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In Brief

We present tools and workflows for latent
space exploration across datasets.
scCoGAPS is an implementation of
NNMF that is specifically suited for large,
sparse scRNA-seq datasets. ProjectR
implements a transfer-learning
framework that rapidly projects new data
into learned latent spaces. We
demonstrate the utility of this approach
for de novo annotation of new datasets,
cross-species analysis, linking genomic
regulatory and transcriptional signatures,
and exploration of features across a
catalog of cell types.
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SUMMARY

Analysis of gene expression in single cells allows for
decomposition of cellular states as low-dimensional
latent spaces. However, the interpretation and vali-
dation of these spaces remains a challenge. Here,
we present scCoGAPS, which defines latent spaces
from a source single-cell RNA-sequencing (scRNA-
seq) dataset, and projectR, which evaluates these
latent spaces in independent target datasets via
transfer learning. Application of developing mouse
retina to scRNA-Seq reveals intrinsic relationships
across biological contexts and assays while avoiding
batch effects and other technical features. We
compare the dimensions learned in this source data-
set to adult mouse retina, a time-course of human
retinal development, select scRNA-seq datasets
from developing brain, chromatin accessibility data,
and a murine-cell type atlas to identify shared biolog-
ical features. These tools lay the groundwork for
exploratory analysis of scRNA-seq data via latent
space representations, enabling a shift in how we
compare and identify cells beyond reliance on
marker genes or ensemble molecular identity.

INTRODUCTION

The identity of an individual cell is determined by the combinato-
rial effects of diverse biological processes. Dimension reduction
techniques deconvolve gene expression data into discrete latent
spaces, which may correspond to biological and technical influ-
ences on the transcriptome (Brunet et al., 2004; Cleary et al.,
2017; Kossenkov et al., 2007; Stein-O’Brien et al., 2018; Wagner
et al.,, 2016; Zhu et al., 2017). Latent space techniques are
frequently used in the context of novel biological discovery
from high-dimensional genomics datasets. Discovery requires
evaluation of both the accuracy of the learned latent space and
interpretation of biological processes from the low dimensional
representation. Both of these tasks are challenging, if not entirely
ineffective, using standard analytical methods, requiring biolog-
ical validation to provide a gold standard (Cleary et al., 2017;
Kiselev et al., 2019; Stein-O’Brien et al., 2018). However, in
many applications, such a gold standard does not exist. None-
theless, multiple datasets and measurement assays of the
same biological system should reflect a similar set of biological
processes. Furthermore, subsets of cellular features may further
be preserved across experimental systems from related biolog-
ical contexts. These properties can be utilized to improve selec-
tion, analysis, and interpretation of diverse biological systems by
leveraging information learned from different data sources. Spe-
cifically, we propose that establishing the biological relevance of
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latent spaces requires a 3-fold approach to (1) learn gene-
expression signatures associated with biological processes, (2)
demonstrate their association with specific cellular features in
the dataset from which they are inferred, and (3) test their robust-
ness across related but diverse biological contexts. These latent
spaces are best learned from single-cell measures instead of
bulk measurements where learned latent spaces may reflect
confounded features across cell types and states. The first two
steps of this process are prevalent across single-cell RNA-
sequencing (scRNA-seq) analyses, but the second often relies
on heuristic analysis and expert curation (Zappia et al., 2018).
Transfer-learning approaches can be used to perform the last
two steps, thereby enabling in silico validation, interpretation,
and exploration across diverse types of modern high-throughput
biological data.

The machine-learning subdomain of transfer learning exploits
the fact that if two datasets share common latent spaces, a
feature mapping between the two can identify and characterize
relationships between the data defined by individual latent
spaces (Pan et al., 2008). In this framework, one dataset is the
source in which the latent space representation is learned, and
another is the target that is mapped into the latent spaces
learned in the source. The distribution, domain, or feature space
of the source and target data may differ (Pan et al., 2008; Torrey
and Shavlik, 2009). Thus, transfer-learning techniques are ideally
suited to assess shared latent spaces from one or more sources.
Once the robustness of a biological process is established
across systems, these approaches can also be applied to use
these learned latent spaces to enable exploration of process
use across data platforms, modalities, and studies. The estab-
lished conservation of specific biological processes across sys-
tems, such as common developmental pathways across tissues
or organisms, can be further leveraged to enable cross-study
validation. In this case, the low-dimensional patterns learned
from latent space techniques will be shared in samples with
biologically meaningful relationships between datasets, while
dataset-specific factors and technical artifacts across datasets
will not. The challenge then arises in providing a computational
tool to enable this in silico validation.

We have adapted a transfer-learning approach for high-
throughput genomic data analysis with two new methods,
scCoGAPS and projectR. These tools provided a framework
enabling the identification, evaluation, and exploration of
latent-space features in both source and target datasets. To
demonstrate this workflow across a variety of contexts, we apply
these tools to a time course scRNA-seq dataset from murine
retina development and demonstrate recovery of meaningful
representations of biological features within individual latent
spaces. Application of scCoGAPS identified gene-expression
signatures of discrete cell types and biological processes asso-
ciated with cell-cycle regulation, neurogenesis, and cell-fate
specification. We empirically evaluate our transfer-learning
approach across a diverse collection of single-cell datasets. In
addition to performance assessment, these analyses also
demonstrate a wide range of biological applications. We demon-
strate how to classify learned cell types in a previously published
adult retina scRNA-seq dataset via projectR projection (Ma-
cosko et al., 2015). We further illustrate how transfer learning
can be used to extract meaningful biological insights across
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experimental modalities and species by projecting a bulk RNA
sequencing (RNA-seq) human retinal development time course
(Hoshino et al., 2017) and a mouse bulk Assay for Transpo-
sase-Accessible Chromatin for Sequencing (ATAC-Seq) dataset
into the learned latent spaces from a developing mouse retina
scRNA-seq dataset. To highlight the ability of projected patterns
to recover related biological processes and cell types across
developmentally related systems, we compare pattern usage
between the developing mouse retina and two independent da-
tasets derived from the developing cortex (Nowakowski et al.,
2017; Zhong et al., 2018) and another from the developing
mouse midbrain (La Manno et al., 2016). Finally, to examine
the power of pattern exploration via transfer learning, we identify
shared cellular features across a large collection of single cells
from an atlas of mouse tissues (Tabula Muris Consortium et al.,
2018). In aggregate, these analyses highlight the diversity of
potential applications for transfer-learning approaches to rapidly
identify and describe related components between a source
dataset, in this case derived from the developing mouse retina,
and a variety of independent data sources using learned latent
spaces.

Using a collection of latent spaces, learned from a dataset of
single-cell gene expression estimates, we demonstrate the
utility of a combined reduced dimensional representation and
transfer-learning approach to identify shared cellular attributes
and biological processes across diverse data types in a manner
that avoids the complications of normalization or sample
alignment. Our approach is able to annotate latent spaces and
reveal novel parallels between different tissues, molecular
features, and species. Our approach demonstrates that
projectR can rapidly transfer annotations, classify cells, and iden-
tify the use of biological processes without a priori knowledge or
annotation within the source dataset. While we focus this appli-
cation on low dimensional factors learned with scCoGAPS, proj-
ectR generalizes as an exploratory analysis and biological inter-
pretation method for other dimension reduction techniques that
find latent spaces associated with continuous gene weights.

RESULTS

Adaptive Sparsity for Learning Factors from scRNA-Seq
(scCoGAPS): Theory

ScCoGAPS is a non-negative matrix factorization (NMF) algo-
rithm. NMF algorithms factor a data matrix into two related
matrices containing gene weights, the Amplitude (A) matrix,
and sample weights, the Pattern (P) matrix (Figure 1A). Each
column of A or row of P defines a factor, and together, these
sets of factors define the latent spaces amongst genes and sam-
ples, respectively. Each sample-level relationship in a row of the
pattern matrix is referred to as a pattern and the corresponding
gene weights as an amplitude. In NMF, the values of the ele-
ments in the A and P matrices are required to be greater than
or equal to zero. This constraint simultaneously reflects the
non-negative nature of gene expression data and enforces
additivity of factors, generating solutions that are biologically
intuitive (Lee and Seung, 1999). The concept of up- or down-
regulation reflects a relative difference between two conditions
that can, and often is, described by comparing non-negative
gene weights between patterns.
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Figure 1. Mathematical Core of the scCoGAPS Algorithm

(A) scRNA-Seq data yields a data matrix that has each sample as a column and each observed gene expression value as a row. scCoGAPS decomposes the
preprocessed data matrix into two related matrices. The rows of the amplitude matrix (A) quantify the sources of variation among the genes, and the columns of
the pattern matrix (P) quantify the sources of variation among the cells. The matrix product of A and P approximates the preprocessed input data matrix. The
number of columns of A equals the number of rows in P and represents the number of dimensions in the low-dimensional representation of the data. Theoretically,
each column in the amplitude matrix and the corresponding row of the pattern matrix represents a distinct source of biological, experimental, or technical
variation in each cell. The values in the column of the amplitude matrix then represent the relative weight of each gene and the values in the row of the pattern
matrix its relative role in each cell. Adaptive sparsity is achieved by placing a Poisson prior on the shape parameter in the gamma distribution for each matrix
element (a4, apij) and a fixed scale parameter for all matrix elements (A4 and Ap) in A and P, respectively. In expectation, smaller values of «;; will result in smaller
values of corresponding matrix element and vice versa for larger values, which will also have a decreased probability of being zero.

(B) Each iteration of the Markov Chain Monte Carlo sampling employed in CoGAPS updates the atomic space, which corresponds to an update in matrix
elements.

(C) There are four possible update steps to the atomic domain that preserve both the prior distribution in (A) and detailed balance: (1) birth to add an atom, (2)
death to remove of an atom, (3) moving an atom from one position to another, and (4) exchanging the mass of two atoms. During the update, the probability of
selecting birth or death is selected based on the Poisson prior reinforcing the adaptive sparsity. All heatmaps are colored on a blue-yellow scale, where yellow
indicates higher expression values and blue lower.

Bayesian NMF techniques can embed biological and technical
structure in the data in prior distributions on the A and P matrices
(Kossenkov et al., 2007; Ochs and Fertig, 2012). To accomplish
this for bulk data, we previously developed the Bayesian
NMF Coordinated Gene Activity in Pattern Sets (CoGAPS)
method (Fertig et al., 2010). CoGAPS uses an atomic prior (Sibisi
and Skilling, 1996; Skilling and Sibisi, 1996) to model three
biological constraints: non-negativity reflective of pleiotropy,

sparsity reflective of parsimony, and smoothness reflective of
gene co-regulation and smooth dynamic transitions. The atomic
prior in CoGAPS is unique in enforcing a sample- and gene-spe-
cific sparsity constraint, which we term “adaptive sparsity.” In
the atomic prior, each element of the A and P matrices is either
zero or follows a gamma distribution. Adaptive sparsity is
achieved by placing a Poisson prior on the discrete shape
parameter in the gamma distribution for each matrix element
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(aaij, apij) and a fixed-scale parameter for all matrix elements (ks
and Ap) in A and P, respectively. Smaller values of «;; result in
smaller values of the corresponding matrix elements and vice
versa for larger values. Thus, the sparsity constraint on values
of latent factors will be relaxed in this model, constraining
some matrix elements away from zero (Figure 1B). Adaptive
sparsity can also model biological structure in the presence of
the technical dropouts and true biological zeros in scRNA-seq.
To accommodate the additional sparsity of scRNA-seq data,
Aa and Ap are set as proportional to the mean of all non-zero
values in the data. In contrast, Ay and Ap for bulk RNA-seq
data are set using the means of the entire dataset. A normal prior
on the data enables an empirical solution for the conditional
distributions with this gamma prior, enabling efficient Gibbs
sampling with this sparsity constraint (STAR Methods). This
also models smoothness by grouping closely related dimensions
near each other via move and exchange steps that shift a single
exponential between adjacent matrix elements (Figure 1C). In
practice, these steps retain the global Poisson prior on shape
and the gamma prior on matrix elements while altering the
shape parameters between adjacent matrix elements to model
smoothness.

Parallelization and Data Structures for Cross-Validation
and Efficiency: Theory

Bayesian NMF algorithms such as CoGAPS have substantial
computing costs that limit their application to the large datasets
generated as tissue atlases with scRNA-seq data. As we
describe in the STAR Methods, representing the gamma
distribution as a sum of exponentials enables efficient Gibbs
sampling. We couple this representation with new data struc-
tures for their storage and corresponding calculations that
are more efficient than previous versions of CoGAPS and
greatly reduce the computational cost for scRNA-seq analysis
(Figure S1A).

We can leverage our hypothesis that latent spaces learned
from scRNA-seq data are reflective of relative gene use in
biological processes to enhance the efficiency of Bayesian
NMF methods. In this case, distinct subsets of cells sampled
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distinct subsets of genes in bulk data
(Stein-O’Brien et al., 2018). Inference with Bayesian NMF is par-
allelized for distinct subsets of cells in the input scRNA-seq data.
We selected the ratio of cells in each set to enable inference of
latent space factors in highly skewed distributions of samples
as can occur with rare cell types. As a result, this approach is
a semi-supervised method in which inference of gene weights
in factors is unsupervised. Consensus factors are then created
across the sets as described previously for random sets of genes
(Stein-O’Brien et al., 2018). In addition to gaining efficiency, the
factors estimated in parallel across subsets of cells can also
be compared to enable cross-validation of the inferred latent
spaces (Figure S1B).

Transfer Learning via Dimension Reduction Using
projectR: Theory

In our model, known and latent factors of a biological system can
be used to compare independent, biologically related datasets.
This comparison is made by defining a function from the factors
in one dataset and projecting an independent, biologically
related target dataset into a lower dimensional space that is
common to both. Projection is defined as a mapping or transfor-
mation of points from one space to another, often a lower-
dimensional space. Mathematically, this can be described as a
function ¢(x) = y: R® — R%s.tford < D, x € RP, y € R%. The inno-
vation of projectR is the use of a mapping function defined from
the latent spaces in a source dataset, which enables the transfer
of associated cellular phenotypes, annotations, and other meta-
data to samples in the target dataset (Figure 2).

We propose that projection of well-defined latent spaces
should capture shared biology across independent datasets. In
this study, we perform projection in the column space defined
by the amplitude matrix from scCoGAPS (factors representing
gene weights). This is accomplished by estimating the patterns
P associated with the amplitude matrix by a generalized least-
squares fit to the target data (Fertig et al., 2013a) (STAR
Methods). We select this projection approach as a computation-
ally efficient method. Moreover, the lack of the orthogonality
constraint allows for greater application of the transfer-learning
approach to non-orthogonal latent spaces, allowing for greater



independence of factor projections. Assuming that a given
dimension is associated with a specific cellular attribute in the
target dataset, the magnitude of the value in this source dataset
can indicate its presence within the target dataset. Inversely, if
the cellular feature is not shared across the datasets, then pro-
jection of the target data into the given latent space will have
no significant value. The significance of each projected pattern
can be calculated using a Wald test for each sample:latent space
interaction. Depending on the distribution or number of the pro-
jected sample weights, statistical comparisons between anno-
tated groups can be performed to quantify the presence of these
inferred processes in the target data. For example, the mean
projected pattern weight between two groups can be compared
using standard t tests or regression-based contrasts. Addition-
ally, classifiers can be built using the projected pattern weights,
and the predictive value of each pattern assessed globally. This
information transfer enables rapid and highly scalable compari-
son of very different datasets through the lens of a projected
latent space learned in a reference dataset. This analysis can
leverage the massive amount of publicly available data and their
associated metadata to annotate phenotypes in source data
more efficiently. Further, the ability to evaluate whether the
processes described by latent spaces are shared, despite
significant overall differences in the original high dimensional
datasets, can enable hypothesis generation and integrated
analyses.

Applications
Assessing Latent Spaces and Dimensionality: Lessons
from Bulk RNA-Seq
The developing mammalian retina provides an ideal model sys-
tem to evaluate the degree to which latent spaces reflect known
developmental biology. Features such as discrete cell-type sig-
natures, continuous state transitions, signaling pathway usage,
developmental age, and sex should each be represented in inde-
pendent latent spaces. An open question in retinal development
is how progenitor cells can generate specific subtypes of
neuronal and glial cell types during specific intervals during
development—a phenomenon known as progenitor compe-
tence (Bassett and Wallace, 2012; Javed and Cayouette,
2017). In an effort to identify genes associated with changes in
retinal progenitor cell (RPC) competence, we performed bulk
RNA-seq analysis on replicate populations of fluorescence-acti-
vated cell sorting (FACS)-isolated RPCs and post-mitotic cells,
which were isolated using the Chx70:GFP reporter (Rowan and
Cepko, 2004) and assessed the fidelity of patterns learned in
this bulk analysis across other experimental contexts.
FACS-sorted Chx10:GFP+ RPCs and Chx10:GFP- post-
mitotic retinal neurons (Rowan and Cepko, 2004) were collected
from the developing mouse retina at three time points, embry-
onic day 14 (E14), embryonic day 18 (E18), and postnatal day 2
(P2), and subjected to standard bulk RNA sequencing (Zibetti
etal., 2017). We applied our previous genome-wide GWCoGAPS
pipeline for bulk RNA-Seq to the normalized FPKM gene expres-
sion estimates to identify a latent space consisting of 10 patterns
of co-regulated genes (Stein-O’Brien et al., 2017). Dimension-
ality can be optimized by maximizing the robustness of patterns
between dimensions (Moloshok et al., 2002). Moreover, hierar-
chies of cell types or subtypes can be resolved by comparing

patterns across dimensions (Fertig et al., 2013a). Therefore, we
applied GWCoGAPS to the bulk data using a range of dimen-
sionalizations to identify patterns associated with specific
biological features or cellular states. Final dimensionality was
assessed by comparing factorizations of different dimensions
using the ClutrFree (Bidaut and Ochs, 2004) algorithm (STAR
Methods). Patterns were strongly correlated (> > 0.7) between
factorizations at different dimensions, indicating the overall
robustness of the factors across dimensions (Figure S1C). For
example, a pattern broadly associated with all retinal neurons
at a lower dimensionality split into two patterns describing
photoreceptors and inner retinal cells at a higher dimensionality,
as assessed by correlation of cell-type specific marker-gene
expression with individual patterns.

We next evaluated whether patterns identified from bulk RNA-
seq could describe discrete cell-type signatures obtained from a
comprehensive scRNA-seq dataset conducted across retinal
development (Clark et al., 2019). In this study, we isolated
120,804 individual cells from whole mouse retina at 10 develop-
mental time points, ranging from embryonic day 11 (E11) to post-
natal day 14 (P14). scRNA-seq gene expression profiles were
obtained using the 10x Genomics Chromium platform (Clark
et al.,, 2019). To relate the datasets, the scRNA-seq data was
projected into the factors learned from the bulk RNA-seq (Table
S1) using projectR (STAR Methods). Using the expert-curated
cell-type annotations for each single cell, arandom forest classi-
fier was trained using projected sample weights as features.
Sensitivity and specificity scores were calculated for the relation-
ship between each bulk factor and the annotated cell types
detected using scRNA-seq.

While few patterns had high AUC values for specific cell types,
most had moderate values spread across multiple lineages (Fig-
ure S1D). One potential explanation for this is that features
shared across multiple cells types might dominate the latent
spaces found at lower dimensionalization. This finding is consis-
tent with observation that highly expressed genes tend to domi-
nate differential expression analysis in bulk RNA-seq (Ching
et al., 2014). An alternative hypothesis is that latent spaces
learned in aggregate bulk measures may not cleanly define
discrete cell types or states. As bulk RNA-seq is inherently an
aggregation, testing these hypotheses requires independent
measures of each cell. Since scRNA-seq allows for individual
measurements of distinct cells, finding similar latent spaces
directly from these data would provide strong evidence of their
reflection of biological rather than technical variation. This
finding suggests that latent space discovery in scRNA-seq
data will better discern biological processes, as well as true
cell type and state signatures, than bulk gene expression
measurements.

ScCoGAPS Finds Signatures of Cell Types and
Continuous Processes in the Developing Retina

To learn patterns directly from our scRNA-seq data across the
developing mouse retina, scCoGAPS analysis was performed
using the log-transformed, normalized mRNA copies per cell
across a previously selected set of high-variance genes (Fig-
ure 3A) (Clark et al., 2019). Cells were partitioned into 100 sets
of ~1,200 cells using a sampling scheme to ensure representa-
tion of all annotated cell types in each set. To eliminate poten-
tially spurious patterns, consensus patterns were derived from
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at least 25% of the independent sets and required an R? value of
at least 0.7 to the within-cluster mean (STAR Methods).

We identified a total of 80 scCoGAPS patterns across the full
developmental time course (Figure S2; Table S2). Pattern
weights were tested for significant differential cell-type repre-
sentations (Figure 3D) and predictive power (AUC) for each
cell-type annotation (Figure S1F). Because performance biases
based on the choice of classifier were observed, we calculated
a standard contingency table and confusion matrix using the
ROCR Bioconductor package to estimate a conservative AUC
for each combination of pattern and cell-type annotation (Sing
et al., 2005). Learned patterns corresponded to both discrete
cell-type signatures and continuous-state transitions, including
cycling retinal progenitor populations, a transient neurogenic
phase, and intervals of cell-type-specific maturation along
developmental trajectories (Figure 3B).

We identified at least one pattern corresponding to each of the
7 major cell types in the developing retina (Figures 3B and S1F).
For example, patterns with high weights in annotated horizontal
cells (patterns 2 + 16) correlated well and had high predictive po-
wer for our manually annotated horizontal cells, despite the rela-
tively sparse number of cells of this type in our dataset. Learned
patterns also highlighted gene network reuse across discrete
cell types. For example, pattern 37 exhibited high weights in a
subset of mature retinal ganglion cells (RGCs) and amacrine cells
(AC) (Figure S1F). Additional patterns are specifically associated
with mature RGCs (pattern 15) or recover other phenotypic fea-
tures of these data, such as sex (pattern 36).

The application of scCoGAPS to scRNA-seq data also
captured technical aspects of the data as well. Combinations
of biologically incompatible patterns (e.g., two patterns for
distinct mature cell types within the same cell) can readily delin-
eate doublet cell populations (Figure S5B). In contrast, standard
clustering methods would aggregate doublet cells together and
separately from each discrete cell type and thereby be unable to
recover biological information from them, or otherwise identify
them as a unique, discrete cell type. Finally, we also identified
patterns associated with technical features in our scRNA-seq
dataset such as number of genes expressed (pattern 53) or
batch effects (pattern 38). These pattern-phenotype correlations
indicate that scCoGAPS recovers a collection of meaningful bio-
logical and technical patterns from the developing mouse retina
scRNA-Seq data.

These correlations were able to resolve additional biological
insights from these data not otherwise discernable from other
analysis strategies. For example, pseudotemporal analysis was
unable to resolve more closely related cell types or trajectories
with a high degree of gene reuse (Clark et al., 2019). Correlation
with manual annotation and patternMarker analysis (Stein-
O’Brien et al., 2017) of the associated amplitudes allowed us
to resolve both differentiating horizontal cells from amacrine
cells and rods from cones (Table S3). Additional patterns were

identified that correspond to continuous biological processes,
i.e., cell-cycle state across RPCs (patterns 14, 31, 33, 62, 49,
and 78, 49), with high degrees of gene reuse (Figures 3B, 3C,
and S3). Additionally, many shared patterns only account for a
small proportion of the cells in later-developing populations,
suggesting that these transcriptional programs may be transient,
or describe features associated with a subset of cells in a given
lineage (Figure S5A).

To evaluate the performance of scCoGAPS relative to other
commonly used single-cell deconvolution methods, we com-
pared the patterns learned from scCoGAPS with the rotations
learned from singular value decomposition (SVD) and principal-
component analysis (PCA), feature weights from a gradient-
based NMF (Lee and Seung, 2001), and weights extracted
from the Deep Count Autoencoder (DCA) (Eraslan et al., 2018).
All methods were evaluated on the same scRNA-seq dataset
from the developing mouse retina. PCA and SVD fail to capture
individual cell-type patterns and are driven predominantly by
technical features that represent the greatest source of variation
in these data (Figure S5C). Patterns learned from gradient-based
NMF and scCoGAPS are comparable in their maximum correla-
tion; however, the gene weights used to assess biological
features for each pattern are more variable across multiple iter-
ations of the gradient-based NMF. Using the Bayesian approach
implemented in scCoGAPS, we can derive both mean and vari-
ance estimates allowing for variance incorporation into feature
weights for gene-set analysis and more robust pattern annota-
tions (Zyla et al., 2017). Both scCoGAPS and gradient NMF
outperform DCA in the number of cell-type-specific latent
spaces that are identified. Furthermore, DCA does not learn or
export interpretable gene weights, which precludes our ability
to explore the biological features represented in each of the
latent spaces. Indeed, many non-linear deep learning methods
using activation functions disambiguate the relationships be-
tween gene expression and learned patterns in a way that cannot
be easily deconvolved.

We next sought to identify and characterize the specific
cellular attributes captured in each pattern. Gene weights (A-ma-
trix and their uncertainty) for each learned pattern were used as
input for a Gene Ontology (GO) enrichment analysis using the
CoGAPS gene-set test (Fertig et al., 2013b) across all Kyoto
Encyclopedia of Genes and Genomes (KEGG) and GO gene
sets with <100 genes (Figures S1E, S3, and S4). A heatmap of
all significant gene-set statistics for all patterns are provided in
Figures S3 and S4. Patterns that are well correlated with specific
cell types are significantly enriched for appropriate gene ontol-
ogies. These include endothelial cells (9, 10, and 56), which are
associated with angiogenesis and blood vessel patterning, as
well as microglia (5, 6, 24, 25, 27, 57, and 58), which each
showed significant enrichment for immune cell activities and
processes (p < 1 x 1078, Figure S4; Table S4). Concordant
with their selective expression in rods and cone photoreceptors,

Figure 3. scCoGAPS Analysis of Time Course scRNA-Seq Data from Developing Mouse Retina

(A) UMAP of scRNAseq colored by age (top) and human annotated cell types (bottom).

(B) Heatmap of correlations of each scCoGAPS pattern to each annotated feature.

(C) UMAP of retina development colored by scCoGAPS pattern weights illustrate cell-type-specific (rods, top) and shared (cell cycle, bottom) patterns.

(D) Alluvial of cell-type-specific patterns links manually annotated cell types to scCoGAPS patterns for which at least 75% of the cell of a given type have a pattern

weight of > 0.01.
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respectively, patterns 21 and 39 are enriched in phototransduc-
tion, visual perception, photoreceptor cell maintenance, and
photoreceptor outer segment terms (p < 1 x 1078, Figures 3C
and S4; Table S4). RPC-associated patterns (13, 26, 31, 33,
45, 49, 62, 64, 72, and 78) are enriched for cell-cycle regulators
and embryonic development terms (p < 1 x 1078, Figure S4;
Table S4). Consistent with the fact that RGCs are the only neuro-
retinal cells that extend long projection axons, as well as the only
cell to undergo high rates of apoptotic cell death during mouse
retinal development (Young, 1984), the RGC-associated pat-
terns 15 and 35 are enriched for axon guidance, with Pattern
15 also enriched for negative regulation of apoptosis.
Single-Cell Patterns Learned in One Dataset Can Be
Transferred to Another via Projection Analysis

To assess whether learned patterns can be meaningfully trans-
ferred across datasets, we used our developing retinal dataset
as the source data and compared it to a previously published
scRNA-seq dataset from P14 mouse retina, established using
a different droplet-based technique (Macosko et al., 2015). The
target Drop-seq single-cell dataset was projected into the space
of the 80 scCoGAPS patterns from the source 10X -based retinal
development time-course data.

We hypothesized that shared latent spaces would stratify
target data consistent with their underlying cellular attributes,
while artifacts or data-specific features would not. Projected
pattern weights were tested for AUC for each cell-type annota-
tion in the target Drop-Seq dataset (Figures 4 and S6A). Because
performance biases based on the choice of classifier are known
to exist, a standard contingency table and confusion matrix were
calculated using the ROCR Bioconductor package to provide a
highly conservative AUC for each combination of annotated
cell types and patterns (Sing et al., 2005). Using the projected
pattern weights and cell types, we evaluated the ability of each
pattern to distinguish cell types in the target dataset. (Fig-
ure SBA). Consistent with our hypothesis, AUC values confirm
that patterns associated with mature cell types present in both
the source and target dataset have significant predictive power
(AUCs > 0.7, Wald test; BH-correction; q < 0.01 ), while those
patterns associated with developmental processes only in the
source data did not exhibit significant projections in the more
mature (P14) target dataset (AUC < 0.7, Wald test; BH-correc-
tion; g > .01). For example, pattern 21, which was strongly asso-
ciated with rods in the retina development time-course data,
selectively marked rod photoreceptors in the P14 retina Drop-
Seq data (Figure 4A, right panel; AUC = 0.83). Other patterns
of mature cell types included pattern 2 (AUC of 0.95 for horizontal
cells), Pattern 55 (AUC of 0.91 for amarcines), Pattern 15 and 16
(AUC of .93 and .92, respectively, for RGCs), and Pattern 64
(AUC of .99 for astrocytes) (Figure 4B). In contrast, the RPC
pattern 31, which was strongly enriched for GO terms associated
with cell cycle, failed to yield any significant signal (Figure 4A,
middle panel), consistent with a lack of cycling progenitors in
the P14 mouse retina.

Using only the significant patterns associated with mature cell
types, we are able to resolve true positive cells from background
expression pattern projections in the target dataset as illustrated
by AUC curves for the predictive power of each weight for each
cell type (Figure 4C) and the distribution of projected pattern
weights (Figure 4D). Patterns with poor predictive power, such
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as Pattern 3, exhibited weights centered around zero, while pat-
terns with high predictive potential, such as the rod-specific
pattern 21, exhibit a bimodal distribution (Figure 4D). Cells in
the target dataset annotated as rods, however, exhibit a unimo-
dal distribution overlapping with the higher intensity peak of
projected pattern weights. The cells contributing to the lower in-
tensity peak, therefore, have some degree of the pattern 21 (rod)
signature contributing to their transcriptional profile that likely re-
flects contamination acquired during dissociation and library
preparation. These results validate the biological basis of the
scCoGAPS patterns for mature cell types and demonstrate the
sensitivity and specificity of projectR as a system to transfer an-
notations based on factors containing shared biological features
across datasets.

projectR Recovers Continuous Processes and Temporal
Progression from Disparate Data Types across Species
We next tested whether projection analysis could identify
continuous biological features across organisms. Specifically,
we projected a publicly available time course analysis of human
bulk RNA-Seq from whole retinas into our single-cell scCoGAPS
patterns. Homologous genes were used to map the amplitude
values across species (STAR Methods). Briefly, logo-trans-
formed gene expression values from human retina bulk RNA-
seq data from gestational day (D) 52 to D136 were projected
into the 80 mouse developing patterns. Each projected pattern
was evaluated for predictive power for a given human develop-
mental time point with the expectation that the changes in pre-
dictive power should reflect the change in pattern utilization
over human retinal development. The resulting AUC values
revealed a temporal gradient for cell-type-specific patterns,
which reflects both developmental age and relative abundance
of each cell type in the bulk sample (Figure 5A). Furthermore,
the stereotyped birth order of major retinal cell types (Clark
et al.,, 2019) was faithfully recapitulated in the progression of
pattern projections in the human time course.

The observed gradient reflects the previously reported three
major gene expression epochs of human retina development
(Hoshino et al., 2017). The first epoch includes genes with high
expression from D52 to D67. Patterns associated with early-
born cell types such as horizontal cells (pattern 1) and RGCs
(pattern 15) peaked early (D57 and D67, respectively) and then
declined, reflecting their decreasing relative abundance as
later-born cell types are generated. Patterns with amplitude
values significantly enriched in RPC-specific processes such
as cell-cycle regulation (Pattern 31) exhibited significant projec-
tion in the first epoch (Wald test; BH-correction; q < .01) with
AUC values greater than 0.7 as well. Furthermore, the increased
resolution of the patterns derived from scRNA-seq allowed a
more granular association of corresponding biological pro-
cesses within the larger epoch. These results indicate that
shared continuous features associated with developmental pro-
grams in both mouse and human retinal development can be
identified via transfer learning with projectR.

Species-specific differences were also apparent in this projec-
tion analysis. For example, genes that mark mature cone and rod
photoreceptors are strongly expressed postnatally in mice
(Blackshaw et al., 2001, 2004; O’Brien et al., 2003) but are
detected prenatally in humans. Consistent with this, patterns
39 and 21, which are associated with mouse cones and rods,
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Figure 4. projectR Recovers Shared Cell Types in Independent Murine Retina scRNA-Seq Data
(A) UMAP of DropSeq data from P14 mouse retina colored by annotated cell type (left), projected pattern weights in pattern 31 (center), and projected pattern

weights in pattern 21 (right).

(B) Alluvial plot of projected patterns links previously annotated cell types to scCoGAPS patterns for which at least 75% of the cell of a given type have a significant

projection (Wald test; BH-correction; q < 0.01).

(C) ROC curves for classifiers built using the projected pattern weights for Pattern 21 (right) and projected pattern weights in Pattern 31 (left). Cell types are colored

according to the legend in (A).

(D) Density plots of projected pattern weights for all cell types (black) and rods only (red).

respectively, exhibit high AUC values during the third epoch
of gene expression in our human projection analysis (Fig-
ure 5A) (Hoshino et al., 2017). Previous analysis of the
bulk RNA-seq data had demonstrated that differentially ex-
pressed genes within the the third epoch were enriched for
gene ontology terms related to photoreceptors, synaptic con-
nectivity, and neurotransmission (Hoshino et al., 2017). Mouse
homologs of the genes annotated with these GO terms were
also significantly enriched for higher amplitude values in source
patterns 39 and 21 (p < .001) confirming that projectR recovered

the species-specific temporal differences in the use of these
patterns.

To test the ability of projectR to resolve spatiotemporal pat-
terns, we next projected a separate bulk RNA-Seq time course
of dissected regions of the human retina from Hoshino et al.
(Hoshino et al., 2017). The fovea and macula have been shown
to be developmentally ahead of age-matched nasal central and
peripheral retina (Hendrickson and Drucker, 1992; Hendrickson
et al.,, 2012; O’Brien et al., 2003) and enriched for both cone
photoreceptors and retinal ganglion cells (Curcio and Allen,

Cell Systems 8, 395-411, May 22, 2019 403



OPEN

ACCESS
CellPress

A AUC values for projected pattern weights in human retina B ATAC-Seq of Chx10-GFP+ ng)qrine retinal progenitors

Pattern 53 10-
Pattern 46 E} g
Pattern 61 —
Pattern 55 —E14
Pattern 2 —E16
Pattern 79 —E18
Pattern 30 — PO
Pattern 73 _p2
Pattern 32
Pattern 80
Pattern 25
Pattern 75
Pattern 28
Pattern 20
Pattern 3
Pattern 72
Pattern 16
Pattern 50
Pattern 59
Pattern 68
Pattern 10
Pattern 67
Pattern 78
Pattern 51
Pattern 54
Pattern 12
Pattern 44
Pattern 23 0 0-
Patten3?  5kb __ TSS +5kb  -5kb _ TSS +5kb
Pattern 26 Distance from TSS Distance from TSS
Pattern 70 . . . .
Pattern 27 C projected ATAC-Seq of Chx10-GFP+ murine retinal progenitors
Pattern 76
Pattern 60
Pattern 69
Pattern 35
Pattern 8
Pattern 18
Pattern 33
Pattern 4
Pattern 15
Pattern 37
Pattern 47
Pattern 1
Pattern 49
Pattern 41
Pattern 62
Pattern 36
Pattern 57
Pattern 7
Pattern 65
Pattern 66
Pattern 45
Pattern 6 0- 0-
Pattern 11
Eattern E‘g
attern . ¥
pattor 94 5kb TSS 5kb
Pattern 19 10- 10-
Pattern 39
Pattern 43
Pattern 58
Pattern 9
Pattern 64
Pattern 42
Pattern 21
Pattern 24
Pattern 63
Pattern 29
Pattern 34
Pattern 14
Pattern 77
Pattern 13
Pattern 56
Pattern 71
Pattern 22
Pattern 5 0-
Pattern 38
Pattern 48

Te]
Q 0.2.4.6.81

. - -5kb TSS +5kb -
gestational day of whole human retina bulk RNAseq AUC Distance from TSS SKb Distan(;resf?om TSS +5kb

o

Average log2 binned reads for shared genes

Average log2 binngg read for all genes

—_
o
—_
o
T
|

[&a]

Projected pattern 14
o
Projected pattern 31

o

Projected pattern 1
Projected pattern 21

o N~ NN O <

<t W 0
n O © ©Oo o o O —
—

___|
©
()
@

52/54
107
132

Figure 5. Projection of Retina Time Course Data Reveal Shared Temporal Dynamics across Species and Platforms

(A) Heatmap of AUC values for projected pattern weights in developing whole human retina recapitulates previously established gene expression epochs.

(B) Average ATAC signal for binned read counts overlapping 200-bp interval extending out 5 kb on either side of the transcription start for all genes (left) or the
subset of genes from which the scCoGAPS patterns were learned (right).

(C) Projection of binned read counts overlapping 200-bp interval extending out 5 kb on either side of the transcription start into scCoGAPS patterns 14 (top left), 31
(top right), 1 (bottom left), and 21 (bottom right).

1990). A previous differential gene expression analysis of macula  projected values for each sample, we could readily identify signif-
versus periphery was underpowered to detect significantly differ-  icant differential pattern usage (Wald test; BH-correction across
entially expressed genes at each time point. However, using the  patterns; g < .01) between the macula and peripheral retina at
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days 73 and 132. The fovea and macula are enriched in patterns
specific to mature neurons, particularly retinal ganglion cells and
cones (patterns 1, 15, 39, and 52) and depleted in patterns
specific to retinal progenitor cells (patterns 26, 31, and 78) or
immature neural precursor cells (patterns 17 and 73) relative to
the age-matched peripheral retina (Figure S6B). These results
demonstrate the utility of projectR in recovering spatiotemporally
regulated differences within tissue and/or organ development.

Projection analysis can also determine pattern usage across a
variety of different cellular measurement types. To illustrate this,
we determined whether patterns learned from scRNA-seq
analysis of the developing mouse retina could be used to
identify distinct chromatin accessibility profiles within a mouse
retinal ATAC-seq time series obtained from FACS-isolated
Chx10:GFP* RPCs (Rowan and Cepko, 2004) collected at two-
day intervals between E10.5 and P2 (Figures 5B, 5C, and S7).
Since ATAC-seq profiles chromatin accessibility, rather than
gene expression, projection analysis enabled identification of
patterns associated with genes whose local chromatin structure
is primed for transcriptional activation. For each gene, ATAC-seq
reads were quantified in 200-bp bins —5 Kb to +5 Kb around each
canonical transcription start site (TSS) for each time point
sampled (STAR Methods). As expected, the naive signal shows
global enrichment over TSSs owing to the increased accessibility
at TSS of actively transcribed genes (Buenrostro et al., 2013) (Fig-
ure 5B). Overall signal intensity was highly variable with biological
replicates from the same time point demonstrating a strong batch
effect. These effects persisted when the ATAC-seq data were
subset to the same high-variance genes used to define the scCo-
GAPS patterns (Figure 5B, right). To test the ability of projectR to
overcome these effects, no batch correction or further data
normalization was performed.

Despite the consistent profile of the observed mean enrich-
ment of ATAC-Seq signal at the TSS across samples, projection
of the ATAC-seq into the scCoGAPS patterns revealed several
classes of chromatin accessibility patterns. Different accessi-
bility profiles emerged that are lost in aggregate. Furthermore,
the shape of the accessible peak and ranking of samples is
distinct across different patterns, indicating that projection
analysis can recover discrete signatures of accessibility associ-
ated with latent spaces learned from gene expression profiles,
independent of technical noise. Together, these results suggest
that learned accessibility signatures are associated with specific
biological processes at distinct developmental time points in
the developing mouse retina. Specifically, patterns that reflected
missing processes (including non-neuroretinal cell types such as
microglia that were not sampled in the ATAC-seq) demonstrate
no significant signal in the projection analysis, while shared pro-
cesses are apparent in both the scRNA-seq and the ATAC-seq
data. For those projected patterns with significant ATAC-seq
signal, replicates displayed significantly tighter concordance,
and the amplitudes of the projected accessibility signatures
appropriately reflected temporal progressions.

Broad domains of open chromatin on either side of the tran-
scriptional start site—a hallmark of strongly transcribed
genes—are observed exclusively in patterns associated with
proliferating RPCs (e.g., patterns 14, 45, 72, and 78; Figure 5C,
top left) consistent with the ATAC-Seq sampling of this popula-
tion. Sharp peaks of open chromatin centered on the TSS corre-

sponded to RPC-specific patterns associated with actively
transcribed genes (e.g., patterns 4, 31, and 64; Figure 5C, top
right) as well as a subset of patterns associated with maturing
retinal subtypes, including cones, RGCs, and ACs (e.g. patterns
1, 2, 15, and 39; Figure 5C, bottom left), and immature rod
photoreceptors (pattern 79). Finally, TSS signatures of closed
chromatin are associated with patterns specific to cells that are
not derived from RPCs, such as microglia (5 and 24) and erythro-
cytes (28), as well as with the mature rod photoreceptor-specific
Pattern 21Figure 5C, bottom right). These data indicate that pro-
moter regions associated with genes specific to RPC-derived cell
types exist in an open and poised state in RPCs, with the notable
exception of genes specific to mature rods.

projectR Enables Latent Space Comparison across
Model Systems from the Developing Retina to the
Developing Brain

The retina is often used as model system for neural development.
In particular, both retinal neurogenesis and corticogenesis share
a stereotyped birth order of different lineages from a single pro-
genitor population (Kohwi and Doe, 2013; Miller and Gauthier,
2007). To test the ability of projectR to identify conserved pattern
usage across tissues and model systems, we projected our
retinal scRNA-Seq patterns into two datasets derived from
developing human cortex (Nowakowski et al., 2017) (Zhong
et al., 2018) and an additional dataset of the developing mouse
midbrain (La Manno et al., 2016) (Figure 6). Projection of these
patterns across all cells in each of the datasets completed in
165.6, 56.0, and 3.0 s, respectively, on a single high performance
computing (HPC) node with a 2.5 GHz AMD Opteron Processor
6380 and 40 Gb of RAM. Consistent with a significant degree of
conserved developmental programs and tissue composition be-
tween retina and select other CNS regions, we identified 87.5%
(70 out of 80), 76.3% (61 out of 80), and 98.8% (79 out of 80) of
patterns with significant projection (q < = 0.01; Wald test) in at
least one cell in each of these comparable model systems (Fig-
ures 6 and S9), suggesting that many of the processes described
by these patterns are reused in other CNS regions.

For the human cortical data, patterns 5, 20, 28, 29, 31, 40, 53,
64, and 65 captured 75% of published annotated cell types
(Figure S8A). Consistent with its derivation as a progenitor-asso-
ciated pattern in the developing retina and GO enrichment for
cell cycle, pattern 31 demonstrated significant (AUC > 0.7;
q < =0.01; Wald Test; BH-corrected) projection to basal interme-
diate progenitor cells (IPCs), IPC-derived neuronal precursors of
the medial ganglionic eminence (MGE), and dividing radial glia in
the cortex (Figure S9A). In cortical data from Nowakowski et al.,
we observed that pattern 43, which is specific to inhibitory
amacrine cells in retina, is also associated with interneurons
(Figures 6A and S9A). Newborn excitatory pyramidal neurons
are enriched for genes found in both the photoreceptor precur-
sor-enriched pattern 79 (Unc119, Meis2, and Cdc43ep3) as
well as the amacrine and horizontal cell-enriched pattern 1
(Nrxn3, Kdm5b, and Dusp1). Additionally, we are able to classify
previously unannotated cells (NA) as neurons via significant pro-
jection of pattern 7, which is enriched for mature neuronal
markers (Nnat, Tubb2b, and Nefl). In data from Zhong et al.,
where progenitors and precursors of GABAergic interneurons
are annotated as a single class, these cells were significantly
associated with patterns specific to GABAergic horizontal and
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Figure 6. Developing Brain scRNA-Seq Projected in scCoGAPS
Patterns of Retina Development

Alluvial plots connecting scCoGAPS patterns to cell types for which at least
25% of all cells are significant (Wald test; BH-correction; q < .01) in a given a
projected scRNAseq of human cortical development from (A) Nowakowski
et al. and (B) Zhong et al. as well as projected scRNAseq of mouse midbrain
development from (C) La Manno et al.

amacrine cells (2 and 43) and RPCs (49 and 71) (Figure 6B). Inthe
mouse midbrain, neural progenitor cells were enriched for retinal
progenitor-specific patterns 4, 31, and 78, consistent with their
shared roles in these two tissues (Figure 6C). Notably, Glyc cells
in human cortex and mUnk cells in mouse midbrain—neither of
which could be confidently classified in the original studies—
are both enriched for patterns and genes (Tubb2b, Sox4,
Mapt, and Onecut?2) specific to immature amacrine, horizontal,
and/or RGC cells, indicating that these both most likely repre-
sent as yet undescribed neuronal precursor subtypes (Fig-
ure 6C). These associations further demonstrate that projection
analysis can be used to identify and annotate comparable cell
types and shared cellular attributes across disparate model
systems and that information transfer faithfully recovers these
associations across species (Figure S9).

Patterns 5, 6, 24, 25, and 57 are each associated with micro-
glial cells in the original source dataset. We observe significant
differences in the projections of these patterns into microglia
from different CNS regions, as well as across species. Patterns
5, 24, and 25 were consistently associated with microglia in all
three brain region projections (Figures 6A-6C). However, pattern
57 was significantly (g < 0.01; Wald test; BH corrected) associ-
ated with microglia in both human cortical projections but not
in microglia from the mouse midbrain (Figure 6A, 6B, S9A, and
S9B), suggesting a potential difference in microglia signatures
derived from different CNS regions. This pattern projection is
driven in part by the Cathepsin family member genes Ctsb and
Ctsd, as well as Cd9, each of which has been previously shown
to be upregulated in a subclass of cortical microglia (Keren-
Shaul et al., 2017). Thus, pattern 57 may be specifically associ-
ated with the cortically enriched microglia type Il and highlighting
a region-specific property of microglia detected via projection
analysis. Additionally, no significant projections for Pattern 6
were identified in either human CNS dataset (Figures 6C and
S8C); 0 out of 68 (0%) annotated microglia in Zhong et al. and
0 out of 77 (0%) microglia in Nowakowski et al. In contrast 76
out of 77 (98.7%) microglia in the human cortical development
study have significant (g < = 0.01; Wald test; BH corrected) pro-
jections into pattern 5. Thus, using projectR, we are able to
discriminate region- and species-specific differences in the tran-
scriptional signatures of discrete cell types.

Shared Latent Spaces Identify Novel Cell-Type
Associations across an Atlas of Adult Mouse Tissues
Given that latent spaces may reflect the signatures of biological
processes in the conditions in which they are learned, we
next asked whether we could identify significant use of these
processes in more diverse cellular contexts from an atlas of adult
mouse tissue scRNA-seq. The Tabula Muris dataset is a collec-
tion of 70,118 single-cell gene expression profiles from 12
mouse tissues (Wyss-Coray et al., 2018) collected using the
10x Genomics Chromium platform (Figure 7A). Using projectR,
we projected the Tabula Muris dataset into the developing retina
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Figure 7. Projection of Retinal scCoGAPS Patterns into Mouse Non-
neuronal Cell Dataset

(A) UMAP of scRNA-seq data from the Tabular Muris collection of mouse
tissues colored by tissue.

(B) Projected pattern weights in pattern 31.

(C) Boxplot of projected pattern 36 weights stratified by sex demonstrates
statistically significant difference corroborating association with genes
involved in X-inactivation. (p < 2.2e-16, two-way t-test).

latent spaces. This analysis completed in 107 s on a HPC node
with a 2.5 GHz AMD Opteron Processor 6380 and 40 Gb of
RAM. Consistent with our hypothesis that biologically meaning-
ful latent spaces will be shared across diverse cell types, 83.8%
(67 out of 80) of the patterns demonstrated significant projection
(g <0.0001; Wald test) in at least one cell, and significant projec-
tions were identified in each of the 12 tissues in the Tabula Muris
dataset.

Using only patterns learned in the developing retina, we were
able to identify and annotate a variety of cellular features in these
data. Many progenitor-associated patterns project into adult
tissues with high levels of cell turnover, and specifically within
subsets of cells that are actively proliferating (Figure 7B). Consis-
tent with previous projections, pattern 31 is highly predictive of
actively mitotic cells and can be used as a proliferative index
via projection (AUC > 0.7) in tissues within the Tabula Muris data-
set such as marrow, thymus, and tongue (Figure 7B). As previ-
ously described (Clark et al., 2019), we identified pattern 36 as
specifically associated with sex in our developing retinal source
dataset. This association was confirmed by defining biomarkers
for each factor, computed using the PatternMarker statistic
(STAR Methods) (Stein-O’Brien et al., 2017) (Table S3), and
finding Xist as the sole PatternMarker for pattern 36. Projection
of the Tabula Muris dataset into Pattern 36 almost perfectly
segregated cells by sex (Figure 7C, p value < 2.2~ ', two-way
t-test). While females displayed a range of significant weights,
males had uniformly insignificant projected pattern weights. In
the source data, pattern 36 has high weights in a large proportion
of cells, but sex was not determined a priori. The projection of
pattern 36 across these two datasets provides an example of
how annotations from a target dataset can also be used to anno-
tate latent spaces from the source dataset as well.

Patterns specific to retinal neurons were detected in a number
of peripheral tissues (Figure S9A). In the trachea, Mgp* goblet
cells expressed genes associated with the neuronal cytoskel-
eton and neurotransmission (Gap43, Sncg, Chgb, and Tac1). In
the tongue, Krt6a/Krt16* epithelial cells of both the filiform
papillae (pattern 37) and Krt14* cells of the basal layer (pattern
41) selectively expressed genes associated with the neuronal
cytoskeleton. In the lung, a small number of cells expressed
pattern markers associated with amacrine and horizontal cell-
enriched patterns 16 and 17 (Scg5, Tmsb10, Malat1, and
H3f3a) (Figure S9A). Notably, this lung subpopulation expressed
Ins1 and Ins2 and may thus represent a previously uncharacter-
ized subset of pulmonary neuroendocrine cells (Figures S9B-
S9D). In each of these cases, none of the most highly selective
marker genes of these cells types (Mgp, Krt6a/14/16, and Ins1/
2) were themselves expressed in retina, but rather, the projected
patterns identified more complex similarities in gene expression
between these peripheral cell types and retinal cells. These find-
ings illustrate the power of this approach to identify biological
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processes and cellular attributes shared between otherwise
transcriptionally dissimilar cell types.

DISCUSSION

The rapid expansion of high-throughput biological assays has
generated massive amounts of data. Single-cell experiments
can now involve millions of individual samples adding to the
complexity and scalability required to analyze these data.
Applying latent space approaches to single-cell analyses has
successfully identified and corrected technical errors associated
with mRNA dropout (Eraslan et al., 2018) and enabled analysis of
cell-cell variation (Loos et al., 2018). However, comparing biolog-
ically meaningful molecular features across datasets remains a
critical challenge. Context-dependent biological variation and
technical variation both challenge the ability to make meaningful
interpretations from direct comparisons of biologically distinct
datasets (Lé Cao et al., 2009; Tung et al., 2017). Our approach
extends the latent space concepts used for data processing to
enable the comparison of biological factors across a variety of
experimental paradigms and cellular contexts.

By leveraging the structure generated by the co-regulation of
genes, we are able to find a reduced set of continuous factors
that describe cellular identity, state, and phenotype in a model
system where differential expression analysis and marker genes
are insufficient alone. This result is not unique to our work (Stein-
O’Brien et al., 2018). However, while previous algorithms have
focused on resolving differences between samples or groups of
samples (Brunet et al., 2004; Cleary et al., 2017; Kim et al,,
2017), we focus on optimizing our algorithm’s solution to account
for gene and pathway reuse in scRNAseq data. scCoGAPS iden-
tifies factors using a Bayesian NMF approach with a prior distri-
bution tailored to model the sparsity of scRNA-Seq data. We
developed a new computing structure and method for paralleliza-
tion across all cells in a dataset to allow for computationally trac-
table factorizations of increasingly larger datasets such as those
proposed by the Human Cell Atlas Project (Rozenblatt-Rosen
et al.,, 2017). This parallelization strategy also allows for the
independent discovery of patterns across sets of cells or samples
and can be exploited to assess confidence in the learned factors,
which is not available from other methods. Application of
scCoGAPS to time course scRNA-seq data across mouse retina
development identified gene-expression signatures of discrete
cell types and shared gene networks. When compared to other
methods, scCoGAPS outperformed gradient-based NMF and
DCA when learning patterns of shared biological processes and
SVD, PCA, and DCA when learning cell-type-specific patterns.
Because DCA is optimized to denoise data, this use was outside
of the intended scope of the algorithm.

projectR quantifies the extent to which the relationships
between biological processes, inferred by dimensionality reduc-
tion methods, are shared across datasets from different assay
technologies, cellular measurements, and species. Using Proj-
ectR, independent and biologically distinct datasets, such as
mouse retina and human cortex, can be compared with respect
to their use of specific latent spaces. In contrast, existing tools
for comparative analysis rely on consensus clustering using
marker genes (Kiselev et al., 2018) or visualizations independent
of specific molecular features (Cho et al., 2018). CCA (Soneson
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et al., 2010) and other single-cell dataset comparison tools
forcibly align source and target datasets into a common, shared
manifold that does not reflect the native state of either dataset.
Moreover, these techniques have limited applicability for differ-
ences in data dimensionality and distributions (Butler and Satija,
2017; Wang et al., 2015). By mapping target data into a basis
set defined by the source data, projectR allows for the direct eval-
uation of what is shared between, versus what is unique to, the
source and target datasets. A key challenge to such cross-study
comparison arises from technical variation such as batch effects
between datasets, which may be non-linear. In spite of this
complexity, projectR can overcome these confounding factors
to relate features across datasets from disparate measurement
platforms.

Many of the applications of this transfer learning approach
including cell-type inference, comparison of factors across
distinct conditions, feature discovery, and cross-model and
cross-assay integrative analyses are areas of significant future
work. The requirement of a feature map for transfer learning
with projectR currently precludes its use with multi-layer autoen-
coders and other nonlinear methods that do not concurrently
learn gene and sample weights. However, expansion of projectR
to other unsupervised techniques represents an area of current
and future work to bridge this gap and other methods exist
that work exclusively with autoencoders (Taroni et al., 2019).
Likewise, comparison of the least squares projection method
employed in projectR to other orthogonal and non-orthogonal
projection methods are also critical to determine optimal infor-
mation transfer between datasets.

Application of scCoGAPS and projectR allows for exploratory
analysis of high-dimensional biological data through the lenses
of individual biological processes. This approach enables a shift
in how we compare and identify cells beyond reliance on marker
genes or ensemble molecular identity. Here, we demonstrate the
sensitivity of this workflow to recover shared features and anno-
tations across a variety of data types and experimental condi-
tions. Our approach enabled de novo annotation and correction
of existing cell-type annotations in a target retinal scRNA-seq
study. We demonstrate the cross-platform and cross-species
sensitivity of this approach to identify paralogous cell types in
the retina and other tissues and identify meaningful biological
similarities in markedly different cell types in a mouse cell atlas.
This approach provides a strong foundation to develop new
integrative analysis approaches using low dimensional repre-
sentations to describe biological systems and how specific
cellular attributes are shared across biological contexts.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Critical Commercial Assays

RNAeasy Mini kit Qiagen Cat#74134
lllumina TruSeq kit lllumina Cat#RS-122-2001
Deposited Data

Bulk RNAseq of Chx10-Cre:GFP+ cells from a time course This paper GSE118880
of murine retina

10x scRNAseq time course of murine retina development Clark et al., 2019 GSE118880
ATAC seq of Chx10-Cre:GFP+ cells from a time course of Zibetti et al., 2017 GSE118880

murine retina development

Tabula Muris data

Developing human cortex time course

Adult murine retina scRNAseq

Developing murine midbrain scRNAseq

Developing human cortex scRNAseq

Bulk RNAseq time course of human retina development

CZI Biohub
Nowakowski et al., 2017
Macosko et al., 2015

La Manno et al., 2016
Zhong et al., 2018
Hoshino et al., 2017

https://github.com/czbiohub/tabula-muris
https://cells.ucsc.edu/?ds=cortex-dev
GSE63472

GSE76381

GSE104276

GSE104827

Experimental Models: Organisms/Strains

Mice:CD1.Tg(Chx10-EGFP/cre/-ALPP)2Clc

Dr. Connie Cepko; {Rowan
and Cepko, 2004}

RRID:MGI:3838985

Software and Algorithms

R version 3.5
scanpy version 1.3
scCoGAPS

projectR
Deep Count Autoencoder (DCA)
NNLM

The R project
Wolf et al., 2018
bioconductor

This paper
Eraslan et al., 2018
Lee and Seung, 2001

https://www.r-project.org/
https://github.com/theislab/scanpy

https://www.bioconductor.org/packages/
release/bioc/html/CoGAPS.html

https://github.com/genesofeve/projectR
https://github.com/theislab/dca
https://cran.r-project.org/web/packages/

NNLM/vignettes/Fast-And-Versatile-NMF.html

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Elana J.
Fertig (ejfertig@jhmi.edu)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Information about the generation and genotyping of the mouse transgenic lines used in this study can be found in the corresponding
original studies: Chx10-Cre:GFP+ (Rowan and Cepko, 2004). All mice were maintained on a CD-1 background. Animals used for bulk
RNA-seq and ATAC-Seq ranged from embryonic day 10 (E10) to postnatal day 2 (P2). Both males and females were used in this
study. Mice were housed in a climate-controlled pathogen free facility, on a 14 hour-10 hour light/dark cycle (07:00 lights on-
19:00 lights off). All experimental procedures were preapproved by the Institutional Animal Care and Use Committee of the Johns
Hopkins University School of Medicine.

METHOD DETAILS

Single-Cell RNA-Seq Analysis of the Developing Mouse Retina Data Obtained from Clark et al., (2019)
The developmental time series of scRNA-seq from mouse retina was generated as part of our companion manuscript (Clark et al.,
2019), and these data were used for pattern discovery and annotation as described below. UMAP representations (Becht et al., 2018)
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were learned on neighbors calculated from the first 32 PCs using scanpy version 1.3 (Wolf et al., 2018) following data preprocessing
as described in (Zheng et al., 2017).

Target Public Domain Datasets

All data was downloaded from GEO with the exception of the Tabular Muris data which was downloaded from https://github.com/
czbiohub/tabula-muris and the developing human cortex time course from (Nowakowski et al., 2017) which was downloaded from
https://cells.ucsc.edu/?ds=cortex-dev. Accession numbers in order of appearance in the manuscript are GSE63472 (Macosko et al.,
2015), GSE104827 (Hoshino et al., 2017), GSE104276 (Zhong et al., 2018), and GSE76381 (La Manno et al., 2016).

Bulk RNA-Seq of the Developing Mouse Retina

At select developmental time points, cells were collected from biological replicates of FACS-sorted Chx10-Cre:GFP+ mouse retinas
as previously described (Rowan and Cepko, 2004). RNA was isolated using the RNAeasy Mini kit (Qiagen) with on-column DNase
treatment. Isolated total RNA was assessed for integrity on the Bioanalyzer 2100 system, and we required a minimum RNA integrity
number of 7. RNA-Seq libraries were created using the lllumina TruSeq kit (lllumina), quantified via PicoGreen assay and fragment
size distribution was determined using the Bioanalyzer 2100. Libraries were bar-coded, pooled, and run on a HiSeq2500 instrument
to an average sequencing depth of 30.0 million aligned reads per sample. 75-100 bp paired-end reads were mapped to the mouse
reference genome (mm10) using Hisat2 (Kim et al., 2015, 2016). Gene expression estimates for the reference transcriptome
(Gencode vM5) and differential testing were performed using Cuffdiff2 (Trapnell et al., 2013) with default parameters. Data are
available from GEO in GSE118880.

ATAC-Seq of the Developing Mouse Retina Obtained from Zibetti et al., (2017)

Chromatin derived from flow-sorted Chx70:Cre-GFP* (Rowan and Cepko, 2004) retinal fractions was processed as previously
described (Zibetti et al., 2017). Briefly, chromatin was extracted and processed for Tn5 mediated tagmentation and adapter incor-
poration, according to the Manufacturer’s protocol (Nextera DNA sample preparation kit, lllumina) at 37°C for 30 min. Reduced-cycle
amplification was carried out in presence of compatible indexed sequencing adapters. Libraries were quantified using the PicoGreen
assay and fragment size distribution was determined using the Bioanalyzer 2100. Up to 4 samples per lane were pooled and run on a
HiSeq2500 lllumina sequencer to produce 50-bp paired ends for each sample.

Bowtie2 (version 2.3.2) was used for ATAC-Seq reads alignment to the mouse genome (mm10) (Langmead and Salzberg, 2012).
Duplicate reads were removed using Picard tools (version 2.10.7)(Wysoker et al., 2013). Improperly mapped reads were removed
using SAMtools (version 1.5). (Li et al., 2009). Read counts for each gene were retrieved using featureCounts program (version
1.5.3). (Liao et al., 2014). Read counts overlapping 200-bp interval extending out 5 kb on either side of the transcription start site
were generated with custom scripts using bedtools (version 2.26.0)(Quinlan and Hall, 2010). Data are available from GEO in
GSE118880.

QUANTIFICATION AND STATISTICAL ANALYSIS

Pattern Discovery via scCoGAPS

Latent spaces were learned using the scCoGAPS function from the CoGAPS v 3.0 Bioconductor 3.7 package from log transformed
cpms of the high variance genes for all samples. Cells were partitioned into 100 sets of ~1200 cells using a sampling scheme to
ensure representation of all annotated cell types in each set. Consensus patterns were derived as described in the next section using
the patternMatch4scRNASeq function from the CoGAPS v 3.0 Bioconductor 3.7 package and then rerun across all sets using
scCoGAPS with fixed = TRUE to ensure reciprocity of the learned weights.

CoGAPS Atomic Prior
CoGAPS decomposes a matrix D of G genes (rows) and S samples (columns) into two matrices Ae R®*¥ and Pe R**S using
the model:

p(A,P|D,%)xp(DIA,P,Z)p(A)p(P),

where the elements of X represent the corresponding standard deviation of each element in the matrix D. Determining the optimal
value of k remains an open problem for latent space detection. The CoGAPS model assumes each element of D is i.i.d. with
p(D,-J-|A,-_.,P.J, X;;) a normal distribution with mean w;; =A; . xP.; and variance a,ZJ.

In the case of sequencing data, D;; is log transformed counts. In cases with replicates, D;; can be replaced with the mean log
transformed read counts and standard deviation can be computed across these replicates. In cases without replicates, the standard
deviation is assumed to be 10% of the signal in D with a minimum value of 0.1.

CoGAPS uses an atomic prior (Sibisi and Skilling, 1997) for the A and P matrices based upon previous work in Bayesian non-nega-
tive NMF for microarrays (Moloshok et al., 2002). The atomic prior (Sibisi and Skilling, 1997) is similar to spike and slab model
(Ishwaran and Rao, 2005), in which only a subset of model parameters are nonzero and those that are have a value distributed
according to some continuous distribution with non-negative support. As a result, this model results in a £y sparsity constraint on
these matrices with other constraints depending on the distribution used to model nonzero values in these matrices. The atomic prior
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models each nonzero matrix element of A or P with a gamma distribution. The rate #* and A of this distribution is a parameter that is
fixed for every matrix element in A and P, respectively. The shape of the gamma prior for each matrix element is a separate hyper-
parameter (oz;f}k for each element of A and of ; for each element of P), modeled as a Poisson distribution with a fixed parameter « for
each matrix element. Zero values for a;“k or afj correspond to A;; = 0 and P,; = 0, modeling the subset of model parameters that
are zero.

The expectation of the Gamma distribution is proportional to the sampled values of a;‘}k or afJ, introducing a further sparsity
constraint on the magnitude of the matrix elements when these values are small. In contrast to standard spike and slab models,
the atomic prior also models smoothness by encoding a correlation structure between matrix elements in A and P during the sam-
pling steps.

Recallthat A;; ~ F(a,{‘k, AA) is equivalent to the sum of a,-f‘k independent, exponentially distributed random variables with rate param-
eter X* and similarly for Py . Instead of directly sampling from the Gamma or Poisson distributions, the proposal distribution in the
atomic prior updates a single, exponentially distributed random variable Xf‘k,/ for A and x,fjm for P at each step. The advantage of
sampling a single atom at a time is that the conditional distribution posterior for an exponential prior on each atom and the normal
likelihood is a truncated normal, enabling Gibbs sampling. This single random variable is called an “atom” and the set of all such
atoms is referred to as the “atomic domain”. The value of each matrix element of A is then given by

ol
Aix= Z Xf‘\k,/

1=1
and similarly for P. The atoms in the atomic domain are stored in ordered coordinates on a number line (l{‘k‘, for Aand I,’fJ‘m for P), which
is divided into bins that correspond to each matrix element (Main Figure 1). The set of all atoms for one matrix is referred to as the
“atomic domain”. If the number of atoms is smaller than the number of matrix elements, this data structure reduces the memory
required to keep track of each atom and provides an efficient structure to find all the atoms mapping to a single matrix element.
The prior distribution of atom coordinates is uniform, corresponding to an uniform prior for atom membership in each matrix element.

Update Steps for the Atomic Prior
CoGAPS alternates between updating n, atoms in the A and np atoms in the P matrices. The values of n, and np are sampled from a
Poisson distribution with parameter for the total number of atoms in the atomic domain for A (Ns) and in the atomic domain for P (Np),
respectively. Thus, on expectation all atoms in the domain are updated at each matrix-level iteration. The total number of such update
steps is input as a parameter nEquil during the burn in stage and nSamp during the sampling stage.

In each of these n, and np, we perform one of the four update steps to the respective atomic domains (Main Figure 1). We briefly
describe these steps for A below, and note that they are defined similarly for P.

1. create a single new atom in the atomic domain, so that Ny <N + 1.

2. change the value of a single atom x?, ; <x4 , — 4x?, ,, and removing it from the atomic domain so that Na —Ns — 1 if x4, —
axfy, = 0.

3. changing the location of a single atom (x/} ) to a new location between adjacent atoms (x7, ,, and x2, ;) such that [} €
(I np:lars) ON the atomic domain.

4. Moving a portion of the value of a single atom (x/} ) to another, adjacent atom (x3, , ) so that x/}, ; < xf} , + Axand x5, , , <X/} ;—
Ax where Axe (— (X}, + Xy np) X{k) + Xmnp)- Atoms may become small from exchange, but not exactly zero or removed from

the atomic to maintain detailed balance.

At each of the n or n” iterations, each of these four steps is chosen at random with 1/3 probability of either birth or death, 1/3
probability of move, and 1/3 probability of exchange. The relative probability of selecting birth or death is selected based on the Pois-
son prior. Recall for A that birth implies N4 <—N# + 1, the sum of Poisson distributed random variables, and that under the Poisson
distribution P(N + 1|N) = (N/(N + 1)) where 1 is the Poisson parameter. Together, these three conditions suggest that P(birth|N*) =
(NA/(N* + aGk)) for the A atomic domain and that P(birth|N”) = (NP /(N” + akS)) for the P atomic domain. The probability of death or
resize is then one minus the probability of birth. Metropolis Hastings sampling is used for the move step, whereas Gibbs sampling is
used for the other three steps using the conditional distributions.

Initialization
The atomic domains for both A and P are initialized without any atoms, so that A;; = 0 and Py, = 0. This limits the initial atomic update
step to birth step, birth or death when there is at least one atom in the domain, and all four update steps when there are at least two
atoms in the domain.

At these initial steps, the estimated fit to the data x,;; = A; . P. ; will be zero for most values of j and . Thus, these initial steps do not
change the likelihood and are all accepted. This initialization effectively results in initial conditions which are a random sampling from
the prior before Gibbs sampling.
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Conditional Distributions for Gibbs Sampling
We would like to sample from Skilling’s atomic domain using Gibbs sampling. We will assume that we are seeking the mass of an
atom X’,f‘?, at A for the A matrix and xfmJ at P, for the P matrix. We use the variable x in the derivations below to reduced the number
of indices in the equations, as the associated matrix element can be clearly inferred from the context of each equation. The initial
mass of this atom is xg, which is 0 if we have decided to birth the atom and > 0 if we have decided to kill it. We retain this term so
that we can derive the conditionals for birth and death in a single expression.

Determining the mass of x requires first computing the full conditional distribution p(x|xo,D,A,P). To do this, we will first consider
P(A,P|D) and examine the resulting distribution. We will begin by recalling that

p(A,P|D)xp(D|A,P)p(A,P).
Putting this in terms of an individual atom, we obtain
p(X|x0, D,A,P)xp(D|x, %o, A, P)p(x).
We assume that
p(DIx,xo,A,P) ~ N(M, Z),

where M is the mock data matrix given by the product of A and P that incorporates the change in mass of the atom x — xq in the
updated term. X is the covariance matrix for D. The prior for the mass of each atom x is given by an exponential with parameters
Aa and Ap, respectively.

In each case, the full conditional distribution simplifies to a normal distribution, which is truncated so the value of the atom x > 0.
Below follows the detailed derivation of this distribution for birth and resizing and exchange.

Conditional Distribution for Birth or Resizing of Atoms

Atomic Domain for A
We will first explore the likelihood in more detail, assuming that the mass of the atom maps to Ay,

2
p(D|X7X07A7 P) [ed exp 222 ( i — ZAf~PPPJ - (X — Xo)P/J)
i b

Since we are only concerned with computing the conditional for changes to A, we note that the other terms in A and P can be
considered as parameters. As a result,

2
p(DIx,Xxo,A,P) o exp{ 242 (Dw ZAkp pj — (X — Xo)P/J) }
j

. Py <x— (DKJ_ZDAK-PPPJ+X0P/J))2 '
720, P

Dyj— > AkpPpj+XoPij P
Let uf, = ki = 2p ;P PITT0TH ang Sk = 202 . Then, the equation above becomes
' 1 ‘ Tk
p(D[x,x0,A,P) o exp{ Zsk,l X '“k// }
_ _ A .
= exp Zsk.l,/ My X + :“k//
i
= exp{ - < ZZSM/ zxzskl//"'ku + Zsﬁ//“ku)}
Zsful‘k/,
o exp — sy, | X -
i ' Zsfu

If we now incorporate the product with the exponential prior distribution for «,
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ZS?,IJM?,/J
p(x|xo,D,A,P) « expy — Yosp,; | ¥ —2x—
J

A
Zsk.u

]

A
Zsﬁuﬂku

expd =S s4 | x¥—x| 2 S
/Z K Zsf_/j Zsf,/j
j j

exp{—Aax}

zzsf,/jl‘?,u —2a

1
J
QZS?’J 7 \ /223?14' .
i i

Within the code, we store values of s and s X u used to avoid dividing by zero in cases where P;; = 0.
Atomic Domain for P
Here, we consider atoms whose mass maps to elements P, ,,. From the likelihood, we get

R

2
1
p(DIX,x0,A,P) = expq — > — (D,,m = ApPom — (x - xo)A,,,>
1%

2
Al ( (Di‘m — ZpAi,pPp‘m +X0Ai,/)>
= exp{ — L (x — .
p{ ;205,,, Ail
If uf Dim = o oPom tx0Ay yen - A
ilm = iim = 55
’ Aiy 202,
P P )2
p(DIx,x0,A,P) o exp{ — Zs,},_m (x — Nu,m)
I

2
- exp{ - Zs,",m (x2 —2uf) X+ uﬁ2m> }
I

P P
2Zrui,/,msi,lmx
P 2 i
o« exp —(Zsi‘,m) X —7ZSP
! ilm
i

If we now incorporate the prior distribution for x

P <P
2ZMLI.mSLI.m
7

p(x|xo,D,A,P) o exp —(Zsf,)m> = | —=5—|x | (exp{-2"x}
i Zsi,l‘m
7
2 wfimSiim =
i
2% Hfy Sy — N ;
" i

ZZSI,'?Lm 7 ZZsﬁ’,m
i V 7

Conditional Distribution for Exchange between Neighboring Atoms in the Atomic Domain

Exchange for A between A, and A, , where k + m

We will refer to the atom corresponding to matrix element A, as x, the atom corresponding to the matrix element A, , = X, 5, and Xxq
and xo m,» there initial values, respectively. The value of x after sampling is constrained such that xe (0, X) and x,, , = X — x where X =
Xo + XO,m,n-
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If we consider the exponential prior, the exchange step will incorporate both matrix elements. That is,
exp(—Aax)exp( — Aa(X —x)).
The x terms in this equation cancel, indicating that the conditional depends only on the likelihood. This occurs for all exchange

steps, and thus is not described in the remaining subsections on this step.
From the likelihood, we get

2
1
p(DIx,x0,X,A,P) o exp —222<Dk, ZAKD - xP,J>

J

2
X exps — 2 ( 'm.j ZAmpPpJ - )P )

)

For simplicity of the equations, we consider only the terms inside of the exponential and formulate them as an equation for x to find
the parameters of the truncated normal for value j in the summation.

[¥Py; = (Dj = SpAkoPoi )| ’ . [<Paj = (XPay + SyAmsPp; — D J)r

2 2
20'kJ- ZJW

Letting uy; =Dkj — > AkpPpj and My nj = XPnj + > AmpPpj— Dmj, the above term simplifies to
P P

(XPy — )" | (Poj = M)’

2 2
20kj 2(7"”.

Combining terms, we can write this equation as

[0,2,1 P2+t P2 ] —2 [0,2,1 Pt + 02 PoiMn _,-]x

2 2
20'kJO'mJ

which can complete the square by

2 p2 2 5 5 2
[UmJP +o'k,/P }(X a—m,/P/J/'Lkl-Fo—k/P"me’"J)

2 2
20,,,_1-0"_/- P2 +<7k/P,,,

The parameters for the truncated normal can now follow the derivation used for the birth step described above.
Exchange for A between A, and A,
Considering just the terms inside of the exponent, in this case we will have instead

2
(Du = 2_pPkpPpj = xPij — (X =X )PnJ)
Z 242 ;

i

Collecting the x terms and completing the square we get

Z(P/./ - Pn./')2 {X _ Dij — 3 pAkpPpj — XPn-/} ?

P — P, )2 Dij — > o AkpPpj — XPnj _—
we let s, =(”272M) and y; = &l XI:;’ ke Ppl " The derivation for the terms of the truncated normal follow.
Ok lj —Fnj

Exchange for P between Py, and P, , where | + n
The derivation for exchange steps in P follows that of the derivation for A above. In this case,

a2 A2 +¢72A2

_ in’ i
S = (A o 3
201,0
2
Oin AikIJq/ +0j, /AimMim‘n
K = ’

2 2
amA,k+<7 A

where Miy =D,'_/ — ZpAi,pPp,l and Mi,m,n = ZpAi.pPp,n + XA,‘ﬁm — D,'.n.
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Exchange for P between Py, and Py,
The derivation for the exchange steps for P follows that of the derivation for A. Thus, in this case

s - (Aik = Aim)’
' 20,-?, ’
Diy = AipPos — XAim
_ P
e = A —Aim

Annealing Parameter
During the equilibration phase, we in fact wish to sample from the conditional distribution

p(x|xo,D,A,P)xp(Dx, xo,A, P)""p(x),

where T is the annealing temperature. This has the effect of multiplying the term ¢ in each of the equations by a factor of T. As a result,
the standard deviation s of the birth and resize terms are the only things to change by as follows.
P/J'

Sﬁ/./ :Taf- , and
J

SP — Ai,l
= oT g2,

A similar modification of the terms with ¢ «<— T ¢ will also occur in the exchange step, which will modify both the mean and standard
deviation terms for this step.

Pattern Matching for Consensus Gene Signatures

Hierarchical clustering was done on gene weights from all sets and the resulting dendrogram is cut so the number of branches is
equal to the original number of latent spaces. Each branch then contains the columns(s) of A across all the sets that are most related
to each other. Well-dimensionalized data will produce robust patterns such that each branch will contain a single contribution from
each of the randomly generated sets. As the additional sparsity can cause large clusters driven predominantly by zeros, the minimum
and maximum number of patterns contributing to given branch can be specified with defaults of .5 and 1.5 the number of gene sets,
respectively. Branches failing to meet the lower bound are dropped, while those exceeding the upper bound are subjected to
additional rounds of hierarchical clustering. Additionally, the minimal correlation to the cluster mean for each pattern within a given
branch was specified to be 0.7. Consensus signatures were then constructed for each branch by taking a weighted average of the
gene signatures for that branch which pass all the criteria. To ease across pattern comparison, the resulting consensus signatures
were scaled to have maxima of one. Pattern weights for all the cells were then learned in parallel from these signatures to ensure
reciprocity across all the sets.

Pattern Curation Using Manual Feature Annotation

The AUC valued were calculated by inputing either the pattern weights output from scCoGAPs, the projected pattern weights output
from projectR, or the p-values output from projectR with a one hot encoded matrix of annotated labels into the prediction function of
the ROCR library v 1.0-7. The output of prediction was then evaluate using the performance function with method=auc from the
ROCR library v 1.0-7 and the y.values extracted and reported. Note this process has been functionalize and is included in the
projectR package v .99 as the auc_mat function. The heatmap in Figure 3B was created using the following. Each feature of contained
in the annotation matrix was one hot encoded and the resulting vector correlated against the pattern weights generated by
scCoGAPS for each cell.

Benchmarking scCoGAPS against Commonly Used Dimensionality Reduction Tools

SVD was calculated using the svd function with nu=80, nv=80 from the base R package v3.5.2. PCA was calculated with the scale
and centered arguments as true using prcomp functions included in the core R stats package v 3.5.2. The gradient-based NMF was
run using the both the nmf function from the NMF library v 0.21.0 with method set to “brunet” and k = 80 and the nnmf function from
the NNLM library v 0.4.2 with threads set to 24. DCA was run in using dca.api in Python 3.6 the with arguments mode='latent’,
hidden_size=80, return_info=True, return_model=True.

Gene Set Analysis of scCoGAPS Patterns

Z-scores of gene weights were computed for each pattern in each ensemble by dividing the mean of the A matrix estimated across
the chain by its standard deviation as previously described (Fertig et al., 2010; Ochs et al., 2009). The resulting matrix of Z-scores
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is averaged for sets of patterns determined to match in the the ensemble as described above. A Wilcoxon gene set test with the R/
Bioconductor LIMMA package version 3.36.2 (Ritchie et al., 2015) is performed for mouse KEGG and GO sets from the
R/Bioconductor packages org.Mm.eg.db version 3.4.0, KEGG.db version 3.2.3, and GO.db version 3.4.0. Gene sets with more
than 5 genes and fewer than 100 genes are retained for analysis. p-values for the gene set test are FDR adjusted with Benjamini
Hotchberg and available as Table S4. Preranked GSEA was performed for the results of the gradient based NMF from the NMF library
gene set test (Subramanian et al., 2005).

projectR Analysis

The R package projectR version 0.99.2 (available from https://github.com/genesofeve/projectR) was used to project the scCoGAPS
consensus scCoGAPS patterns of the A matrix into each of the target datasets. These projection are achieved by solving the
factorization

D=AP+¢

using the least-squares fit to the new data as implemented via a wrapper for the ImFit function in the LIMMA package 3.30.13
(Ritchie et al., 2015). Specifically, a linear model is fit using the A;; weights learned from the source data by scCoGAPS as the
design matrix for multiple linear regressions. Each row of the design matrix, A; ., corresponds to the features, i.e. genes, which
will map between the source and target data. Each column of the desigh matrix, A. ;, corresponds to a previously learned individual
latent space. The estimated coefficients of these regressions provide P matrix values for the target data. These Ps score the new
samples using a gene-wise weighting, provided by the As, for each latent space. The ranking of the new samples within each pattern,
or row of P, are then indicative of the relative strength of a given sample’s association with the latent space. A wald test to calculate
the significance of these coefficients is calculated using the pdf of the negative absolute value of the coefficients scaled by their
standard deviation, i.e.

f-rd

s8(P)

The AUC values were calculated by inputting either the projected pattern weights output from projectR or the p-values output from
projectR with a one hot encoded matrix of annotated labels into the prediction function of the ROCR library v 1.0-7. The output of
prediction was then evaluate using the performance function with method=auc from the ROCR library v 1.0-7 and the y.values

extracted and reported. Note this process has been functionalized and is included in the projectR package v .99 as the auc_mat
function. Additional functionality is included in the latest version of ProjectR (v 1.0) available as part of Bioconductor.

w

DATA AND SOFTWARE AVAILABILITY

scCoGAPS is available as part of the CoGAPS bioconductor package (3.8) under the GPL license.

ProjectR is available as part of the ProjectR bioconductor package (1.0) under the GPL license. Note, the exact version used for this
analysis (v0.99.2) can be freely downloaded from https://github.com/genesofeve/projectR. All code for this analysis is available
upon request. The accession number for the bulk RNA-seq data reported in this paper is GEO: GSE118880.
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