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A B S T R A C T

Time series of phenological products provide information on the timings of recurrent biological events and on
their temporal trends. This information is key to studying the impacts of climate change on our planet as well as
for managing natural resources and agricultural production. Here we develop and analyze new long term
phenological products: 1 km grids of the Extended Spring Indices (SI-x) over the conterminous United States
from 1980 to 2015. These new products (based on Daymet daily temperature grids and created by using cloud
computing) allow the analysis of two primary variables (first leaf and first bloom) and two derivative products
(Damage Index and Last Freeze Day) at a much finer spatial resolution than previous gridded or interpolated
products. Furthermore, our products provide enough temporal depth to reliably analyze trends and changes in
the timing of spring arrival at continental scales. Validation results confirm that our products largely agree with
lilac and honeysuckle leaf and flowering onset observations. The spatial analysis shows a significantly delayed
spring onset in the northern US whereas in the western and the Great Lakes region, spring onset advances. The
mean temporal variabilities of the indices were analyzed for the nine major climatic regions of the US and results
showed a clear division into three main groups: early, average and late spring onset. Finally, the region be-
longing to each group was mapped. These examples show the potential of our four phenological products to
improve understanding of the responses of ecosystems to a changing climate.

1. Introduction

Changes in climate are evident in observational weather and eco-
logical records (Kerr and Ostrovsky, 2003). According to the Inter-
governmental Panel on Climate Change (IPCC), there is strong evidence
that human activities are behind most of these changes. A tangible
impact of these modifications is the increasing frequency of tempera-
ture extremes. The spatial and temporal variability of temperature has a
direct impact on the timing of recurrent biological events of plants and
animals (bird migrations (Cohen et al., 2018), early appearance or early
flowering of the plants (Thomson, 2010), for example). This, in turn,
has a direct impact on land surface–atmosphere interactions and asso-
ciated biogeochemical cycles. Therefore, it is essential to understand
how terrestrial ecosystems are responding to climate change
(Richardson et al., 2013). In recent decades, climate change research
has increasingly involved remote sensing technologies (Rosenqvist
et al., 2003) using satellite images to derive land surface phenology and

in situ measurements provided by weather stations. The former over-
come interpolation problems but the latter supply measurements that
are easier to relate to ground processes and observations (Mendelsohn
et al., 2007). Satellite, airborne and meteorological sensors provide
observations of the Earth's surface at global, regional and, local scales.
All these measures are used to derive products to study the impact of
climate change on our planet (Broich et al., 2015; Villoria et al., 2016).

Consistent climate change indicators are needed to better under-
stand the different causes and impacts of climate change on our eco-
systems. Phenological observations constitute one of the most sensitive
indicators of climate change (Parry et al., 2007) because they contain
information about the timing of recurrent biological events that are
strongly linked to the local weather and climate of the area. Various
phenological indicators have been derived using phenological models
(Tucker, 1979; Glibert et al., 2014). The simplest phenological models
are Thermal Time models (Linkosalo et al., 2008). Among several me-
teorologically based measures of thermal time, Growing Degree Day
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(GDD) is suitable for modelling plant growth (Shaykewich, 1995). GDD
is the basis of the Extended Spring Indices models (SI-x) (Schwartz,
1985; Ault et al., 2015b). The SI-x models are used to generate a Start of
Spring indicator2 which is included in the US Global Change Research
Program. The Start of Spring indicator uses the accumulation of heat to
predict the day of the year on which temperature-sensitive plans leaf
out and start blooming. Start of Spring provides a direct connection
between vegetation phenology effects and global warming.

Different studies have used the SI-x models to analyze variations in
spring onset linked to climate change (Schwartz et al., 2013; Allstadt
et al., 2015). Most of these studies are based on plant and weather
observations stations at specific locations (Ault et al., 2013, 2015b) but
current work broadens the analyses to gridded SI-x products. Originally
available at relatively coarse spatial resolutions (1° (Ault et al., 2015a)
and 25 km (Wu et al., 2016)) and more recently at resolutions of about
15 (Allstadt et al., 2015) and 4 km (Crimmins et al., 2017), from which
a resampled 2 km product is also derived.3 High spatial resolution SI-x
products have special relevance in highly variable territories such as
North America, which present multiple and complex topographies.
Thus, high spatial resolution phenological products could be used to
obtain more realistic views of local phenology and to support regional
ecological studies. Additionally, having long time series of high spatial
resolution products helps to avoid drawing misleading conclusions
based on short-term conditions and/or trends (Cohen et al., 2018).

Until now, technology has limited high spatial resolution phenolo-
gical modeling to small areas due to the huge quantity of data that had
to be processed. However, the advancement of Information and
Communications Technologies (ICT) allows not only the visualization
and analysis of climate data (Zhang et al., 2016; Arundel et al., 2016;
Bradley et al., 2010) but also the development of new SI-x products
using cloud computing (Broich et al., 2015). The increasing accessi-
bility and lower costs of cloud computing have made it possible to study
geographic phenomena at high spatial resolution, over long periods of
time, and at continental to global scales. One example of an easily ac-
cessible and free cloud computing application is Google Earth Engine.
This application is based on the well-known map-reduce paradigm in-
troduced by Google,4 which considerably speed up data processing and
helps to scale up the required computations (Gorelick et al., 2017).

In this paper we present new spring onset gridded products based on
the SI-x models. Our products, available at 1 km and for the period
1980–2015, consist of four variables (two primary, one observational
and one derived; c.f. Section 2). The primary products are verified,
validated and analyzed to evaluate their quality and to check their
consistency with previous SI-x products and studies. Our analysis fo-
cuses on studying spatio-temporal patterns of spring onset, mapping
trends and on the use of the SI-x to regionalize the conterminous US.

2. The Extended Spring Indices

The Extended Spring Indices (SI-x) are a suite of models developed
by Schwartz et al. (2013) by removing the chilling requirements from
the original of spring indices models (Schwartz, 1997). This allows the
SI-x to have a wider geographic applicability and to model spring onset
for the complete conterminous US (CONUS). The SI-x models are pri-
mary used to predict “Leaf” (LF) and “Bloom” (BL) indices for three
indicator plant species (Lilac (Syringa chinensis “Red Rothomagensis”))
and Honeysuckle (Lonicera tatarica “Arnold Red” and Lonicera korolkowii
“Zabeli”)).

The SI-x models are based on Growing Degree Hours (GDH), which
are calculated from daily minimum and maximum temperatures. These
GDH are used to define accumulation of short- and long-term variables.

These variable are used in regression based models that predict LF and
BL for each plant species. The regression coefficients were calculated by
Schwartz et al. (2013):

• The LF index is the average of the first day of the year that fulfills:

+ + +

> =

+ +

> =

+ +

> =

DDE2*0.201 DD57*0.153 SYNOP*3.306 MDS0
*13.878 1000(Lilac)

DD57*0.248 SYNOP*4.266 MDS0
*20.899 1000(Arnold Red Honeysuckle)

DDE2*0.266 SYNOP*2.802 MDS0
*21.433 1000(Zabeli Honeysuckle), (1)

where DDE2 is the accumulated GDH from day t until day t+2,
DD57 is the accumulated GDH from day t+5 until day t+7 with t
being a temporal index from January 1st, ASYNOP is accumulative
of the synop variable which is 1 when DDE2 > 637 and otherwise is
0 and MDS0 is a counter that starts on January 1st.

• Likewise, the BL index is obtained by averaging the first day of the
year that fulfills:

− > =

− > =

− > =

ACGDH*0.116 MDS0*23.934 1000(Lilac)
ACGDH*0.127 MDS0*24.825 1000(Arnold Red Honeysuckle)
ACGDH*0.096 MDS0*11.368 1000(Zabeli Honeysuckle).

(2)

In this case, ACGDH is the accumulation of GDH from LF index and,
MDS0 is still a counter but it starts on the LF index date.

The SI-x models are not limited to predicting just these primary
indices. The SI-x also output two derivative products: Last Freeze (LSF)
and Damage Index (DI). The LSF is the last day of the year whose
minimum temperature is lower than or equal to 28° F (∼−2.22° C).
The DI links the LF index and LSF to measure the risk of frost damage.
That risk is quantified by the difference between the anomalies of LF
index and the LSF. Thus, very negative DI values indicate a high
probability of frost damage. For more information on the SI-x models
see Ault et al. (2015b), Schwartz et al. (2006).

3. Scaling up the Spring Index models

The Google Earth Engine (GEE) platform was chosen to scale up the
calculation of the SI-x models. GEE5 is a free and cloud-based appli-
cation that specializes in geospatial processing. However, GEE cannot
run the original Fortran and Matlab codes (Ault et al., 2015b) so these
had to be restructured to exploit the parallel processing environment of
the cloud. In this section, we first describe the data used in this work,
then the restructuration of the model to cloud computing, and finally,
the process of verifying, validating and analyzing.

3.1. Data

The data belongs to two main groups: the data used to obtain the SI-
x products at 1 km (environmental data) and the data applied in the
evaluation and analysis of the products (ancillary data).

• Environmental data:
Daily surface weather data (Daymet) version 2 is available in GEE.
Daymet is a continuous surface dataset available at a spatial re-
solution of 1 km for the CONUS (Thornton et al., 2014). Daymet
data is available between January 1st, 1980 and January 1st, 2016
and it covers the following spatial range: latitudes between 10 and
53° and longitudes between −133.5 and −49.9°. This means that

2 http://www.globalchange.gov/explore/indicators.
3 https://www.usanpn.org/data/spring_indices.
4 https://developers.google.com/earth-engine/. 5 https://developers.google.com/earth-engine/.

E. Izquierdo-Verdiguier et al. Agricultural and Forest Meteorology 262 (2018) 34–41

35

http://www.globalchange.gov/explore/indicators
https://www.usanpn.org/data/spring_indices
https://developers.google.com/earth-engine/
https://developers.google.com/earth-engine/


Daymet provides data for a long period of time (36 years) and over a
wide geographical extend (2700 by 6700 pixels). This allows char-
acterizing spring onset over the CONUS as well as analyzing phe-
nological changes. Daymet includes 7 variables although the SI-x
models only requires: duration of the daylight period (s), daily
maximum 2-m air temperature (°C) and daily minimum 2-m air
temperature (°C). All Daymet variables were obtained by inter-
polating daily weather values. These values were derived from
meteorological station data, taking into account elevation, the de-
sired spatial resolution and a land value mask. For more information
of Daymet see Thornton et al. (2000).

• Ancillary data: Three databases are used as ancillary data to confirm
the high quality of the obtained products and their analysis.
– Volunteered phenological observations: The database is provided
by U.S. Geological Survey (USGS)6 for 134 ground phenological
observation (GPO) sites spread around the CONUS over the period
1980–2015 (Fig. 1). This database contains the latitude and
longitude where the First Leaf and Bloom were observed, the DOY
and the event type (e.g. Leaf or Bloom). A total of 2550 GPO were
collected over the study period. The number of LF and BL ob-
servations depends on the year and the location because few ob-
servation sites contain data for the complete study period. The
locations of the GPO were employed to verify our implementation
of the SI-x models whereas both location and observed DOY were
used to validate the SI-x products.

– Global Historical Climatology Network Daily (GHCN-D): This
dataset7 consists of daily weather summaries from land surface
stations across the CONUS. It consists of the latitude and longitude
of the weather stations and the daily maximum and minimum
temperature for the temporal range of this study. This database
was used to both verify and validate the GEE SI-x version models.

– Climatic regions: The National Centers for Environmental
Information have identified nine climatically consistent regions
within the CONUS (Karl and Koss, 1984). The climate regions
were used to analyze the temporal variability of the SI-x products.

3.2. The Extended Spring Index models on the cloud

The parallel-processing nature of GEE motivated rewriting and
adapting the calculation of SI-x to obtain products at high spatial re-
solution. The implementation of the SI-x models was adapted to utilize
the function mapping capabilities of GEE, replacing the use of traditional
“for” loops.

The computation of SI-x is divided into several steps (Fig. 2). First
the Daymet collection is used to compute GDH for each of the first 250
days of each year. Next, the predictor variables, DDE2, DD57 and MDS0
and the SYNOP threshold are computed for each day. A cumulative sum
is then applied to this daily collection to produce the ASYNOP variable
and the three inequalities of Eq. (1) are evaluated each day. In each
daily image, locations where Eq. (1) is true are assigned the value of the
day of year (DOY) and the final LF index image is obtained by reducing
this collection of images to find the minimum DOY at each location for
each year.

The bloom step also starts by calculating MSD0 and, GDH values to
obtain accumulated GDH (AGDH). Unlike the LF index process, both
measures (AGDH and MSD0) begin counting from the date of LF index
instead of January 1st. Both predictors are linearly combined to gen-
erate a time series of images whose values are the DOY when the
conditions of Eq. (2) are met.

Finally, the derivative products are calculated. The LSF is obtained
from the minimum daily temperature in the Daymet dataset and the
difference between LF and LSF produced the Damage Index. JavaScript

code is available for the interested reader: LF index8, BL index9 and to
obtain the LSF.10

3.3. Performance evaluation and analysis of the SI-x models on GEE

The models’ performance was evaluated by verification (comparison
between local and cloud model versions at GPO positions) and valida-
tion (comparing the predictions and GPOs). The SI-x analysis focuses on
the spatial patterns and trends.

3.3.1. Performance evaluation
The GEE-based model products were compared against a legacy

implementation (Matlab MATLAB, 2010a toolbox) provided in Ault
et al. (2015b). The comparison of both outputs was done at GPO sites
(Section 3.1). The verification focused on the Pearson correlation and
root mean square error between the outputs obtained by GEE-API and
Matlab toolbox.

The validation used the DOY observed by the volunteers, which are
regarded as ground truth. We compared the SI-x products using Daymet
and GHCN-D (Section 3.1) with the GPOs. The comparison was ac-
complished as follows:

1. For each GPO (lat, long and observation year), we extracted the
Daymet temperatures of the corresponding grid cell and the GHCN-
D temperatures of the nearest weather station in distance and in
elevation difference.

2. Using the temperatures, we calculated the LF and BL indices using
GEE-API for Daymet dataset and Matlab toolbox for GHCN-D sta-
tions.

Fig. 1. Ground phenological observation places in the CONUS from 1980 to
2015.

Fig. 2. Scheme of SIx on GEE for processing one year. Dlength, Tmax, Tmin are the
day length and daily temperature bands through which the Growing Degree
Hours (GDH) are obtained. The accumulation of temperature between two
previous days and the day (DDE2), between seven previous days and five pre-
vious days (DD57) and accumulative SYNOP event (ASYNOP) are used together
with MDS0 (day of the year less one) to predict the Leaf index, using a linear
regression model. Bloom index is obtained by linear regression of accumulative
GDH, MDS0 and Leaf index. DI is calculated from Leaf index and Last Freeze
index. The latter uses Tmin for its calculation.

6 https://www.sciencebase.gov/catalog/item/5499b905e4b093dfafda3575.
7 //ftp.ncdc.noaa.gov/pub/data/ghcn/daily/.

8 https://code.earthengine.google.com/532a5e99f776eba9b106d070b5a885ca.
9 https://code.earthengine.google.com/640aeab2b2b9040e162e578400f21209.
10 https://code.earthengine.google.com/8e7e4fd4e9c0b020b93cd27ee35af384.
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3. The LF and BL index products were evaluated against the observed
DOY (GPO).

Finally, we analyzed the differences in the output when using dif-
ferent input data (GHCN-D vs Daymet). The LF and BL products gen-
erated through GEE were compared against the ones obtained when
running the same models with GHCN-D temperature data. This com-
parison was done to study the precision of the models [through the
root-mean-square error (RMSE) and the mean absolute error (MAE)],
the bias [through the mean error (ME)] and the goodness of fit [through
the Pearson's correlation coefficient (R)] of the models. Furthermore,
we used scatter plots to visualize possible differences between Daymet-
and GHCN-D-based model outputs.

3.3.2. Spatial–temporal analysis
The spatial patterns were analyzed by the temporal average of all

years (1980–2015), its standard deviation during that period and the
trends of the all SI-x products. The temporal patterns were estimated by
fitting a linear regression (least squares approach) on the full time
series. The statistical significance (p-value) of these trend was analyzed
and mapped to show areas with clear phenological changes. Lastly, the
temporal averages of LF and BL indices were analyzed for the nine
climate regions (Section 3.1) within the CONUS.

4. Results and discussion

4.1. Performance evaluation

The Pearson's correlation coefficient between the LF index obtained
when using the GEE and MATLAB implementations is equal to 1, and
the RMSE is equal to 0. The same results were obtained for the BL index.
This verifies our SI-x cloud-based implementation and confirms that we
now have a way to generate phenological grids at high spatial resolu-
tion for long periods of time. These results represent a step forward in
phenological modelling because previous studies either delivered data
using coarse spatial resolution grids or at individual points (typically
the locations of weather stations). Furthermore, our GEE-based im-
plementation is very fast; the complete temporal series was processed in
around 12 h.

Errors between predictions (using Daymet and GHCN-D) and the
GPOs are shown in Table 1. Results show that leaf RMSE errors for
GHCN-D and Daymet are similar while bloom errors are almost two
days smaller when using the Daymet database to calculate SI-x pro-
ducts. Furthermore, the bloom errors are higher than leaf errors for
both comparisons. This was as expected because in our implementation
we coupled the BL and FL indices (i.e. BL depends on FL index pre-
dictions). Comparison of the indices produced by GHCN-D and Daymet
shows that both databases lead to highly correlated outputs (R values
above 0.95) but also show that there are differences in the actual values
(RMSE values of around 7 days).

We represented as scatter-plots the LF and BL index predictions to
analyze their differences (Fig. 3a and b). As the figures show, LF pre-
diction is balanced between over/under predictions for both databases
while for bloom, Daymet produces more balanced predictions than the
GHCN-D dataset, which over predicts BL index. That is confirmed by
the ME values (Table 1). Fig. 3c and d shows the cross plots between
both predictions. The predictions made with GHCN-D and Daymet are
highly correlated notwithstanding that there are GPO sites with great
differences (some exceed more than 3 standard deviations) which are
analyzed in Fig. 4. The differences between databases predictions are
higher in LF than BL predictions. That is due to slight variation in the
inputs of the model causing greater variations in LF than BL predictions.
The slope of the LF linear combination (Eq. (1)) is more gentle than the
BL linear combination (Eq. (2)) and that implies, small variations in the
LF linear combination produce larger day prediction increments. The
steeper slope of the BL is due to high dependency on GDH accumulation
(AGDH) requiring further increase of the constant to change the pre-
diction day. These results show the sensitivity of SI-x products with
respect to the models’ input variables.

The spatial distribution of GPO sites with high differences between
Daymet and GHCN-D predictions are shown in Fig. 4a for LF and in
Fig. 4b for BL. We have split the differences into three cases: between 1
and 2 standard deviation (gray), between 2 and 3 standard deviations
(green), and higher than 3 standard deviations (red). In both figures,
the size of dots represents the number of times (predictions in different
years) when the difference between the predictions is higher than the
corresponding threshold. Note that most of the GPO sites have small
differences, only one site at north center for LF and four GPO sites at
center for BL are large. Thus, large differences are spread out around
the conterminous US. These results indicate which GPO sites might
require additional sampling to improve the SI-x model output. Focusing
on the temporal dimension, the main differences between GHCN-D and
Daymet predictions occur in the first decade of the temporal series,
although a few outliers are found later (Fig. 4c). The quantitative re-
sults between both datasets are presented in Table 1.

4.2. Analysis of SI-x model

4.2.1. Spatial–temporal analysis of SI-x models
The spatial and temporal average of the LF and BL indices indicate

that spring onset takes place on days 75 (March 16) and 108 (April 18).
Nevertheless, as Fig. 5a and d shows, these indices exhibit a clearly
noticeable gradient, with low values in the south and high values in the
north. BL occurs 40 days after LF in most parts of the country, except in
the west where the difference increases to almost 100 days.

The standard deviations of the LF and LB indices are generally low
and spatially homogeneous, although there are some notable points in
the West Coast and Pacific regions. The LF index exhibits less variations
along the Southern coast of the country than observed in the BL index.
The trends (Fig. 5c and f) show a slight tendency towards delayed LF
and BL index from northwest to north central regions, whereas in the
western region, the trend is reversed. Statistical significance (range of p-
values) is high in the western region for both the LF (Fig. 6a) and BL
(Fig. 6b) indices. However, the BL index also shows high values in the
north central, north west and around the Great Lakes. The advancement
of the BL in the latter region (i.e. Great Lakes) is consistent with results
obtained in previous work using a one-degree spatial resolution grid
(Ault et al., 2015b). However, our results present finer spatial details.

The LSF (Fig. 5g) has a similar latitudinal gradient to that of LF and
BL. However, in this case the gradient is less horizontal because LSF is
directly affected by minimum temperature values. The spatial and
temporal average of the LSF is equal to 88 (March 29). Considering the
average LF index (March 16), there is a clear possibility of plants being
damaged by frost. The range of LSF varies between day 120 (April 30)
and 0, for areas where it never freezes. The standard deviation (Fig. 5h)
shows higher variability in the Pacific, Southwest and Southeast coasts

Table 1
Estimated results for SI-x model using Daymet dataset (GEE-API) compared
with voluntary observations, GHCN-D stations using Matlab compared with
voluntary observations and Daymet compared with GHCN-D stations results.
Notation: ME: mean error, RMSE: root mean square error, MAE: mean absolute
error, R: Pearson coefficient.

Type pred. GHCN-D vs Obs. Daymet vs Obs. Daymet vs GHCN-D

Leaf Bloom Leaf Bloom Leaf Bloom

# samples 1309 1241 1309 1241 1309 1241
ME 2.645 11.493 0.337 9.575 2.310 1.920
RMSE 12.129 14.091 12.309 12.737 7.521 6.129
MAE 8.599 11.877 8.403 10.547 3.650 3.395
R 0.884 0.929 0.874 0.925 0.955 0.965
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than in the North Central and Northeast and, it does not exceed more
than 20 days. The trend analysis shows that LSF are generally getting
earlier and earlier each year.

Fig. 5j and k also shows the average DI and its standard deviation.
The average DI is mostly negative although there are a few small re-
gions with positive values at the south. Negative DI values mean that
LSF happened relatively later than the LF index; this may mean damage
to sensitive plants, depending on the temporal differences between LSF
and LF. The spatial patterns of DI standard deviation are similar to
those of LSF. This shows the high incidence of the LSF over the DI in the
study period. The analysis of the trend shows that DI is advancing in
most parts of the country, with higher advancement rates in the west
than elsewhere. This is largely due to earlier LSF. For both the LST and
the DI, the statistical significance maps show low values where their
trends have extreme values (Fig. 6c and d).

The temporal variability of the LF and BL indices was analyzed for
the nine climatic regions defined by the National Centers (Fig. 7c). The
average LF and BL indices for each region are shown in Fig. 7a and b,
respectively. Both figures clearly show that the study area can be di-
vided into three main spring onset groups: early (LF DOY 40 and BL
DOY 70), average (LF DOY 80 and BL DOY 110) and late (LF DOY 100
and BL DOY 140). These averages also show that spring onset is ad-
vancing in recent years. This advancement is visible in all regions ex-
cept the Northeast (climatic region 5 in Fig. 7c). The high temperatures
of 2012 (Karl et al., 2012) lead to a very early spring onset in all regions
except 1 and 9. In particular, the high temperatures of 2012 resulted in

earlier spring onsets in regions 2–5 (North Central, Greats Lakes and
Northeast regions) but not in regions 1 and 9, which had LF and BL
values similar to their long term averages. However, in 2015 (one of the
warmest years on record (NOAA, 2015)) regions 1 and 9 (West region)
show a considerable advancement of spring onset.

5. Conclusions

This paper describes the development of new long-term
(1980–2015) and high spatial resolution (1 km) phenological products
for the conterminous US. These products were created by adapting the
Extended Spring Indices (SI-x) models to a cloud computing platform
(Google Earth Engine). This adaptation allowed us to run the SI-x
models with a gridded daily weather dataset (Daymet) to generate two
primary outputs: the leaf (LF) and bloom (BL) indices. These indices
were successfully verified and validated by comparing our cloud-based
results with previous implementations of the SI-x, with results obtained
at locations with historical weather stations (GHCN-D network), and
with ground phenological observations. The temporal analysis of the LF
and BL indices shows that spring onset has, in general, advanced. The
rate of advancement depends on the geographic location, and it is
modulated by the topography of the US. Relatively large advancements
rates are evident in high altitude regions, through rates are lower in the
eastern portion of the country. The adaptation of the SI-x models to a
cloud environment also allowed us to derive two additional metrics: the
day of last freeze (LSF) and the damage index (DI). Both metrics,

Fig. 3. Scatter plots of leaf (a) and bloom (b) index predictions using Daymet and GHCN-D versus the observations and, leaf (c) and bloom (d) index days predicted
by GEE and Matlab versus GHCN-D predictions (n=2250). Statistical results of the fitting are presented in Table 1.
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Fig. 4. Left: Spatial distribution of the sites where differences in leaf (a) and bloom (b) predictions obtained from Daymet and GDHC-D are larger than σ (in gray), 2σ
(in green) and, 3σ (in red). Note that the size of points is proportional to the number of times the difference between predictions is higher than the threshold. The
largest is equivalent to 14 and 12 times for leaf and bloom predictions, respectively. Box plot of years (c) for the three σ thresholds. (For interpretation of the
references to color in this legend, the reader is referred to the web version of the article.)

Fig. 5. Averages, standard deviation and trends for the leaf index (LF; a–c), the bloom index (BL; d–f), last freeze (LSF; g–l) and the damage index (DI; j–l). All values
are calculated for the complete study period (i.e. 1980–2015).
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presented here for the first time as gridded products, were used to study
the likelihood of frost damage.

Our gridded products provide phenological information at more
actionable scales and, as such, they have the potential to support

management and decision-making activities. For instance, phenological
networks could use our products to both inform citizens on the arrival
of spring at their neighborhoods or to direct the data collection efforts.
Furthermore, the availability of phenological information at 1 km

Fig. 6. Statistical significance (range of p-values) for the trends of the leaf index (a), bloom index (b), last freeze (c) and damage index (d) illustrated in Fig. 5.

Fig. 7. Mean leaf (a) and bloom (b) temporal variability from 1980 to 2015 of the nine climate regions (c) in the USA.
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allows capturing finer surface heterogeneities. It also facilitates the
comparison and integration of temperature-based phenological in-
formation with other phenological data sources such as Earth ob-
servation satellites or the PhenoCam network.11 This could lead to an
improved understanding of, for instance, crop seasonality at regional
scales or to more robust ecological monitoring and management sys-
tems. Finally, having long time series of spring onset gridded products
at high spatial resolution means that we can analyze phenological
changes at multiple spatial scales. Such analyses will hopefully lead to
new insights and to an improved understanding of the responses of
ecosystems to a changing climate.
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