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I. INTRODUCTION

Several independent studies have shown that holonomy
and inverse-triad corrections from loop quantum gravity
(LQG) modify hypersurface-deformation brackets for
spherically symmetric gravity and related midisuperspace
models [1-10], thereby realizing a deformation of general
covariance [11-14]. These modifications are closely
related [15] to anomaly-free models of perturbative
cosmological inhomogeneity constructed within the same
framework [16-20], suggesting that modified spacetime
structures may be a generic consequence of quantum-
geometry effects in loop quantum gravity. In [21] (see
also [22]), however, it has been shown that such
modifications may be avoided if one uses self-dual
connections and a densitized lapse function, as in [23—
25], instead of real variables [26]. These models, valid
for self-dual Lorentzian gravity with Barbero-Immirzi
parameter y = i or Euclidean gravity with Barbero-
Immirzi parameter y = =1, are rather special because the
Hamiltonian constraint simplifies considerably compared
with general y. It is therefore of interest to compare the
structures encountered in various models in order to

Such a comparison is not obvious, for instance because
the modifications considered in [21] are different from
those found in anomaly-free models using real variables.
In particular, those modifications cannot be implemented
in an anomaly-free manner for arbitrary choices of the
Barbero-Immirzi parameter: We will show that the
classical form of the constraint brackets can be retained
only with a specific class of holonomy modifications for
y = £i (self-dual Lorentzian gravity) or y ==+1 (a
special version of Euclidean gravity). More general
treatments of the self-dual or Euclidean case, imple-
mented in close analogy with the real connection for-
mulation, lead to either anomalies or deformations of the
spacetime structure. This result then allows us to draw
conclusions about properties of the Hamiltonian con-
straint required for certain types of modifications to be
consistent.

At a technical level, an analysis of the Hamiltonian
constraint and its Poisson brackets indicates a formal
relationship between modifications of spacetime structures
and the appearance of spatial derivatives of the densitized
triads (canonically conjugate to the connection). Spatial

determine whether undeformed spacetime structures  derivatives of the triad generically appear in the
could be realized more broadly. Hamiltonian constraints of gravitational theories because
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they are required for curvature components. But for
y?> = £1, and only in this case, they are completely
absorbed in the connection components through the spin
connection which, in combination with extrinsic-curvature
components, forms the Ashtekar connection in the self-dual
case [23], or the Ashtekar-Barbero connection in the real
case [26].

This structural statement allows us to draw a first
conclusion about the genericness of modified spacetime
structures. Using standard arguments from effective field
theory (generalized here to a canonical setting), modified
brackets should be considered generic, unless one can
show that the full quantum theory has a symmetry that
protects the derivative structure of terms in the
Hamiltonian constraint as encountered for self-dual var-
iables, or more generally for y> = 41. No such symmetry
is known. Although it has been shown that the real
Ashtekar-Barbero connection, unlike the self-dual one,
cannot be identified with the pullback of a spacetime
connection, this result is of an “aesthetic nature” [27] and
does not characterize the case of y> = 41 via a physical
symmetry that could restrict possible quantum correc-
tions. Moreover, applying this result in the present
context would amount to presupposing the classical
spacetime structure in a model of quantum gravity. In
canonical quantum gravity, the structure of spacetime is
determined intrinsically, based on the observation that
spacetime symmetries of a gravitational theory are gauge
transformations, generated in Hamiltonian form by the
constraints that are to be quantized in order to define
canonical quantum gravity. Poisson brackets of these
constraints, or commutators of their operator versions,
then encode the structure of spacetime. An analysis of
possible consistent modifications of these brackets, such
that they remain closed but possibly with nonclassical
structure functions, shows whether the symmetries remain
unviolated after quantization. As we will see, such
modifications with intact (but possibly deformed) sym-
metry exist for any value of y. Therefore, no value of y is
distinguished by the presence of a symmetry.

In this work, we will mainly focus on an interpretation of
the constraints as representing Euclidean gravity. We will
then be exempt from having to consider a possible role of
reality conditions, the implementation of which remains
poorly understood in a quantum theory of self-dual
variables. However, as the constraints are formally identical
in Euclidean gravity with y = £1 and self-dual Lorentzian
gravity, our results can formally be used also in the
latter case.

II. UNSOLVED GAUSS CONSTRAINT

The model considered in [21], following [24], consists of
three canonical pairs of fields—A;(x) and E'(x) for i = 1,
2, 3 depending on the radial coordinate x of a spherically
symmetric manifold—subject to three constraints. Two of

the constraints function as generators of hypersurface
deformations in spacetime and therefore encode the struc-
ture of spacetime. The third one, a Gauss constraint,
implements an internal symmetry of SO(2) rotations of
two of the canonical pairs.

While the form of the Gauss constraint and the spatial
generator of hypersurface deformations (the diffeomor-
phism constraint) is strictly determined by the canonical
structure together with the corresponding Lie algebras of
infinitesimal rotations and one-dimensional diffeomor-
phisms, respectively, there is much freedom in specifying
the normal generator of hypersurface deformations, or the
Hamiltonian constraint, even if the physical dynamics is
fixed. The version used in [21,24] is rather special in that it
is quadratic in the canonical fields and does not contain
spatial derivatives of E’ (while first-order spatial derivatives
of A; do appear). In the first part of this section we will
strengthen the result of [21] by showing that the consistent
deformation found in this paper is unique within a family of
models that preserve the quadratic nature and derivative
structure of the Hamiltonian constraint. In the second part
of this section, however, we will show that this rigidity is
not stable within a larger class of models that determine the
same classical dynamics but do not respect the restricted
derivative structure (parametrized by the so-called Barbero-
Immirzi parameter y [26,28]). The following sections will
then place our discussion in a setting of effective field
theory and highlight the role played by the Gauss
constraint.

A. Regaining the quadratic Hamiltonian constraint

In order to derive our rigidity result, we start from the
condition that the Poisson brackets of constraints are closed
and see what kind of restrictions it imposes on the form of
constraints. The specific procedure follows the classical
(and classic) result [29] that the full Hamiltonian constraint,
up to second order in derivatives, can be regained uniquely
from the classical hypersurface-deformation brackets, as
specified in [30]. This procedure has already been applied
to spherically symmetric models in [11], but only for
modifications of the dependence of the Hamiltonian con-
straint on the triad variables E'. Our calculations here differ
from [11] in that we use connection variables A; and take
into account potential modifications of the dependence on
these variables.

As already indicated, we assume for now that the
Hamiltonian constraint is quadratic in the canonical fields
without spatial derivatives of the triad E’. This version of
the constraint is realized in spherically symmetric gravity if
one uses self-dual connection variables [23] in Lorentzian
signature, or real Barbero-type variables [26] in Euclidean
signature such that the Barbero-Immirzi parameter is equal
to y = 41. (One should also smear the Hamiltonian
constraint with a lapse function of density weight minus
one to guarantee the quadratic nature.) This parameter is
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therefore fixed and does not appear in the remainder of this
subsection. Working with

{A1(x), E' (y)} = 2G5(x, y) (1)
and
{A2(x), E*(y)} = Gé(x,y),
{As(x), E*(y)} = Gé(x,y) (2)

while all other brackets of basic variables vanish. [Note the
missing factor of 2 in the last two brackets, compared with
(1), which is a consequence of the fact that (A,, E?) and
(A3, E?®) encode the same degree of freedom after the Gauss
constraint is implemented. ]

{A1(x). E'(y)} = 2{A3(x). E*(y)} = 28(x.y).  (3)

This canonical structure completely determines the Gauss
constraint

Gl =5 / WA((E') = 2E2A45 + 2E34,)  (4)
and the diffeomorphism constraint

D[M] = ! / dxM (2ALE® + 2ALE* — A (EY)) (5)

2G

but not the Hamiltonian constraint. Sometimes, it is
convenient to combine the diffeomorphism constraint
D[M] and the Gauss constraint G[A] to form the vector
constraint

V[M)] = D[M]+GJAM]

— G [ S+ A+ (- AADE). (6)

We will now use these constraints and attempt to
derive the most general form of the Hamiltonian constraint,
purely quadratic in the canonical fields and with up to
first derivatives of A; but no derivatives of E’, such that
all constraints have closed Poisson brackets. With
this assumption, we can write the local (unsmeared)
constraint as

H — H110E1E2 _|_H101E1E3 +H011E2E3
+ HZOO(EI)Z + HOZO(EZ)Z + HOOZ(ES)Z, (7)

where we use the convention that H[N]|=
~! [[dxN(x)H, H/* may be functions of A, A,, A3
and their spatial derivatives up to first order.

1. Diffeomorphism constraint

We first consider the bracket of the Hamiltonian and
diffeomorphism constraints, writing it in local form as

| OH(x) 8D(y) _8H(x) 5D(y)
6A,(2)SE>(z) OE*(z)8A4(2)
SH(x) 6D(y) SH(x) 5D(y)

* 5A;(2)6E3(z) SE3(z) 5A3(Z)> ’ ®)

where D[M] = ~! [ dxM (x)D(x). If this bracket is to
correspond to classical hypersurface deformations, it
should be equal to

{H(x). D)} = 2G(H'(x)5(x,y) + 2H(x)& (x,y)),  (9)

using the convention that a prime on a delta function always
indicates a derivative with respect to the first argument.
Therefore,

3 (x,y) ==&y, x). (10)

If the bracket is of the given form, the smeared constraints
have the bracket

{H[N], D[M]} =

Y 1 | BONWMO) (). DO}

=3¢ | PNEMG)((O.H(x)5(x. y)

— 2H(x)9,5(x.y)
— —H|(NM)'] + 2HINM

—H[MN' = M'N] (11)

as required if N has density weight minus one for the

purpose of having a quadratic Hamiltonian constraint.

We proceed by evaluating the Poisson bracket.
Considering the assumed dependence (7) of H on the
canonical variables, we have
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B 37‘(()6) aH(x) / / (97'(()6) 1y
(710, 201} =26 [ az( (G ot 2) + G 005.0) ) (-1 09102 2) = G o0, ) (B 01000, 2)
+ (gz?\iz(é; 5(x,z) + (ZZ,:(:)) & (x, z))A’z(y)cS( ,Z7) — 2172{2((2)) 8(x, 2) E*(y)8' (. 2)
4 (W) 5( ,Z)er,_[(x) 8 (x,2) |AL(n)8( ,z)—mﬁ(x) 5(x, 2)E*(y)8 (v, 2))
9,0 ) IE ()
= 26( G S A0 + G A + I (B (1) o)
~ (G A0 + s EX0) + SIS B0) + S 40) + G 400 )30
- [ a4 0w 80,2, (12)

where we used (10).

The last term has a product of two derivatives of delta functions, which does not occur in (9). Integrating by parts can
remove one of the derivatives, but it also gives a second-order derivative of a delta function which does not appear either in
(9). The term, therefore, must be zero, so that we already know that H cannot depend on A/ . In order to bring the remaining
terms to a form close to (9), we use the identity

A(x)B(y)d'(y, x) = A(x)0,(B(y)8(y. x)) — A(x)B'(y)8(x, y)
= A(x)0,(B(x)3(y, x)) = A(x)B'(x)8(x, y)
= A(x)B(x)& (v, x) — A(x)B'(x)8(x, y) (13)
and write
{7400 D7) =26 (00 0+ G0 o)+ G0 o)+ S Aty SR
OH(x) , .\, OH(x) , 5\, OH(x) ,
O (x) (E')'(x) +8E2(x)( )'( )+8E3(x) (E%)( ))5(x,y)
OH(x) OH(x) , OH(x) OH(x) OH(x) ,
+2G<8A1(X)A1(x) +8A’2(x)A2<x) +8A’3(x)A3(x) +8E2(x) E?(x) +8T()C)E3(x))5(x,y). (14)

Since H does not depend on A/, the first parentheses (multiplied by a delta function) are equal to 7’ without any further
restriction on the dependence on other canonical variables. In order to evaluate the second parentheses, which according to
(9) should equal 4G’H, we use the quadratic form (7) and obtain the condition

OH(x) OH(x) OH(x)
oA om0 2 oA
— 2(H110E1E2 + H101E1E3 + H011E2E3 + HOZO(E2>2 + HOOZ(EG)Z) (15)

A/z(x)+ Ag(X)+H”0EIE2+H101EIE3—|—2H0“E2E3+2H020(E2)2+2H002(E3)2

OH(x) ., OH(x)
oA, (x> ¥ B (o)

A]()C)—’- Ag(X) :H110E1E2+H101E1E3+2H200(E1)2

after some cancellations. Comparing coefficients of E'E/ in this equation, we obtain
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8;:110,41 + 3(;1;/210[1/2 n 8;‘1/31014,3 —H'0,  (16)
8;;:)1A1 + agAl:lA’z + aglAlglAg —H' (17)
8(5‘0111141 +8$;1A§+8§;);1Ag L "
agIAzTOAl + 6(;ZZOA’2 + 8(;{;:014/3 = 2H>_ (19)
aéizoAl N aazflzzo A ag::o o o)
égffzm - ag:,jz Aj + 65:2 Al =0. (21)

If we assume polynomial dependence of H on the con-
nection variables, we can conclude that the coefficients
H'"'% and H'°! must be linear in A, A}, and A}, while H>*
must be quadratic in these variables. The coefficients H%'!,
H" and H%? cannot depend on A, A), or A}.

2. Bracket of Hamiltonian constraints

The Poisson bracket of two Hamiltonian constraints can
be computed in a similar way. Classically, we expect

{H(x). H(y)} = 2G(E'(x)*V(x)5 (y. x)
—E'(y)*V(y)8'(x.y)) (22)

with the local vector constraint V(x) such that V[M] =
1 [dxM(x)V(x). If the spacetime structure is
deformed, the bracket is multiplied by a nonconstant function
S which, for a comparison with [21], we assume to depend
only on the A;. (This function should approach # = 1insome
classical limit, usually for small A;.) After using (7) and
comparing coefficients of E'E/, we obtain the equations

2 =222 8H110 H200 8[_[200 HIIO _ 8H110 110
DA oA oA,
~ 28[_[200 H020 ~ 8[_]110 o aHZOO H011
/ / !
DA, oA, oA,
= 4p(A; — A A3), (23)
2 =2 aHlol H200 OH 101 8H101 HllO
DA oA oA,
aHZOO aHl 1 aHZO
-2 HOll _ Hl()l HOOZ 24
oA, oA, oA, (24)
= 4p(A5 + A1A). (25)

which are sensitive to the modification function f, as well as
several f-independent equations:

H200 aHZOO H2
4—8(%, H* + =5 H110+88 A H'' =0, (26)
1 2
OH10 OH0 OHM0 OHY0 OHMO OHY20
) H10 L 2% pp00 2 YT py020 110 o1 HO — 0, 27
<8A/ LYY >+ oa, 7 T aa M T aar M oy 27)
OH'0! HH02 OH 0! HE02 OH 0! HE02
2 HlOl i H200 HOll HllO 2 H()02 HlOl — 0’ 28
<8A’ LYY o e M e T Y o (28)
aHOII aHIOI 3H 10 aHOII aHIOI aHll()
2(2 200 E110 Ei01 HU0 L2 7020 ol
( oa, 1 oA M oA )+ oA, oA T T oag
OHO! OH101 HH 110
+ 8A/3 H101+ 8A/ H011 2~ 8A/ H002 0. (29)
Four additional equations,
OH" OH" OH"
2 HllO 2 H020 HOll — 0 30
oar T A T oy (30)
OH002 OH002 7002
2 H101 HOll 2~ H002 0’ 31
oa 7 T o T T, (31

026001-5
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OH"! OH" OH! OH" OH"! OH"°

2( aA/ H110+ aA/ HlOl) +2 aA/z HO2O+ aA/ HOll R 8A/ HOll +2 aA/ H002 0’ (32)
aHOII aH OH 011 OH 002 OH 011 8H0

2< aA/ H]Ol N aA/ H110> N aA/ HOl] +2 aA/ H020+2 aA/ H002+ aA/ HOll :07 (33)

are identically satisfied, given that H'!, H920 and H?
cannot depend on A’. Because H cannot depend on A}, we
may simplify the set of equations to

_ 8H110 10 _ 28[_1200 1O _ 8H110H101 ~ 8H200 o1l
A, oA, DA, DA,
= 4p(A; - A1Ay), (34)
8[_]101 H0 _ 28H200 HOul oH 11_1101 oH 01_1002
/ / / /
DA} 04, DA, DA,
=4p(A5 +A1A,) (35)
OHX  OH
H'"! =0, 36
oa, T oy (36)
8[_]110 8H110
2 H020 HOll — 0, (37)
oA, oA,
aHIOI o 101
HOM 2 ——— H"? =0, 38
A} DA, (38)
(C)Hl()l 6H” aHl 01 8H 10
2 HOZO HOl 1 HOl 1 2= HOOZ =0.
om, a7 Taar o,
(39)

3. Gauss constraint

The Gauss constraint further restricts the combinations of
basic variables which can appear in the Hamiltonian con-
straint. The gauge-invariant combinations that contribute to
the classical constraintare E', (E?)? + (E*)2, A, E? + A3 E°,
Al + A%, and A[(A,E* + AE?) — (ALE® — ALE?). [The
identity (13) is useful for seeing that the last combination
has a vanishing Poisson bracket with the unsmeared Gauss
constraint.] These expressions show that A, A5, and A} can
appear in gauge-invariant form only in combination with E?
and E>. It is therefore impossible to fulfill the condition that
H?" be quadratic in A}, A}, and A} because H* is defined
as the E-independent coefficient of (E')? in the Hamiltonian
constraint. For Hamiltonian constraints quadratic in E', we
have H?>% = 0.

Equations (34) and (35) then simplify to

COHMO Ly OHM

aA/ aA/ Hlm 4ﬁ(A/2 _AIAB)’ (40)
aHlOl 110 _ aHl o 101 /
o T O = AL A ()

For =1, these equations are obeyed by the classical
HI"=2(A1A, + A}) and H)' = 2(A1A; — A)), as they
should. For f # 1, we can solve these two equations by
H10 = g H!!% and H'%' = g,H!D", provided that 8, and
P> do not depend on spatial derivatives of A; and are such
that f;, = p. Invariance under transformations generated
by the Gauss constraint, which mix the terms of H!/° and
H élm, 1mphes that 8, = f,, and therefore S > 0 and
B = P> = +/B. This modification function can be elimi-
nated from the contributions of H'? and H'"' to the
constraint by absorbing it in the lapse function, thus
moving the modification to the remaining contributions
from HO? = p~1/2H%0 and H%? = p~1/2H%2. Therefore,
the only nontrivial modification of the dynamics is in the
contributions from H%?° and H°? which, as already shown,
can only depend on A, and A;. Again invoking trans-
formations generated by the Gauss constraint, the modified
term A~1/2(H% + H%?) is an arbitrary (positive) function
of A + A3, which is equivalent to the modification found
in [21] and therefore strengthens their result.

If we relax the condition that the Hamiltonian constraint
not depend on spatial derivatives of the densitized triad,
additional gauge invariant combinations are possible. For
instance, the extrinsic-curvature component

(EZ)/E3 _EQ(E3)/
(EZ)Z + (E3)2

Kl :Al - (42)

is gauge invariant. Moreover, if spatial derivatives of the
densitized triad are allowed, the Gauss constraint can be
used to rewrite the Hamiltonian constraint without chang-
ing the on-shell behavior. For instance, the identity
A1(ALE* + A3E®) 4+ 2E%AL — 2E3A),
= (B") + Ay (A E? + 2(E°))
+A3 (A B - 2(E?)) - G (43)
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eliminates spatial derivatives of A, and A; from the
Hamiltonian constraint, in favor of a second-order spatial
derivative of E'. This new form is much closer to the
expression of the Hamiltonian constraint in extrinsic-
curvature variables [31] and may allow different modified
brackets than the quadratic version (7) even if one works
with the reduced Ashtekar connections A;.

The possibility of rewriting the Hamiltonian constraint
by using the Gauss constraint explains why different
formulations of the same classical theory may give rise
to different modified brackets: The Gauss constraint
depends on A, and Aj, and therefore, depending on how
it is used in writing the Hamiltonian constraint, it restricts
possible modifications. In extrinsic-curvature variables, this
ambiguity does not appear because the Gauss constraint is
solved explicitly.

From the perspective of effective field theory, applied here
to the classical structure of up to second-order derivatives,
restricting the dependence of the Hamiltonian constraint on
spatial derivatives of E' leads to nongeneric models. The
classical constraint is quadratic in A;, which, according to
the field equations implied by the theory, amounts to terms
with up to two derivatives. Any term that is consistent with
the symmetries of the theory (generated by the constraints)
and has up to two derivatives (temporal or spatial) should
then be allowed for a generic model. Such theories should
include terms with up to second-order spatial derivatives of
E', in addition to the quadratic terms in A; which contribute
two time derivatives. (A higher-derivative theory beyond
second order would be obtained by including quantum
backreaction effects, which is not the purpose of this paper.)

B. Arbitrary Barbero-Immirzi parameter

We will now show that the preceding rigidity result is not
stable within a class of models in which spatial derivatives
of the densitized triad are allowed to appear. A suitable set
of constraints that describes the same classical physics as,
depending on the signature, Euclidean or self-dual gravity
is obtained by letting the Barbero—Immirzi parameter vary,
instead of fixing it to a specific value such that y> = £1.
The modification found in [21] is therefore not generic. To
this end, we will now switch to a general setting of
spherically symmetric gravity in which the Barbero-
Immirzi parameter and other numerical factors (as well
as the gravitational constant G) are included.

Spherically symmetric gravity can be formulated as a
Hamiltonian theory with phase space given by the canoni-
cal pairs, subject to three constraints. This setting has been
formulated in [24] for self-dual variables and in [31] for real
variables. In order to avoid having to impose reality
conditions, we follow the latter notation, in which the
canonical pairs (A, E'), (A,, E?), and (As, E®) are such
that

{A(x),E'(y)} = 2rGé(x,y) (44)

and
{A2(x), E*(y)} = rG8(x.y), (45)

{A3(x). E2(y)} = rG5(x.y) (46)

[a version of (1) and (2) for arbitrary real y]. They are
subject to the Gauss constraint

1
14
smeared with a multiplier A, the diffeomorphism constraint

1
D[N-] ~5,G / dxN*(=A,(E") +2ALE3 4 2A4E?)  (48)

smeared with the shift vector N*, and the Hamiltonian
constraint

1
H[N] 3G / dxN (24, E' (A E* + A E?)

+(A3+AF-1)((E*)*+ (E*)?) +2E" (E*A; — E°AY)
+(e=r*) (2K, E'(KyE? + K3 E)
+((K2)? +(K3))) (E2)* + (%))

= HE[N]+ H"(N] (49)

smeared with the lapse function N of density weight —1.

The nonpolynomial relationship between the extrinsic-
curvature components K;, K,, and K3 with the basic
variables is given below.

In all three constraints, the prime represents a derivative
with respect to the radial coordinate x. Moreover, y in (49) is
the Barbero-Immirzi parameter [26,28] and ¢ = %1 the
spacetime signature, such that ¢ = 1 in the Euclidean case
and ¢ = —1 in the Lorentzian case. As usual, it is convenient
to split the Hamiltonian constraint into the Euclidean part

1
HE[N] = 3C / dxN (24, E'(AE? + A3E?)

+ (A3 + A - D((E?) + (EY)?)
+2E'(E2AL — E3A))) (50)

and the “Lorentzian” contribution

2
Yy - —€
HHNI = =55

+((K2)? + (K3)2)((E?) + (E°)2)). (51)

/ dxN (2K E' (K, E* + K3 E)

Thus, H[N]=HE[N] for y = %1 in the Euclidean signature

(e =1), while the Lorentzian contribution (a slight
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misnomer) also contributes in the Euclidean signature if
y # £1. (The Lorentzian contribution is always required in
the Lorentzian signature if one works with real y such that the
Poisson brackets are real.) The canonical variables A, EZ,
and E° have density weight one.

The geometrical meaning of the phase-space variables is
determined as follows: The fields E!, E2, and E3, as the
components of a spherically symmetric densitized triad,
describe a spatial metric ¢,;, according to the line element

ds? = g,,dx“dx?

E2 2 E3 2
= %dﬁ + |E'|(d9? +sin’8d¢?).  (52)

The densitized triad also determines a spin connection such
that it is constant with respect to the resulting covariant
derivative. The components of this spin connection are
functions of the densitized triad and its first spatial
derivatives:

B ES(EZ)/ _ EQ(E3)l

Iy = (B2 + (B3 (53)
1 1\ 3
=3 >
1 1Y/ 2
"= (B a

The densitized triad is canonically conjugate to components
of extrinsic curvature, K;, i = 1, 2, 3. Since the I'; depend
only on E, one can add them to K; without changing
the latter’s canonical relationships with E'. In this way,
the canonical connection components A; =I'; + yK; are
obtained, using the Barbero-Immirzi parameter .

The constrained system is first class, with brackets of the
constraints D[N*] and H[N] according to Dirac’s hyper-
surface deformations [30] (taking into account the density
weight of N in the Hamiltonian constraint used here). In

particular, the bracketed {H[N], H[M]} should be propor-

tional to the diffeomorphism constraint, up to possible
contributions from the Gauss constraint. We display the
relevant derivations in a more general setting, following the
observation [21] that, for y2 — ¢, the constraint brackets
remain closed in the presence of a ‘“magnetic-field”
modification, replacing B :=A3+A3—1 in the Euclidean
part of the Hamiltonian constraint with an arbitrary
function f(A3 + A3 — 1). Our aim is to determine whether
this modification can be carried over to the Lorentzian
contribution.

We begin with the bracket of two modified Euclidean
parts, {HE[N], HE[M]}. Thanks to antisymmetry of the

brackets in N and M, we need consider only those brackets

of terms that lead to derivatives of delta functions. There are
two such contributions,
{24, (x) B2 (x) (A2 (x) E* (x) + A3(x) E*(x)),
2E'(y)(E*(y)As(y) = E*(»)A2(y))}
= (++)8(x,y) = 4yGA,; (x) E' (x) E'(y) (A3 (x) E*(y)
= Ay (0)E*())0,8(x. y) (56)

and

{2E' (x)(E*(x)A3 (x)' = E*(x)Ay(x)),
2E'(0)(E*(0)As(v) = E*(y)A2(y)')}
= (-+)8(x,y) = 4yGE' (x)E' (y) ((E*(x) A2 (y)’
+ E3(x)A3(y))0,6(x, )
— (E*()A2(x)" + E*(y)A3(x))0y8(x, y)).- (57)

With these two ingredients, we obtain

(L M) = L [ axvn - N (£
X (A (A E? — A3E?) + EPA), + E*A))
= PVIEPWM-MNL  (59)

1
V[A}:y—G / dxA(A,(E?A;—E*Ay) +ALE3+ AL E?)  (59)

is the vector constraint (6), V[A] = D[A] + G[A;A], related
to the diffeomorphism constraint D through a contribution
from the Gauss constraint (47).

Using /detq = +/|E'|((E?)* + (E®)?) from (52), we
can write the smearing function in (58) as

|E']

(E"(N'M —M'N) :W

~ o~ ~

(NM—=M'N), (60)

where N = /|E'|((E?)? + (E®)?)N

VIE'((E?)? + (E®)?)M are lapse functions without den-

sity weight. The coefficient |E'|/((E?)? + (E?®)?) in (60) is,
according to (52), the radial component of the inverse
spatial metric, in agreement with the classical form of
hypersurface-deformation brackets. The system is therefore
anomaly-free for any modification f in (49) without any
modification of the constraint brackets and the spacetime
structure—provided the Lorentzian part does not contribute
to the Hamiltonian constraint, that is in Euclidean gravity
with y = 41 or in Lorentzian gravity with y = +i. This is
consistent with the results reported in [21].

and M =
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It is easy to see that any function f(A3 + A3 — 1) can be
used in the modified Euclidean part because this term does
not produce derivatives of delta functions in the Poisson
bracket of two Euclidean constraints. Moreover, because A,
and Aj; are scalars without density weight, any such term has
the correct Poisson bracket with the diffeomorphism con-
straint. However, if y? # ¢, the cross-term {H®[N], H-[M]}

in the Poisson bracket of two Hamiltonian constraints does
|

receive a contribution from f(A3+ A3 —1) in HE[N]
because H-[M], written in the canonical variables A; and

E', contains spatial derivatives of E’ through I';. An explicit
calculation is therefore required to check whether the bracket
can still be closed for f(A3 + A3 — 1) # A3 + A3 — 1.

We first compute the Poisson brackets of each individual
term in HE[N] with the full H“[M]: We obtain

é{ / AN (1) (0! () A0 E2(0) + A0 ). H I |

e / AxdyN (M) (- )3(x.)
~24, (0! (W) (2 0)E) + A5 (1)
B O 5 AP 1 EOPn )

o [N M) (<24 B B )40 E ) + 4B )

+2E' (x)(E2(v)* + E*(y)*) (A2 (x) E*(x) + A3 () E* (x))

L ADED) = A0E) - B

ON{A2(x)E2(x) + A3 (x) E?

)
)

EX(y)* + E(y

2Fz(y) + Ez(y)Fa(y)> 5.5

(x), T (v)}
() +As(0)T3(y) + Ta(y)* + T3(y)*})
E*(x)E3(y) = E*(y)E* (%)

E*(y)* 4+ E*(y)?

—2(Ay(y)I,

,6(x, )

2_
__r-¢ / dxN(x)M'(x)E (A, E* + A3E?)((E") + 2A,E® — 2A3E?)

2yG
—(y* — €)GINM'E" (A, E* + A3E%)]

up to terms that cancel out when inserted in the antisymmetric {HE[N],

(61)

H"[M]} + {HL[]Y]HE[AN/I]} In the detailed

calculations, we have used the explicit expressions for the I';, from which we also obtain the useful identity

Y(KLE? + K3E3) = AL E* + A EP (62)
because I, E + I';E3 is identically zero.
The second term,
261 [ N0+ Ao = )R + B0
2_¢
L [ aanmo) (o)
= 2f (¥)(E*(x)? + E3(x)?)E' () (A2 () EX(y) + A3 () E* () { A2 ()% + A3 (%)%, T (y)}>
2_¢
= [ NMO) (- 963) = 2 WE R + EEPRE 0)A0)E0) + 40)E )
24, (x A
L 24( ];2( () )+ E;(( ))2E ») 5,8(x, y)>
=2(y2 —€)GINM'fE (A, E? + A E®)] — (E"Y(ALE? + A3E?), (63)

026001-9
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does not vanish on the constraint surface. Therefore, the function f, whose derivative by its argument we have denoted by f,
is now relevant for closed brackets. In particular, the last contribution containing (E')" must be canceled by a corresponding
term in the remaining bracket.

In this last bracket,

B:= é { / dxN (x)E' (x) (E(x)As(x) — E3(x)As(x)"), HLW]}

- / AxdyN (M () (+)3(x. )

+2E' (0)E (y) (A2 (0) EX(y) + As(0) E> (0) {E* (0)As (x)' = E*(x)Ax(x)', ~T ()}
+2E1( ) {)(AI) =TI OD{EX(0)A3(x)' = B3 (1) Ay (x)' Ay (y) EX(y) + A3 (0) E* ()}
= 2B (x)(E*(y)* + E*(5)°) (A2(y) = o)) EX(x) A3 (x)" — E>(x)A (x)'. T(y) }

)
( ( ) = T3 (0)A3(x)' = B> (x)A2(x)".T5(y)}))

dxdyN (x)M (y)((- - )8(x, y)

E*(x ) 2(y) + E*(x)E*(y)
EX(y)* + E(y)?

2 3 X 2
#2600 + 45008 0) S B RO 5.5 5

+2(4,(y) =T1 () E' (1) E' (9)(E*(x)A3 () = E* (x)A2(y)) 0,6(x. y)
+E'()E () ((A2(y) = T2 (0)E?(x) + (A3(y) = T3(3) E*(v)) 9:6(x. ) (64)

= 2E'(0)E (y) (A2 () E*(y) + A3 () E*(v))

0,6(x,y)

we have a contribution from a second-order derivative of the delta function. Integrating by parts once in this term and taking
into account its contributions to NM’ and N'M, respectively (noting that terms with N’M’ cancel out in the final
antisymmetric bracket), we write

BT [aanmo) (o)
E'(x)E'(y) 2 20y 4 3 3(y) 2 3
2B BOR ((E (OE(y) + EX()E () ) (A (V) E* () + A3 () E° ()

+ (B3 (y)E*(y)' — EX(y)E* (y)) (E*(x)A3(y) — E*(x)A5(y)))D.6(x, )
+ E'(x)E' (y) (24, () (E*(x)A3(y) — E*(x)A3(y)) + E'(X)E' (y) (A2 (y) E2(x) + A3(y)E* (x)))D,6(x, y)
—2E'(x)E'(y)(A2(0)E*(y) + A3 (0)E* (y) + A2 (v) E*(y) + A3(y) E*(y)

2 y)

3 /
2B 0) + A EIE IO, 5 y)

2

T [ asNEMO(C o) + 2B WE ()

2yG
X (A1 (9)(E*(x)A3(y) = E*(x)Ay(y)) = (A2 (») E*(y) + A3(») E*()))0:8(x, ¥)
= (y> —€)(D[(E")>*N'M] + G[A,(E")>*N'M]) — ”;_Ge / dxN'ME'(E") (A,E* + A E). (65)

This result provides the diffeomorphism constraint as well as a term which cancels the previous nonconstraint
contribution in (63), but only if f = 1. Therefore, if the Lorentzian contribution is included, no modification of the classical
A} + A% — 1 is allowed. The final bracket now equals
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DEFORMED COVARIANCE IN SPHERICALLY SYMMETRIC ...

PHYS. REV. D 101, 026001 (2020)

{H[N),

= PD((E':(N'M ~ NM')] + Gl (E!

- (¥* - ¢)G[E!

— (7 = &)(DI(E'(N'M ~ NM')] + GIA, (E'

= ¢(D[(E"

PN'M = NM')] + G4, (E!

HIM]} = {HF[N). HE M} + {HE[N]. H M} - {HF[M]. H* [N}

P(N'M - NM')]

(ALE? + A3 E3)(1 = 2f)(N'M — NM")]

PN'M - NM")))
PN'M - NM)))

+ (7 = €)GIE" (A E? + A;E?)(N'M — NM'))

~ —eD|(E' A(NM'

using f =1 in the last step because the bracket would not
be closed otherwise. (Note that {H“[N],H"[M]} =0,

which can most easily be seen if one uses the canomcal
variables K; and E', of which no spatial derivatives appear
in the Lorentzian contribution.)

ITII. CONNECTION VARIABLES IN A CANONICAL
EFFECTIVE FIELD THEORY

We have seen a crucial difference between gravitational
theories governed by the Euclidean Hamiltonian constraint
HE and the full HF 4+ H", respectively. Formally, the
reason is the difference in derivative structures implied
by the spin-connection terms in H“: While H® contains
derivatives only of the spatial connection, H" also con-
tributes spatial derivatives of the triad. As a consequence,
the two versions allow different modifications while
maintaining closed brackets.

Derivative structures are best dealt with in a setting of
effective field theory, in which one formulates generic
theories by selecting the basic fields and the maximum order
of derivatives to which they contribute, as well as relevant
symmetries. For our purposes, we need an adaptation of the
usual arguments to a canonical formulation, in which some
derivatives may not be explicit because they appear only if
some of the canonical equations are used, mainly in the
relationship between momenta and “velocities.”

In order to determine the correct derivative orders in a
canonical theory, we must first choose which of the basic
fields should play the role of configuration variables and
therefore are considered free of time derivatives. We are
looking for a canonical theory of triads, which will
correspond to a spacetime metric or triad theory, and
therefore choose as our basic fields a densitized spatial
triad with momenta. The latter may be given in terms of a
connection or extrinsic curvature. The derivative order
depends on the quantum effects we wish to include. For
now, we will analyze the classical setting and therefore
consider up to second-order derivatives of the fields.

— N'M)).

Symmetries are implemented by the requirement that the
constraint brackets be closed, and in the classical case
amount to hypersurface-deformation brackets.

A. Basic strategy

In our explicit calculations of generic terms, we again
follow the conventions of Sec. II.2 and set y =1 for
simplicity. For our effective Hamiltonian, we choose to
allow up to second order in derivatives of densitized triads.
Since the conjugate momenta are of the form A ~ JF, using
the equations of motion for E, we have the following
general form of the Hamiltonian constraint H[N]| =

- fdeY(x)H(x) with

H = a'(E/,0E)A; + B (E*)A;; + y'(E)OA,
+ Q(E,dE,0°E), (67)

where we have introduced the notation 0 = 9/0x, A;;.., =
AAj--- Ay, and EVF=FE/...E*. We can already
observe some preliminary restrictions on the coefficients
& (E,0E) and Q(E,dE,0EOE,0°E). Both coefficients
are initially allowed to depend on JE’ and 0°E'. But since
we only allow up to second-order derivatives in the
Hamiltonian constraint, the dependence cannot be arbitrary.
Specifically, we have

o =& (E) + ai(E)OE/,
{ 0 = O(E) + a;(E)OE' + b;;(E)OE'OE' + ¢,(E)°E".

We want the Hamiltonian density H to respect the
classical symmetries,

{Hx), 60} =
{H(x). D(y)} = ( H(x)8yy + 2H(x)5Ly),
{H(x). H()} » =2G(O(E"'D(x))8yy + 2E"' D(x)33,).

(68)
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where  G[A|=(2G)~! [dxA(x)G(x) and  D[N]=
(2G)™! [dxN(x)D(x) are the diffeomorphism and Gauss
constraints, respectively. We have introduced the shorthand
notation &}, := 0,6(x —y), and ~ means “equal” when
setting G = 0 in the final step of the calculation. These
symmetries will impose restrictions on the coefficients
|

a;, 7.y, Q in (67), telling us what a generic Hamiltonian
constraint looks like.

B. Brackets

The first bracket, { H, G}, represents the restriction to gauge-
invariant terms for any allowed H. Inserting (67), we have

{H(x).6(v)} =2G / dz[(a' +28YA))8:. + 718, (x)8); + [(o? +2BYA))6,, + 18] (x) (=A3(y)dy.)

- [(5x282 + 5;282’)(ai)Ai +
+ [(@® +2p%4A))
+ 5xza3ﬂiinj + 5xza37i8A K )( Ez( )

where we have introduced further shorthand notation 0; :=
O/OE" and 9; = 0/0(0,E"). To make the right-hand side of
the equation vanish, we need several cancellations. We can
do this by first making all functions depend on x using delta
functions and integrating over z. Then we group terms with
the same dependence on A; and derivatives of 6,, together
and demand that each grouping vanish by itself. [Different
|

(5xz82 + 5;282’
5xz + }’35/ ](x)(AZ(y)(s)z) -

+ 5;,282”)Q + 5XZ82ﬂiinj + 5x282}/iaAi](x)E3 (y)(syz
[(5&83 + 5;za3’)(ai)Ai + (5)5283 + 5frza3’ + 5fr/za3”)Q
) =0,

[

orders of derivatives on 0 may be dependent, for instance in
8y A(x) = A(y)8,, + 0yA(y)d,,. Therefore, some & can
produce terms that group with a 6.] This procedure produces
several dozens of partial differential equations which we will
list later along with those from the {H, D} bracket.

Inserting our form of H into the H — D bracket, we
obtain

(H(x).D(y)} = 2G / 425, (a + 25YA,) +7'8,)(x) (A1 ()8,)

(5):281 + 5):281 )

+ [0 (@ +28YA)) + 776 (x) (A3 ()8,
( 83 + 5)5283’)
= (8XH(x>5xy + ZH(X) xy)'

ol (@
[ )
= [(6:205 + 8,.0x)(a')A;
[ )
ol (@

Similar to how we dealt with the condition of gauge
invariance, we first integrate over z to make all functions
depend on x, and then match term by term with the right-
hand side, expanded in A; and derivatives of §,,. Again, we
obtain a few dozen partial differential equations.

We next list the partial differential equations that the
coefficients of terms in H have to obey. These equations
will completely determine the dependence on E? and E°,
leaving free functions of E' which the H — H bracket will
further restrict. These conditions then determine possible
modifications of the classical H. In the following equa-
tions, we use the differential operators D = E?0, + E30,
and é = E283 - E382.

) i + 5xzalﬂiinj + 5xzal7/iaAi + (5)6181 + 5§<z5‘1' + ‘%clzal”)(Q)](x)(_aEl (y)(syz)
+ 8o (0 + 287 A)) + 178 (x)(0A1 ()8,
i T 5xza2ﬂiinj + 5x1827i8Ai + (6XZ82 + 5;(282’ + 5;;2(92!!)(Q)](X> (Ez(y)ﬁ;z)

NA; + 6,037 A;; + 5,057 0A; + (8,,05 + 8,0y + 81,03)(0)](x)(E*(y)5}.)

1. The 'H — G bracket

For # and y' we have

@ﬂll -0 Cﬁ22 _ _2ﬂ23 Cyl =0
CﬂlZ _ _ﬂ13 CﬂB _ 2ﬁ23 Cy2 _ —73 (69)
CﬂlB :ﬂ12 Cﬂ23 _ ﬂ22 _ﬂ33 Cy3 _ 7/2.

For o' we have
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Cal =0 C'a} =0

Ca? = - C'a% = —ai’

Cad =% | Cad =P
For O we have

Cal =0 ébll =0

Caz = —dasj Cb12 = _bH

603 =a Cbn =byp

The remaining equations mix different coefficients:
E2613 - E3a2 = 551
E’cyi—E3c, =y!

2. The 'H - D bracket

For Y and y' we have

D/)vll =0 Dﬁ22 2/}22 D},l =0
[)ﬂlQ _ ﬁlZ ﬂ33 — 2ﬂ33 DJ/2 —_ ]/2 (74)
D/)v13 _ ﬁ13 DﬁZB — 2/}23 D},3 _ ]/3.
For o' we have
Da' =a [ Dal =0 [ Da)=-a) [ Da}=-a}
Da* = 2a* lA)a% = a% ba% =0 Da% =0
ba*=2a | bad =ad | D3 =0 | Dad =0
E?0% + E*a? =
(B 5
E’®3 + E*a3 = 0.
For O we have
D0=20 c1 +2(bE? +b3E) =
E2C2+E3C3—0 3C2 +2(b22E +b23 3) 0 (76)
E ay +E3ag =0 36'3 +2(b32E2 + b33E3) O,
ﬁcl =0 ﬁalzal DbH:O Db,y = —2by,
Dey=—cyq Day=0 { Dby =—by § Dbyz =—2b3;
ﬁc3 =—C3 Da3 =0 Dbm =—b13 \ Dby3 = —=2b,3.
(77)

Pl — gl
Cay, = -3
P2 —
Ca; =

o3
2= T

{Ql

—2(8E2 C3

Pl — ol
Caz = a,

3_ 20 G — 2 — B
-y —a3{ Coz =05 — 3 (70)

2 _ 3 OB — 0B 4 o
Co; = + a3.

(71)
Cb22 = —2b32 CC] =0
Cb’;3 = 2b’;2 CCQ = —C3 (72)
Cb23 = by — b33 603 = €.

E2 - Eal = 2p")
B - B =262 - (73)
Ezag — E3(x% = 2/313 + },2‘

- 8E3C2)

|
One equation mixes different coefficients:

E’a) + Elal = —y'. (78)

3. The 'H —"H bracket

Matching term by term for ‘H —'H is quite tedious,
mainly because the classical bracket {H,H} is fully
determined only after setting G =0. For example, if
there is a term f(a,f,y, Q)OE' on the left-hand side of
{H(x).H(y)} —2G(E" 0, D(x)é,, +2E" D(x)&,,) which
is not on the right-hand side, do we demand f(a,f3,7,Q) =0
or do we demand f(a,f,7,0)xG or 0G, or does
f(a,B,7, Q)OE"! combine with possible f(a,p,a, Q)x
(—E?A; + E*E,) terms to become something proportional
to G? There are about 10? terms on the left-hand side of the
‘H-H bracket, each of which has several possibilities of
respecting the symmetry (in the form of second-order
polynomial equations of «, f, y, Q). It is therefore
necessary to check whether these (10?)", n ~ 10° possibil-
ities are consistent with one another, rendering our current
strategy impractical. Luckily, we can use an alternative
strategy to find a subset of the most generic Hamiltonian by
adding “semisymmetric Gaussian” terms to the classical
Hamiltonian constraint.

C. Real vs self-dual variables

We define a semisymmetric term to be any term in a
generic Hamiltonian constraint that is allowed by the
{H,D} and {H,G} brackets. These terms are solutions
to our previous partial differential equations (69)—(78). We
define a Gaussian term to be any term that is a polynomial
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of G and 0"G, with coefficients denoted collectively as
C(E), which may depend on densitized triads and its
derivatives. Namely, for a semisymmetric Gaussian term
g(x) = g[G(x), 0"G(x), C(E(x))] we demand
{ 9(x).G(y)} = 0. (719)

{9(x). D(y)} = 2G(0g(x)dyy + 29(x)8y).

Any semisymmetric Gaussian term, g[G, 0"G, C(E)], that
we add to the classical Hamiltonian constraint H,; is
guaranteed to respect all our symmetries as shown below.
|

{HIN],

~2G

" 26

Suppose we add one semisymmetric Gaussian term
9|G, 0"G, C(E)] to the classical Hamiltonian constraint H,,

HIV = 56 [0 a9 (80)

Since H, respects all symmetries by definition and g is
built out of semisymmetric Gaussian terms,

{H[N).GIM]} = 0 (81)

is trivial. Similarly, the H — D bracket is satisfied:

DM} = 1z [ SN GIMO) (. D) + 0.2
L dxdyIY(x)M<y)(achl(x)5xy + 2H01<x)5fry + axg(x)5xy + 29()6)5;);)

drdyN ()M () (DH(x)d.y + 2H(x)3.y) = ~HIMN' = M'N] (82

because g is built out of semisymmetric Gaussian terms. The H[N] — H[M] bracket then has additional terms compared with

the classical case, given by {H, g} and {g, g}. Both terms are of the form { f, g} with some semisymmetric f and share the
property that [ dxdyN(x)M(y){f(x).g(y)} vanishes when G = 0: In

/ dxdyN (x)M (y){f(x). 9lG(v). 9"G(y). C(E)]}

Jg
oG
dg

— [ axaN M0 (170,609 G500 + (0 08600} 50 ) + 0 CUEN) s

_ / dxdyN (x)M(y) ({f(x» G(y)} 7= () + {f(x). C(E)} acigm)

oG
dg

+ [ a0, (M) 55 00 ) (9,900, (%)

the first and last terms vanish because f is semisymmetric, while dg/9C(E) =~ 0 because C(E), by definition, represents
coefficients in g of the Gauss constraint or its spatial derivatives.

With this result, we confirm that

(HIN) HIM)) = 12 [ N (MO) (M) b)) + {91003).0°G(). C(E)).61900). 0°G10). C(E))
T {Ha(0). 9190, "G3). CEN} + {g9(x). 9"G(x). C(E)]. Ha ()}

g | SN MO HAC). Ha )

obeys the classical brackets for any semisymmetric g.
Thus, semisymmetric Gaussian terms indeed preserve all
symmetries.

When written in real variables, the classical Hamiltonian
constraint contains a term with the second-order derivative
of E' ~E*, given by 20I'yE* = —0(OE*/(E*))E*. But

(84)

|
when using self-dual variables, there are no second-order
derivatives of triads. As already mentioned, this discrep-
ancy is caused by the fact that G ~ 0 is already solved in
the real variable case. Indeed, using semisymmetric terms
(see Appendix A) for constructing modifications we have
the following allowed terms when using self-dual variables:

026001-14



DEFORMED COVARIANCE IN SPHERICALLY SYMMETRIC ...

PHYS. REV. D 101, 026001 (2020)

Hy(AE) =Hu(AE) +ci(E") (ag_%a(%j));)@

+OE'[by)(E")OE' +Ca(E")(E*Ay— E*A3)],
(85)

where 0G ~ O°E' provides the second-order derivative.
Note that the second semisymmetric term (proportional to
OE") becomes a semisymmetric Gaussian term if we
pick b;; = %C‘a%.

Substituting A; = yK; +T;, ¢y = E', by, = %Ca% =1/2
in the classical Hamiltonian constraint and de-densitizing,
we obtain

Ho (K, E) =|E¥|~1/? (K%,E‘/’ +2K K, E*

EX 82 EX

1 OE*\ 2 B+
2E¢ E?

where we used the Gauss constraint in real variables. This
result matches the standard classical Hamiltonian constraint
in real variables. Thus, including semisymmetric Gaussian
terms in the quadratic constraint, it is equivalent to the
classical one written in real variables.

Revisiting the setting of the previous section, it follows
that a further restriction of our H to be only quadratic in
densitized triads implies that all allowed modifications to
the classical H; are in the form of semisymmetric Gaussian
terms:

E*OE*OE?
(B9 )
(86)

Hquad - Cl (8A3E21 - 8A2E31 + A12E12 + A13E13)

C
+ G, (A22 + Ay + F3> (E2 4 E®)
2

+ C,OE'G + Cs(A,E? + A3E®)G. (87)

The first two terms are present in H while the last two are
new semisymmetric Gaussian terms and all C; are con-
stants. However, the complexity of the general equations
makes it difficult to show that all possible modifications to
the Hamiltonian constraint up to second order in derivatives
can be constructed from semisymmetric Gaussian terms.

IV. ELIMINATING THE GAUSS CONSTRAINT

Our analysis of gravitational theories in a setting of
effective field theory has highlighted the role of the Gauss
constraint, which implies that the hypersurface-deformation
generators are not uniquely defined. Since the Gauss con-
straint contains a spatial derivative, and spatial derivatives of
this constraint can also be added to the hypersurface-
deformation generators, the derivative structure and therefore
the possibility of modifications is ambiguous as long as the

Gauss constraint remains unsolved. We will therefore now
solve the Gauss constraint explicitly and analyze the result-
ing hypersurface-deformation generators and their brackets.

A. Gauge-invariant variables

We begin with the classical constraint

1 N (2 A7 _ /
HIN] =52 / dx \/El((E2)2+(E3)2)(2E (E2AL — E3AY)

+2A,E" (A,E* + A E?)

+ (A3 +AT- (B + (E°)?)

+(e=y?) (2K, E' (K E? + K5 E3)

+ (K3 +K3)((E*)* +(E*))) (88)

in which the lapse function no longer has a density weight.
The next few transformations closely follow the derivations
given in [31], but are presented here in a different form
using vector notation.

The pairs (E%, E*) and (A, A3) [as well as (K,, K3)]
transform under the defining representation of SO(2) with
respect to the Gauss constraint. It will be convenient to
arrange them in 3-vectors, such that

E = E%2, + E3%,, (89)
A = A2, + Asés, (90)
I_é == Kzgz + K3g3 (91)

with standard basis vectors &;. Obvious invariant variables
are therefore

EY = |E| = \/(E*)? + (E°), (92)
A, = |A] = \/A} + AL, (93)
K, =|K| = /K3 + K3 (94)

Moreover, we obtain another invariant o from the angle
between E and A,

E-A

E?A,

cosSa =

(95)

While E' and K, are also invariant, A; has a nontrivial
transformation. A final gauge-invariant expression can be
written as A; + f#/, where
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é-A
Ft

@

cosff = (96)

Using our definitions of a and f, we can write the unit
vectors

€y = Ai = e, cos(f) + €5 sin(p), (97)
¢
ér = E£ = éycos(a+f) + eysin(a+ ).  (98)

From the last relation one can derive the spin-
connection component I'j = —(a + )" [31]. Therefore,
vy "(A, +d +p) =K, is nothing but an extrinsic-
curvature component. Since « and K; are gauge invariant,
A; + ' must be gauge invariant, as claimed above.

Moreover, computing the extrinsic curvature and spin
connection for a spherically symmetric triad [31] shows
that the angular part K points in the same internal direction
as the triad,

gK = EE? (99)
while the angular part of the spin connection, T, is
orthogonal,

El—' = _gl X ZE’ (100)
with coefficient

_ _(EY)

r,=- Tk (101)
see (53). Therefore,
2 =|AP =T ér +rK,éx]> =T2 + K2, (102)

The term in (88) containing spatial derivatives of the
connection can now be written as

E2AL — E°A) = &, - (E x A') = E&,(é x (A,2,)

= E?(-A},sin(a) + A,p cos(a)).

We then express connection terms through spin connection

and extrinsic curvature, using
A,sin(a) =A,éy-er =T, (103)

and
A, cos(a)

:A(pEA ‘EK :}/K(p (104)

Therefore,

E2AL — A} = E¢(—(A, sin(a)) + A, ( + ) cos(a))

— EV(-T) + 7K, (o + §). (105)

The angles in the last term can be combined with a similar
contribution from the second term in (88), which adds A to
o +p. [In (88), A, is multiplied with A,E? + AJE> =
A-E= yK,E?, which does not depend on I';, because
ér-ep=0.]Sinced +pf =-T'[31]and A, - T} = yK|,
we have

E2A, — B3y + A (AE? + AyE®) = E¢(-T), + 7°K K.

(106)

Thus, by using variables invariant under transformations
generated by the Gauss constraint, we have been led to an
expression in which all spatial derivatives of the connection
have been replaced by spatial derivatives of the triad
(through I")).

Again in [31], the Poisson brackets

{K,(x), E?(y)} = G5(x,y),

{Ky(x). E'(y)} = 2G5(x.y) (107)

for the new gauge-invariant variables have been derived. If
we express the diffeomorphism and Hamiltonian con-
straints in these variables, we restrict the previous theory
to the solution space of the Gauss constraint. We obtain

D[N*] = /dex 2E”’K’ K (EYY) (108)
and

2G/dx— (KZE?(e — y*) + 2¢K K| E'

+(T2 +y?K2 — 1)E? —2E'T,). (109)

B. Modified constraint with classical brackets

In the Hamiltonian constraint, the two terms with y>K2
cancel out, showing that, for ¢ = —1, we obtain the
Hamiltonian constraint as considered in [31]. Our calcu-
lation here extends this result to the Euclidean signature,
€ = 1. Since all y-dependent terms drop out of the final
expression, it is no longer clear why y?> = ¢ should lead to
different options for modified constraints. Nevertheless, the
previous distinction between y> = € and y? # € can still be
realized if we do not cancel the y-dependent terms in (109)
before we try to modify the constraint. In particular, the
previous modification, using an arbitrary function of
f(A3 + A3 — 1), can still be implemented in the invariant
version if we recognize the combination Fé +7’K Z, —1las
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the correct substitute of A3 + A3 —1 = A7 — 1. We there-
fore consider the modified constraint

2G/dx— (KZE?(e —y*) + 2eK K | E'

+f(T5, 4+ P’ K, — 1)E¥ = 2E'T,). (110)
Given the form of this new constraint, it is not obvious that
it can lead to closed brackets for f not the identity because,

- K5 (x). (E7)'}

compared with our previous derivation, we now have up to
second-order spatial derivatives of the triad (through I"))
instead of first-order derivatives of its momenta.

Thanks to antisymmetry of the Poisson bracket, the
only terms that give nonzero contributions to By, :=
{H[N],H[M]} are combinations of a term from H[N]
depending on one of the K; and a term from H[M]
depending on a (first or second order) spatial derivative
of one of the E;, or vice versa. Therefore,

E'(y)E' (y)'E”(x)
(E*(y))?

1 NeOMG) (o
Buu =462 | &y VE'(x)E'(y) < (
1 X 1 1 !
~26(K, (0. /()}y () =)
_ {f» E(p(y)/} E(p(x()gq’((}):))fz‘ (y)/+2€
1
+ 26K, (x) 5«)8 ; {Ki(x), E'"(»)"}E" (x)) =

Integrating by parts, we obtain

(N < M).

—2eK,,(x){K,(x), E'(y)'}

K, (x){K:(x). fTE' (x) E*(y)

(111)

Byy = — [ denpr’ (2(e—=y*)K (EY (E') +4eK ,(E?) £
NM_4G €y ? ge €(Ega)2 Ry (E(/’)2
E' E'(E?)  Of (E') of

— _— FeK' — — @ —
4€(E<”)2E K, —4¢eK,, &7 ok, & 4eK ,E 8(El)’) (N < M)
1
dx—— £ s(NM'—N'M)(2E*K], — K/ (E"))

2G (E?)?

(') of (E'Y

1
— NM' —N'M)| 2(e —y*)K
+36 [ axovmr = (e -k, T+

El
——eD [ _(NM

oy VM- N’M)]

For a closed bracket, therefore,

EY) of (E') of

2(e=y*)K ( —4eK E?———=0. (113
(=7 0K g ok, B e Ty (113)
Since f depends on K, and (E') only through

Y(EV)?/(E?)* + y*K2 — 1, the chain rule implies that
of . of 1 .
=27’K d = EYf, (114
aK(p }/ (/Jf an a(Eq)/ 2(E¢)2( )f ( )
and (113) is equivalent to
(E") .
2(6—)/2)1((/, 7 (1-f)=0. (115)

n % / dx(NM’' = N'M) (2(6 -r)K

f
— P
oK, g HKE 8(E1)’>

(E")
@ E?

of (EY)
9K, E’

+ —4eK E”

of
a(El)'>' (112)

|

If y?> = ¢, the equation holds identically for any f. If y?> # €,
however, f = 1, and only the classical case is allowed. The
modification found in [21] can therefore be found also in
gauge-invariant variables, in which case the Hamiltonian
constraint contains second-order derivatives of the triad,
with the same restriction that it is allowed only for a
specific value of y.

C. Modified brackets

A generic modification which does not require a specific
value of y can be obtained for the theories considered here,
as has been known for some time for real variables [1,5].
Since the Hamiltonian constraint in real variables has the
same form as the general spherically symmetric constraint
in gauge-invariant variables, the same modification can be
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transferred also to self-dual type variables (y*> =€) pro-
vided we implement it at the gauge-invariant level. At the
level of variables that are not gauge invariant, this new
modification (compared with [21]) is possible provided we
use the Gauss constraint to reintroduce second-order
derivatives of triads in the Hamiltonian constraint.

Starting with (109), the new modification is derived in a
way very similar to the case of real variables, found in [1].
Nevertheless, we reproduce the calculation of brackets here
for the sake of completeness. We modify (109) to

HIN) = 5, [ AN (B e, e

+2ef(K,)E'K, + (ﬂ - 1>E‘/’

4(Ev)?
E](El)” E](E])/(E(p)/
LT > (116)

with two functions, f and f,, that will be restricted further
by the condition of having closed brackets. We first
interpret this modification based on arguments within
canonical effective field theory. We are now allowing for
a nonquadratic dependence of the Hamiltonian constraint
on K, If K, is still a first-order time derivative, a
nonquadratic dependence would be nongeneric unless
we also allow for higher-order spatial derivatives of the
densitized triad, which we do not do in (116).

However, modifying the Hamiltonian constraint in this
form also modifies the equations of motion that classically
imply the first-order nature of K,. An analysis of these
modified equations of motion should then be performed in
order to reveal the derivative order of the Hamiltonian
constraint. Schematically, we obtain the modified deriva-
tive dependence of K, from the equation of motion

E' =2NVE'fy(K,)+ N'(E"Y, (117)
dfz(K NE? df\(K,)
E* = NVE'K = ‘
"4k, VB dK,
+ (N'E®Y, (118)

provided we can invert the function f,. This can explicitly be
done only in examples, which we restrict here to the common

case of fi(K,)=sin?(K,), which implies f(K,)=

sin(K,,)cos(K,,) or f»(K,)*=f1(K,)(1-f1(K,)). The lat-
ter equation can be solved for

F1(Kp) =5 (1% /1= 4£2(K,)?)

= fZ(K(p)z +f2(1<(/7)4 +e

According to (117), f,(K,) is strictly of first order in
derivatives, but f,(K,) is not polynomial in f,(K,), and
therefore a derivative expansion of f(K,) does not termi-
nate. Similarly,

df>(K,)
dK

(119)

= cos(2K,) = 1 =2f(K,) = /1 - f2(K,)?

(120)

@

has a derivative expansion that does not terminate. Therefore,
K, has a nonterminating derivative expansion because

1= f2(K
We conclude that the constraint (116) contains a deriva-
tive expansion in both space and time derivatives, which
can consistently be truncated at any finite derivative order.
The resulting effective theory is therefore meaningful, but it
may not be the most general one because the derivative
expansion results only from the K-dependent terms in (116)
while we have not included higher-derivative corrections of
the E-dependent terms. (Higher spatial derivatives may be
expected from an expansion of nonlocal holonomies used
in the Hamiltonian constraints for models of loop quantum
gravity; see for instance [32,33]. However, it is difficult to
find consistent constraint brackets with such modifications
[5].) The mismatch does not violate (deformed) covariance
because the constraint brackets still close. However, unless
the symmetries implied by the closed constraints select
only this specific derivative structure, the modified theory
is not generic. (It resembles Born-Infeld type theories.)
Since no other consistent modifications are known as of
now, it remains unclear whether the apparently nongeneric
model is selected by symmetries.
In order to confirm that the constraint brackets can be
closed, we compute

g,,)2 must be of first order according to (117).

!
el /

—26‘

{HIN].H JEWED)

(W) E (y)E () K1 (x)
(E)(y)

p(X)E' (x)

— (N < M),

{f2(K

E'(y)
E?(y)

+2ef>(K {Ki(x), E'

(E)(y)

p(X).E?(y)'} +e€

M( ) (_6 E?(x)E'(y)E'(y)
)

()"} = 2ef>(K, (x

{f1(Ky(x)), E7(y)'}

f2(K,(x))E' (x)

TGy ) (E )P
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writing only terms that produce nonzero contributions. All
terms are multiplied with €, and therefore the possibility of
modifications does not depend on the spacetime signature.

The first two lines contain Poisson brackets of f}(K,)
and f,(K,) and therefore lead to derivatives of the
modification functions:

LEWOEOED) (0 (k). E2(y)'}

G (E")()
_EPWE'0E' () df1(K,) ) o
o (E7) dK, 9,6(x, ) (122)

and

2E'(0)E'(Y)E"(»)K (%)

{f2(Ky(x)), E7()'}

G (E7)*(y)
_ L E'WE(Y)E (y)'K, (x) df2(K,)
=2 (E*)2(y) 1 ;K(p 9y6(x,y). (123)

Another derivative of f,(K,) results from the second-order
derivative of the delta function obtained after evaluating
{K/,(E")"} in the fourth line of (121). This contribution
follows from

E'(x)E'(y) "
W{Kl(x)’El(y) }

E'(x)E'(y)
E?(y)

2/>(K,(x))

= 4f,(K,(x)) 036(x. y). (124)

Upon integrating by parts twice in the resulting expres-
sion in (121), we initially produce a term with N(x)M (y)”
times a delta function without derivatives. Integrating over
v, the delta function is eliminated, and we can integrate by
parts once again to obtain a term with N’M’ (which cancels
out in the antisymmetric bracket) and a term with NM’
times the derivative of the entire coefficient in (124):

_4(}02(&))%)'
e e i)

(125)

The last term [containing (E?)’] cancels out with the fifth
line of (121), while only half the second term cancels out
with the third line of (121), for any f,. In order for the
remaining terms to be proportional to the diffeomorphism
constraint, only expressions proportional to K; or Kj, can
remain. Therefore, the other half of the second term in
(125) must cancel out with (122), which requires

1A (K,

fZ(K(/)) _2 dK
7

(126)

Only two terms are then left, (123) and the first contribution
in (125). They are both proportional to df,(K,)/dK, and
combine to form the diffeomorphism constraint

{H[N].H[M]}
€ 1
=5 [N, 5) )22—2)(2@@—& (E'Y)= (N < M)
——eD {(V(;({m(;)z (NM'=N'M)|. (127)

This modification, following [1,5], differs from the
modification of [21] in that it modifies not only the
constraints but also their brackets (while the latter remain
closed). It therefore implies a new, nonclassical spacetime
structure [12,13]. This modification is consistent for all y
and is therefore generic. From this perspective, the modi-
fication of [21], which preserves the brackets, requires
y?> = € and is not generic; it does not provide a way to avoid
nonclassical spacetime structures without fine-tuning. Our
derivations have shown that the different outcomes of [21]
versus [1,5] are not a consequence of working with self-
dual connections (used in [21]) or real variables (used in
[1,5]). The crucial difference is that modified constraints
with unmodified brackets, as in [21], can be obtained only
for specific y, while modifications of constraints as well as
brackets exist for all y.

V. CONCLUSION

We have shown that deformations of the classical space-
time structure appear generically in spherically symmetric
models of loop quantum gravity. For self-dual variables or
Euclidean gravity with y = 1, we have derived the most
general form of the quadratic Hamiltonian constraint free of
triad derivatives, such that a system with unmodified closed
brackets is obtained. This rigidity result, just as the setting of
[21] which it generalizes, relies on the absence of derivative
terms of the triad. However, from the point of view of an
effective field theory, this result is not generic because it
depends on a restriction of derivative terms even within the
classical structure of second-order derivatives. Moreover,
this rigidity result can be obtained only for specific values of
the Barbero-Immirzi parameter y.

The results of [21] have sometimes been interpreted
as saying that deformations arising in the hypersurface-
deformation brackets, obtained originally using holonomy
modifications in real-valued variables, might be avoided in
the self-dual case. Self-dual variables represent a specific
choice for the Immirzi parameter, and therefore do not
lead to generic results. These variables (or the values of y
they correspond to) are not distinguished intrinsically by
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symmetries because constraint brackets, which define the
symmetries of a canonical theory, can be closed for any y.
Moreover, we have shown that the possibility of mod-
ifications, even within a self-dual setting, formally depends
on the derivative structure which can be changed by adding
multiples of the Gauss constraint or its spatial derivatives to
the Hamiltonian constraint. This ambiguity can be elimi-
nated by solving the Gauss constraint explicitly, following
[31], in which case the same derivative structure is obtained
in self-dual type variables and in real variables, which
agrees with the form originally used in an analysis of
modified brackets [1,5]. We therefore conclude that modi-
fied brackets and nonclassical spacetime structures are
generic in any spherically symmetric model with holonomy
modifications, even for self-dual variables. We also pointed
out that currently known modifications may not be generic
from the point of view of canonical effective theory
introduced here: After translating momenta into time
derivatives, different derivative orders appear in the terms
of a modified Hamiltonian constraint. This observation
suggests that there is room for further explorations of
possibly new models. A likely candidate for a generic
extension is the inclusion of canonical quantum back-
reaction effects [34—36], which in an action formulation
provide higher-curvature terms with generic higher deriv-
atives. However, quantum backreaction on its own does not
modify the hypersurface-deformation brackets of con-
straints [37] and is therefore unlikely to change our
conclusions about modified spacetime structures.
Euclidean and self-dual type variables are special also in
an analysis of cosmological perturbations [38,39], in which
case nongeneric modifications of constraint brackets have
been observed as well. Our results present useful indica-
tions for operator calculations [40—46] which have

demonstrated the possibility of off-shell closure of com-
mutators of constraint operators, mainly in the Euclidean
case. So far, these investigations have not yet given rise to
indications that the commutators of constraint operators
may be modified, in contrast to effective derivations as well
as the operator constructions in [6,47]. (However, it is not
always clear how to read off modifications of structure
functions in the operator setting, which should be some
function of a spatial metric or densitized triad and therefore
requires a suitable notion of states of a semiclassical
geometry which does not yet exist in the operator formu-
lation.) Our results show that the Euclidean setting is, in
fact, inconclusive as regards modifications of structure
functions because it is a nongeneric case that allows closed
brackets with and without modifications. Current effective
and operator treatments are therefore consistent with one
another. For a complete picture of spacetime structures in
loop quantum gravity, it will be important to extend off-
shell operator calculations to the full Lorentzian constraint.
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APPENDIX A: RESTRICTIONS ON COEFFICIENTS OF SEMISYMMETRIC GAUSSIAN TERMS

We list the solutions to partial differential equations resulting from the -G and H-D brackets. These will give us the
so-called semisymmetric Gaussian terms. Denoting (E*)? = E?*> + E33, for ' we have

ﬂll — ﬂll(El)
B> = E*Cy(E") + E*C4(E")
BB = E3C4(E") — E>C4(E")

For y' we have

B = 1/2[-8Cyp (E")E® + (Cs(E") + Cys (E"))E? + (Cx(E') — Cys (E")) E®)]
B =1/2[8Cys (E")E® + (Cy(E") + Cps(E"))E® + (C(E") — Cps (E")) E??]
ﬂ23 = 6/323 (EI)E23 + 2<E22 - EBS)CﬂB (El)
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' =r"(E")
7= E3Cy(El) + EZCJ/(EI)
y* = E*C,(E") — E*C,(E")
For a' we have
al = C,(EV)E®
@ = (Co(E")E® + Co(E")E*)E”
@ = (—C4(E")E* + C4(E")E®)E?
al = al(E") . _
) a3 = (—C(E"E® + Cg(E")E®)
a%:E3C%(E)+E2Cz( ) 3 ; 21 2,7 21 22\ _1
oy = o2 EYE —|—C2 EYHE 7
@} = BCa(E") - BCa(E") Z ( é( ) | C( E e
> = a; = (—Cp(E")E™ +
ay = (B2Cy(E") + ECpy (E")) (o 2 ( ] :( 1) - i 1) ”)
_ = (-Cp(E")E E')E-
(1% _ (—E C, (El)—l—E%C (El))(Ellﬂz 45} ( a%( ) ( ) )
For Q we have
0 = (E*)*Cy(E!
Q ( ) Q( ) C] — C](El) bll _ bll(E])
1
a; = E*C, (E") E 1 1) 2 3 1 1
e (g ¢ =g Cu(EY)  { by = (= 1(E)E*/2 + E°Cy(EY)) e,
a2:—Ca E
) c3 = _%Ck(El) biy = (—ci1(E")E*/2 = E*C,(E")) oy
az = Erﬂ az<E)

by, = (E¥*Cy,,(E') = 3ECi(E")) Eizy
by, = (E*C,,(E') + 3E¥C(E")) Gy
by = [ CL(E")(E? — E¥) — E*C,,,,(E")] i

We also have mixing conditions

Ck(El):_yl(E]):Caé(El) Cl( ) _2ﬁ11( )
B ~Ca(E) = 28,(81) - G, (B').
e 211 Coa(EY) = 2C4(E") + €, (EY)
Cp,(E") = =3Cu(E") ’

APPENDIX B: SOME USEFUL IDENTITIES

In calculating the {H[N(x)], H[M(x)]} bracket, we can often make use of antisymmetry and integration by parts to
simplify our calculations. Suppose we have only one canonical pair; then typically we have

HIN (x)] N/de(X)P -+ f(E(x), K(x)n(x) + -, (B1)

where n(x) is a function of phase-space variables depending on x. Plugging this form of the Hamiltonian into the Poission
bracket we obtain the nontrivial term
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{HIN(X)), H[M(x)]} 3 /dxdy{N(X)M(y)[n(X){f(E(XLK(X))ﬁﬁE(y)}m(y)] - (N o M)}

(B2)

Denote f(x) = df (E(x). K(x))/0K(x), and KI(\',T,L for the above integral term [including the (N <> M)], then for n = 1 we

have

Ky = - / XM (X)N(x) = N’ (x)M (x)]n(x)m(x) f (x). (B3)

For n = 2 we have

K = / dx[M'(x)N(x) = N'(x)M (x)][n(x) f (x)m' (x) = m(x) (n(x) f (x))]-
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