
j

sAk;l;jm
A2
k;l;j

!)

f exp

(
�P

j

sAk;l;j

 
x2 � 2x

X
j

sAk;l;jm
A
k;l;jX

j

sAk;l;j

!)
:

If we now incorporate the product with the exponential prior distribution for a,
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pðxjx0;D;A;PÞ f exp

(
�P

j

sAk;l;j

 
x2 � 2x

X
j

sAk;l;jm
A
k;l;jX

j

sAk;l;j

!)
expf�lAxg

= exp

(
�
X
j

sAk;l;j

 
x2 � x

 
2

X
j

sAk;l;jm
A
k;l;jX

j

sAk;l;j
� lAX

j

sAk;l;j

!!)

f N

0B@2
X
j

sAk;l;jm
A
k;l;j � lA

2
X
j

sAk;l;j
;

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
X
j

sAk;l;j

r
1CA:

Within the code, we store values of s and s 3 m used to avoid dividing by zero in cases where Pl,j = 0.

Atomic Domain for P
Here, we consider atoms whose mass maps to elements Pl,m. From the likelihood, we get

pðDjx; x0;A;PÞ f exp

8<:�P
i

1

2s2
i;m

 
Di;m �

X
p

Ai;pPp;m � ðx � x0ÞAi;l

!2
9=;

= exp

(
�P

i

Ai;l

2s2
i;m

�
x �

�
Di;m �PpAi;pPp;m + x0Ai;l

Ai;l

��2
)
:

If mP
i;l;m =

Di;m �PpAi;pPp;m + x0Ai;l

Ai;l
and sPi;l;m =

A2
i;l

2s2i;m
,

pðDjx; x0;A;PÞ f exp

�
�P

i

sPi;l;m

�
x � mP

i;l;m

�2)

= exp

�
�P

i

sPi;l;m

�
x2 � 2mP

i;l;mx +mP2
i;l;m

�2)

f exp

(
�
�P

i

sPi;l;m

� 
x2 �

2
X
i

mP
i;l;ms

P
i;l;mxX

i

sPi;l;m

!)
If we now incorporate the prior distribution for x

pðxjx0;D;A;PÞ f exp

(
�
�P

i

sPi;l;m

� 
x2 �

 
2
X
i

mP
i;l;ms

P
i;l;mX

i

sPi;l;m

!
x

!)
exp

	�lPx



= exp

(
�
�P

i

sPi;l;m

� 
x2 �

 
2
X
i

mP
i;l;ms

P
i;l;m � lPX

i

sPi;l;m

!
x

!)

f N

0B@2
X
i

mP
i;l;ms

P
i;l;m � lP

2
X
i

sPi;l;m
;

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
X
i

sPi;l;m

r
1CA

Conditional Distribution for Exchange between Neighboring Atoms in the Atomic Domain
Exchange for A between Ak,l and Am,n where k s m
We will refer to the atom corresponding to matrix element Ak,l as x, the atom corresponding to the matrix element Am,n = xm,n, and x0
and x0,m,n there initial values, respectively. The value of x after sampling is constrained such that x˛ð0;XÞ and xm,n = X� xwhere X =

x0 + x0;m;n.
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If we consider the exponential prior, the exchange step will incorporate both matrix elements. That is,

expð�lAxÞexpð � lAðX � xÞÞ:
The x terms in this equation cancel, indicating that the conditional depends only on the likelihood. This occurs for all exchange

steps, and thus is not described in the remaining subsections on this step.

From the likelihood, we get

pðDjx; x0;X;A;PÞ f exp

8<:�P
j

1

2s2
k;j

 
Dk;j �

X
p

Ak;pPp;j � xPl;j

!2
9=;

3 exp

8<:�P
j

1

2s2
m;j

 
Dm;j �

X
p

Am;pPp;j � ðX � xÞPn;j

!2
9=;:

For simplicity of the equations, we consider only the terms inside of the exponential and formulate them as an equation for x to find

the parameters of the truncated normal for value j in the summation.h
xPl;j �

�
Dk;j �

P
pAk;pPp;j

�i2
2s2

k;j

+

h
xPn;j �

�
XPn;j +

P
pAm;pPp;j � Dm;j

�i2
2s2

m;j

:

Letting mk;j =Dk;j �
P
p
Ak;pPp;j and Mm;n;j = XPn;j +

P
p
Am;pPp;j � Dm;j, the above term simplifies to�

xPl;j � mk;j

�2
2s2

k;j

+
ðxPn;j �Mm;n;jÞ2

2s2
m;j

:

Combining terms, we can write this equation ash
s2
m;jP

2
l;j + s2

k;jP
2
n;j

i
x2 � 2

h
s2
m;jPl;jmk;j + s2

k;jPn;jMm;n;j

i
x

2s2
k;js

2
m;j

which can complete the square by h
s2
m;jP

2
l;j + s2

k;jP
2
n;j

i
2s2

m;js
2
n;j

 
x � s2

m;jPl;jmk;j + s2
k;jPn;jMm;n;j

s2
m;jP

2
l;j + s2

k;jPn;j

!2

The parameters for the truncated normal can now follow the derivation used for the birth step described above.

Exchange for A between Ak,l and Ak,n

Considering just the terms inside of the exponent, in this case we will have instead

X
j

�
Dk;j �

P
pAk;pPp;j � xPl;j � ðX � xÞPn;j

�2
2s2

k;j

Collecting the x terms and completing the square we get

X
j

ðPl;j � Pn;jÞ2
2s2

k;j



x � Dk;j �

P
pAk;pPp;j � XPn;j

Pl;j � Pn;j

�2
ðP � P Þ2 Dk;j �
P

Ak;pPp;j � XPn;j

we let sj =

l;j n;j

2s2k;j
and mj =

p

Pl;j � Pn;j
. The derivation for the terms of the truncated normal follow.

Exchange for P between Pk,l and Pm,n where l s n
The derivation for exchange steps in P follows that of the derivation for A above. In this case,

si =
s2
i;nA

2
i;j + s2

i;lA
2
i;m

2s2
i;ls

2
i;n

;

mi =
s2
i;nAi;kmi;l + s2

i;lAi;mMi;m;n

s2
i;nA

2
i;k + s2

i;lA
2
i;m

;

where mi;l =Di;l �
P

pAi;pPp;l and Mi;m;n =
P

pAi;pPp;n + XAi;m � Di;n.
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Exchange for P between Pk,l and Pm,l

The derivation for the exchange steps for P follows that of the derivation for A. Thus, in this case

si =
ðAi;k � Ai;mÞ2

2s2
i;l

;

mi =

Di;l �
X
p

Ai;pPp;l � XAi;m

Ai;k � Ai;m

:

Annealing Parameter
During the equilibration phase, we in fact wish to sample from the conditional distribution

pðxjx0;D;A;PÞfpðDjx; x0;A;PÞ1=TpðxÞ;
where T is the annealing temperature. This has the effect of multiplying the term s in each of the equations by a factor of T. As a result,

the standard deviation s of the birth and resize terms are the only things to change by as follows.

sAk;l;j =
Pl;j

2Ts2
k;j

; and
sPi;l;m =
Ai;l

2Ts2
k;j

:

A similar modification of the terms with s)Tswill also occur in the exchange step, which will modify both the mean and standard

deviation terms for this step.

Pattern Matching for Consensus Gene Signatures
Hierarchical clustering was done on gene weights from all sets and the resulting dendrogram is cut so the number of branches is

equal to the original number of latent spaces. Each branch then contains the columns(s) of A across all the sets that are most related

to each other. Well-dimensionalized data will produce robust patterns such that each branch will contain a single contribution from

each of the randomly generated sets. As the additional sparsity can cause large clusters driven predominantly by zeros, theminimum

and maximum number of patterns contributing to given branch can be specified with defaults of .5 and 1.5 the number of gene sets,

respectively. Branches failing to meet the lower bound are dropped, while those exceeding the upper bound are subjected to

additional rounds of hierarchical clustering. Additionally, the minimal correlation to the cluster mean for each pattern within a given

branch was specified to be 0.7. Consensus signatures were then constructed for each branch by taking a weighted average of the

gene signatures for that branch which pass all the criteria. To ease across pattern comparison, the resulting consensus signatures

were scaled to have maxima of one. Pattern weights for all the cells were then learned in parallel from these signatures to ensure

reciprocity across all the sets.

Pattern Curation Using Manual Feature Annotation
The AUC valued were calculated by inputing either the pattern weights output from scCoGAPs, the projected pattern weights output

from projectR, or the p-values output from projectR with a one hot encoded matrix of annotated labels into the prediction function of

the ROCR library v 1.0-7. The output of prediction was then evaluate using the performance function with method=auc from the

ROCR library v 1.0–7 and the y.values extracted and reported. Note this process has been functionalize and is included in the

projectR package v .99 as the auc_mat function. The heatmap in Figure 3Bwas created using the following. Each feature of contained

in the annotation matrix was one hot encoded and the resulting vector correlated against the pattern weights generated by

scCoGAPS for each cell.

Benchmarking scCoGAPS against Commonly Used Dimensionality Reduction Tools
SVD was calculated using the svd function with nu=80, nv=80 from the base R package v3.5.2. PCA was calculated with the scale

and centered arguments as true using prcomp functions included in the core R stats package v 3.5.2. The gradient-based NMF was

run using the both the nmf function from the NMF library v 0.21.0 with method set to ‘‘brunet’’ and k = 80 and the nnmf function from

the NNLM library v 0.4.2 with threads set to 24. DCA was run in using dca.api in Python 3.6 the with arguments mode=’latent’,

hidden_size=80, return_info=True, return_model=True.

Gene Set Analysis of scCoGAPS Patterns
Z-scores of gene weights were computed for each pattern in each ensemble by dividing the mean of the Amatrix estimated across

the chain by its standard deviation as previously described (Fertig et al., 2010; Ochs et al., 2009). The resulting matrix of Z-scores
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is averaged for sets of patterns determined to match in the the ensemble as described above. A Wilcoxon gene set test with the R/

Bioconductor LIMMA package version 3.36.2 (Ritchie et al., 2015) is performed for mouse KEGG and GO sets from the

R/Bioconductor packages org.Mm.eg.db version 3.4.0, KEGG.db version 3.2.3, and GO.db version 3.4.0. Gene sets with more

than 5 genes and fewer than 100 genes are retained for analysis. p-values for the gene set test are FDR adjusted with Benjamini

Hotchberg and available as Table S4. Preranked GSEAwas performed for the results of the gradient basedNMF from the NMF library

gene set test (Subramanian et al., 2005).

projectR Analysis
The R package projectR version 0.99.2 (available from https://github.com/genesofeve/projectR) was used to project the scCoGAPS

consensus scCoGAPS patterns of the A matrix into each of the target datasets. These projection are achieved by solving the

factorization

D = AbP + 3

using the least-squares fit to the new data as implemented via a wrapper for the lmFit function in the LIMMA package 3.30.13

(Ritchie et al., 2015). Specifically, a linear model is fit using the Ai:j weights learned from the source data by scCoGAPS as the

design matrix for multiple linear regressions. Each row of the design matrix, Ai;,, corresponds to the features, i.e. genes, which

will map between the source and target data. Each column of the design matrix, A,;j, corresponds to a previously learned individual

latent space. The estimated coefficients of these regressions provide bP matrix values for the target data. These bPs score the new

samples using a gene-wise weighting, provided by theAs, for each latent space. The ranking of the new samples within each pattern,

or row of bP, are then indicative of the relative strength of a given sample’s association with the latent space. A wald test to calculate

the significance of these coefficients is calculated using the pdf of the negative absolute value of the coefficients scaled by their

standard deviation, i.e.

W =
�
���bP � P0

���
cse�bP�

The AUC values were calculated by inputting either the projected pattern weights output from projectR or the p-values output from

projectR with a one hot encoded matrix of annotated labels into the prediction function of the ROCR library v 1.0-7. The output of

prediction was then evaluate using the performance function with method=auc from the ROCR library v 1.0–7 and the y.values

extracted and reported. Note this process has been functionalized and is included in the projectR package v .99 as the auc_mat

function. Additional functionality is included in the latest version of ProjectR (v 1.0) available as part of Bioconductor.

DATA AND SOFTWARE AVAILABILITY

scCoGAPS is available as part of the CoGAPS bioconductor package (3.8) under the GPL license.

ProjectR is available as part of the ProjectR bioconductor package (1.0) under theGPL license. Note, the exact version used for this

analysis (v0.99.2) can be freely downloaded from https://github.com/genesofeve/projectR. All code for this analysis is available

upon request. The accession number for the bulk RNA-seq data reported in this paper is GEO: GSE118880.
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