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Interannual variability in the global carbon cycle is largely due to variations in carbon uptake by terrestrial
ecosystems, yet linkages between climate variability and variability in the terrestrial carbon cycle are not well
understood at the global scale. Using a 30-year satellite record of semi-monthly leaf area index (LAI), we show
that four modes of climate variability — El Nifio/Southern Oscillation, the North Atlantic Oscillation, the
Atlantic Meridional Mode, and the Indian Ocean Dipole Mode — strongly impact interannual vegetation growth

patterns, with 68% of the land surface impacted by at least one of these teleconnection patterns, yet the spatial
distribution of these impacts is heterogeneous. Considering the patterns’ impacts by biome, none has an ex-
clusively positive or negative relationship with LAL Our findings imply that future changes in the frequency and/
or magnitude of teleconnection patterns will lead to diverse changes to the terrestrial biosphere and the global

carbon cycle.

1. Introduction

Climate fluctuations affect the terrestrial biosphere across seasonal
to multi-decadal timescales (Stenseth et al., 2003), while vegetation on
the land surface helps regulate the flow of energy, carbon, and water
through the climate system. This biosphere-atmosphere coupling will
influence the rate of increases in greenhouse gas concentration in the
atmosphere, the pace of climate change, the magnitude and scope of
biodiversity loss, and the interconnection between food, water, and
energy that is the basis of food security this century (Bonan, 2008;
Ogutu and Owen-Smith, 2003). However, the sign and magnitude of
atmospheric effects on land surface vegetation remains poorly con-
strained, partly because biosphere-atmosphere coupling depends
strongly on season, biome, and timescale, and biosphere-atmosphere
feedbacks can have downstream effects on ecological communities (e.g.
Charrette et al., 2006; Maza-Villalobos et al., 2013; Ogutu and Owen-
Smith, 2003). Further uncertainty arises from a mismatch of spatial and
temporal scales at which meteorological and ecological data are col-
lected. Climate datasets typically span several decades with near global
coverage at 10-100 km spatial resolution (Phillips et al., 2014), while
long-term ecological monitoring studies often focus on finer spatial
grain sizes and smaller spatial extents. Remotely sensed data can be
used to bridge these scale gaps because they span more than three
decades (AVHRR/MODIS/VIIRS, LandSat), and they are produced at
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spatial resolutions that fall between meteorological and in-situ ecolo-
gical monitoring scales. Such products permit us to analyze how var-
iations driven by large-scale climate phenomena affect global vegeta-
tion activity via large scale climate fluctuation patterns like
hemispheric and global teleconnections.

Teleconnections patterns are persistent atmospheric circulation
patterns that span large distances. They are defined statistically
(Barnston and Livezey, 1987) and can be used to characterize changes
in local and regional “packages of weather” (Stenseth et al., 2003) as-
sociated with different states of climate modes. Two well known tele-
connection patterns are El Nino-Southern Oscillation (ENSO) and the
North Atlantic Oscillation (NAO). Connecting vegetation responses to
teleconnections patterns is challenging because ecosystems may react to
different meteorological variables, like temperature or precipitation,
across multiple time lags (McPhaden et al., 2006). For example, a po-
sitive wintertime NAO is correlated with earlier, higher than average
springtime vegetation growth in Europe (Li et al., 2016). Despite these
obstacles, weather events associated with ENSO and the NAO have been
tied to changes in ungulate populations in South Africa (Ogutu and
Owen-Smith, 2003), butterflies in Borneo (Charrette et al., 2006), forest
succession in Mexico (Maza-Villalobos et al., 2013), and more (Stenseth
et al., 2003). While many of the studies focused on connections between
teleconnection patterns and the biosphere have focused on ENSO, re-
cently some studies have expanded to include other indices at global
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scales. For example, Zhu et al., (2017) compared fifteen teleconnection
patterns to the output from nine dynamic global vegetation models with
standardized forcings. They found that the teleconnections were
strongly connected to modelled gross primary productivity (GPP), with
most areas strongly linked to ENSO, the Atlantic Meridional Mode, and
the Pacific Decadal Oscillation. Gonsamo et al. (2016) compared the
30 year NDVI record (NDVI3 g; Pinzon and Tucker, 2014) to eight tel-
econnection indices. These authors also compared their set of tele-
connection indices to net primary productivity from a coupled Earth
system model and found that the model was unable to capture the
spatial patterns observed in the data.

Instead of testing a large number of possibly cross-correlated tele-
connection patterns (Quadrelli and Wallace, 2004), here we elected to
document the impacts of two well-studied global teleconnections pat-
terns—ENSO and NAO — and two infrequently considered climate
modes — the Indian Ocean Dipole Mode (IODM) and the Atlantic
Meridional Mode (AMM). We compare these four teleconnection pat-
terns to land surface vegetation over a time span of 30 years, using the
AVHRR-derived Leaf Area Index (LAI3 g) data set (Zhu et al., 2013).
The temporal span of this product allows us to consider global con-
nections between the land surface and the climate system that are not
possible with shorter time series or locally focused analyses. These four
teleconnection patterns represent spatially distinct climatological pat-
terns from around the globe.

ENSO, perhaps the most well-known climatological pattern to
ecologists and natural resource managers, is defined by changes in sea
surface temperatures (SSTs) in the tropical Pacific, known as El Nino,
which is linked to fluctuations in the distribution of atmospheric mass
(called the Southern Oscillation; hence the term “El Nino/Southern
Oscillation” or ENSO). These variations in the coupled ocean-atmo-
sphere system set up “ripples” in the troposphere, which in turn affect
global circulation patterns downstream. ENSO is associated with
drought conditions in areas that are usually wet (i.e. Indonesia,
southern Africa, India) and heavy rains in dry regions like the equa-
torial central Pacific, California, and the U.S. Gulf Coast (Rasmusson
and Wallace, 1983). Here we describe ENSO using the Oceanic Nifio
Index (ONI) for December-January-February (DJF) which is a 3-month
mean of sea surface temperature (SST) anomalies in the equatorial
Pacific (Nifio 3.4 region: 5°N-5°S, 120°-170°W (Huang et al., 2015)).
Further increases in greenhouse gas concentrations are expected to lead
to changes in the mean state of the Pacific Ocean and therefore possibly
lead to more strong El Nino and La Nina years with fewer mild years
(Cai et al., 2015).

The NAO is a measure of the difference in atmospheric conditions
between the subtropical Atlantic and the Arctic (Stenseth et al., 2003).
During its positive phase it has been associated with above average
temperatures in the Eastern U.S. and northern Europe and below
average temperatures in southern Europe and the Middle East and the
reverse in the negative phase. Positive phases of the NAO are also as-
sociated with higher precipitation in northern Europe, lower pre-
cipitation in southern Europe. Similar to ENSO, a wide range of eco-
logical impacts have been attributed to the NAO (de Beurs and
Henebry, 2010, 2008; Vicente-Serrano and Trigo, 2011). Feedbacks
between the NAO and future climate projections are complex, however,
it is possible that a weakening of the NAO could lead to reduced losses
of sea ice and fewer tropical storms (Delworth et al., 2016).

The AMM is a measure of SST anomalies in the tropical Atlantic
Ocean where SSTs are warmer than usual in the tropical North Atlantic
and cooler than usual in the tropical South Atlantic (Nobre and Shukla,
1996). This change in SSTs in turn impacts the location of the Inter-
tropical Convergence Zone (ITCZ) and can change the timing and
magnitude of precipitation events throughout the tropics, particularly
in northeastern Brazil and the Sahel (Foltz et al., 2012). Because
changes in the AMM influence wind patterns, strong AMM events are
also associated with increased hurricane activity (Vimont and Kossin,
2007). Few studies have been done of the direct impacts of the AMM on
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the terrestrial biosphere, however, recent work has suggested that the
AMM may play a role in tropical forest dynamics through a combina-
tion of hurricane and drought impacts (Chen et al., 2015).

The IODM (Saji et al., 1999) is a pattern of variability originating in
the Indian Ocean, with cool SSTs near Sumatra linked to warm SSTs
near East Africa. While somewhat correlated with ENSO (Saji and
Yamagata, 2003), the impacts of the IODM appear to be much more
focused on the countries surrounding the Indian Ocean — anomalously
strong rainfall events in East Africa, central India, and Central/Eastern
China are all much more closely tied to the IODM than to ENSO
(Marchant et al., 2006; Pervez and Henebry, 2015). Importantly, future
predictions for the IODM suggest that while its frequency is unlikely to
change, the intensity of events will probably increase in coming dec-
ades under the influence of climate change (Cai et al., 2013).

Since these teleconnection patterns can often generate conflicting
conditions for optimal plant growth (e.g., cooler temperatures and more
rainfall), their expected impact on the biosphere is unclear. Each tele-
connection is characterized by both a time series “index” of its ampli-
tude through time, as well as a spatial map of its expression in various
meteorological fields used to define it. Here we focus on the temporal
indices of each pattern to isolate their influence on the terrestrial bio-
sphere through time, across space, and within the annual cycle.

This paper addresses three questions related to the interactions
between teleconnection patterns and the terrestrial biosphere: 1) What
fraction of global interannual variation in LAI can be linked to two
common and two less well studied teleconnection patterns? 2) How do
the spatial patterns of impact vary among the different teleconnections?
3) How can we map these connections while taking account for tem-
poral autocorrelation in the data in a simple and consistent manner?

2. Materials and methods

To assess linkages between the four teleconnection indices and local
vegetation, we calculated correlations between each index averaged for
December, January, and February (DJF) of a given year and LAI3 g
minimum, mean, and maximum values for the subsequent three-month
intervals (JFM, FMA, through DJ,F, with J,F, being from the following
year). All analyses were performed at 0.25° resolution. We used a Monte
Carlo approach to eliminate small patches of possibly spurious corre-
lations, likely to be due to temporal autocorrelation. Finally, we ag-
gregated the global correlation fields (36 per teleconnection pattern) to
produce single maps of the strongest overall correlations and their
seasonality.

Correlation Analysis. The central goal of this paper was to map the
correlations between teleconnection pattern indices and variations in
the land surface in a way that is permissive enough to capture small but
significant relationships, but simple enough to be generalized and in-
terpreted. All analyses were performed in R (RCoreTeam, 2015) using
the raster (Hijmans and van Etten, 2013), rgdal (Bivand et al., 2013),
and ncdf4 (Pierce, 2015) packages. All maps were made in ArcGIS
10.2.2. Fig. S1 shows a schematic of the analysis process.

In order to have a long enough time series to perform robust cor-
relations, we used the AVHRR derived leaf area index data set (LAI3 g
(Zhu et al., 2013)), which is a global data set of LAI for the complete
years of 1982-2011 twice per month at twelfth-degree scale. To sim-
plify data processing and to average over small scale changes in local
vegetation, these data were rescaled (averaged) to quarter degree re-
solution. If a 0.25° grid cell had less than 60% coverage it was removed
from further analysis, thus many coastal areas were excluded from
analysis. Teleconnection pattern indices were obtained from the U.S.
National Oceanic and Atmospheric Administration (NOAA, 2017,
2015a, 2015b, 2015c¢). To simplify comparisons, we selected the three
month December-January-February period (‘DJF’; averaged) of each
index to compare to subsequent months’ LAI values. DJF was selected
for these indices as it is the 3-month period in the first half of the year
with the highest interannual standard deviation in all four indices. Fig.
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S2 shows the temporal patterns of these indices.

All of the indices were then normalized (mean = 0,s.d. = 1). Only
the AMM had a significant trend (p < 0.05) so it was detrended (Fig.
S2). This trend is likely due to the fact that the time period we con-
sidered (1982-2011) overlaps with first a negative phase in the Atlantic
Multidecadal Oscillation (AMO) then a positive phase in the AMO.
Patterns in the AMM are closely tied to the AMO (Vimont and Kossin,
2007). To test whether these indices were correlated with each other
we constructed a correlation matrix (Fig. S3). While ENSO and the
IODM are significantly correlated (R2 = 0.45), we elected to use both of
these indices in our analyses as there is evidence that they have sub-
stantially different impacts on weather patterns around the world (Saji
et al., 1999; Saji and Yamagata, 2003).

To best capture the different potential lags between strong tele-
connection timing and vegetation, we created maps of many different
correlations then filtered the strongest ones to create our final ag-
gregated maps. We first calculated point-wise correlations between
each teleconnection index and the detrended where necessary, nor-
malized (mean = 0,s.d. = 1) minimum, mean, and maximum LAI va-
lues for three-month moving windows for the following calendar year.
We tested correlations between each index and minimum, mean, and
maximum LAI values for JFM, FMA, MAM, etc, through DJ,F, with J,
and F, being from the following year. We then removed pixels with
non-significant (p < 0.05) correlations from each of the correlation
maps. This approach allowed us to isolate the strongest possible cor-
relation throughout the year, instead of focusing on growing season
values or annual averages. This also accounts for possible hemispherical
differences, as a strong correlation between, for example, ENSO and
maximum LAI in May in California would be represented equal to a
strong correlation between ENSO and LAI in South Africa in December.

In order to address the issue of temporal autocorrelation without
testing and correcting each model at each pixel, which would make the
mapped results very difficult to interpret, we normalized and detrended
the data as described previously then used a Monte Carlo-type ap-
proach. While any significant time series correlation could be the result
of autocorrelation, here we argue that geographically large patches of
significant correlations are unlikely to occur randomly. To test this
assumption, we correlated each teleconnection index with 1000 stacks
of 30 maps of randomly generated data with mean = 0 and s.d. = 1, as
in the centered and scaled LAI over the 30-year time series, masked to
match the continental outlines and no-data regions in the LAI3 g data
(producing 4000 correlations maps total). We then identified individual
patches using a ‘Queen’s case’ approach (two grid cells are considered
connected if they share a side or a corner), calculating the patch sizes
within each map using the area function in the raster package in R. This
function approximates area changes due to shifts in latitude by calcu-
lating the area of each grid cell as the height in km by the width at the
center of the grid cell. We then selected the average maximum size of
these random correlation patches to be the threshold below which
patches of correlation would likely be spurious (overall average was
4790 km?, which, for simplicity, we rounded up to 5000 km?). There
was no significant difference between the average maximum patch sizes
for the four climate modes correlated with random values (ANOVA
p = 0.401). We identified individual patches of correlation in the real
data, also using the Queen’s case, then calculated the area of each
patch. We removed patches that were smaller than 5000 km? from each
individual correlation map (e.g. ENSO DJF ~ AMJ max LAI) before
stacking and aggregating the correlation maps.

The LAI3 g product is not a perfect representation of actual LAI,
however, it is the only global LAI data set available that spans such a
long time period. The two major sources of uncertainty in remote
sensing of LAI are related to near infrared saturation at high LAI values
(Gamon et al., 1995) and the myriad causes of seasonal variations (or
their absence) in the tropics (Morton et al., 2014). We indirectly ad-
dressed these two issues by focusing on the variation, not the magni-
tude, of LAI around the world (all values were centered and
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normalized), by eliminating small patches of correlation, and by con-
sidering interannual variability, not intra-annual — e.g. correlations are
calculated between a given teleconnection pattern and a value from the
same 3 month period every year, so seasonal changes in sun angle
should not impact these relationships.

To summarize these analyses, we selected the strongest significant
correlations (maximum absolute value of Pearson’s R) across the twelve
time periods and min/mean/max values. We generated maps of the
correlation values and identified the correlation time periods and min/
mean/max (referred to below as ‘identity maps’). The correlation value
maps allow for visual interpretation of broad patterns, while the iden-
tity maps allow readers to see which areas correlate with which time
period and value. While much longer lagged effects of teleconnection
patterns are possible, here we elected to keep the time period relatively
short (1 year) to avoid confusing the next year’s pattern with the pat-
tern in the current year. Finally, we summarized the area of positive
and negative correlation by continent and by biome, using the biome
boundaries defined by the World Wildlife Fund (Fig. S8) (Olson et al.,
2001).

3. Results

Collectively, the four climate modes considered here affect nearly
70% (99.7 million km?) of the world’s land total area (correlation areas
by continent in Table S1). These climate patterns influence processes in
many of the most carbon-rich, food-insecure and biodiverse parts of the
world (Fig. 1). The NAO has the most extensive reach, influencing 48%
of the terrestrial land surface (70 million km?), and ENSO exerts
widespread influence, affecting 36% of the terrestrial land surface (52
million km?). The AMM and IODM influence all vegetated continents,
affecting 28% (41.5 million km?) and 29% (43 million km?) of land
surface, respectively. As expected (Stenseth et al., 2003), ENSO has
strong influences on western North America, the southern Amazon, and
eastern and southern Africa (Indeje et al., 2000; Schonher and
Nicholson, 1989), but also in Eastern Europe and the Siberian Plateau
(Figs. 1 and 3B and S5). The NAO is felt most strongly in the Northern
Hemisphere, but is correlated with LAI patterns around the world (Figs.
1 and 3D and S7). The AMM impacts the northern Amazon and Sub-
equatorial Africa, but also the North American Great Plains and the
Central Siberian Plateau (Figs. 1 and 3A and S4). The IODM has very
strong correlations with LAI in Eastern and Southern Africa, but is also
connected to LAI patterns in central Siberia and Southeast Asia (Figs. 1
and 3C and S6).

At the biome scale, none of these biosphere-atmosphere correlations
show an exclusively positive or negative relationship (Fig. 2). Tropical
and subtropical moist broadleaf forests and tropical grasslands, sa-
vannas, and shrub-lands show the most consistent patterns in terms of
the sign of the relationship (Fig. 2A and G), with most of the area of
these biomes having a positive correlation with the AMM and a nega-
tive correlation with the NAO (and to a lesser degree with ENSO). The
other biome-level correlations are somewhat evenly split between po-
sitive and negative relationships. The distribution of impacts is also not
evenly distributed among biomes, with some very small biomes, like
tropical coniferous forests (Fig. 2C) and flooded grasslands (Fig. 2I),
representing a small global land area that is almost uniformly linked to
one or more teleconnection pattern.

The seasonality of the relationships between the teleconnection
patterns and the biosphere reveal some large, spatially contiguous
patterns but also more complexity in biosphere-atmosphere interactions
within and among biomes (Fig. 3). The IODM and the NAO appear to
have stronger relationships with LAI in the spring in the high latitudes
of Asia, for example, while the NAO has a stronger influence in the fall
in northern North America. The AMM has a broad positive relationship
with LAI across the Amazon (Fig. 1A) but the seasonality of that re-
lationship varies, with the northernmost part of South America most
tightly coupled to the AMM around January, while the central Amazon
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Fig. 1. Maximum teleconnection absolute correlations (Pearson’s R). Each pixel represents the absolute maximum correlation between a teleconnection index and LAI, where the LAI
value could be the minimum, mean, or maximum from any three-month period in the year. White land areas had either no vegetation data or no significant correlations.
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Fig. 2. Areas and fractions of correlation with teleconnections by biome. Blue bars show areas of positive correlation, orange bars show areas of negative correlation. The largest area of
correlation is a negative correlation over 11.5 million km? for NAO with (A) TropMBF (abbreviations listed below). Colored area bars are scaled such that the 60% tick marks are equal to
11.5 million km?. Percentages are shown with the open bars. The total area of TropMBF is 19.8 million km?, so the NAO has a negative correlation with 58% of TropMBF. Biome x climate
mode relationships with very small colored bars but large open bars (e.g. L. Med x NAO) have an overall small area but a large fraction of that area is impacted by the climate mode. When
the colored bars extend beyond the open bars this means the area impacted is small relative to the size of the biome (e.g. M. Deserts). So, for example, a larger area of deserts have a
negative relationship with the NAO than do Mediterranean systems, but a much larger fraction of Mediterranean systems are impacted by the NAO. A. TropMBF = Tropical and
subtropical moist broadleaf forest; B. TropDBF = Tropical and subtropical dry broadleaf forest; C. TropCF = Tropical coniferous forest; D. TempBF = Temperate broadleaf and mixed
forest; E. TempCF = Temperate Coniferous Forest; F. BorealF = Boreal Forests/Taiga; G. TropG = Tropical and subtropical grasslands, savannas, and shrublands; H. TempG = Temperate
grasslands, savannas, and shrublands; 1. FloodG = Flooded grasslands and savannas; J. MontG = Montane grasslands and shrublands; K. Tundra = Tundra; L. Med = Mediterranean
forests, woodlands, and scrub; and M. Deserts = Deserts and xeric shrublands. Area and percent values listed in Table S2. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

shows a stronger relationship in June/July (Fig. 3 and S4). In contrast,
ENSO’s influence dominates the southern Amazon but is most strongly
coupled in July/August.

The largest contiguous area of correlation revealed in Fig. 3 is the
connection between the IODM and northern East Africa (the red area in
Fig. 3 includes southern Ethiopia, Somalia, Kenya, Uganda, and
northern Tanzania). This area is generally characterized by having two
rainy seasons per year: the long rains of March to June and the short
rains of October to December. That the strongest correlation between
the IODM and LAI is in January suggests that the IODM has a stronger
influence over the short rains, as has been described in the atmospheric
sciences literature (Ummenhofer et al., 2009).

4. Discussion

Climate teleconnection patterns influence the terrestrial biosphere
in many different ways, depending on the location, vegetation types,
land use history, and more. Assessing the relationships between climate
teleconnections and LAI around the globe, using a simple but robust
approach, has allowed us to identify areas that may be particularly
vulnerable to changes in atmospheric and oceanic circulation patterns.
Moreover, our analyses show that the influence of these teleconnection
patterns is wider and more diverse than was previously understood.

Many studies have focused on the impacts of the NAO or ENSO on
ecosystems, with tens of thousands of returns found for either on
Google Scholar (i.e. a search for “El Nifio Southern Oscillation” and
ecology yielded > 23,000 results). Our study suggests that less well
studied climate modes like the AMM and the IODM warrant more at-
tention from ecologists and natural resource managers interested in the
influence of climate on their field sites. For climate scientists, our study
shows the importance of these large-scale phenomena on the biosphere;
understanding how these teleconnection patterns may change in the
future will be critical to understanding the carbon cycle in general, but
also for food security, human health, and biodiversity conservation. For
example, if the AMO shifts into a negative phase, how will this impact
the AMM, and the ecosystems that are strongly connected to it, like
those in southern Africa and the North American wheat belt?

Uncertainties in the sign and magnitude of terrestrial climate-
carbon cycle feedbacks have preoccupied global ecologists, climate
scientists, and Earth System Model (ESM) developers for decades
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(Friedlingstein et al., 2006; Shukla et al., 1990; Swann et al., 2012).
Model-based studies have shown fine-scale and patchy responses by the
terrestrial biosphere to relatively coarse changes in atmospheric for-
cings over longer time scales (Gonsamo et al., 2016; Swann et al.,
2012); our analysis is based on observations, not ESM output, and
therefore corroborates these complex results. Furthermore, we argue
that generalizations of how terrestrial biomes or plant functional groups
might respond to climate change are likely too coarse to capture the
variety of ways that individual ecosystems respond to interannual
variability in the climate in the short- or long-term.

Climate teleconnections patterns disrupt vegetation activity in many
of the world’s “biodiversity hotspots,” defined as areas that are both
biodiverse and threatened by humans (Myers et al., 2000; Pimm et al.,
2014). While many of the threats to global biodiversity are clearly not
directly due to interannual climate variability (e.g., poaching, habitat
loss, and pest and pathogen spread (Dirzo et al., 2014; Sala et al., 2000;
Yap et al., 2015)), our results identify Eastern and Southern Africa,
Central America, the Brazilian Cerrado, and Southeast Asia (Figs. 1 and
3) as regions where climate could further threaten biodiversity. These
maps also have the potential to help identify smaller areas of ecological
importance. For example, a strong connection is identified between
ENSO and the Guyanan savannas at the intersection of Brazil, Vene-
zuela, and Guyana. While the high biodiversity of this region is known
(de Carvalho and Mustin, 2017), other ‘teleconnection hotspots’ could
signal high concentrations of biodiversity as well. Our analysis suggests
that parts of the world with high biodiversity, large human populations,
and strong biosphere-atmosphere connections are some of the most
likely to be at risk for biodiversity loss, although the details of how
habitat heterogeneity and climate variability influence biodiversity are
only beginning to be addressed at regional to global scales (Tuanmu
and Jetz, 2015). Shifts in the climate teleconnection patterns in these
regions would likely have cascading impacts both directly on biodi-
versity and indirectly through increased human pressures. For example,
fire is an important part of African ecosystems (Archibald, 2016);
spatial or temporal shifts in rainfall patterns could influence natural
and anthropogenic fire return intervals that would in turn impact tree
fractional cover and animal habitat.

Many of the regions highlighted in our analysis are major agri-
cultural regions, including North America and Central Asia (impacted
by AMM and NAO), subequatorial Africa (impacted by AMM), Central



K.M. Dahlin, T.R. Ault

Int J Appl Earth Obs Geoinformation 69 (2018) 56-63

Fig. 3. Maximum teleconnection month x LAI coefficients of determination (R?). Mapped across all months’ minimum, mean, or maximum LAI values, so pixels with correlations are
the same as in Fig. 1. Brighter colors are stronger R, darker are weaker or zero. Each month has six possible color values, with the brightest being R*s > = 0.4, then, in descending

order, 0.4 to 0.325 to 0.25 to 0.175 to 0.1 to O.

America and Eastern Europe (impacted by ENSO), East Africa (im-
pacted by IODM), and the Mediterranean, India, Australia, eastern
South America, and China (impacted by NAO). Jointly, these areas
comprise the majority of rain-fed agricultural lands and pastures
(Ramankutty et al., 2008). In the northern latitudes our results corro-
borate patterns found by Wright et al. (2014) that there is a positive
relationship between the NAO and NDVI in the Eurasian Wheat Belt.,
while in Africa our results corroborate the complex spatial patterns
found by Brown et al. (2010). In recent decades many of these regions
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have undergone food shortages due to weather anomalies and human
health has suffered as a consequence (Battisti and Naylor, 2009). For
example, the lowest values for the DJF IODM since 1982 were in 1997,
1999, 2011, and 2017 (—0.82, —0.81, —0.57, and —0.63, respec-
tively) (NOAA, 2017). These years correspond closely with several of
the major famines in East Africa, including those in 1998 in Sudan
(Deng, 2002), 1998-2000 in Ethiopia (White, 2005), 2011-2012 in
Somalia (Maxwell and Fitzpatrick, 2012), and 2017 in South Sudan
(FEWS, 2017). The influence of technological advances on food security
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makes it difficult to predict how future changes in teleconnection pat-
terns will impact food security. However, given current technologies
and resources a significant shift in the magnitude or frequency of any of
these four climate teleconnection patterns would have dramatic im-
pacts on our global food system.

5. Conclusion

Increasing focus is being placed on understanding eco-climate tel-
econnections (Swann et al., 2012) — that is, how biosphere-atmosphere
feedbacks will impact not just local conditions, but other regions
around the world. Correctly representing climate teleconnection pat-
terns has been a key focus of atmospheric science and a way of assessing
general circulation model performance (Bellenger et al., 2014), while
representing vegetation phenology has been a central focus in the land
modelling community (Caldararu et al., 2014; Dahlin et al., 2015;
Richardson et al., 2012; Stockli et al., 2011). The next challenge will be
to understand and predict how changes to one or more of these com-
ponents of the Earth system might affect the current levels of inter-
annual variability that have supported diverse biological and economic
systems for centuries. Changes to the timing and magnitude of high
frequency events like these teleconnection patterns, superimposed on
long-term changes in average conditions due to climate change, are
likely to drive abrupt shifts in agro-ecological systems with far reaching
impacts on humans and the environment.
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