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Different versions of consistent canonical realizations of hypersurface deformations of spherically

symmetric spacetimes have been derived in models of loop quantum gravity, modifying the classical

dynamics and sometimes also the structure of spacetime. Based on a canonical version of effective field

theory, this paper provides a unified treatment, showing that modified spacetime structures are generic in

this setting. The special case of Euclidean gravity demonstrates agreement also with existing operator

calculations.
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I. INTRODUCTION

Several independent studies have shown that holonomy

and inverse-triad corrections from loop quantum gravity

(LQG) modify hypersurface-deformation brackets for

spherically symmetric gravity and related midisuperspace

models [1–10], thereby realizing a deformation of general

covariance [11–14]. These modifications are closely

related [15] to anomaly-free models of perturbative

cosmological inhomogeneity constructed within the same

framework [16–20], suggesting that modified spacetime

structures may be a generic consequence of quantum-

geometry effects in loop quantum gravity. In [21] (see

also [22]), however, it has been shown that such

modifications may be avoided if one uses self-dual

connections and a densitized lapse function, as in [23–

25], instead of real variables [26]. These models, valid

for self-dual Lorentzian gravity with Barbero-Immirzi

parameter γ ¼ �i or Euclidean gravity with Barbero-

Immirzi parameter γ ¼ �1, are rather special because the

Hamiltonian constraint simplifies considerably compared

with general γ. It is therefore of interest to compare the

structures encountered in various models in order to

determine whether undeformed spacetime structures

could be realized more broadly.

Such a comparison is not obvious, for instance because

the modifications considered in [21] are different from

those found in anomaly-free models using real variables.

In particular, those modifications cannot be implemented

in an anomaly-free manner for arbitrary choices of the

Barbero-Immirzi parameter: We will show that the

classical form of the constraint brackets can be retained

only with a specific class of holonomy modifications for

γ ¼ �i (self-dual Lorentzian gravity) or γ ¼ �1 (a

special version of Euclidean gravity). More general

treatments of the self-dual or Euclidean case, imple-

mented in close analogy with the real connection for-

mulation, lead to either anomalies or deformations of the

spacetime structure. This result then allows us to draw

conclusions about properties of the Hamiltonian con-

straint required for certain types of modifications to be

consistent.

At a technical level, an analysis of the Hamiltonian

constraint and its Poisson brackets indicates a formal

relationship between modifications of spacetime structures

and the appearance of spatial derivatives of the densitized

triads (canonically conjugate to the connection). Spatial

derivatives of the triad generically appear in the

Hamiltonian constraints of gravitational theories because
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they are required for curvature components. But for

γ2 ¼ �1, and only in this case, they are completely

absorbed in the connection components through the spin

connection which, in combination with extrinsic-curvature

components, forms the Ashtekar connection in the self-dual

case [23], or the Ashtekar-Barbero connection in the real

case [26].

This structural statement allows us to draw a first

conclusion about the genericness of modified spacetime

structures. Using standard arguments from effective field

theory (generalized here to a canonical setting), modified

brackets should be considered generic, unless one can

show that the full quantum theory has a symmetry that

protects the derivative structure of terms in the

Hamiltonian constraint as encountered for self-dual var-

iables, or more generally for γ2 ¼ �1. No such symmetry

is known. Although it has been shown that the real

Ashtekar-Barbero connection, unlike the self-dual one,

cannot be identified with the pullback of a spacetime

connection, this result is of an “aesthetic nature” [27] and

does not characterize the case of γ2 ¼ �1 via a physical

symmetry that could restrict possible quantum correc-

tions. Moreover, applying this result in the present

context would amount to presupposing the classical

spacetime structure in a model of quantum gravity. In

canonical quantum gravity, the structure of spacetime is

determined intrinsically, based on the observation that

spacetime symmetries of a gravitational theory are gauge

transformations, generated in Hamiltonian form by the

constraints that are to be quantized in order to define

canonical quantum gravity. Poisson brackets of these

constraints, or commutators of their operator versions,

then encode the structure of spacetime. An analysis of

possible consistent modifications of these brackets, such

that they remain closed but possibly with nonclassical

structure functions, shows whether the symmetries remain

unviolated after quantization. As we will see, such

modifications with intact (but possibly deformed) sym-

metry exist for any value of γ. Therefore, no value of γ is

distinguished by the presence of a symmetry.

In this work, we will mainly focus on an interpretation of

the constraints as representing Euclidean gravity. We will

then be exempt from having to consider a possible role of

reality conditions, the implementation of which remains

poorly understood in a quantum theory of self-dual

variables. However, as the constraints are formally identical

in Euclidean gravity with γ ¼ �1 and self-dual Lorentzian

gravity, our results can formally be used also in the

latter case.

II. UNSOLVED GAUSS CONSTRAINT

The model considered in [21], following [24], consists of

three canonical pairs of fields—AiðxÞ and EiðxÞ for i ¼ 1,

2, 3 depending on the radial coordinate x of a spherically

symmetric manifold—subject to three constraints. Two of

the constraints function as generators of hypersurface

deformations in spacetime and therefore encode the struc-

ture of spacetime. The third one, a Gauss constraint,

implements an internal symmetry of SOð2Þ rotations of

two of the canonical pairs.

While the form of the Gauss constraint and the spatial

generator of hypersurface deformations (the diffeomor-

phism constraint) is strictly determined by the canonical

structure together with the corresponding Lie algebras of

infinitesimal rotations and one-dimensional diffeomor-

phisms, respectively, there is much freedom in specifying

the normal generator of hypersurface deformations, or the

Hamiltonian constraint, even if the physical dynamics is

fixed. The version used in [21,24] is rather special in that it

is quadratic in the canonical fields and does not contain

spatial derivatives of Ei (while first-order spatial derivatives

of Ai do appear). In the first part of this section we will

strengthen the result of [21] by showing that the consistent

deformation found in this paper is unique within a family of

models that preserve the quadratic nature and derivative

structure of the Hamiltonian constraint. In the second part

of this section, however, we will show that this rigidity is

not stable within a larger class of models that determine the

same classical dynamics but do not respect the restricted

derivative structure (parametrized by the so-called Barbero-

Immirzi parameter γ [26,28]). The following sections will

then place our discussion in a setting of effective field

theory and highlight the role played by the Gauss

constraint.

A. Regaining the quadratic Hamiltonian constraint

In order to derive our rigidity result, we start from the

condition that the Poisson brackets of constraints are closed

and see what kind of restrictions it imposes on the form of

constraints. The specific procedure follows the classical

(and classic) result [29] that the full Hamiltonian constraint,

up to second order in derivatives, can be regained uniquely

from the classical hypersurface-deformation brackets, as

specified in [30]. This procedure has already been applied

to spherically symmetric models in [11], but only for

modifications of the dependence of the Hamiltonian con-

straint on the triad variables Ei. Our calculations here differ

from [11] in that we use connection variables Ai and take

into account potential modifications of the dependence on

these variables.

As already indicated, we assume for now that the

Hamiltonian constraint is quadratic in the canonical fields

without spatial derivatives of the triad Ei. This version of

the constraint is realized in spherically symmetric gravity if

one uses self-dual connection variables [23] in Lorentzian

signature, or real Barbero-type variables [26] in Euclidean

signature such that the Barbero-Immirzi parameter is equal

to γ ¼ �1. (One should also smear the Hamiltonian

constraint with a lapse function of density weight minus

one to guarantee the quadratic nature.) This parameter is
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therefore fixed and does not appear in the remainder of this

subsection. Working with

fA1ðxÞ; E1ðyÞg ¼ 2Gδðx; yÞ ð1Þ

and

fA2ðxÞ; E2ðyÞg ¼ Gδðx; yÞ;
fA3ðxÞ; E3ðyÞg ¼ Gδðx; yÞ ð2Þ

while all other brackets of basic variables vanish. [Note the

missing factor of 2 in the last two brackets, compared with

(1), which is a consequence of the fact that ðA2; E
2Þ and

ðA3; E
3Þ encode the same degree of freedom after the Gauss

constraint is implemented.]

fA1ðxÞ; E1ðyÞg ¼ 2fA2=3ðxÞ; E2=3ðyÞg ¼ 2δðx; yÞ: ð3Þ

This canonical structure completely determines the Gauss

constraint

G½Λ� ¼ 1

2G

Z

dxΛððE1Þ0 − 2E2A3 þ 2E3A2Þ ð4Þ

and the diffeomorphism constraint

D½M� ¼ 1

2G

Z

dxMð2A0
3E

3 þ 2A0
2E

2 − A1ðE1Þ0Þ ð5Þ

but not the Hamiltonian constraint. Sometimes, it is

convenient to combine the diffeomorphism constraint

D½M� and the Gauss constraint G½Λ� to form the vector

constraint

V½M� ¼D½M�þG½A1M�

¼ 1

G

Z

dxMððA0
3þA1A2ÞE3þðA0

2−A1A3ÞE2Þ: ð6Þ

We will now use these constraints and attempt to

derive the most general form of the Hamiltonian constraint,

purely quadratic in the canonical fields and with up to

first derivatives of Ai but no derivatives of Ei, such that

all constraints have closed Poisson brackets. With

this assumption, we can write the local (unsmeared)

constraint as

H ¼ H110E1E2 þH101E1E3 þH011E2E3

þH200ðE1Þ2 þH020ðE2Þ2 þH002ðE3Þ2; ð7Þ

where we use the convention that H½N� ¼
ð2GÞ−1

R

dxNðxÞH, Hijk may be functions of A1, A2, A3

and their spatial derivatives up to first order.

1. Diffeomorphism constraint

We first consider the bracket of the Hamiltonian and

diffeomorphism constraints, writing it in local form as

fHðxÞ;DðyÞg¼G

Z

dz

�

2
δHðxÞ
δA1ðzÞ

δDðyÞ
δE1ðzÞ−2

δHðxÞ
δE1ðzÞ

δDðyÞ
δA1ðzÞ

þ δHðxÞ
δA2ðzÞ

δDðyÞ
δE2ðzÞ−

δHðxÞ
δE2ðzÞ

δDðyÞ
δA2ðzÞ

þ δHðxÞ
δA3ðzÞ

δDðyÞ
δE3ðzÞ−

δHðxÞ
δE3ðzÞ

δDðyÞ
δA3ðzÞ

�

; ð8Þ

where D½M� ¼ ð2GÞ−1
R

dxMðxÞDðxÞ. If this bracket is to
correspond to classical hypersurface deformations, it

should be equal to

fHðxÞ;DðyÞg ¼ 2GðH0ðxÞδðx; yÞ þ 2HðxÞδ0ðx; yÞÞ; ð9Þ

using the convention that a prime on a delta function always

indicates a derivative with respect to the first argument.

Therefore,

δ0ðx; yÞ ¼ −δ0ðy; xÞ: ð10Þ

If the bracket is of the given form, the smeared constraints

have the bracket

fH½N
∼
�; D½M�g ¼ 1

4G2

Z

dxdyN
∼
ðxÞMðyÞfHðxÞ;DðyÞg

¼ 1

2G

Z

dxdyN
∼
ðxÞMðyÞðð∂xHðxÞÞδðx; yÞ

− 2HðxÞ∂yδðx; yÞÞ
¼ −H½ðN

∼
MÞ0� þ 2H½N

∼
M0�

¼ −H½MN
∼

0 −M0N
∼
� ð11Þ

as required if N
∼

has density weight minus one for the

purpose of having a quadratic Hamiltonian constraint.

We proceed by evaluating the Poisson bracket.

Considering the assumed dependence (7) of H on the

canonical variables, we have
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fHðxÞ;DðyÞg ¼ 2G

Z

dz

��

∂HðxÞ
∂A1ðzÞ

δðx; zÞ þ ∂HðxÞ
A0
1ðzÞ

δ0ðx; zÞ
�

ð−A1ðyÞδ0ðy; zÞÞ −
∂HðxÞ
∂E1ðzÞ δðx; zÞð−ðE

1Þ0ðyÞδðy; zÞÞ

þ
�

∂HðxÞ
∂A2ðzÞ

δðx; zÞ þ ∂HðxÞ
A0
2ðzÞ

δ0ðx; zÞ
�

A0
2ðyÞδðy; zÞ −

∂HðxÞ
∂E2ðzÞ δðx; zÞE

2ðyÞδ0ðy; zÞ

þ
�

∂HðxÞ
∂A3ðzÞ

δðx; zÞ þ ∂HðxÞ
A0
3ðzÞ

δ0ðx; zÞ
�

A0
3ðyÞδðy; zÞ −

∂HðxÞ
∂E3ðzÞ δðx; zÞE

3ðyÞδ0ðy; zÞÞ

¼ 2G

�

∂HðxÞ
∂A2ðxÞ

A0
2ðxÞ þ

∂HðxÞ
∂A3ðxÞ

A0
3ðxÞ þ

∂HðxÞ
∂E1ðxÞ ðE

1Þ0ðxÞ
�

δðx; yÞ

−

�

∂HðxÞ
∂A1ðxÞ

A1ðyÞ þ
∂HðxÞ
∂E2ðxÞE

2ðyÞ þ ∂HðxÞ
∂E3ðxÞE

3ðyÞ þ ∂HðxÞ
∂A0

2ðxÞ
A0
2ðyÞ þ

∂HðxÞ
∂A0

3ðxÞ
A0
3ðyÞ

�

δ0ðy; xÞ

−

Z

dz
∂HðxÞ
∂A0

1ðzÞ
A1ðyÞδ0ðx; zÞδ0ðy; zÞ; ð12Þ

where we used (10).

The last term has a product of two derivatives of delta functions, which does not occur in (9). Integrating by parts can

remove one of the derivatives, but it also gives a second-order derivative of a delta function which does not appear either in

(9). The term, therefore, must be zero, so that we already know thatH cannot depend on A0
1. In order to bring the remaining

terms to a form close to (9), we use the identity

AðxÞBðyÞδ0ðy; xÞ ¼ AðxÞ∂yðBðyÞδðy; xÞÞ − AðxÞB0ðyÞδðx; yÞ
¼ AðxÞ∂yðBðxÞδðy; xÞÞ − AðxÞB0ðxÞδðx; yÞ
¼ AðxÞBðxÞδ0ðy; xÞ − AðxÞB0ðxÞδðx; yÞ ð13Þ

and write

fHðxÞ;DðyÞg ¼ 2G

�

∂HðxÞ
∂A1ðxÞ

A0
1ðxÞ þ

∂HðxÞ
∂A2ðxÞ

A0
2ðxÞ þ

∂HðxÞ
∂A3ðxÞ

A0
3ðxÞ þ

∂HðxÞ
∂A0

2ðxÞ
A00
2ðxÞ þ

∂HðxÞ
∂A0

3ðxÞ
A00
3ðxÞ

þ ∂HðxÞ
∂E1ðxÞ ðE

1Þ0ðxÞ þ ∂HðxÞ
∂E2ðxÞ ðE

2Þ0ðxÞ þ ∂HðxÞ
∂E3ðxÞ ðE

3Þ0ðxÞ
�

δðx; yÞ

þ 2G

�

∂HðxÞ
∂A1ðxÞ

A1ðxÞ þ
∂HðxÞ
∂A0

2ðxÞ
A0
2ðxÞ þ

∂HðxÞ
∂A0

3ðxÞ
A0
3ðxÞ þ

∂HðxÞ
∂E2ðxÞE

2ðxÞ þ ∂HðxÞ
∂E3ðxÞE

3ðxÞ
�

δ0ðx; yÞ: ð14Þ

Since H does not depend on A0
1, the first parentheses (multiplied by a delta function) are equal to H0 without any further

restriction on the dependence on other canonical variables. In order to evaluate the second parentheses, which according to

(9) should equal 4GH, we use the quadratic form (7) and obtain the condition

∂HðxÞ
∂A1ðxÞ

A1ðxÞ þ
∂HðxÞ
∂A0

2ðxÞ
A0
2ðxÞ þ

∂HðxÞ
∂A0

3ðxÞ
A0
3ðxÞ þH110E1E2 þH101E1E3 þ 2H011E2E3 þ 2H020ðE2Þ2 þ 2H002ðE3Þ2

¼ 2ðH110E1E2 þH101E1E3 þH011E2E3 þH020ðE2Þ2 þH002ðE3Þ2Þ ð15Þ

or

∂HðxÞ
∂A1ðxÞ

A1ðxÞ þ
∂HðxÞ
∂A0

2ðxÞ
A0
2ðxÞ þ

∂HðxÞ
∂A0

3ðxÞ
A0
3ðxÞ ¼ H110E1E2 þH101E1E3 þ 2H200ðE1Þ2

after some cancellations. Comparing coefficients of EiEj in this equation, we obtain
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∂H110

∂A1

A1 þ
∂H110

∂A0
2

A0
2 þ

∂H110

∂A0
3

A0
3 ¼ H110; ð16Þ

∂H101

∂A1

A1 þ
∂H101

∂A0
2

A0
2 þ

∂H101

∂A0
3

A0
3 ¼ H101; ð17Þ

∂H011

∂A1

A1 þ
∂H011

∂A0
2

A0
2 þ

∂H011

∂A0
3

A0
3 ¼ 0; ð18Þ

∂H200

∂A1

A1 þ
∂H200

∂A0
2

A0
2 þ

∂H200

∂A0
3

A0
3 ¼ 2H200; ð19Þ

∂H020

∂A1

A1 þ
∂H020

∂A0
2

A0
2 þ

∂H020

∂A0
3

A0
3 ¼ 0; ð20Þ

∂H002

∂A1

A1 þ
∂H002

∂A0
2

A0
2 þ

∂H002

∂A0
3

A0
3 ¼ 0: ð21Þ

If we assume polynomial dependence of H on the con-

nection variables, we can conclude that the coefficients

H110 and H101 must be linear in A1, A
0
2, and A

0
3, while H

200

must be quadratic in these variables. The coefficients H011,

H020, and H002 cannot depend on A1, A
0
2, or A

0
3.

2. Bracket of Hamiltonian constraints

The Poisson bracket of two Hamiltonian constraints can

be computed in a similar way. Classically, we expect

fHðxÞ;HðyÞg ¼ 2GðE1ðxÞ2VðxÞδ0ðy; xÞ
−E1ðyÞ2VðyÞδ0ðx; yÞÞ ð22Þ

with the local vector constraint VðxÞ such that V½M� ¼
ð2GÞ−1

R

dxMðxÞVðxÞ. If the spacetime structure is

deformed, the bracket ismultiplied by a nonconstant function

β which, for a comparison with [21], we assume to depend

only on theAi. (This function should approach β ¼ 1 in some

classical limit, usually for small Ai.) After using (7) and

comparing coefficients of EiEj, we obtain the equations

2

�

−2
∂H110

∂A0
1

H200 −
∂H200

∂A0
1

H110

�

−
∂H110

∂A0
2

H110

− 2
∂H200

∂A0
2

H020 −
∂H110

∂A0
3

H101 −
∂H200

∂A0
3

H011

¼ 4βðA0
2 − A1A3Þ; ð23Þ

2

�

−2
∂H101

∂A0
1

H200 −
∂H200

∂A0
1

H101

�

−
∂H101

∂A0
2

H110

− 2
∂H200

∂A0
2

H011 −
∂H101

∂A0
3

H101 −
∂H200

∂A0
3

H002 ð24Þ

¼ 4βðA0
3 þ A1A2Þ; ð25Þ

which are sensitive to the modification function β, as well as

several β-independent equations:

4
∂H200

∂A0
1

H200 þ ∂H200

∂A0
2

H110 þ ∂H200

∂A0
3

H101 ¼ 0; ð26Þ

2

�

∂H110

∂A0
1

H110 þ 2
∂H020

∂A0
1

H200

�

þ 2
∂H110

∂A0
2

H020 þ ∂H020

∂A0
2

H110 þ ∂H110

∂A0
3

H011 þ ∂H020

∂A0
3

H101 ¼ 0; ð27Þ

2

�

∂H101

∂A0
1

H101 þ 2
∂H002

∂A0
1

H200

�

þ ∂H101

∂A0
2

H011 þ ∂H002

∂A0
2

H110 þ 2
∂H101

∂A0
3

H002 þ ∂H002

∂A0
3

H101 ¼ 0; ð28Þ

2

�

2
∂H011

∂A0
1

H200 þ ∂H101

∂A0
1

H110 þ ∂H110

∂A0
1

H101

�

þ ∂H011

∂A0
2

H110 þ 2
∂H101

∂A0
2

H020 þ ∂H110

∂A0
2

H011

þ ∂H011

∂A0
3

H101 þ ∂H101

∂A0
3

H011 þ 2
∂H110

∂A0
3

H002 ¼ 0: ð29Þ

Four additional equations,

2
∂H020

∂A0
1

H110 þ 2
∂H020

∂A0
2

H020 þ ∂H020

∂A0
3

H011 ¼ 0; ð30Þ

2
∂H002

∂A0
1

H101 þ ∂H002

∂A0
2

H011 þ 2
∂H002

∂A0
3

H002 ¼ 0; ð31Þ
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2

�

∂H011

∂A0
1

H110 þ ∂H020

∂A0
1

H101

�

þ 2
∂H011

∂A0
2

H020 þ ∂H020

∂A0
2

H011 þ ∂H011

∂A0
3

H011 þ 2
∂H020

∂A0
3

H002 ¼ 0; ð32Þ

2

�

∂H011

∂A0
1

H101 þ ∂H002

∂A0
1

H110

�

þ ∂H011

∂A0
2

H011 þ 2
∂H002

∂A0
2

H020 þ 2
∂H011

∂A0
3

H002 þ ∂H002

∂A0
3

H011 ¼ 0; ð33Þ

are identically satisfied, given that H011, H020, and H002

cannot depend on A0
i. Because H cannot depend on A0

1, we

may simplify the set of equations to

−
∂H110

∂A0
2

H110 − 2
∂H200

∂A0
2

H020 −
∂H110

∂A0
3

H101 −
∂H200

∂A0
3

H011

¼ 4βðA0
2 − A1A3Þ; ð34Þ

−
∂H101

∂A0
2

H110 − 2
∂H200

∂A0
2

H011 −
∂H101

∂A0
3

H101 −
∂H200

∂A0
3

H002

¼ 4βðA0
3 þ A1A2Þ; ð35Þ

∂H200

∂A0
2

H110 þ ∂H200

∂A0
3

H101 ¼ 0; ð36Þ

2
∂H110

∂A0
2

H020 þ ∂H110

∂A0
3

H011 ¼ 0; ð37Þ

∂H101

∂A0
2

H011 þ 2
∂H101

∂A0
3

H002 ¼ 0; ð38Þ

2
∂H101

∂A0
2

H020þ∂H110

∂A0
2

H011þ∂H101

∂A0
3

H011þ2
∂H110

∂A0
3

H002¼0:

ð39Þ

3. Gauss constraint

The Gauss constraint further restricts the combinations of

basic variables which can appear in the Hamiltonian con-

straint. The gauge-invariant combinations that contribute to

the classical constraint areE1, ðE2Þ2 þ ðE3Þ2,A2E
2 þ A3E

3,

A2
2 þ A2

3, and A1ðA2E
2 þ A3E

3Þ − ðA0
2E

3 − A0
2E

2Þ. [The

identity (13) is useful for seeing that the last combination

has a vanishing Poisson bracket with the unsmeared Gauss

constraint.] These expressions show that A1, A
0
2, and A

0
3 can

appear in gauge-invariant form only in combination with E2

and E3. It is therefore impossible to fulfill the condition that

H200 be quadratic in A1, A
0
2, and A

0
3 becauseH

200 is defined

as theE-independent coefficient of ðE1Þ2 in the Hamiltonian

constraint. For Hamiltonian constraints quadratic in Ei, we

have H200 ¼ 0.

Equations (34) and (35) then simplify to

−
∂H110

∂A0
2

H110 −
∂H110

∂A0
3

H101 ¼ 4βðA0
2 − A1A3Þ; ð40Þ

−
∂H101

∂A0
2

H110 −
∂H101

∂A0
3

H101 ¼ 4βðA0
3 þ A1A2Þ: ð41Þ

For β ¼ 1, these equations are obeyed by the classical

H110
cl ¼ 2ðA1A2 þ A0

3Þ and H101
cl ¼ 2ðA1A3 − A0

2Þ, as they

should. For β ≠ 1, we can solve these two equations by

H110 ¼ β1H
110
cl and H101 ¼ β2H

101
cl , provided that β1 and

β2 do not depend on spatial derivatives of Ai and are such

that β1β2 ¼ β. Invariance under transformations generated

by the Gauss constraint, which mix the terms of H110
cl and

H101
cl , implies that β1 ¼ β2, and therefore β > 0 and

β1 ¼ β2 ¼
ffiffiffi

β
p

. This modification function can be elimi-

nated from the contributions of H110 and H101 to the

constraint by absorbing it in the lapse function, thus

moving the modification to the remaining contributions

from H020 ¼ β−1=2H020
cl and H002 ¼ β−1=2H002

cl . Therefore,

the only nontrivial modification of the dynamics is in the

contributions fromH020 andH002 which, as already shown,

can only depend on A2 and A3. Again invoking trans-

formations generated by the Gauss constraint, the modified

term β−1=2ðH020
cl þH002

cl Þ is an arbitrary (positive) function

of A2
2 þ A2

3, which is equivalent to the modification found

in [21] and therefore strengthens their result.

If we relax the condition that the Hamiltonian constraint

not depend on spatial derivatives of the densitized triad,

additional gauge invariant combinations are possible. For

instance, the extrinsic-curvature component

K1 ¼ A1 −
ðE2Þ0E3 − E2ðE3Þ0
ðE2Þ2 þ ðE3Þ2 ð42Þ

is gauge invariant. Moreover, if spatial derivatives of the

densitized triad are allowed, the Gauss constraint can be

used to rewrite the Hamiltonian constraint without chang-

ing the on-shell behavior. For instance, the identity

A1ðA2E
2 þ A3E

3Þ þ 2E2A0
3 − 2E3A0

2

¼ ðE1Þ00 þ A2ðA1E
2 þ 2ðE3Þ0Þ

þ A3ðA1E
3 − 2ðE2Þ0Þ − G0 ð43Þ
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eliminates spatial derivatives of A2 and A3 from the

Hamiltonian constraint, in favor of a second-order spatial

derivative of E1. This new form is much closer to the

expression of the Hamiltonian constraint in extrinsic-

curvature variables [31] and may allow different modified

brackets than the quadratic version (7) even if one works

with the reduced Ashtekar connections Ai.

The possibility of rewriting the Hamiltonian constraint

by using the Gauss constraint explains why different

formulations of the same classical theory may give rise

to different modified brackets: The Gauss constraint

depends on A2 and A3, and therefore, depending on how

it is used in writing the Hamiltonian constraint, it restricts

possible modifications. In extrinsic-curvature variables, this

ambiguity does not appear because the Gauss constraint is

solved explicitly.

From the perspective of effective field theory, applied here

to the classical structure of up to second-order derivatives,

restricting the dependence of the Hamiltonian constraint on

spatial derivatives of Ei leads to nongeneric models. The

classical constraint is quadratic in Ai, which, according to

the field equations implied by the theory, amounts to terms

with up to two derivatives. Any term that is consistent with

the symmetries of the theory (generated by the constraints)

and has up to two derivatives (temporal or spatial) should

then be allowed for a generic model. Such theories should

include terms with up to second-order spatial derivatives of

Ei, in addition to the quadratic terms in Ai which contribute

two time derivatives. (A higher-derivative theory beyond

second order would be obtained by including quantum

backreaction effects, which is not the purpose of this paper.)

B. Arbitrary Barbero-Immirzi parameter

Wewill now show that the preceding rigidity result is not

stable within a class of models in which spatial derivatives

of the densitized triad are allowed to appear. A suitable set

of constraints that describes the same classical physics as,

depending on the signature, Euclidean or self-dual gravity

is obtained by letting the Barbero–Immirzi parameter vary,

instead of fixing it to a specific value such that γ2 ¼ �1.

The modification found in [21] is therefore not generic. To

this end, we will now switch to a general setting of

spherically symmetric gravity in which the Barbero-

Immirzi parameter and other numerical factors (as well

as the gravitational constant G) are included.

Spherically symmetric gravity can be formulated as a

Hamiltonian theory with phase space given by the canoni-

cal pairs, subject to three constraints. This setting has been

formulated in [24] for self-dual variables and in [31] for real

variables. In order to avoid having to impose reality

conditions, we follow the latter notation, in which the

canonical pairs ðA1; E
1Þ, ðA2; E

2Þ, and ðA3; E
3Þ are such

that

fA1ðxÞ; E1ðyÞg ¼ 2γGδðx; yÞ ð44Þ

and

fA2ðxÞ; E2ðyÞg ¼ γGδðx; yÞ; ð45Þ

fA3ðxÞ; E3ðyÞg ¼ γGδðx; yÞ ð46Þ

[a version of (1) and (2) for arbitrary real γ]. They are

subject to the Gauss constraint

G½Λ� ¼ 1

2γG

Z

dxΛððE1Þ0 þ 2A2E
3 − 2A3E

2Þ ð47Þ

smeared with a multiplier Λ, the diffeomorphism constraint

D½Nx� ¼ 1

2γG

Z

dxNxð−A1ðE1Þ0þ2A0
3E

3þ2A0
2E

2Þ ð48Þ

smeared with the shift vector Nx, and the Hamiltonian

constraint

H½N
∼
�¼ 1

2G

Z

dxN
∼
ð2A1E

1ðA2E
2þA3E

3Þ

þðA2
2þA2

3−1ÞððE2Þ2þðE3Þ2Þþ2E1ðE2A0
3−E3A0

2Þ
þðϵ−γ2Þð2K1E

1ðK2E
2þK3E

3Þ
þððK2Þ2þðK3Þ2ÞððE2Þ2þðE3Þ2ÞÞÞ
¼HE½N

∼
�þHL½N

∼
� ð49Þ

smeared with the lapse function N
∼
of density weight −1.

The nonpolynomial relationship between the extrinsic-

curvature components K1, K2, and K3 with the basic

variables is given below.

In all three constraints, the prime represents a derivative

with respect to the radial coordinate x. Moreover, γ in (49) is

the Barbero-Immirzi parameter [26,28] and ϵ ¼ �1 the

spacetime signature, such that ϵ ¼ 1 in the Euclidean case

and ϵ ¼ −1 in the Lorentzian case. As usual, it is convenient

to split the Hamiltonian constraint into the Euclidean part

HE½N
∼
� ¼ 1

2G

Z

dxN
∼
ð2A1E

1ðA2E
2 þ A3E

3Þ

þ ðA2
2 þ A2

3 − 1ÞððE2Þ2 þ ðE3Þ2Þ
þ 2E1ðE2A0

3 − E3A0
2ÞÞ ð50Þ

and the “Lorentzian” contribution

HL½N
∼
� ¼ −

γ2 − ϵ

2G

Z

dxN
∼
ð2K1E

1ðK2E
2 þ K3E

3Þ

þ ððK2Þ2 þ ðK3Þ2ÞððE2Þ2 þ ðE3Þ2ÞÞ: ð51Þ

Thus, H½N
∼
�¼HE½N

∼
� for γ ¼ �1 in the Euclidean signature

(ϵ ¼ 1), while the Lorentzian contribution (a slight
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misnomer) also contributes in the Euclidean signature if

γ ≠ �1. (The Lorentzian contribution is always required in

the Lorentzian signature if oneworkswith real γ such that the

Poisson brackets are real.) The canonical variables A1, E
2,

and E3 have density weight one.

The geometrical meaning of the phase-space variables is

determined as follows: The fields E1, E2, and E3, as the

components of a spherically symmetric densitized triad,

describe a spatial metric qab according to the line element

ds2 ¼ qabdx
adxb

¼ ðE2Þ2 þ ðE3Þ2
jE1j dx2 þ jE1jðdϑ2 þ sin2ϑdφ2Þ: ð52Þ

The densitized triad also determines a spin connection such

that it is constant with respect to the resulting covariant

derivative. The components of this spin connection are

functions of the densitized triad and its first spatial

derivatives:

Γ1 ¼
E3ðE2Þ0 − E2ðE3Þ0
ðE2Þ2 þ ðE3Þ2 ; ð53Þ

Γ2 ¼ −
1

2

ðE1Þ0E3

ðE2Þ2 þ ðE3Þ2 ; ð54Þ

Γ3 ¼
1

2

ðE1Þ0E2

ðE2Þ2 þ ðE3Þ2 : ð55Þ

The densitized triad is canonically conjugate to components

of extrinsic curvature, Ki, i ¼ 1, 2, 3. Since the Γi depend

only on Ei, one can add them to Ki without changing

the latter’s canonical relationships with Ei. In this way,

the canonical connection components Ai ¼ Γi þ γKi are

obtained, using the Barbero-Immirzi parameter γ.

The constrained system is first class, with brackets of the

constraints D½Nx� and H½N
∼
� according to Dirac’s hyper-

surface deformations [30] (taking into account the density

weight of N
∼
in the Hamiltonian constraint used here). In

particular, the bracketed fH½N
∼
�; H½M

∼
�g should be propor-

tional to the diffeomorphism constraint, up to possible

contributions from the Gauss constraint. We display the

relevant derivations in a more general setting, following the

observation [21] that, for γ2 ¼ ϵ, the constraint brackets

remain closed in the presence of a “magnetic-field”

modification, replacing B1≔A2
2þA2

3−1 in the Euclidean

part of the Hamiltonian constraint with an arbitrary

function fðA2
2 þ A2

3 − 1Þ. Our aim is to determine whether

this modification can be carried over to the Lorentzian

contribution.

We begin with the bracket of two modified Euclidean

parts, fHE½N
∼
�; HE½M

∼
�g. Thanks to antisymmetry of the

brackets in N
∼
andM

∼
, we need consider only those brackets

of terms that lead to derivatives of delta functions. There are

two such contributions,

f2A1ðxÞE2ðxÞðA2ðxÞE2ðxÞ þ A3ðxÞE3ðxÞÞ;
2E1ðyÞðE2ðyÞA3ðyÞ0 − E3ðyÞA2ðyÞ0Þg

¼ ð� � �Þδðx; yÞ − 4γGA1ðxÞE1ðxÞE1ðyÞðA3ðxÞE2ðyÞ
− A2ðxÞE3ðyÞÞ∂yδðx; yÞ ð56Þ

and

f2E1ðxÞðE2ðxÞA3ðxÞ0 − E3ðxÞA2ðxÞ0Þ;
2E1ðyÞðE2ðyÞA3ðyÞ0 − E3ðyÞA2ðyÞ0Þg

¼ ð� � �Þδðx; yÞ − 4γGE1ðxÞE1ðyÞððE2ðxÞA2ðyÞ0

þ E3ðxÞA3ðyÞ0Þ∂xδðx; yÞ
− ðE2ðyÞA2ðxÞ0 þ E3ðyÞA3ðxÞ0Þ∂yδðx; yÞÞ: ð57Þ

With these two ingredients, we obtain

fHE½N
∼
�; HE½M

∼
�g ¼ γ

G

Z

dxðN
∼

0M
∼
− N

∼
M
∼

0ÞðE1Þ2

× ðA1ðA2E
3 − A3E

2Þ þ E2A0
2 þ E3A0

3Þ
¼ γ2V½ðE1Þ2ðN

∼

0M
∼
−M

∼

0N
∼
Þ�; ð58Þ

where

V½Λ�¼ 1

γG

Z

dxΛðA1ðE2A3−E3A2ÞþA0
3E

3þA0
2E

2Þ ð59Þ

is the vector constraint (6), V½Λ� ¼ D½Λ� þ G½A1Λ�, related
to the diffeomorphism constraint D through a contribution

from the Gauss constraint (47).

Using
ffiffiffiffiffiffiffiffiffiffi

det q
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jE1jððE2Þ2 þ ðE3Þ2Þ
p

from (52), we

can write the smearing function in (58) as

ðE1Þ2ðN
∼

0M
∼
−M

∼

0N
∼
Þ¼ jE1j

ðE2Þ2þðE3Þ2 ðN
0M−M0NÞ; ð60Þ

where N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jE1jððE2Þ2 þ ðE3Þ2Þ
p

N
∼

and M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jE1jððE2Þ2 þ ðE3Þ2Þ
p

M
∼
are lapse functions without den-

sity weight. The coefficient jE1j=ððE2Þ2 þ ðE3Þ2Þ in (60) is,
according to (52), the radial component of the inverse

spatial metric, in agreement with the classical form of

hypersurface-deformation brackets. The system is therefore

anomaly-free for any modification f in (49) without any

modification of the constraint brackets and the spacetime

structure—provided the Lorentzian part does not contribute

to the Hamiltonian constraint, that is in Euclidean gravity

with γ ¼ �1 or in Lorentzian gravity with γ ¼ �i. This is
consistent with the results reported in [21].
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It is easy to see that any function fðA2
2 þ A2

3 − 1Þ can be

used in the modified Euclidean part because this term does

not produce derivatives of delta functions in the Poisson

bracket of two Euclidean constraints. Moreover, because A2

and A3 are scalars without density weight, any such term has

the correct Poisson bracket with the diffeomorphism con-

straint. However, if γ2 ≠ ϵ, the cross-term fHE½N
∼
�; HL½M

∼
�g

in the Poisson bracket of two Hamiltonian constraints does

receive a contribution from fðA2
2 þ A2

3 − 1Þ in HE½N
∼
�

because HL½M
∼
�, written in the canonical variables Ai and

Ei, contains spatial derivatives of Ei through Γi. An explicit

calculation is therefore required to checkwhether the bracket

can still be closed for fðA2
2 þ A2

3 − 1Þ ≠ A2
2 þ A2

3 − 1.

We first compute the Poisson brackets of each individual

term in HE½N
∼
� with the full HL½M

∼
�: We obtain

1

G

�
Z

dxNðxÞA1ðxÞE1ðxÞðA2ðxÞE2ðxÞ þ A3ðxÞE3ðxÞÞ; HL½M
∼
�
�

¼ γ2 − ϵ

2γ2G2

Z

dxdyNðxÞMðyÞðð� � �Þδðx; yÞ

− 2A1ðxÞE1ðxÞE1ðyÞðA2ðyÞE2ðyÞ þ A3ðyÞE3ðyÞÞfA2ðxÞE2ðxÞ þ A3ðxÞE3ðxÞ;Γ1ðyÞg
þ E1ðxÞðA2ðxÞE2ðxÞ þ A3ðxÞE3ðxÞÞðE2ðyÞ2 þ E3ðyÞ2ÞfA1ðxÞ;−2ðA2ðyÞΓ2ðyÞ þ A3ðyÞΓ3ðyÞÞ þ Γ2ðyÞ2 þ Γ3ðyÞ2gÞ

¼ γ2 − ϵ

2γG

Z

dxdyNðxÞMðyÞ
�

−2A1ðxÞE1ðxÞE1ðyÞðA2ðyÞE2ðyÞ þ A3ðyÞE3ðyÞÞE
2ðxÞE3ðyÞ − E2ðyÞE3ðxÞ

E2ðyÞ2 þ E3ðyÞ2

þ 2E1ðxÞðE2ðyÞ2 þ E3ðyÞ2ÞðA2ðxÞE2ðxÞ þ A3ðxÞE3ðxÞÞ

×
A2ðyÞE3ðyÞ − A3ðyÞE2ðyÞ − E3ðyÞΓ2ðyÞ þ E2ðyÞΓ3ðyÞ

E2ðyÞ2 þ E3ðyÞ2
�

∂yδðx; yÞ

¼ −
γ2 − ϵ

2γG

Z

dxNðxÞM0ðxÞE1ðA2E
2 þ A3E

3ÞððE1Þ0 þ 2A2E
3 − 2A3E

2Þ

¼ −ðγ2 − ϵÞG½NM0E1ðA2E
2 þ A3E

3Þ� ð61Þ

up to terms that cancel out when inserted in the antisymmetric fHE½N
∼
�; HL½M

∼
�g þ fHL½N

∼
�; HE½M

∼
�g. In the detailed

calculations, we have used the explicit expressions for the Γi, from which we also obtain the useful identity

γðK2E
2 þ K3E

3Þ ¼ A2E
2 þ A3E

3 ð62Þ

because Γ2E
2 þ Γ3E

3 is identically zero.

The second term,

1

2G

�
Z

dxNðxÞfðA2ðxÞ2 þ A3ðxÞ2 − 1ÞðE2ðxÞ2 þ E3ðxÞ2Þ; HL½M
∼
�
�

¼ γ2 − ϵ

2γ2G2

Z

dxdyNðxÞMðyÞ
�

ð� � �Þδðx; yÞ

− 2_fðxÞðE2ðxÞ2 þ E3ðxÞ2ÞE1ðyÞðA2ðyÞE2ðyÞ þ A3ðyÞE3ðyÞÞfA2ðxÞ2 þ A3ðxÞ2;Γ1ðyÞg
�

¼ γ2 − ϵ

2γG

Z

dxdyNðxÞMðyÞ
�

ð� � �Þδðx; yÞ − 2_fðxÞðE2ðxÞ2 þ E3ðxÞ2ÞE1ðyÞðA2ðyÞE2ðyÞ þ A3ðyÞE3ðyÞÞ

×
2A2ðxÞE3ðyÞ − A3ðxÞE2ðyÞ

E2ðyÞ2 þ E3ðyÞ2 ∂yδðx; yÞ
�

¼ 2ðγ2 − ϵÞG½NM0 _fE1ðA2E
2 þ A3E

3Þ� − γ2 − ϵ

2γG

Z

dxNM0 _fE1ðE1Þ0ðA2E
2 þ A3E

3Þ; ð63Þ
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does not vanish on the constraint surface. Therefore, the function f, whose derivative by its argument we have denoted by _f,

is now relevant for closed brackets. In particular, the last contribution containing ðE1Þ0 must be canceled by a corresponding

term in the remaining bracket.

In this last bracket,

B ≔
1

G

�
Z

dxNðxÞE1ðxÞðE2ðxÞA3ðxÞ0 − E3ðxÞA2ðxÞ0Þ; HL½M
∼
�
�

¼ γ2 − ϵ

2γ2G2

Z

dxdyNðxÞMðyÞðð� � �Þδðx; yÞ

þ 2E1ðxÞE1ðyÞðA2ðyÞE2ðyÞ þ A3ðyÞE3ðyÞÞfE2ðxÞA3ðxÞ0 − E3ðxÞA2ðxÞ0;−Γ1ðyÞg
þ 2E1ðxÞE1ðyÞðA1ðyÞ − Γ1ðyÞÞfE2ðxÞA3ðxÞ0 − E3ðxÞA2ðxÞ0; A2ðyÞE2ðyÞ þ A3ðyÞE3ðyÞg
− 2E1ðxÞðE2ðyÞ2 þ E3ðyÞ2ÞððA2ðyÞ − Γ2ðyÞÞfE2ðxÞA3ðxÞ0 − E3ðxÞA2ðxÞ0;Γ2ðyÞg
þ ðA3ðyÞ − Γ3ðyÞÞfE2ðxÞA3ðxÞ0 − E3ðxÞA2ðxÞ0;Γ3ðyÞgÞÞ

¼ γ2 − ϵ

2γG

Z

dxdyNðxÞMðyÞðð� � �Þδðx; yÞ

− 2E1ðxÞE1ðyÞðA2ðyÞE2ðyÞ þ A3ðyÞE3ðyÞÞE
2ðxÞE2ðyÞ0 þ E3ðxÞE3ðyÞ0

E2ðyÞ2 þ E3ðyÞ2 ∂xδðx; yÞ

þ 2E1ðxÞE1ðyÞðA2ðyÞE2ðyÞ þ A3ðyÞE3ðyÞÞE
2ðxÞE3ðyÞ þ E3ðxÞE2ðyÞ

E2ðyÞ2 þ E3ðyÞ2 ∂x∂yδðx; yÞ

þ 2ðA1ðyÞ − Γ1ðyÞÞE1ðxÞE1ðyÞðE2ðxÞA3ðyÞ − E3ðxÞA2ðyÞÞ∂xδðx; yÞ
þ E1ðxÞE1ðyÞððA2ðyÞ − Γ2ðyÞÞE2ðxÞ þ ðA3ðyÞ − Γ3ðyÞÞE3ðyÞÞ∂xδðx; yÞÞ; ð64Þ

we have a contribution from a second-order derivative of the delta function. Integrating by parts once in this term and taking

into account its contributions to NM0 and N0M, respectively (noting that terms with N0M0 cancel out in the final

antisymmetric bracket), we write

B ¼ γ2 − ϵ

2γG

Z

dxdyNðxÞMðyÞ
�

ð� � �Þδðx; yÞ

− 2
E1ðxÞE1ðyÞ

E2ðyÞ2 þ E3ðyÞ2
�

ðE2ðxÞE2ðyÞ0 þ E3ðxÞE3ðyÞ0ÞðA2ðyÞE2ðyÞ þ A3ðyÞE3ðyÞÞ

þ ðE3ðyÞE2ðyÞ0 − E2ðyÞE3ðyÞ0ÞðE2ðxÞA3ðyÞ − E3ðxÞA2ðyÞÞÞ∂xδðx; yÞ
þ E1ðxÞE1ðyÞð2A1ðyÞðE2ðxÞA3ðyÞ − E3ðxÞA2ðyÞÞ þ E1ðxÞE1ðyÞ0ðA2ðyÞE2ðxÞ þ A3ðyÞE3ðxÞÞÞ∂xδðx; yÞ
− 2E1ðxÞE1ðyÞðA2ðyÞE2ðyÞ0 þ A3ðyÞE3ðyÞ0 þ A2ðyÞ0E2ðyÞ þ A3ðyÞ0E3ðyÞ

− 2ðA2ðyÞE2ðyÞ þ A3ðyÞE3ðyÞÞE
2ðxÞE2ðyÞ0 þ E3ðxÞE3ðyÞ0

E2ðyÞ2 þ E3ðyÞ2
�

∂xδðx; yÞ
�

¼ γ2 − ϵ

2γG

Z

dxdyNðxÞMðyÞðð� � �Þδðx; yÞ þ 2E1ðxÞE1ðyÞ

× ðA1ðyÞðE2ðxÞA3ðyÞ − E3ðxÞA2ðyÞÞ − ðA2ðyÞ0E2ðyÞ þ A3ðyÞ0E3ðyÞÞÞ∂xδðx; yÞ

¼ ðγ2 − ϵÞðD½ðE1Þ2N0M� þ G½A1ðE1Þ2N0M�Þ − γ2 − ϵ

2γG

Z

dxN0ME1ðE1Þ0ðA2E
2 þ A3E

3Þ: ð65Þ

This result provides the diffeomorphism constraint as well as a term which cancels the previous nonconstraint

contribution in (63), but only if _f ¼ 1. Therefore, if the Lorentzian contribution is included, no modification of the classical

A2
2 þ A2

3 − 1 is allowed. The final bracket now equals
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fH½N
∼
�; H½M

∼
�g ¼ fHE½N

∼
�; HE½M

∼
g þ fHE½N

∼
�; HL½M

∼
g − fHE½M

∼
�; HL½N

∼
g

¼ γ2D½ðE1Þ2ðN
∼

0M
∼
− N

∼
M
∼

0Þ� þ γ2G½A1ðE1Þ2ðN
∼

0M
∼
− N

∼
M
∼

0Þ�

− ðγ2 − ϵÞG½E1ðA2E
2 þ A3E

3Þð1 − 2_fÞðN
∼

0M
∼
− N

∼
M
∼

0Þ�

− ðγ2 − ϵÞðD½ðE1Þ2ðN
∼

0M
∼
− N

∼
M
∼

0Þ� þG½A1ðE1Þ2ðN
∼

0M
∼
− N

∼
M
∼

0Þ�Þ

¼ ϵðD½ðE1Þ2ðN
∼

0M
∼
− N

∼
M
∼

0Þ� þ G½A1ðE1Þ2ðN
∼

0M
∼
− N

∼
M
∼

0Þ�Þ

þ ðγ2 − ϵÞG½E1ðA2E
2 þ A3E

3ÞðN
∼

0M
∼
− N

∼
M
∼

0Þ�

≈ −ϵD½ðE1Þ2ðN
∼
M
∼

0 − N
∼

0M
∼
Þ�; ð66Þ

using _f ¼ 1 in the last step because the bracket would not

be closed otherwise. (Note that fHL½N
∼
�; HL½M

∼
�g ¼ 0,

which can most easily be seen if one uses the canonical

variables Ki and Ei, of which no spatial derivatives appear

in the Lorentzian contribution.)

III. CONNECTION VARIABLES IN A CANONICAL

EFFECTIVE FIELD THEORY

We have seen a crucial difference between gravitational

theories governed by the Euclidean Hamiltonian constraint

HE and the full HE þHL, respectively. Formally, the

reason is the difference in derivative structures implied

by the spin-connection terms in HL: While HE contains

derivatives only of the spatial connection, HL also con-

tributes spatial derivatives of the triad. As a consequence,

the two versions allow different modifications while

maintaining closed brackets.

Derivative structures are best dealt with in a setting of

effective field theory, in which one formulates generic

theories by selecting the basic fields and the maximum order

of derivatives to which they contribute, as well as relevant

symmetries. For our purposes, we need an adaptation of the

usual arguments to a canonical formulation, in which some

derivatives may not be explicit because they appear only if

some of the canonical equations are used, mainly in the

relationship between momenta and “velocities.”

In order to determine the correct derivative orders in a

canonical theory, we must first choose which of the basic

fields should play the role of configuration variables and

therefore are considered free of time derivatives. We are

looking for a canonical theory of triads, which will

correspond to a spacetime metric or triad theory, and

therefore choose as our basic fields a densitized spatial

triad with momenta. The latter may be given in terms of a

connection or extrinsic curvature. The derivative order

depends on the quantum effects we wish to include. For

now, we will analyze the classical setting and therefore

consider up to second-order derivatives of the fields.

Symmetries are implemented by the requirement that the

constraint brackets be closed, and in the classical case

amount to hypersurface-deformation brackets.

A. Basic strategy

In our explicit calculations of generic terms, we again

follow the conventions of Sec. II. 2 and set γ ¼ 1 for

simplicity. For our effective Hamiltonian, we choose to

allow up to second order in derivatives of densitized triads.

Since the conjugate momenta are of the form A ∼ ∂E, using

the equations of motion for _E, we have the following

general form of the Hamiltonian constraint H½N
∼
� ¼

ð2GÞ−1
R

dxN
∼
ðxÞHðxÞ with

H ¼ αiðEj; ∂EjÞAi þ βijðEkÞAij þ γiðEÞ∂Ai

þQðE; ∂E; ∂2EÞ; ð67Þ

where we have introduced the notation ∂ ≡ ∂=∂x, Aij���k ¼
AiAj � � �Ak, and Eij���k ¼ EiEj � � �Ek. We can already

observe some preliminary restrictions on the coefficients

αiðE; ∂EÞ and QðE; ∂E; ∂E∂E; ∂2EÞ. Both coefficients

are initially allowed to depend on ∂Ei and ∂2Ei. But since

we only allow up to second-order derivatives in the

Hamiltonian constraint, the dependence cannot be arbitrary.

Specifically, we have

�

αi ¼ ᾱiðEÞ þ αijðEÞ∂Ej;

Q ¼ Q̄ðEÞ þ aiðEÞ∂Ei þ bijðEÞ∂Ei∂Ej þ ciðEÞ∂2Ei:

We want the Hamiltonian density H to respect the

classical symmetries,

8

>

>

<

>

>

:

fHðxÞ;GðyÞg ¼ 0;

fHðxÞ;DðyÞg ¼ 2Gð∂HðxÞδxy þ 2HðxÞδ0xyÞ;
fHðxÞ;HðyÞg ≈ −2Gð∂ðE11DðxÞÞδxy þ 2E11DðxÞδ0xyÞ;

ð68Þ
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where G½Λ�¼ð2GÞ−1
R

dxΛðxÞGðxÞ and D½N�¼
ð2GÞ−1

R

dxNðxÞDðxÞ are the diffeomorphism and Gauss

constraints, respectively. We have introduced the shorthand

notation δ0xy ≔ ∂xδðx − yÞ, and ≈ means “equal” when

setting G ¼ 0 in the final step of the calculation. These

symmetries will impose restrictions on the coefficients

αi; β
ij; γi; Q in (67), telling us what a generic Hamiltonian

constraint looks like.

B. Brackets

The first bracket,fH;Gg, represents the restriction togauge-
invariant terms for any allowed H. Inserting (67), we have

fHðxÞ;GðyÞg ¼ 2G

Z

dz½ðα1 þ 2β1jAjÞδxz þ γ1δ0xz�ðxÞδ0yz þ ½ðα2 þ 2β2jAjÞδxz þ γ2δ0xz�ðxÞð−A3ðyÞδyzÞ

− ½ðδxz∂2 þ δ0xz∂20ÞðαiÞAi þ ðδxz∂2 þ δ0xz∂20 þ δ00xz∂200ÞQþ δxz∂2β
ijAij þ δxz∂2γ

i∂Ai�ðxÞE3ðyÞδyz
þ ½ðα3 þ 2β3jAjÞδxz þ γ3δ0xz�ðxÞðA2ðyÞδyzÞ − ½ðδxz∂3 þ δ0xz∂30ÞðαiÞAi þ ðδxz∂3 þ δ0xz∂30 þ δ00xz∂300ÞQ
þ δxz∂3β

ijAij þ δxz∂3γ
i∂Ai�ðxÞð−E2ðyÞδyzÞ ¼ 0;

where we have introduced further shorthand notation ∂i ≔

∂=∂Ei and ∂i0 ≔ ∂=∂ð∂xE
iÞ. To make the right-hand side of

the equation vanish, we need several cancellations. We can

do this by first making all functions depend on x using delta
functions and integrating over z. Then we group terms with

the same dependence on Ai and derivatives of δxy together

and demand that each grouping vanish by itself. [Different

orders of derivatives on δ may be dependent, for instance in

δ0yxAðxÞ ¼ AðyÞδ0yx þ ∂yAðyÞδyx. Therefore, some δ0 can

produce terms that group with a δ.] This procedure produces

several dozens of partial differential equations which wewill

list later along with those from the fH;Dg bracket.

Inserting our form of H into the H −D bracket, we

obtain

fHðxÞ;DðyÞg ¼ 2G

Z

dz½δxzðα1 þ 2β1jAjÞ þ γ1δ0xz�ðxÞð−A1ðyÞδ0yzÞ

− ½ðδxz∂1 þ δ0xz∂10ÞðαiÞAi þ δxz∂1β
ijAij þ δxz∂1γ

i∂Ai þ ðδxz∂1 þ δ0xz∂10 þ δ00xz∂100ÞðQÞ�ðxÞð−∂E1ðyÞδyzÞ
þ ½δxzðα2 þ 2β2jAjÞ þ γ2δ0xz�ðxÞð∂A2ðyÞδyzÞ
− ½ðδxz∂2 þ δ0xz∂20ÞðαiÞAi þ δxz∂2β

ijAij þ δxz∂2γ
i∂Ai þ ðδxz∂2 þ δ0xz∂20 þ δ00xz∂200ÞðQÞ�ðxÞðE2ðyÞδ0yzÞ

þ ½δxzðα3 þ 2β3jAjÞ þ γ3δ0xz�ðxÞð∂A3ðyÞδyzÞ
− ½ðδxz∂3 þ δ0xz∂30ÞðαiÞAi þ δxz∂3β

ijAij þ δxz∂3γ
i∂Ai þ ðδxz∂3 þ δ0xz∂30 þ δ00xz∂300ÞðQÞ�ðxÞðE3ðyÞδ0yzÞ

¼ 2Gð∂xHðxÞδxy þ 2HðxÞδ0xyÞ:

Similar to how we dealt with the condition of gauge

invariance, we first integrate over z to make all functions

depend on x, and then match term by term with the right-

hand side, expanded in Ai and derivatives of δxy. Again, we

obtain a few dozen partial differential equations.

We next list the partial differential equations that the

coefficients of terms in H have to obey. These equations

will completely determine the dependence on E2 and E3,

leaving free functions of E1 which the H −H bracket will

further restrict. These conditions then determine possible

modifications of the classical Hcl. In the following equa-

tions, we use the differential operators D̂ ≔ E2∂2 þ E3∂3

and Ĉ ≔ E2∂3 − E3∂2.

1. The H−G bracket

For βij and γi we have

8

>

>

<

>

>

:

Ĉβ11 ¼ 0

Ĉβ12 ¼ −β13

Ĉβ13 ¼ β12

8

>

>

<

>

>

:

Ĉβ22 ¼ −2β23

Ĉβ33 ¼ 2β23

Ĉβ23 ¼ β22 − β33

8

>

>

<

>

>

:

Ĉγ1 ¼ 0

Ĉγ2 ¼ −γ3

Ĉγ3 ¼ γ2:

ð69Þ

For αi we have
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8

>

>

<

>

>

:

Ĉᾱ1 ¼ 0

Ĉᾱ2 ¼ −ᾱ3

Ĉᾱ3 ¼ ᾱ2

8

>

>

<

>

>

:

Ĉα11 ¼ 0

Ĉα21 ¼ −α31

Ĉα31 ¼ α21

8

>

>

<

>

>

:

Ĉα12 ¼ −α13

Ĉα22 ¼ −α32 − α23

Ĉα32 ¼ α22 − α33

8

>

>

<

>

>

:

Ĉα13 ¼ α12

Ĉα23 ¼ α22 − α33

Ĉα33 ¼ α32 þ α23:

ð70Þ

For Q we have

Ĉ Q̄ ¼ 0; ð71Þ
8

>

>

<

>

>

:

Ĉa1 ¼ 0

Ĉa2 ¼ −a3

Ĉa3 ¼ a2

8

>

>

<

>

>

:

Ĉb11 ¼ 0

Ĉb12 ¼ −b13

Ĉb13 ¼ b12

8

>

>

<

>

>

:

Ĉb22 ¼ −2b32

Ĉb33 ¼ 2b32

Ĉb23 ¼ b22 − b33

8

>

>

<

>

>

:

Ĉc1 ¼ 0

Ĉc2 ¼ −c3

Ĉc3 ¼ c2:

ð72Þ

The remaining equations mix different coefficients:

8

>

>

<

>

>

:

E2a3 − E3a2 ¼ ᾱ1

ð−α1j þ 2E2b3j − 2E3b2jÞ∂Ej ¼ −2ð∂E2c3 − ∂E3c2Þ
E2c3 − E3c2 ¼ γ1

8

>

>

<

>

>

:

E2α13 − E3α12 ¼ 2β11

E2α23 − E3α22 ¼ 2β12 − γ3

E2α33 − E3α32 ¼ 2β13 þ γ2:

ð73Þ

2. The H−D bracket

For βij and γi we have

8

>

>

<

>

>

:

D̂β11 ¼ 0

D̂β12 ¼ β12

D̂β13 ¼ β13

8

>

>

<

>

>

:

D̂β22 ¼ 2β22

D̂β33 ¼ 2β33

D̂β23 ¼ 2β23

8

>

>

<

>

>

:

D̂γ1 ¼ 0

D̂γ2 ¼ γ2

D̂γ3 ¼ γ3:

ð74Þ

For αi we have

8

>

>

<

>

>

:

D̂ᾱ1 ¼ ᾱ1

D̂ᾱ2 ¼ 2ᾱ2

D̂ᾱ3 ¼ 2ᾱ3

8

>

>

<

>

>

:

D̂α11 ¼ 0

D̂α21 ¼ α21

D̂α31 ¼ α31

8

>

>

<

>

>

:

D̂α12 ¼ −α12

D̂α22 ¼ 0

D̂α32 ¼ 0

8

>

>

<

>

>

:

D̂α13 ¼ −α13

D̂α23 ¼ 0

D̂α33 ¼ 0

�

E2α22 þ E2α23 ¼ 0

E2α32 þ E3α33 ¼ 0:
ð75Þ

For Q we have

8

<

:

D̂Q̄¼ 2Q̄

E2c2þE3c3¼ 0

E2a2þE3a3¼ 0

8

<

:

c1þ2ðb12E2þb13E
3Þ¼ 0

3c2þ2ðb22E2þb23E
3Þ¼ 0

3c3þ2ðb32E2þb33E
3Þ¼ 0;

ð76Þ

8

<

:

D̂c1¼ 0

D̂c2¼−c2

D̂c3¼−c3

8

<

:

D̂a1¼ a1

D̂a2¼ 0

D̂a3¼ 0

8

<

:

D̂b11¼ 0

D̂b12¼−b12

D̂b13¼−b13

8

<

:

D̂b22¼−2b22

D̂b33¼−2b33

D̂b23¼−2b23:

ð77Þ

One equation mixes different coefficients:

E2α12 þ E3α13 ¼ −γ1: ð78Þ

3. The H−H bracket

Matching term by term for H −H is quite tedious,

mainly because the classical bracket fH;Hg is fully

determined only after setting G ¼ 0. For example, if

there is a term fðα; β; γ; QÞ∂E1 on the left-hand side of

fHðxÞ;HðyÞg≈−2GðE11∂xDðxÞδxyþ2E11DðxÞδ0xyÞwhich
is not on the right-hand side, do we demand fðα;β;γ;QÞ¼0

or do we demand fðα; β; γ; QÞ ∝ G or ∂G, or does

fðα; β; γ; QÞ∂E1 combine with possible fðα; β;α; QÞ×
ð−E2A3 þ E3E2Þ terms to become something proportional

to G? There are about 102 terms on the left-hand side of the

H-H bracket, each of which has several possibilities of

respecting the symmetry (in the form of second-order

polynomial equations of α, β, γ, Q). It is therefore

necessary to check whether these ð102Þn; n ∼ 100 possibil-

ities are consistent with one another, rendering our current

strategy impractical. Luckily, we can use an alternative

strategy to find a subset of the most generic Hamiltonian by

adding “semisymmetric Gaussian” terms to the classical

Hamiltonian constraint.

C. Real vs self-dual variables

We define a semisymmetric term to be any term in a

generic Hamiltonian constraint that is allowed by the

fH;Dg and fH;Gg brackets. These terms are solutions

to our previous partial differential equations (69)–(78). We

define a Gaussian term to be any term that is a polynomial
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of G and ∂nG, with coefficients denoted collectively as

CðEÞ, which may depend on densitized triads and its

derivatives. Namely, for a semisymmetric Gaussian term

gðxÞ ≔ g½GðxÞ; ∂nGðxÞ; CðEðxÞÞ� we demand

�

gðxÞ;GðyÞg ¼ 0;

fgðxÞ;DðyÞg ¼ 2Gð∂gðxÞδxy þ 2gðxÞδ0xyÞ:
ð79Þ

Any semisymmetric Gaussian term, g½G; ∂nG; CðEÞ�, that
we add to the classical Hamiltonian constraint Hcl is

guaranteed to respect all our symmetries as shown below.

Suppose we add one semisymmetric Gaussian term

g½G; ∂nG; CðEÞ� to the classical Hamiltonian constraint Hcl

H½N
∼
� ¼ 1

2G

Z

dxN
∼
ðxÞðHcl þ gÞ: ð80Þ

Since Hcl respects all symmetries by definition and g is

built out of semisymmetric Gaussian terms,

fH½N
∼
�; G½M�g ¼ 0 ð81Þ

is trivial. Similarly, the H −D bracket is satisfied:

fH½N
∼
�; D½M�g ¼ 1

4G2

Z

dxdyN
∼
ðxÞMðyÞðfHcl;Dg þ fg;DgÞ

¼ 1

2G

Z

dxdyN
∼
ðxÞMðyÞð∂xHclðxÞδxy þ 2HclðxÞδ0xy þ ∂xgðxÞδxy þ 2gðxÞδ0xyÞ

¼ 1

2G

Z

dxdyN
∼
ðxÞMðyÞð∂xHðxÞδxy þ 2HðxÞδ0xyÞ ¼ −H½MN

∼

0 −M0N
∼
� ð82Þ

because g is built out of semisymmetric Gaussian terms. TheH½N
∼
� −H½M

∼
� bracket then has additional terms compared with

the classical case, given by fHcl; gg and fg; gg. Both terms are of the form ff; ggwith some semisymmetric f and share the

property that
R

dxdyNðxÞMðyÞffðxÞ; gðyÞg vanishes when G ¼ 0: In

Z

dxdyNðxÞMðyÞffðxÞ; g½GðyÞ; ∂nGðyÞ; CðEÞ�g

¼
Z

dxdyNðxÞMðyÞ
�

ffðxÞ;GðyÞg ∂g
∂G

ðyÞ þ ffðxÞ; ∂n
yGðyÞg

∂g

∂ð∂n
yGÞ

ðyÞ þ ffðxÞ; CðEÞg ∂g

∂CðEÞ

�

¼
Z

dxdyNðxÞMðyÞ
�

ffðxÞ;GðyÞg ∂g
∂G

ðyÞ þ ffðxÞ; CðEÞg ∂g

∂CðEÞ

�

þ
Z

dxdyNðxÞð−∂yÞn
�

MðyÞ ∂g

∂ð∂n
yGÞ

ðyÞ
�

ffðxÞ;GðyÞg; ð83Þ

the first and last terms vanish because f is semisymmetric, while ∂g=∂CðEÞ ≈ 0 because CðEÞ, by definition, represents

coefficients in g of the Gauss constraint or its spatial derivatives.

With this result, we confirm that

fH½N
∼
�; H½M

∼
�g ¼ 1

4G2

Z

dxdyN
∼
ðxÞM

∼
ðyÞðfHclðxÞ;HclðyÞg þ fg½GðxÞ; ∂nGðxÞ; CðEÞ�; g½GðyÞ; ∂nGðyÞ; CðEÞ�g

þ fHclðxÞ; g½GðyÞ; ∂nGðyÞ; CðEÞ�g þ fg½GðxÞ; ∂nGðxÞ; CðEÞ�;HclðyÞgÞ

≈
1

4G2

Z

dxdyN
∼
ðxÞM

∼
ðyÞfHclðxÞ;HclðyÞg ð84Þ

obeys the classical brackets for any semisymmetric g.
Thus, semisymmetric Gaussian terms indeed preserve all

symmetries.

When written in real variables, the classical Hamiltonian

constraint contains a term with the second-order derivative

of E1 ∼ Ex, given by 2∂ΓϕE
x ¼ −∂ð∂Ex=ðEφÞÞEx. But

when using self-dual variables, there are no second-order

derivatives of triads. As already mentioned, this discrep-

ancy is caused by the fact that G ≈ 0 is already solved in

the real variable case. Indeed, using semisymmetric terms

(see Appendix A) for constructing modifications we have

the following allowed terms when using self-dual variables:
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H2ðA;EÞ¼HclðA;EÞþc1ðE1Þ
�

∂G−
1

2

∂ððEφÞ2Þ
ðEφÞ2 G

�

þ∂E1½b11ðE1Þ∂E1þ C̃α2
1
ðE1ÞðE3A2−E2A3Þ�;

ð85Þ

where ∂G ∼ ∂2E1 provides the second-order derivative.

Note that the second semisymmetric term (proportional to

∂E1) becomes a semisymmetric Gaussian term if we

pick b11 ¼ 1
2
C̃α2

1
.

Substituting Ai ¼ γKi þ Γi, c1 ¼ E1; b11 ¼ 1
2
C̃α2

1
¼ 1=2

in the classical Hamiltonian constraint and de-densitizing,

we obtain

H2ðK;EÞ¼ jExj−1=2
�

K2
φE

φþ2KφKxE
x

−

�

1−

�

∂Ex

2Eφ

�

2
�

EφþEx∂2Ex

Eφ
−
Ex∂Ex∂Eφ

ðEφÞ2
�

;

ð86Þ

where we used the Gauss constraint in real variables. This

result matches the standard classical Hamiltonian constraint

in real variables. Thus, including semisymmetric Gaussian

terms in the quadratic constraint, it is equivalent to the

classical one written in real variables.

Revisiting the setting of the previous section, it follows

that a further restriction of our H to be only quadratic in

densitized triads implies that all allowed modifications to

the classicalHcl are in the form of semisymmetric Gaussian

terms:

Hquad ¼ C1ð∂A3E
21 − ∂A2E

31 þ A12E
12 þ A13E

13Þ

þ C2

�

A22 þ A33 þ
C3

C2

�

ðE22 þ E33Þ

þ C4∂E
1Gþ C5ðA2E

2 þ A3E
3ÞG: ð87Þ

The first two terms are present inHcl while the last two are

new semisymmetric Gaussian terms and all Ci are con-

stants. However, the complexity of the general equations

makes it difficult to show that all possible modifications to

the Hamiltonian constraint up to second order in derivatives

can be constructed from semisymmetric Gaussian terms.

IV. ELIMINATING THE GAUSS CONSTRAINT

Our analysis of gravitational theories in a setting of

effective field theory has highlighted the role of the Gauss

constraint, which implies that the hypersurface-deformation

generators are not uniquely defined. Since the Gauss con-

straint contains a spatial derivative, and spatial derivatives of

this constraint can also be added to the hypersurface-

deformation generators, the derivative structure and therefore

the possibility of modifications is ambiguous as long as the

Gauss constraint remains unsolved. We will therefore now

solve the Gauss constraint explicitly and analyze the result-

ing hypersurface-deformation generators and their brackets.

A. Gauge-invariant variables

We begin with the classical constraint

H½N� ¼ 1

2G

Z

dx
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E1ððE2Þ2þðE3Þ2Þ
p ð2E1ðE2A0

3−E3A0
2Þ

þ 2A1E
1ðA2E

2þA3E
3Þ

þ ðA2
2þA2

3− 1ÞððE2Þ2þðE3Þ2Þ
þ ðϵ− γ2Þð2K1E

1ðK2E
2þK3E

3Þ
þ ðK2

2þK2
3ÞððE2Þ2þðE3Þ2ÞÞ ð88Þ

in which the lapse function no longer has a density weight.

The next few transformations closely follow the derivations

given in [31], but are presented here in a different form

using vector notation.

The pairs ðE2; E3Þ and ðA2; A3Þ [as well as ðK2; K3Þ]
transform under the defining representation of SO(2) with

respect to the Gauss constraint. It will be convenient to

arrange them in 3-vectors, such that

E⃗ ¼ E2e⃗2 þ E3e⃗3; ð89Þ

A⃗ ¼ A2e⃗2 þ A3e⃗3; ð90Þ

K⃗ ¼ K2e⃗2 þ K3e⃗3 ð91Þ

with standard basis vectors e⃗i. Obvious invariant variables
are therefore

Eφ ¼ jE⃗j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðE2Þ2 þ ðE3Þ2
q

; ð92Þ

Aφ ¼ jA⃗j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
2 þ A2

3

q

; ð93Þ

Kφ ¼ jK⃗j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2
2 þ K2

3

q

: ð94Þ

Moreover, we obtain another invariant α from the angle

between E⃗ and A⃗,

cos α ¼ E⃗ · A⃗

EφAφ

: ð95Þ

While E1 and K1 are also invariant, A1 has a nontrivial

transformation. A final gauge-invariant expression can be

written as A1 þ β0, where
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cos β ¼ e⃗2 · A⃗

Aφ

: ð96Þ

Using our definitions of α and β, we can write the unit

vectors

e⃗A ¼ A⃗

Aφ

¼ e⃗2 cosðβÞ þ e⃗3 sinðβÞ; ð97Þ

e⃗E ¼ E⃗

Eφ
¼ e⃗2 cosðαþ βÞ þ e⃗3 sinðαþ βÞ: ð98Þ

From the last relation one can derive the spin-

connection component Γ1 ¼ −ðαþ βÞ0 [31]. Therefore,

γ−1ðA1 þ α0 þ β0Þ ¼ K1 is nothing but an extrinsic-

curvature component. Since α and K1 are gauge invariant,

A1 þ β0 must be gauge invariant, as claimed above.

Moreover, computing the extrinsic curvature and spin

connection for a spherically symmetric triad [31] shows

that the angular part K⃗ points in the same internal direction

as the triad,

e⃗K ¼ e⃗E; ð99Þ

while the angular part of the spin connection, Γ⃗, is

orthogonal,

e⃗Γ ¼ −e⃗1 × e⃗E; ð100Þ

with coefficient

Γφ ¼ −
ðE1Þ0
2Eφ

; ð101Þ

see (53). Therefore,

A2
φ ¼ jA⃗j2 ¼ jΓφe⃗Γ þ γKφe⃗Kj2 ¼ Γ

2
φ þ γ2K2

φ: ð102Þ

The term in (88) containing spatial derivatives of the

connection can now be written as

E2A0
3 − E3A0

2 ¼ e⃗1 · ðE⃗ × A⃗
0Þ ¼ Eφe⃗1ðe⃗E × ðAφe⃗AÞ0

¼ Eφð−A0
φ sinðαÞ þ Aφβ

0 cosðαÞÞ:

We then express connection terms through spin connection

and extrinsic curvature, using

Aφ sinðαÞ ¼ Aφe⃗A · e⃗Γ ¼ Γφ ð103Þ

and

Aφ cosðαÞ ¼ Aφe⃗A · e⃗K ¼ γKφ: ð104Þ

Therefore,

E2A0
3 − E3A0

2 ¼ Eφð−ðAφ sinðαÞÞ þ Aφðα0 þ β0Þ cosðαÞÞ
¼ Eφð−Γ0

φ þ γKφðα0 þ β0ÞÞ: ð105Þ

The angles in the last term can be combined with a similar

contribution from the second term in (88), which adds A1 to

α0 þ β0. [In (88), A1 is multiplied with A2E
2 þ A3E

3 ¼
A⃗ · E⃗ ¼ γKφE

φ, which does not depend on Γφ because

e⃗Γ · e⃗E ¼ 0.] Since α0 þ β0 ¼ −Γ1 [31] and A1 − Γ1 ¼ γK1,

we have

E2A0
3 − E3A0

2 þ A1ðA2E
2 þ A3E

3Þ ¼ Eφð−Γ0
φ þ γ2KφK1Þ:

ð106Þ

Thus, by using variables invariant under transformations

generated by the Gauss constraint, we have been led to an

expression in which all spatial derivatives of the connection

have been replaced by spatial derivatives of the triad

(through Γφ).

Again in [31], the Poisson brackets

fKφðxÞ; EφðyÞg ¼ Gδðx; yÞ;
fK1ðxÞ; E1ðyÞg ¼ 2Gδðx; yÞ ð107Þ

for the new gauge-invariant variables have been derived. If

we express the diffeomorphism and Hamiltonian con-

straints in these variables, we restrict the previous theory

to the solution space of the Gauss constraint. We obtain

D½Nx� ¼ 1

2G

Z

dxNxð2EφK0
φ − K1ðE1Þ0Þ ð108Þ

and

H½N� ¼ 1

2G

Z

dx
N
ffiffiffiffiffiffi

E1
p ðK2

φE
φðϵ − γ2Þ þ 2ϵKφK1E

1

þðΓ2
φ þ γ2K2

φ − 1ÞEφ − 2E1
Γ
0
φÞ: ð109Þ

B. Modified constraint with classical brackets

In the Hamiltonian constraint, the two terms with γ2K2
φ

cancel out, showing that, for ϵ ¼ −1, we obtain the

Hamiltonian constraint as considered in [31]. Our calcu-

lation here extends this result to the Euclidean signature,

ϵ ¼ 1. Since all γ-dependent terms drop out of the final

expression, it is no longer clear why γ2 ¼ ϵ should lead to

different options for modified constraints. Nevertheless, the

previous distinction between γ2 ¼ ϵ and γ2 ≠ ϵ can still be

realized if we do not cancel the γ-dependent terms in (109)

before we try to modify the constraint. In particular, the

previous modification, using an arbitrary function of

fðA2
2 þ A2

3 − 1Þ, can still be implemented in the invariant

version if we recognize the combination Γ
2
φ þ γ2K2

φ − 1 as
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the correct substitute of A2
2 þ A2

3 − 1 ¼ A2
φ − 1. We there-

fore consider the modified constraint

H½N� ¼ 1

2G

Z

dx
N
ffiffiffiffiffiffi

E1
p ðK2

φE
φðϵ − γ2Þ þ 2ϵKφK1E

1

þfðΓ2
φ þ γ2K2

φ − 1ÞEφ − 2E1
Γ
0
φÞ: ð110Þ

Given the form of this new constraint, it is not obvious that

it can lead to closed brackets for f not the identity because,

compared with our previous derivation, we now have up to

second-order spatial derivatives of the triad (through Γφ)

instead of first-order derivatives of its momenta.

Thanks to antisymmetry of the Poisson bracket, the

only terms that give nonzero contributions to BNM ≔

fH½N�; H½M�g are combinations of a term from H½N�
depending on one of the Ki and a term from H½M�
depending on a (first or second order) spatial derivative

of one of the Ei, or vice versa. Therefore,

BNM ¼ 1

4G2

Z

dxdy
NðxÞMðyÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E1ðxÞE1ðyÞ
p

�

−ðϵ − γ2ÞfK2
φðxÞ; ðEφÞ0gE

1ðyÞE1ðyÞ0EφðxÞ
ðEφðyÞÞ2

− 2ϵfKφðxÞ; EφðyÞ0gK1ðxÞ
E1ðxÞE1ðyÞE1ðyÞ0

ðEφðyÞÞ2 − 2ϵKφðxÞfK1ðxÞ; E1ðyÞ0gE
1ðxÞE1ðyÞEφðyÞ0

ðEφðyÞÞ2

− ff; EφðyÞ0gE
φðxÞE1ðyÞE1ðyÞ0

ðEφðyÞÞ2 þ 2ϵKφðxÞfK1ðxÞ; fgE1ðxÞEφðyÞ

þ 2ϵKφðxÞ
E1ðyÞ
EφðyÞ fK1ðxÞ; E1ðyÞ00gE1ðxÞÞ − ðN ↔ MÞ: ð111Þ

Integrating by parts, we obtain

BNM ¼ 1

4G

Z

dxNM0
�

ð2ðϵ− γ2ÞKφ

ðE1Þ0
Eφ

þ 2ϵ
E1

ðEφÞ2K1ðE1Þ0 þ 4ϵKφðEφÞ0 E1

ðEφÞ2

− 4ϵ
E1

ðEφÞ2E
φK0

φ − 4ϵKφ

E1ðEφÞ0
ðEφÞ2 þ ∂f

∂Kφ

ðE1Þ0
Eφ

− 4ϵKφE
φ

∂f

∂ðE1Þ0Þ− ðN ↔MÞ

¼ −ϵ

2G

Z

dx
E1

ðEφÞ2 ðNM0 −N0MÞð2EφK0
φ −K1ðE1Þ0Þ

þ 1

4G

Z

dxðNM0 −N0MÞ
�

2ðϵ− γ2ÞKφ

ðE1Þ0
Eφ

þ ∂f

∂Kφ

ðE1Þ0
Eφ

− 4ϵKφE
φ

∂f

∂ðE1Þ0
�

¼ −ϵD
h E1

ðEφÞ2 ðNM0 −N0MÞ
i

þ 1

4G

Z

dxðNM0 −N0MÞ
�

2ðϵ− γ2ÞKφ

ðE1Þ0
Eφ

þ ∂f

∂Kφ

ðE1Þ0
Eφ

− 4ϵKφE
φ

∂f

∂ðE1Þ0
�

: ð112Þ

For a closed bracket, therefore,

2ðϵ−γ2ÞKφ

ðE1Þ0
Eφ

þ ∂f

∂Kφ

ðE1Þ0
Eφ

−4ϵKφE
φ

∂f

∂ðE1Þ0¼0: ð113Þ

Since f depends on Kφ and ðE1Þ0 only through
1
4
ðE10Þ2=ðEφÞ2 þ γ2K2

φ − 1, the chain rule implies that

∂f

∂Kφ

¼ 2γ2Kφ
_f and

∂f

∂ðE1Þ0 ¼
1

2ðEφÞ2 ðE
1Þ0 _f; ð114Þ

and (113) is equivalent to

2ðϵ − γ2ÞKφ

ðE1Þ0
Eφ

ð1 − _fÞ ¼ 0: ð115Þ

If γ2 ¼ ϵ, the equation holds identically for any f. If γ2 ≠ ϵ,

however, _f ¼ 1, and only the classical case is allowed. The

modification found in [21] can therefore be found also in

gauge-invariant variables, in which case the Hamiltonian

constraint contains second-order derivatives of the triad,

with the same restriction that it is allowed only for a

specific value of γ.

C. Modified brackets

A generic modification which does not require a specific

value of γ can be obtained for the theories considered here,

as has been known for some time for real variables [1,5].

Since the Hamiltonian constraint in real variables has the

same form as the general spherically symmetric constraint

in gauge-invariant variables, the same modification can be
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transferred also to self-dual type variables (γ2 ¼ ϵ) pro-

vided we implement it at the gauge-invariant level. At the

level of variables that are not gauge invariant, this new

modification (compared with [21]) is possible provided we

use the Gauss constraint to reintroduce second-order

derivatives of triads in the Hamiltonian constraint.

Starting with (109), the new modification is derived in a

way very similar to the case of real variables, found in [1].

Nevertheless, we reproduce the calculation of brackets here

for the sake of completeness. We modify (109) to

H½N� ¼ 1

2G

Z

dxNðxÞðE1Þ−1=2
�

ϵf1ðKφÞEφ

þ 2ϵf2ðKφÞE1K1 þ
� ðE10Þ2
4ðEφÞ2 − 1

�

Eφ

þ E1ðE1Þ00
Eφ

−
E1ðE1Þ0ðEφÞ0

ðEφÞ2
�

ð116Þ

with two functions, f1 and f2, that will be restricted further
by the condition of having closed brackets. We first

interpret this modification based on arguments within

canonical effective field theory. We are now allowing for

a nonquadratic dependence of the Hamiltonian constraint

on Kφ. If Kφ is still a first-order time derivative, a

nonquadratic dependence would be nongeneric unless

we also allow for higher-order spatial derivatives of the

densitized triad, which we do not do in (116).

However, modifying the Hamiltonian constraint in this

form also modifies the equations of motion that classically

imply the first-order nature of Kφ. An analysis of these

modified equations of motion should then be performed in

order to reveal the derivative order of the Hamiltonian

constraint. Schematically, we obtain the modified deriva-

tive dependence of Kφ from the equation of motion

_E1 ¼ 2N
ffiffiffiffiffiffi

E1
p

f2ðKφÞ þ N1ðE1Þ0; ð117Þ

_Eφ ¼ N
ffiffiffiffiffiffi

E1
p

K1

df2ðKφÞ
dKφ

þ NEφ

2
ffiffiffiffiffiffi

E1
p df1ðKφÞ

dKφ

þ ðN1EφÞ0; ð118Þ

providedwe can invert the function f2. This can explicitly be
done only in examples, whichwe restrict here to the common

case of f1ðKφÞ¼sin2ðKφÞ, which implies f2ðKφÞ¼
sinðKφÞcosðKφÞ or f2ðKφÞ2¼f1ðKφÞð1−f1ðKφÞÞ. The lat-
ter equation can be solved for

f1ðKφÞ ¼
1

2
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4f2ðKφÞ2
q

Þ

¼ f2ðKφÞ2 þ f2ðKφÞ4 þ � � � : ð119Þ

According to (117), f2ðKφÞ is strictly of first order in

derivatives, but f1ðKφÞ is not polynomial in f2ðKφÞ, and
therefore a derivative expansion of f1ðKφÞ does not termi-

nate. Similarly,

df2ðKφÞ
dKφ

¼ cosð2KφÞ ¼ 1 − 2f1ðKφÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − f2ðKφÞ2
q

ð120Þ

has a derivative expansion that does not terminate. Therefore,

K1 has a nonterminating derivative expansion because

K1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − f2ðKφÞ2
q

must be of first order according to (117).

We conclude that the constraint (116) contains a deriva-

tive expansion in both space and time derivatives, which

can consistently be truncated at any finite derivative order.

The resulting effective theory is therefore meaningful, but it

may not be the most general one because the derivative

expansion results only from theK-dependent terms in (116)

while we have not included higher-derivative corrections of

the E-dependent terms. (Higher spatial derivatives may be

expected from an expansion of nonlocal holonomies used

in the Hamiltonian constraints for models of loop quantum

gravity; see for instance [32,33]. However, it is difficult to

find consistent constraint brackets with such modifications

[5].) The mismatch does not violate (deformed) covariance

because the constraint brackets still close. However, unless

the symmetries implied by the closed constraints select

only this specific derivative structure, the modified theory

is not generic. (It resembles Born-Infeld type theories.)

Since no other consistent modifications are known as of

now, it remains unclear whether the apparently nongeneric

model is selected by symmetries.

In order to confirm that the constraint brackets can be

closed, we compute

fH½N�; H½M�g ¼ 1

4G2

Z

dxdy
NðxÞMðyÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E1ðxÞE1ðyÞ
p

�

−ϵ
EφðxÞE1ðyÞE1ðyÞ0

ðEφÞ2ðyÞ ff1ðKφðxÞÞ; EφðyÞ0g

− 2ϵ
E1ðxÞE1ðyÞE1ðyÞ0K1ðxÞ

ðEφÞ2ðyÞ ff2ðKφðxÞ; EφðyÞ0g þ ϵ
f2ðKφðxÞÞE1ðxÞ

2EφðyÞ fK1ðxÞ; ðE1ðyÞ0Þ2g

þ 2ϵf2ðKφðxÞÞE1ðxÞ E
1ðyÞ

EφðyÞ fK1ðxÞ; E1ðyÞ00g − 2ϵf2ðKφðxÞÞE1ðxÞE
1ðyÞEφðyÞ0
EφðyÞ2 fK1ðxÞ; E1ðyÞ0g

�

− ðN ↔ MÞ; ð121Þ
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writing only terms that produce nonzero contributions. All

terms are multiplied with ϵ, and therefore the possibility of

modifications does not depend on the spacetime signature.

The first two lines contain Poisson brackets of f1ðKφÞ
and f2ðKφÞ and therefore lead to derivatives of the

modification functions:

1

G

EφðxÞE1ðyÞE1ðyÞ0
ðEφÞ2ðyÞ ff1ðKφðxÞÞ; EφðyÞ0g

¼ EφðxÞE1ðyÞE1ðyÞ0
ðEφÞ2ðyÞ

df1ðKφÞ
dKφ

∂yδðx; yÞ ð122Þ

and

2

G

E1ðxÞE1ðyÞE1ðyÞ0K1ðxÞ
ðEφÞ2ðyÞ ff2ðKφðxÞÞ; EφðyÞ0g

¼ 2
E1ðxÞE1ðyÞE1ðyÞ0K1ðxÞ

ðEφÞ2ðyÞ
df2ðKφÞ
dKφ

∂yδðx; yÞ: ð123Þ

Another derivative of f2ðKφÞ results from the second-order

derivative of the delta function obtained after evaluating

fK1; ðE1Þ00g in the fourth line of (121). This contribution

follows from

2f2ðKφðxÞÞ
E1ðxÞE1ðyÞ

EφðyÞ fK1ðxÞ; E1ðyÞ00g

¼ 4f2ðKφðxÞÞ
E1ðxÞE1ðyÞ

EφðyÞ ∂2
yδðx; yÞ: ð124Þ

Upon integrating by parts twice in the resulting expres-

sion in (121), we initially produce a term with NðxÞMðyÞ00
times a delta function without derivatives. Integrating over

y, the delta function is eliminated, and we can integrate by

parts once again to obtain a term with N0M0 (which cancels
out in the antisymmetric bracket) and a term with NM0

times the derivative of the entire coefficient in (124):

−4

�

f2ðKφÞ
ðE1Þ2
Eφ

�0

¼−4

�

df2

dKφ

K0
φ

ðE1Þ2
Eφ

þf2ðKφÞ
�

2
E1ðE1Þ0
Eφ

−
ðE1Þ2ðEφÞ0

ðEφÞ2
��

:

ð125Þ

The last term [containing ðEφÞ0] cancels out with the fifth

line of (121), while only half the second term cancels out

with the third line of (121), for any f2. In order for the

remaining terms to be proportional to the diffeomorphism

constraint, only expressions proportional to K1 or K0
φ can

remain. Therefore, the other half of the second term in

(125) must cancel out with (122), which requires

f2ðKφÞ ¼
1

2

df1ðKφÞ
dKφ

: ð126Þ

Only two terms are then left, (123) and the first contribution

in (125). They are both proportional to df2ðKφÞ=dKφ and

combine to form the diffeomorphism constraint

fH½N�;H½M�g

¼−
ϵ

2G

Z

dxN0M
E1

ðEφÞ2
df2

dKφ

ð2EφK0
φ−K1ðE1Þ0Þ−ðN↔MÞ

¼−ϵD

�

df2ðKφÞ
dKφ

E1

ðEφÞ2ðNM0−N0MÞ
�

: ð127Þ

This modification, following [1,5], differs from the

modification of [21] in that it modifies not only the

constraints but also their brackets (while the latter remain

closed). It therefore implies a new, nonclassical spacetime

structure [12,13]. This modification is consistent for all γ

and is therefore generic. From this perspective, the modi-

fication of [21], which preserves the brackets, requires

γ2 ¼ ϵ and is not generic; it does not provide a way to avoid

nonclassical spacetime structures without fine-tuning. Our

derivations have shown that the different outcomes of [21]

versus [1,5] are not a consequence of working with self-

dual connections (used in [21]) or real variables (used in

[1,5]). The crucial difference is that modified constraints

with unmodified brackets, as in [21], can be obtained only

for specific γ, while modifications of constraints as well as

brackets exist for all γ.

V. CONCLUSION

We have shown that deformations of the classical space-

time structure appear generically in spherically symmetric

models of loop quantum gravity. For self-dual variables or

Euclidean gravity with γ ¼ �1, we have derived the most

general form of the quadratic Hamiltonian constraint free of

triad derivatives, such that a system with unmodified closed

brackets is obtained. This rigidity result, just as the setting of

[21] which it generalizes, relies on the absence of derivative

terms of the triad. However, from the point of view of an

effective field theory, this result is not generic because it

depends on a restriction of derivative terms even within the

classical structure of second-order derivatives. Moreover,

this rigidity result can be obtained only for specific values of

the Barbero-Immirzi parameter γ.

The results of [21] have sometimes been interpreted

as saying that deformations arising in the hypersurface-

deformation brackets, obtained originally using holonomy

modifications in real-valued variables, might be avoided in

the self-dual case. Self-dual variables represent a specific

choice for the Immirzi parameter, and therefore do not

lead to generic results. These variables (or the values of γ

they correspond to) are not distinguished intrinsically by
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symmetries because constraint brackets, which define the

symmetries of a canonical theory, can be closed for any γ.

Moreover, we have shown that the possibility of mod-

ifications, even within a self-dual setting, formally depends

on the derivative structure which can be changed by adding

multiples of the Gauss constraint or its spatial derivatives to

the Hamiltonian constraint. This ambiguity can be elimi-

nated by solving the Gauss constraint explicitly, following

[31], in which case the same derivative structure is obtained

in self-dual type variables and in real variables, which

agrees with the form originally used in an analysis of

modified brackets [1,5]. We therefore conclude that modi-

fied brackets and nonclassical spacetime structures are

generic in any spherically symmetric model with holonomy

modifications, even for self-dual variables. We also pointed

out that currently known modifications may not be generic

from the point of view of canonical effective theory

introduced here: After translating momenta into time

derivatives, different derivative orders appear in the terms

of a modified Hamiltonian constraint. This observation

suggests that there is room for further explorations of

possibly new models. A likely candidate for a generic

extension is the inclusion of canonical quantum back-

reaction effects [34–36], which in an action formulation

provide higher-curvature terms with generic higher deriv-

atives. However, quantum backreaction on its own does not

modify the hypersurface-deformation brackets of con-

straints [37] and is therefore unlikely to change our

conclusions about modified spacetime structures.

Euclidean and self-dual type variables are special also in

an analysis of cosmological perturbations [38,39], in which

case nongeneric modifications of constraint brackets have

been observed as well. Our results present useful indica-

tions for operator calculations [40–46] which have

demonstrated the possibility of off-shell closure of com-

mutators of constraint operators, mainly in the Euclidean

case. So far, these investigations have not yet given rise to

indications that the commutators of constraint operators

may be modified, in contrast to effective derivations as well

as the operator constructions in [6,47]. (However, it is not

always clear how to read off modifications of structure

functions in the operator setting, which should be some

function of a spatial metric or densitized triad and therefore

requires a suitable notion of states of a semiclassical

geometry which does not yet exist in the operator formu-

lation.) Our results show that the Euclidean setting is, in

fact, inconclusive as regards modifications of structure

functions because it is a nongeneric case that allows closed

brackets with and without modifications. Current effective

and operator treatments are therefore consistent with one

another. For a complete picture of spacetime structures in

loop quantum gravity, it will be important to extend off-

shell operator calculations to the full Lorentzian constraint.
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APPENDIX A: RESTRICTIONS ON COEFFICIENTS OF SEMISYMMETRIC GAUSSIAN TERMS

We list the solutions to partial differential equations resulting from the H-G and H-D brackets. These will give us the

so-called semisymmetric Gaussian terms. Denoting ðEφÞ2 ¼ E22 þ E33, for βij we have

8

>

>

<

>

>

:

β11 ¼ β11ðE1Þ
β12 ¼ E3C̃βðE1Þ þ E2C̄βðE1Þ
β13 ¼ E3C̄βðE1Þ − E2C̃βðE1Þ

;

8

>

>

<

>

>

:

β22 ¼ 1=2½−8C̄β23ðE1ÞE23 þ ðCΣðE1Þ þ C̃β23ðE1ÞÞE22 þ ðCΣðE1Þ − C̃β23ðE1ÞÞE33�
β33 ¼ 1=2½8C̄β23ðE1ÞE23 þ ðCΣðE1Þ þ C̃β23ðE1ÞÞE33 þ ðCΣðE1Þ − C̃β23ðE1ÞÞE22�
β23 ¼ C̃β23ðE1ÞE23 þ 2ðE22 − E33ÞC̄β23ðE1Þ:

For γi we have
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8

>

>

<

>

>

:

γ1 ¼ γ1ðE1Þ
γ2 ¼ E3C̃γðE1Þ þ E2C̄γðE1Þ
γ3 ¼ E3C̄γðE1Þ − E2C̃γðE1Þ

:

For αi we have

8

>

>

<

>

>

:

ᾱ1 ¼ Cα1ðE1ÞEφ

ᾱ2 ¼ ðC̃ᾱðE1ÞE3 þ C̄ᾱðE1ÞE2ÞEφ

ᾱ3 ¼ ð−C̃ᾱðE1ÞE2 þ C̄ᾱðE1ÞE3ÞEφ

;

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

α11 ¼ α11ðE1Þ
α21 ¼ E3C̃α2

1
ðE1Þ þ E2C̄α2

1
ðE1Þ

α31 ¼ E3C̄α2
1
ðE1Þ − E2C̃α2

1
ðE1Þ

α12 ¼ ðE2C̃α1
2
ðE1Þ þ E3C̄α1

2
ðE1ÞÞ 1

ðEφÞ2

α13 ¼ ð−E2C̄α1
2
ðE1Þ þ E3C̃α1

2
ðE1ÞÞ 1

ðEφÞ2

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

α22 ¼ ð−C̃α2
2
ðE1ÞE23 þ C̄α2

2
ðE1ÞE33Þ 1

ðEφÞ2

α33 ¼ ðC̃α2
2
ðE1ÞE23 þ C̄α2

2
ðE1ÞE22Þ 1

ðEφÞ2

α23 ¼ ð−C̄α2
2
ðE1ÞE23 þ C̃α2

2
ðE1ÞE22Þ 1

ðEφÞ2

α32 ¼ ð−C̄α2
2
ðE1ÞE23 − C̃α2

2
ðE1ÞE33Þ 1

ðEφÞ2

:

For Q we have

8

>

>

>

>

>

<

>

>

>

>

>

:

Q̄ ¼ ðEφÞ2CQ̄ðE1Þ
a1 ¼ EφCa1

ðE1Þ
a2 ¼ E3

Eφ Ca2
ðE1Þ

a3 ¼ − E2

Eφ Ca2
ðE1Þ

8

>

>

<

>

>

:

c1 ¼ c1ðE1Þ
c2 ¼ E3

ðEφÞ2 CkðE1Þ

c3 ¼ − E2

ðEφÞ2 CkðE1Þ

8

>

>

<

>

>

:

b11 ¼ b11ðE1Þ
b12 ¼ ð−c1ðE1ÞE2=2þ E3CbðE1ÞÞ 1

ðEφÞ2

b13 ¼ ð−c1ðE1ÞE3=2 − E2CbðE1ÞÞ 1

ðEφÞ2

;

8

>

>

<

>

>

:

b22 ¼ ðE33Cb22
ðE1Þ − 3E23CkðE1ÞÞ 1

ðEφÞ4

b33 ¼ ðE22Cb22
ðE1Þ þ 3E23CkðE1ÞÞ 1

ðEφÞ4

b23 ¼ ½3
2
CkðE1ÞðE22 − E33Þ − E23Cb22

ðE1Þ� 1

ðEφÞ4

:

We also have mixing conditions

8

>

>

>

>

>

<

>

>

>

>

>

:

CkðE1Þ ¼ −γ1ðE1Þ ¼ C̃α1
2
ðE1Þ

Ca2
ðE1Þ ¼ −Cα1ðE1Þ

CbðE1Þ ¼ − 1
2
α11ðE1Þ

Cb22
ðE1Þ ¼ − 1

2
C̄α1

2
ðE1Þ

8

>

>

<

>

>

:

C̄α1
2
ðE1Þ ¼ −2β11ðE1Þ

−C̄α2
2
ðE1Þ ¼ 2C̃βðE1Þ − C̄γðE1Þ

C̃α2
2
ðE1Þ ¼ 2C̄βðE1Þ þ C̃γðE1Þ

:

APPENDIX B: SOME USEFUL IDENTITIES

In calculating the fH½NðxÞ�; H½MðxÞ�g bracket, we can often make use of antisymmetry and integration by parts to

simplify our calculations. Suppose we have only one canonical pair; then typically we have

H½NðxÞ� ∼
Z

dxNðxÞ½� � � þ fðEðxÞ; KðxÞÞnðxÞ þ � � ��; ðB1Þ

where nðxÞ is a function of phase-space variables depending on x. Plugging this form of the Hamiltonian into the Poission

bracket we obtain the nontrivial term
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fH½NðxÞ�; H½MðxÞ�g ∋

Z

dxdyfNðxÞMðyÞ½nðxÞffðEðxÞ; KðxÞÞ; ∂n
yEðyÞgmðyÞ� − ðN ↔ MÞg: ðB2Þ

Denote _fðxÞ≡ ∂fðEðxÞ; KðxÞÞ=∂KðxÞ, and K
ðnÞ
NM for the above integral term [including the (N ↔ M)], then for n ¼ 1 we

have

K
ð1Þ
NM ¼ −

Z

dx½M0ðxÞNðxÞ − N0ðxÞMðxÞ�nðxÞmðxÞ _fðxÞ: ðB3Þ

For n ¼ 2 we have

K
ð2Þ
NM ¼

Z

dx½M0ðxÞNðxÞ − N0ðxÞMðxÞ�½nðxÞ _fðxÞm0ðxÞ −mðxÞðnðxÞ _fðxÞÞ0�: ðB4Þ
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