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Abstract. We develop a rigorous asymptotic derivation of two mathematical models of water waves
that capture the full nonlinearity of the Euler equations up to quadratic and cubic interactions, respectively.
Specifically, letting € denote an asymptotic parameter denoting the steepness of the water wave, we use a
Stokes expansion in € to derive a set of linear recursion relations for the tangential component of velocity, the
stream function, and the water wave parameterization. The solution of the water waves system is obtained
as an infinite sum of solutions to linear problems at each O(e*) level, and truncation of this series leads to
our two asymptotic models, which we call the quadratic and cubic A-models.

These models are well-posed in spaces of analytic functions. We prove error bounds for the difference
between solutions of the h-models and the water waves system. We also show that the Craig-Sulem models
of water waves can be obtained from our asymptotic procedure.

We then develop a novel numerical algorithm to solve the quadratic and cubic h-models as well as the
full water waves system. For three very different examples, we show that the agreement between the model
equations and the water waves solution is excellent, even when the wave steepness is quite large. We also
present a numerical example of corner formation for water waves.
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1 Introduction

Both gravity and capillary water waves are modeled by the free-surface incompressible Euler
equations of fluid dynamics, and for many applications, the fluid is additionally assumed to
be irrotational. Well-posedness, stability, and singularity formation have been well studied
with many results; see, for example, [60, 83, 30, 14, 12, 80, 81, 82, 8, 50, 52, 26, 73, 24,
22, 6, 44, 37, 46, 45, 7, 20, 27, 35, 28, 32]. However, the Euler equations are sufficiently
complicated that for many physical scenarios, a precise understanding of the dynamics of
the solutions to the full water waves problem is not (at this time) known. Consequently,
since the pioneering works of Airy, Boussinesq and Stokes [1, 17, 18, 76], there has been a
sustained effort to find suitable approximations of the Euler equations, specific to certain
asymptotic regimes. Such approximate asymptotic models have closely related dynamics
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and can be significantly easier to analyze. Herein, we develop an asymptotic procedure
that yields approximate model equations for the water waves problem to various orders of
approximation of the nonlinearity. In particular, we present two models that respectively
capture the nonlinearity up to quadratic and cubic interactions.

We derive two asymptotic models for the evolution of both gravity and gravity-capillary
waves in deep water, using an asymptotic expansion in the steepness of the wave ¢, which
we view as a small parameter, equivalent to the ratio of the amplitude to the wavelength.
Such an expansion has been used extensively since it was introduced by Stokes [76]; see,
for example, [3, 61, 62, 4, 5]). Starting with the case of gravity water waves, we employ
such a Stokes expansion and obtain linear recursion relations for the stream function, the
tangential component of velocity, and the free-surface parameterization. Truncating this
expansion to O(e?) yields a quadratic model equation for gravity water waves. We refer to
this PDE as the quadratic h-model

02h + gAh = —A(|Ho:h|?) + gA(hAR) + go1(hérh) . (1)

Keeping all terms in the recursion relation to O(e?) yields the cubic h-model, a new model of
water wave dynamics that accurately captures the cubic interactions of the Euler equations
and is given by

0fh + gAh = —A[(Hdih)?] + gor (hdrh) + gA(hAR) + Q(h) (2)

where the cubic nonlinearity Q(h) is defined in (63). Asymptotic models for gravity-capillary
waves are derived in the same fashion (in section 5.3) when gravity and surface tension
forces are of the same order.

The same expansion procedure that we used for the one-fluid problem can be used to
derive models for two-fluid internal waves and the Rayleigh-Taylor instability (as noted in
Remark 2 below). Furthermore, our approach can be applied to the case of finite-depth
fluids as well.

We note that the quadratic h-model was derived using very different approaches by
Matsuno [53, 54, 55] and later by Akers & Milewski [2]. The cubic h-model was also written
down in the appendix of [54]. See also the papers of Benney & Luke [15], Choi [25], Lannes
& Bonneton [51], Berger & Milewski [16], Akers & Nicholls [3], and Granero & Shkoller [38]
for derivations of related models of water waves.

We show that both the quadratic and cubic h-models are well-posed in spaces of analytic
functions that are similar to the Wiener algebra but with a (growing) exponential weight
(used to guarantee analyticity). Well-posedness of the quadratic h-model follows from an
application of the Cauchy-Kowalewski theorem, while the well-posedness of the cubic h-model
is established using a slightly different approach®, wherein we prove the summability of the
Stokes expansion by obtaining bounds for our linear recursion, which can be estimated in
terms of the Catalan numbers [75] from number theory.

Tt is likely that well-posedness of the cubic h-model follows also from an application of the Cauchy-
Kowalewski theorem once certain reductions of the cubic nonlinearity are established, but we did not pursue
this direction.
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We also establish rigorous error bounds for the difference between solutions of the
h-models and the full water waves system. We thus conclude that both the quadratic and
cubic h-models are accurate asymptotic models of water waves in the small e-regime.

The asymptotic procedure that we shall describe below allows us to derive a large class
of asymptotic models of water waves, including the well-known hierarchy of models obtained
by Craig & Sulem [31]; in particular, we show that their most studied model, WW2 (or
water waves 2), is obtained from our approach. Moreover, we write the WW2 model as a
second-order wave equation and explain its connection with the quadratic h-model.

Finally, we present an arbitrary-order exponential time differencing scheme [29, 48, 21]
for solving the quadratic and cubic h-models accurately and efficiently and compare those
solutions against numerical solutions of the Euler equations. We show that the h-models
converge as expected: with € denoting the maximum slope of the initial condition, the
quadratic and cubic h-models converge in L? to solutions of the full water waves problem
with rates O(e2) and O(e?), respectively, where the L? error is scaled by €1 to account for
the decreasing (as a function of €) norm of the exact solution. We give three examples of
initial data that show excellent agreement between the h-models and the full water waves
solution all the way up to € = O(1). The first example is a multi-hump initial condition in
which a jet forms in each trough as the solution drops from rest; the second example is a
localized disturbance over a flat surface that propagates outward as time evolves; and the
third example is a family of standing water waves. In all three cases, the quadratic and cubic
models are much better than linear theory at capturing features of the dynamics. For large
€, the quadratic model has a tendency to form a corner singularity while the cubic model
tracks the Euler solution quite well. We also present a continuation of the first example for
the FEuler equations to show that the wave eventually overturns and appears to form a corner
singularity before self-intersecting, with dP/dn — 0 at the tip of one of the overturning
waves.

Paper Outline. In Section 2, we introduce the notation and some important definitions
used throughout the paper. In Section 3, we introduce the water waves equations, and the
three fundamental variables that shall be evolved: the tangential component of velocity,
the stream function, and the free-surface parameterization. Section 4 is devoted the Stokes
expansion of the water waves system and the derivation of the linear recursion relations.
In Section 5, we derive the quadratic and cubic h-models, and in Section 6, we prove that
these models are well-posed. In Section 7, we derive the Craig-Sulem WW2 model, and
prove that it too is well-posed. Section 8 establishes the error estimates for solutions of
the h-models compared to the full water waves system. Then, in Section 9, we perform a
number of numerical experiments that compare the quadratic and cubic h-models with a
highly accurate numerical solution of the full water waves system.

2 Some notation and definitions

2.1 Matrix indexing

Let A be a matrix, and b be a column vector. Then, we write Aé’ for the component of A,
located on row ¢ and column j; consequently, using the Einstein summation convention, we
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write A .
(Ab)* = AFp and (ATb)k = ALY

2.2 Power series summation

We adopt the convention that independent of the summand s;,

k—t
Z sj =0 whenever k < (. (3)
j=0

2.3 The water wave parameterization

We identify S! with the interval [—m, 7]. We shall denote a general parameterization of the
free-surface of the fluid by the diffeomorphism z(-,¢) : S — R2. This free-surface of the
fluid is the water wave, which we denote by I'(t). Hence, the water wave is given by

L(t) = {(z1(z1,t), 22(21,1)) : —w <z <, te[0,T]}.

For the majority of our analysis, we shall assume that the water wave evolves as a graph
over the horizontal xj-axis. in particular, (z1,22) = (21, h(x1,t)) and

L(t) = {(z1,h(z1,t) + —7<ay <7, te[0,T]}. (4)

The one-to-one function h(z1,t) is often called the signed height function.

2.4 The fluid domain and some geometric quantities

The time-dependent fluid domain is defined as
Q) = {(z1,22) : —m<a <7,—0 < 32 < 22(21,¢), t€[0,T]}, (5)

i.e. for the sake of simplicity, we assume that the depth of the fluid is much larger than the
amplitude of the wave.
We define the reference domain D as

D =S! % (—x,0). (6)

We let N = ey denote the outward unit normal to 0D, and we let 7(+,t) and M(+,¢) denote,
respectively, the unit tangent and normal vectors to the water wave I'(t), where N (-, )
points outward to the set Q(¢). We then set

n=Nozand T=Toz.
When the water wave is defined by graph parameterization (4), the induced metric g is given

by
g =1+ (01h)%. (7)
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2.5 Derivatives

We write

akf:(% fork=1,2, atfzg, V = (01,02), V*=(=02,01),

and for a vector F',
divE=V-F and cwrlF=V'. F.

The Laplace operator is defined as A = 07 + 3.

2.6 Fourier series

If f:S' — R is a square-integrable 2m-periodic function, then it has the Fourier series

0 ~ .
representation f(x1) = Y f(k)e’*! for all z; € S', where the complex Fourier coefficients
k=—o0
are defined by f(k) = ;J f(x1)e"™1dz;. We shall sometimes write f, for f(k). Functions
™ Js1 ]
g : D — R (which are square-integrable in z1 can be expanded as g(x1,z2) = Y. (w2, k)e*®1
keZ

for all (z1,x2) € D, where g(z2,k) = ZLJ- g(x1, x0)e o1 dy .
Y st

2.7 Singular integral operators

Let f(x1) denote a 27 periodic function on S'. Using the Fourier representation, we define
the Hilbert transform H and the Dirichlet-to-Neumann operator A as

~ ~

HJ(k) = —isgn(k)f(k), Af(k)=[k|f(K). (8)

In particular, we note that
OH=A, H?=-1.

Equivalently, suppose that f : S' — R is a 27 periodic function and that ® is its harmonic
extension to D. Then,

Af =02® on S!'x {0}. (9)
Finally, we denote the commutator between f and the Hilbert transform acting on g as
[H, flg = H(fg) — fHg.

Let us observe that [f, H]g = —[H, f]g.

2.7.1 Function spaces

For 1 < p < o, we denote by LP(S!) the set of Lebesgue measurable 27-periodic func-
1

tions such that |ul|rr < o0 where |u|rr = (J |u(z)P dx)p if 1 <p<ooand |u|pe =
Sl
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koo
esssup,est |u(z)|. For integers k > 0, we let H*(S!) = {u : LA(SY) ‘ lul3 = 3 0 u]re <
j=0
oo}. For s € R, we then define the space H*(S') to be the 27-periodic distributions such

Q0
that Jul3. = > (1 +m?)%|am|* < .
m=—ao
For a given 7 > 0, we define the following Banach scale of analytic functions as

X, = {u st ]R{‘ 1flx, = 3™ in| < oo}. (10)

meZ

3 Water waves equations

Water waves are modeled by the incompressible and irrotational free-surface Euler equations,
written as

ou+ (u-V)u+Vp=0 in Q) (11a)
curlu = divu = 0 in Q(t), (11b)
2h
p= —)\W on I'(t), (11c)
u = uop on Qx{t=0}, (11d)
V(I() =u-N, (11e)

where t € [0,T], Q(t) is defined in (5), I'(¢) is defined in (4), 0 < A is the surface tension
parameter and V(I'(t)) = w - & means that the free-surface I'(t) moves with normal velocity
u - M. We shall assume that all functions are 27-periodic in z;.

3.1 The Bernoulli equation

Since curlu = 0 in Q(t), u = V¢ for some scalar potential ¢. Then, (11a) can be written as
1
Orp(z,t) + §\V¢(a:,t)]2 + p(x,t) + pgre = f(t) VzeQ(t)andt>0. (12)
where f is a function independent of x.

3.2 The evolution of the tangential velocity

On S!, we define the following quantities:

v=uoz, VY=¢oz, and n=Noz.
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We shall make use of the tangential velocity
w=wu- -7 and w(z1,t) = v(z1,t)  01z(x1,t) on I'(f).
From (1le), 6;z - m = v - n so that
Orz(x1,t) = v(z1,t) + c(1,t)012(21, 1) (13)

for an arbitrary scalar function c¢. (Note that 01z is a tangent vector and that the water
waves problem has a tangential reparameterization symmetry.)
By the chain rule,

01V (x1,t) = 012(x1,t) - (V) 0 z(x1,t) = (v - 012)(x1,t) = w(x1, 1), (14)
and

OV (x1,t) = Opd(2(x1,t),t) + Orz(x1,t) - (V) 0 2(x1,t)
= (O oz + Opz - v)(21,t).

From (14), 010:¥(x1,t) = dww(z1,t), and (13) shows that
0V (w1, t) = (0o 2)(x1,t) + |v(z1, t)|* + c(21,t) D(21, 1) -
Therefore, we find that & satisfies
O = 01(0poz+|v|* + cw). (15)

From (12),

(160 2) 1, 0) + gloler, O + (0o 2)an,) + g2alar, 1) = £0),
so that
010060 2) = —a1 (0> + (Do 2) + g22)

where we have used the boundary condition (11c) in the last equality. Using (15), we find
that

TR
(L @y 220

We now suppose that the interface I'(¢) remains a graph and is given by (4). With the
definition of the metric (7), we write the unit normal and tangent vectors, respectively, to
I'(t) as

0 = (310l + e + A (16)

n =g 2(—dih,1), and T = g 2(1,0:h).

Using (11e), we decompose v as follows:

v = (v-n)n+(v-7')7'=g_%8thn —I—g_%(DT, (17)
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and hence
vl* = g7 (|oh]* + |@). (18)
Equations (13) and (17) then provide us with the identity
c= 0421 — V1 = —V] = g*1 (Othorh — @)

so that (16) can be written as

_ 1 _ 1 1 o3h
atw = —galh + (91 [Eg 1(|(9th’2 + ’OJ|2) — g 1|w]2 + g 1w5th§1h] + Aal <(1—|—(011h)2)3/2>

_ 1 -1 2 -2 — a%h

3.3 The equation for the stream function

Since (t) is simply connected, by classical Hodge theory, we can uniquely determine the
velocity vector u by solving the following elliptic system:

curlu =0and dive =0 in Q(), and uw-7=w on I'(¥). (20)

Solutions of (20) have the form u = V4 for some stream function ¥ which satisfies the
scalar Neumann problem

AY =0 in Q(t), and j—f/ =—w on I'(t). (21)

Existence, uniqueness, and regularity of solutions to (21) is classical when I'(¢) is sufficiently
smooth and f wdS(t) = 0; see [23] for the case that T'(¢) is of Sobolev class.
I'(2)

3.4 The evolution equation for the free-surface

We extend the parameterization (4) to a diffeomorphism v of D as

1/}(x1, .’Eg) = (xl,mg + h(xl,t)) v (.Tl, 1}2) € D, (22)
and set Lo . 0
Vi = [&m 1}, A=(Vy) = [—alh 1] : (23)

We then define the stream function on the reference domain D as ¢ = ¥ o y. We then
compute that

v=uoty = (V) ot = (—AZ0kp, ATOhp) = (—02p, d1p — D1hiap).
From (11e), d;h(x1,t) = v+ (—01h, 1) on S!, so that

Oth = 01 on S'. (24)



Cheng, Granero, Shkoller, and Wilkening  Rigorous Asymptotic Models of Water Waves

4 Stokes expansion and linear recursion for the time-dependent
water waves

4.1 Stokes expansion

Letting 0 < € < 1 denote the steepness parameter (which can be viewed as the ratio of the
amplitude to characteristic wavelength), we consider the following Stokes expansion ansatz:

h(zq,t) = 671($1,t), oz, t) = ep(z,t), w(r1,t) = ew(x1,t), (25)
where
h(x1,t) = ho(z1,t) + ehi(w1,t) + Eha(wr,t) + -+, (26a)
P(x,t) = @o(z,t) + ep1(x,t) + o, t) + -+, (26b)
&(z1,t) = wolzy, t) + ew (w1, 1) + wowy,t) + -+ . (26¢)

In particular, at the initial time ¢ = 0, we have

(h(21,0), dsh(z1,0)) = <hinit(a:1), hinit(x1)> for all z; € S. (27)
or, equivalently,
(h(x1,0), dh(21,0)) = (hm“(:”l), hi““”““”) for all z; € S. (28)
€ €

4.2 Linear recursion for the stream function

Using (23), the scalar Neumann problem (21) can be written as

(A AJ050) = 0 in D, (29a)
A¥o oy = —wo on S!. (29b)
and in expanded form,
Ap = 201hd1op + 03hdap — (01h)? 03¢ in D, (30a)
Op @ ah ., on S (30b)

ON 1+ (01h)2 1+ (01h)2

Substitution of our Stokes expansion (25) shows that (30) is equivalent to the following
linear recursion relation for k£ > 0

k—1 -2 7
App = 02 (2015010815 + OFhjor—1-5) Z Z O1hyOrhj—rO2p—2—j| in D,
Jj=0 Jj=07=0
(31a)
5 k—1 k=2 j
% = —wy + Z O1hjo1Pk—1—j — Z Z O1hyO1hj_rO2pp—2—; on S'.
7=0 7=07r=0
(31b)

10
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4.3 Linear recursion for the height function

Substitution of (25) into (24) shows that
&ghk = alﬁpk on Sl . (32)

4.4 Linear recursion for the tangential velocity

In absence of surface tension effects (A = 0), we have that (19) is equivalent to

1
0 = —gouh + S0 [(1+ @) (k[ = | + 200harh) ]

01 [|6th|2 — |(ZJ|2 + 2@6th81h]
2
— O1hOFh[|osh|* — |@|* + 2w0;hd1 k] — 0, (2(01h)? + (O1h)*)

— 901h(2(01h) + (G1h)") . (33)

Substitution of the asymptotic expansion (26) into (19) shows that

= —gorh + (1 + (01h)?)

L 01 [Bhi 1 g0rhe — ww =<
1 [Ochi—1—¢ t2e (Wk—1—0) ; Z:] 1 [wnOthg—nOrhi—o—¢]

Zn: 81h O1hy,— = a1 [athfnﬁthk32£ — Wg,nwki?)ie]

Orw = —g0orhy + Z
=0

o
w

NS
|
)

=

0101 hj 01 [wn— O ho—n 01 Pt —g ]

M: TMN “M“
QM: TM:
3

01102 h—j [Othi—nCrhi—1 — Wo—nWi—3—¢]

w”M

4;

J

Z O1hinOf hj—mwp—Orhy—p 01 hi—a—g
=0 m=0

T T
|
o O

k=2 ¢

twnalhe nOthi o0 —29 Y Y Othndihe nlihi 2
£=0n=0

inM
ﬁMN ”M“

E

n

J
Z atwmalhj m01 i — ]alhﬁ N,

7=0m

)

T
4
%ﬁ

o

|
M~
NgE

0
J
D A1hmdihymdrhn—j01he ndthy s . (34)

m=0

o~
Il
=}
3
Il
=}
.
Il
=}

11
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5 Derivation of the quadratic and cubic h-models

5.1 Preliminary lemmas

The linear recursion for the stream function ¢y, given in (31) can be decomposed into simpler
elliptic equations. Thus, given certain forcing functions h, ¢ and g, we shall focus on the
following two elliptic equations

AX = 3[2(01h)(019) + (02h)p] in D, and %X = (31h)(d1p) on S*,  (35)

and
AY =09 in D, and &Y =g on S'. (36)

We shall make use of two lemmas that show that the restriction of the solutions of (35) and
(35) to S! can be expressed in terms of the functions on S': hq,--- ,hx_1 and wo, -+ ,wWk_1.
Following our discussion in Section 2.6, a harmonic function f(z1,z2) in D can be

expanded as
0

f(x1,x2) Z mm”'”'” for all (x1,22) € D

for some complex coefficients f (n) that do not depend on z5. For example, the stream

function ¢, solving (31) with k = 0, is harmonic and hence @g(z1,z2) = 3] Go(n)em@1tInlzz,
neL

For k = 1, the right-hand side of (31a) is given by

02[2(01h0) (01p0) + (07 ho)o] (w1, 22) Z Z [m|(m? = n?)ho(n — m)@o(m)em e timie

n=—000 m=—00

and the right-hand side of (31b) is

o0 o0
(@1ho)(d100) = — D0 > m(n —m)ho(n — m)@s(m)emrHimizz.
n=—00 m=—00

It follows that the solution ¢; can be written via the expansion

nri+|mlz
pr(z1,72) = Y Prypemitimiez,

n,mez

where Y, . denotes the double sum " > and {I/D\ln,m}n,mez is a (double)
sequence of complex numbers. Using the recursion formula (31), an induction argument
then shows that for all j € N, the stream function ¢; can be written as the expansion

pi(r1,22) = D Py, (wa)emmtimiez

n,mez

where for each fixed j,n,m, ﬁ;n . (22) is a polynomial (of degree j — 1) function of x3. This
motivates the following two lemmas.

12
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Lemma 1. Let h: S' — R and ¢ : D — R denote 2m-periodic functions of x1, such that

Z hkeikzl ’ SD(xth Z Pk mg) ikz1+|m|xo 7
keZ,k#0 k.meZ

where x9 — ﬁk’m(ﬁig) is a polynomial function. If X is the unique solution to (35), then
: 227 CDTRO) g,
(01X)(x1,0) = —H[(&lh)(é’lcp)] - Z isgn(k)|m|(£* —k )hk—éj;)W , (37)

k,£,meZ

where ]3}]77)1(0) denotes 0%1347771(%2) evaluated at x9 = 0. Moreover, if ¢ is harmonic in D so

that o(z1,22) = 3 Pre*rtlklez then
keZ

X = —A[hdrp] + 01 (hAg) = 01 ([h, H]o1p) on S', (38)
where [[-,-] denotes the commutator.

Proof. With X (z1,22) = 3. Xj(22)e™*™1, X}, (x2) satisfies the differential equation

keZ
822)2k(x2) /‘J Xk xg Z |m] hk gP[ \m\mg for To < 0,
{,meZ
(02X1)(0) = D (0= k)lh— Py,
LmEeZ

whose solution is given by the variation-of-parameters formula: for k # 0,

~ 1 ~ ~
Xi(z2) = ] D (= k) lhg_¢ Py (0)elF2
lmEeZ
p )
o |m| kz |k|z2 —|k|:1:2 - —1) PZ m(o)
z;ez 2[k| hk e e Z‘ (Im| + k)74
[m|(£2 — k?) (Im|=k)y2+kzo (Im|+k)y2—kx2
+ Z % hk ¢ Pg ( )[e —e ]dyg.
L,meZ
Therefore,

o ~ ~ L JP(J)
ihRk(0) = isgn(k) D [ (€= k)huoPr — ImI(¢ — K2)lor s Z s M], (39)
LmEeZ j=0

and (37) follows from the Fourier inversion formula.
_In the case that ¢ is harmonic in D or equivalently, the Fourier coeflicients are given as
Py = oo if £ =m and Py, = 0 if £ # m, then the identity (39) shows that

RS . ~ ~ . (0% —
ik X (0) = isgn(k) Z(E — k)lhy_y Z Py, — isgn(k) Z |W|lr|n| T hk_ Z P
LeZ meZ e

, Z|( A
= isgn(k) 2(6 k)ﬁhk 0pe — isgn(k Z thgw

LeZ
= dsgn(k) Y [i(k — Ohi—e] (i0@0) — isgn(k) Y (6] = [k)hr—Airg
leZ el

13
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and hence on S',

X = —H[(61h)(019)] + H(hAp) + 1 (hAyp)
—H[ho7 ¢ + (a1h)(019)] + 01(hAp) = —A(hdrp) + 01 (hAy)

from which (38) follows. o

Lemma 2. Let g : D — R be a 2w-periodic function of x1, such that

1kx +|m|x
g(z1,22) Z G me’Frrtimie
k,meZ

and let Y denote the unique solution to (36). Then

. m ~ ;
01Y = —Hg — isgn(k) Z |m||_+_|k|g/1€,melkml on S'. (40)
kmeZ

Proof. Letting Y (z1,22) = Y. Y(z2)e ™1, we find that
keZ

agi}k(mg) k? Yk x2) Z |m|Gr,m mlrz for 25 < 0,

meZ

22Yk(0) = " Gk -

meZ

The solution for the case k # 0 is obtained via the variation-of-parameters formula as

hlzy L N Iml L
T i 2 e 3] 20l (e )

meZ
s |;:;|§’f J " [elml=keathaz _ (mlhywa—kaz] gy,
meZ
Therefore,
z’kYk = isgn(k Z Gke.m — isgn(k Z fud ——0k;m
] + k] 7*
meZ
which is (40). o
5.2 The quadratic h-model
From (31),
Agg =0 in D and i@g = —wp on St (41)
N
and

A(pl = 0Oy (251h081(p0 + (312h0 900) in D and % = —wi + 81h051g00 on St. (42)

14
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We decompose 1 = ¢\ + ", where ¢{* and ¢{” satisfy

A = f:= 05 (201ho0100 + O ho o) in D, (43a)
(a)
a(;aliI =g = &1h061g00 on Sl, (43b)
and
Ap” =0 in D, (44a)
a(p(b)
61iI = —w; on Sh. (44b)

We note that the solvability condition for (43) is satisfied since integration-by-parts shows
that

fl 02 (201h061<,00 + 512h0 (p(]) dy = fl 201h001g00 + 612h0 gOod:El = fl 61h061g00d:v1 s
StxR— S S

and similarly the solvability condition for (44) is also satisfied: f widz; = 0. With the
St

solvability conditions satisfied, the elliptic problems (43) and (44) have unique solutions in
H'(D) by the Lax-Milgram theorem. Using the Hilbert transform,

0100 = Hwy and 019" = Hw; on S, (45)
We can then apply Lemma 1 and conclude that
314,0(1&) (1'1, 0, t) = 61 ([[ho, H]]Hw()) = —H[(é’lho)(Hwo) + hoAWo] — al(howo) on Sl . (46)

From the recursion for the tangential velocity and (32), we have that

Otho = Huwy on S!', (47a)
é’two = —galho on Sl y (47b)
Oth1 = Hwy — H[(alho)(HWO) + hkoo] — al(h()w()) on S! , (470)
1
6tw1 = —galhq + 5(91(|(9th0|2 - |w0]2) on Sl . (47(1)
We can write (47) as system of wave equations,
acho + gAho =0 (48&)
1
02hy + gAhy = 5A(|a,fhg|2 — [Hoho|?)
— H[(010tho)(@tho) — g(01ho)(Aho) + (0tho)(010:ho) — ghoAdiho]
+ 61[(6th0)(H8th0)] + gal(hoﬁlho)
= —A(|Hotho|?) + gA(hoAhg) + g1 (hod1ho) , (48b)
where, in the last equality, we have used the Tricomi identity
2H(fHS) = (Hf)" ~ f*. (49)

15
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The quadratic h-model follows from setting
h(z1,t) = ehg(z1,t) + €2hy(21,1), (50)
so that

0fh + gAh = € (—A(|Hdhol?) + gA(hoAhg) + g1 (hod1ho))
= —A(|H6h|?) + gA(hAR) 4 g0y (horh) + O(€3).

Neglecting terms of order O(e®), the quadratic h—model reads

02h + gAh = —A(|Ho:h|?) — g1 ([h, H]AR), (51a)
= 201(6thHoth) — A ((0:h)?) + gA(hAR) + g1 (hd1h) . (51b)

The quadratic h-model (51) modeling gravity water waves in deep water reduces to
the “Model” equation obtained by Akers & Milewski [2], although in a very different way.
They first simplify the water waves problem by making the assumption that the potential
function at each recursion relation is set on the fixed domain with top boundary given by
x9 = 0 (rather than o = h(x1,t)). It is interesting to note that up to quadratic nonlinearity,
this simplification produces the same h-model as we have obtained by keeping the full
water waves system in the asymptotics. We note that Akers & Nicholls [3] later used a
diffeomorphism (similar to our ¢) to fix the domain, but only study the linear recursion for
the traveling solitary wave ansatz.

Remark 1. We observe that the quadratic h-model (51) is kept invariant by the scaling

1
hy(a1,t) = Eh(u%hut)-

This is the same scale invariance as for the full gravity water wave problem.

Remark 2. Following a similar approach, for the case of an internal wave separating two
perfect fluids with densities p* and p~, we can derive the equation

2h = AgAh + AN(|Ho:h|?) + A%g (A(hAR) + é1(hé1h)) (52)

where N B
_pP —p

pr+pT
is the Atwood number.

A similar asymptotic model was derived in Granero-Belinchén & Shkoller [38] to study
the two-fluid problem.

16
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5.3 The quadratic h-model with surface tension

For surface waves in the regime where the effects of both gravity and surface tension are
similar in magnitude (wavelengths of order L ~ 1/73.5/981cm or, equivalently, the Bond
number % ~ 1), the previous recursion for the tangential velocity has to be changed. This
is somewhat challenging for general k& due to the denominator present in the expression for
the mean curvature; however, for £k = 0 and 1 this modification takes the following form:

Otho = Hwy on St (53a)

Opwo = —galho + A&%ho on Sl , (53b)

8th1 = le — H[(alho)(HwO) + hkoo] — 81(h0w0) on Sl s (530)
1

Orw1 = —g@1h1 + Aa%hl + 581(|ath0|2 — ‘W0|2) on S'. (53(1)

Equivalently, taking a time derivative, we have that

0?hg = —gAho — A\3hg

1
02hy = —gAhy — AM\3hy + §A(\6th0]2 — [Hoho|?)

— H[(616:ho)(@tho) + (01ho)(Hdwwo) + 0thod10¢ho + hoAdww|
— 01(0rhowo + holiwo)
= —gAhy — AN3hy — A(|[HOhol?) — A[hoH dwo | — 01(hodwwo)
= —gAhy = AN*hy — A(|HO1ho|?) + Alho (9Aho + A hg) | — 1 (ho (—gd1ho + AdTho)) -

Then, a similar argument as before shows that, up to O(e?), the quadratic h—model (51)
with surface tension modeling gravity-capillary waves in deep water is written as

Ofh = —gAh — AN*h — A(|HOh|?) + A[h (gAh + AAPR) | — 01 (h (—gdih + AO3h)) . (54)

5.4 The cubic h-model

In order to derive the cubic h-model, we shall also need the equation that o satisfies; thus,
in addition to (41) and (42), we use (31) to find that

A(pg = 09 [281]10812@1 + 281h181g00 + 901512h() + gooﬁfhl — (51h0)2(92g00] in D, (55&)

0
a—f\? = —wy + A1hod1p1 + O1h1 010 — (O1ho) a0 on S'. (55Db)

17
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(a) (b)

+ P X

We decompose @2 as the sum @2 = @5 + 5 + o8V where ¢S5, 087, ©f) and @§”

satisfy

(a)
Agp(a) = 261h1612<,00 + 812h162<,00 in D 880

N = 01h1d1p9 on S',

()
Apy) = 201hod12¢1 + 0 hodap1 in D 02 _ O1hod1p1 on S',

0N
© _ 242 . o 2 1
Ay’ = —(01ho)"05p0 in D N = (0tho)“dapo on S,
AV =0 in D a(p(d) — —wy on S
2 oN 2 ‘
Note that 6’14,0(2(1) = Hwsy on Sh.
Solving (41), o(x1,z2,t) = — ] Meik’“*‘k‘x?, and by Lemma 1,
L
51@<a) 1([[}11, H]]HUJ()) . (56)
Next, we write the solution to (44) using the Fourier components " (k, z2,t) = —ML(t)e““"":2

and using the variation-of-parameters solution to (43), we see that

a sgn ~ T2 ek(wzfyz) _ ek(yQ*ajz)
| )(k g, t) = gT()g(kat)e‘k‘xz +f f(k,y2,1) 5% dy2
0

01(hoHuwy)
_ | 1(ho T |k:|0 elklez Zhok o(t)@oe(t)elhe2 ;
e

thus,

o1 (21, 72, ) = Z —w1(t) + (01(hoHwo)),(t) etkaitlklze _ Z h/\ok_g(t)c/d\og(t)eikzlﬂam .

keZ |k| kT
It then follows from Lemma 1 with ﬁk’m = Okm —O(t) + (izﬁhOHWO))’“(t) - l/zgk,m(t)@\om(t)

that

108 = &1 ([ho, Hﬂgwl) - ([[ho, HﬂA(hono)) + H[(01ho)d1(howo)]

k2 ikx
k,l,meZ
= 81([[]10, Hﬂle) — 81([[h0, HﬂA(hono)) + H[(alho)al(howQ)]
L+ k) =5 - ~ ik
= % s LD G, e nGime™ (57)
k. meZ

18
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Using Lemma 2 with g = —(01h0)%(01¢0) (or equivalently with gy, = (mzk_m Do), We
find that

(01057 (21,0, 1)

—H[@ho ) (0) = Y isgn() T ()% (O ()6
k(e k 6£0

~H[@houn]()) = Y] isgn(t) L (Euho)y () Eaho) (DT ()
k,6,meZ

~H[@hown](0)+ Y] sgn(t) = @k (e (050 (06 (58)
k. meZ

Hence, combining (56), (57) and (58) and the fact that 015" = Hws on S',

(81(,02)(1’1,0) = Hwy + 51([[h1,H]]HCUO) + al(ﬂhg,H]]le) — 51([[h0,H]]A(h0Hw0))

Tk T~ ik
+ H{[(01h0)01(howo )| — H [ (d1ho)*wo] — Z Sgn(k)W(alhO)k_ghOZmWOmek L
k.l meZL
Noting that for each fixed k,m € Z,
— o~ — 1 — i(k—m
> 01hor—ehor—m = hoO1hog—m = 551(h%)k7m = (z)(hZ)k m >
e,
we have that
mtk) o~ ~ ike
> sen(t) "I R, e ()™
k,(,meZ
: Iml(m+ k)(k —m) 753 ~ ks
= isgn(k h t)wome ™t
S 1
= Z isgn(k)|m|(|k| — |m|)(h2)k m(t)womek 1= ial(h%Awo) + §H(h(2)A2wo).

k meZ
Therefore, we have that
Otho — Hwoy = @1([[h1, H]]HW()) + 61([[h0,H]Hw1) — &1([[ho, H]]A(hoHCUQ))

1 1
+ H[(alho)al(howo)] — H[(alho)Zwo] — §8l(h(2)Awo) — §H(h%A2wo) s (59&)
ath = —galhz + 81 [(%hlatho — wowl] + (91 [anthoalho] s (59b)
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We next time-differentiate (59a) and substitute (59b) to find that

0fho + gAhy = 01([0th1, H]Hwo) + 01 ([h1, H]Hdwo) + 01 ([0tho, H|Hw))
+ 01 ([ho, H]H0yw1) — 01([0¢tho, H]A(hoHwo))
— 01([ho, H]A(GthoHw)) — 01 ([ho, H]A(hoH dwy))
+ H[(010tho) 01 (howo) | + H [(01h0)01(6rhowo)] + H [(01h0) 01 (hodiwo) ]
— 2H([(01h0)(016tho)wo| — H[(01h0)*(8swo)]| — &1 [ho(@eho) (Aw)]

_ %al [h2(Adwwo)] — H{ho(éuho)A2wo] — %H(hgﬁatwo)
+ A [0th10thy — wow1] + A [wodrhodrho] -
Thanks to the identitics in (47), we conclude that
wo = —Hotho and wy = —Hothy + A([ho, H]0ho) on S.
Thus,
02hy + ghhy = &1 ([0cha, H]vho) — gy ([h1, H)Aho) + 1 ([2tho, H] [0cha — 1 (Tho, H]dtho)])
+ar ([[ho, H] [gAhl + %A(|ath0|2 - ]Hath0|2)D — &1 ([0vho, HTA(hodeho))

— 01([ho, HJA((0:ho)?)) + o1 ([ho, HIA(hoAho))

— H[(&létho)ﬁl(hoHﬁtho)] — H[(alho)al(athoﬂatho)] — gH[(alho)al(hoalho)]
+ 2H([(01ho)(0101ho) Horho| + gH [(01ho)*] — 01[ho(0ho) (610¢ho) ]

+ gal [h2(Ad1ho)] — H[ho(2tho)Ao1dsho] + gH(h3A261ho)

+A [&thlétho + Hoihg (—H&thl + A([[ho, H]]atho))] —A [Hathoathoalho] .

Using Tricomi’s identity (49), we can reduce the previous expression to

02 ha + gAhy = 01([0¢h1, H]0tho) — go1([ha, H]Aho) + 01 ([0cho, H] [étha — 01 ([ho, H]dtho)])
— 01 ([ho, H] [gAh1 — 01(8¢hoHdtho)]) — 01 ([6rho, H]A(hodtho))
— 01 ([ho, HJA((0:h0)?)) + 901 ([ho, H]A(hoAhg))
— H|[(010¢ho) 01 (hoH dtho)| — H [ (01ho)01(0thoH 0tho )| — gH[(01h0) 01 (hod1ho) ]
+ 2H([(01ho)(0101ho) Hdrho| + gH [(01h0)*] — 01[ho(0ho)(610¢ho) ]
+ gal [h2(Ad1ho)] — H[ho(2tho)Ao1dsho] + gH(h8A261ho)
+ A[0h10iho + Horho (—Hohy + A([ho, H]dtho))| — A [HothoOthod1ho] -

The cubic h-model follows from setting

h(.%'l,t) = 6h0($1,t) + 62h1(.7}1,t) + EShQ(l’l,t) ,
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so that
0Zh + gAh = € [al([[athl, H]oiho) — go1([ha, H]Aho) + 01 ([0cho, H] [0:ha — 01 ([ho, H]0tho)])

— 01 ([ho, H] [gAh1 — 01(0:hoH dtho)]) — 1 ([0sho, H]A(hodtho))

— 01([ho, H]A((0tho)?)) + g1 ([ho, H]A(hoAhy))

— H[(210:h0)01 (hoHotho)| — H[(01ho)@1(3:ho Hdtho) | — gH[(01ho)@1 (ho@1ho)]
+ 2H|(01ho)(010tho) Hovho| + gH [ (01ho)*] — 01[ho(0¢ho)(610¢ho) |

+ gal [h2(Ad1ho)] — H[ho(@tho)Ad10:ho] + gH(h?)AQalho)

+A [é’thlé’tho + Hoihg (—Hé’thl + A([[ho, Hﬂatho))] - A [Hathoathoalho] :|
+ 62[ — A(‘Hatho‘Q) + gA(hoAho) + g(?l(hoﬁlho)] .

Then, we find that
0fh + gAh = 01([€*0rhy, H]edho) — gor([h, H]eAho) + 01 ([edtho, H] [€20hy — 01 ([h, H]O:h)])
— 01 ([eho, H] [gAehy — 01 (0chHOyh)]) — 01 ([0h, H]A(RO,R))
— 1([h, HIA((2th)?)) + 901 ([h, H]A(RAR))
— H[(aléth)al(hH&th)] — H[(alh)al(ﬁthﬂath)] — gH[(&lh)al (h&lh)]
+ 2H[(01h)(010h)Horh] + gH[(01h)?] — 01 [h(0sh)(010ch)]
+ gal [h2(A01h)] — H[1(0,:h)Ad10,h] — gH(h%ifh)
+ A [€20th1€dihg + Hedrh (—Hoth + A([h, H]0th))]| — A [Ho hoshdrh] + O(e*) .

We observe that
—g01([h, H]eAho) — go1 ([eho, H]A€?h1) = —gd1 ([h, H]AR) + O(€*);

thus, we can simplify the equation as follows:

0fh + gAh = 01([€20¢hy, H]edrho) — go1 ([h, H]AR) + 01 ([edrho, H] [€*0:ha — 01 ([h, H]0:h)])
+ 01 ([h, H] [01(0:hH:h)]) — o1 ([0ch, H]A(hO:R))
— 01([h, HJA((0:h)?)) + go1 ([h, H]A(RAR))
— H[(610;h)01(hH k)| — H[(01h)01(6:hHéh)| — gH[(01h)d1(horh)]
+ 2H([(01h)(010eh) Hoh) + gH[(01h)?] — 01[h(0eh)(010:h) ]
+ gal [h2(A@1h)] — H[h(0:h)Ad10th] — gH(fﬂa%h)
+ A [€20hy€dsho + Hedsho (—Howh + A([h, H]0;h))| — A[Hoshdyhorh] + O(') .

We also compute that

61([[e2é’th1, H]]E@tho) = 61([[626,5]11, H]]@th) + 0(64) ,
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A[edihiediho] = A [€20sh1dih] + O(€),
o1 ([edtho, H€*0th1) = 01 ([0¢h, H]*0:h1) + O(e)
so that
01([€%0chy, H]edtho) + A [€20¢hiediho | + 01 ([€diho, H]€20;h1)
= 01([*0th1, H]O1h) + A [20:h1dih] + 01 ([0h, H]*01h1) + O(€)
= 81 (628th1H8th) + 81 ([[ﬁth, H]]62ath1) + 0(64)
= 01(20th1 Howh) + 01 (0thHe?dhy) — A [€20;h10:h] + O(e).  (60)
Using Tricomi’s identity for two functions, we find that
01(20,hi Hoh) + 01 (0,hHe*0yhy) = —A [Hoyhe* Hoshy — dyhe®iha | (61)
Grouping terms further using (60) and (61), together with
—A[HedshoHoh] = —A [(H&th)z] + A[He?ohy Hoyh] + O(eY)
we obtain that
01(20thi Hoh) + 01 (0;h He*0ihy ) — A [€204ha0ph| — A [Hediho Houh)
= —A [Hé’the2H8th1 - athe%’thl] - A [€2ath18th]
~A [(H&th)Q] + A [He20,h Hoh] + O(eh).
The cubic h—model is then given by
0fh + gAh = —A[ (Hoh)? | — go1 ([h, H]AR) — 1 ([0¢h, H] [01 ([h, H]0:R)] )
+ 01 ([h, H] [01(0:hH k) ]) — 01 ([0ch, H]A(Rosh))
— 01 ([h, HIA((8:1)?)) + go1 ([h, H]A(hAR))
— H[(010:h)01(hHoh)| — H|[(01h)01(8;hHoyh)| — gH [(01h)01(ho1h)]
+ 2H([(01h)(010eh) Hoh) + gH[(01h)?] — 01[h(0¢h)(010:h) ]
+ gal [n2(Ad1h)] — H[h(0:h)Ad10;h] — gH(hQafh)
+ A [Ho:hA([h, H]0:h) ]| — A [Ho:héthorh)
Therefore,
0fh + gAh = —A[(H0ih)?] + g1 (hdrh) + gA(RAR) + Q(h). (62)

Making use of the commutator identities in Appendix A, the cubic nonlinearity Q(h)
can be written as

Q(h) = -0y [[[ath, H] oy (hHosh) — [h, H]01([0¢h, H]0:h) — g[h, H]A(hAR)
H[(hoih)(Adih)] — g[[hQ, H]%h + hoyhdyd,h

— H[(Hom)A(hHOR)] ~ H[(H&th)h(alath)]] . (63)
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6 Well-posedness of the h-models

We study local well-posedness in Wiener spaces (10) for the quadratic hA—model (51) and
the cubic h—model (62).

In the case of the quadratic h~—model (51), local well-posedness for analytic data can
be established using the Cauchy-Kowalewski theorem of Schneider & Wayne [71] (see also
[63, 64, 67]). However, the nonlinearity of the cubic h~—model (62) is not directly suitable
for such an approach, due to terms containing three derivatives. While it may be possible
that the Cauchy-Kowalewski theorem can again be applied to the cubic h-model, either
by some further simplification of the cubic nonlinearity or by a modification of the proof
of the Cauchy-Kowalewski theorem, we have provided a different proof of well-posedness
that also works for nonlinearities with higher-order derivatives, and hence could be used
for even higher-order truncations of the Stokes expansion. Moreover, our method of proof
also provides the convergence of the Stokes expansion (25)—(26), which is of fundamental
importance to consequent error analysis. Such convergence does not directly follow from the
application of the Cauchy-Kowalewski theorem, but rather from a succession of inequalities
leading to a uniform radius of convergence for the power series.

Specifically, our method of proof relies upon the linear recursion derived in Equations
(111) and (112) in Appendix B. For the Navier-Stokes equations, the idea of using the
summability of an asymptotic expansion to prove well-posedness goes back to Oseen [65]
and Knightly [49]; however, for parabolic-type problems, the summability follows from the
diffusive properties of the Stokes semigroup. For hyperbolic wave equations with no diffusion
set on a spatially periodic domain (and hence without dispersive decay), a different approach
to summability must be established. For the h-models, summability of the Stokes expansion
follows from bounds of the nonlinearity at each step of the recursion relation. We show that
the X -norms (10) have bounds that grow like the Catalan numbers {Cy}7>,, which can be

defined recursively as
k—1

Ch=>.CiCh1—j, Co=1. (64)
§=0
This idea of using the structure of the nonlinearity and the Catalan numbers is, to the best
of our knowledge, new to the analysis of water waves models.

We remark that a closely related two-fluid asymptotic model derived in [38] has been
shown to be well-posed in Sobolev spaces when the initial data satisfies a certain sign
condition. In particular, in the case that d;hli—o < 0 for each point on the free-surface, that
model is locally well-posed for arbitrary data and globally well-posed under certain size
restrictions (see Theorems 7.1 and 7.6 in [38]).2 Tt is possible that the quadratic h-model is
also well-posed in Sobolev spaces when this sign condition holds for the initial data, and we
plan to investigate this in future work.

2The condition d:h < O\t:O can occur globally with certain in-flow boundary conditions.
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6.1 Well-posedness theory for the quadratic h-model

Well-posedness of the quadratic h-model can be established using the Cauchy-Kowalewski
theorem in [71]. We state this result as follows:

Theorem 3. Let € > 0, g > 0 and the initial data in (27) (hinit, hinit) € X1 x X1 be given.
Then there exists a unique analytic solution h(xyi,t) € C([0,T]; Xo5) to (51) for t in the

time interval [0,T] with
1

=
Equivalently, the Stokes expansion for the quadratic h—model (51) converges for arbitrary
€ >0 and T > 0 taken sufficiently small.

We provide a proof in Appendix B using the summability of the recursion relation. Note

that we simultaneously prove that the Stokes expansion converges.

6.2 Well-posedness theory for the cubic h-model

As we have seen, the cubic h—model can be written as the following nonlinear wave equation
(62) where Q(h) is defined in (63). Using the ansatz (25), the cubic h—model (62) can be
written as

020 = —gAh — eA(H)? + ge (al (hovh) + A(%AE)) +e20(h), (65)

with initial conditions (28). We again consider the expansion h(z1,t) = ho(z1,t)+eh (z1, 1)+
€2ha(x1,t) + - -+ . The quadratic nonlinearity follows as in (109). It thus suffices to expand
the cubic nonlinearity. We define

Q(hr,hj—p, hp—o_j) = _all[[&thrvﬂ]]al(hj—rHathk2j) — [hr, H]01([0¢hj—r, H] Othi—2—;)

— glhe, HIA(hj—r Ahy—o—j) + H[(hyOthj—p)(AOthy—2—j)]
— gﬂhrhj_r, H]]a%hk_g_j + hrathj_ralathk_g_j
— H[(H0othy )A(hj—r Hothy—2—;) |

- H[(H&thr)hj_r(alathkgj)]] . (66)

Comparing powers of €, we find that

k—1
at2hk = —gAhp + Z (A [gthhkflfj — H&tthathk,l,j] + go1 [hjalhk,l,j])
7=0
k—2 j
+ Z 2 Q(hra hj—ra hk—2—j) s (67)
j=07=0

with initial conditions (110)
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Our starting point is the linear recursion (67) and (66). Similarly, the solution to (67)
for k > 0 verifies

ﬁk(ﬁ,t \/7] f(2,s)sin m(t—s)> ds, (68)
and
ohi(,1) = fo (¢, cos (V/aldl(t ~ ) ds. (69)

where f is the Fourier transform of the (linear) forcing

Z h Ahk—l—j — H&tthathk_l_j] + gor [hjalhk_l_j])
7=0

k=2
ZZ (s hjrs Pi—2—5) (70)

where Q is given by (66).

Theorem 4. Let € > 0, g > 0 and the initial data in (27) (hinit, fzinit) € X1 x X be given.
Then there exists a unique analytic solution

h(l‘l, t) € C([O, T], X0.5)

o0 (62) fort in the time interval [0,T] with

1
T < min{,l} .
8e

Equivalently, the Stokes expansion for the cubic h—model (62) converges for arbitrary e > 0
and T > 0 taken sufficiently small.

Proof. The proof of this Theorem is similar to the proof of Theorem 3 in Appendix
B. As before, we fix 1 < R € Z* and consider 0 < k < R. We need to estimate
1Q(hr, hj—ry hg—2—) | x g1 Following Theorem 3 in Appendix B together with (119)
and the trivial identity

| < [ —m]+ |m| <[ —m|+|m—n|+|n|,
we have that
H Q(th hj*Ta hk‘—Q—j) HXR+17k < (g) [|athT|XR+2k Hh]'*THXR+2—k Hathk—Q—j HXR+27k
+ Hh’THXR+2—k“hj_r|‘XR+2—kHhk*Q*jHXR-#Q—k

+ Hhr HXR+27k Hathj—r ”XR+271C ”athk—Q—j |‘XR+2]C:| .
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As before, we have that, for r < j < k — 2
R+2—k=R—(k—2)<R+1-r,
R+2—k<R+1—j+r=R+1—(j—r),
R+2—k<R+1—-(k—2-j).

Thus, we can estimate
Qi Bj—ps hi—2—5) | X 11— < €1(9) [Iathr|XR+1r IR el X1y 1Otk —2—5 ] X f 11— (am
el x g g —r [ X g = o [Pr—2—5 [ X g1 — o
F el x g 10— | Xy oy |OthE—2—; |\XR+1-<k—z—j>] :

Recalling (120), we find that

Hhk‘(t) HXR—H—k + Hathk(t) HXR+1—k
k—1

t
< ex(g) jo [2 [athﬂs)umlj oty () mr o

j=0

1y (5) X hk_l_j<s>|xm(m>]

Z Z |:6thTXR+1T|thXR+1_(j_r) ”athk—Z—jHXR+1_(k_2_j)
J: =

H HXR+1 'r”h] T’HXRH G— T)H k—2— JHXR+1 (k—2—3)
+ HhTHXRHfrHathj*THXRH—(j—r) |Och—2—; ||XR+1—(k—2—j):|:| ds .

We define
A, (t) = max {c2(9), 1} [Pk (B x5, 0 0 + 10chr () | xp01 ] -

Then, we can conclude that

+ k—1
JZﬂfklj ZZ'Q{]{:QJ —r(s)(s)ds, = 1.

j=0r=
We assume that ¢ < 1. Recalling that for the Catalan numbers (64) we have that
k=2

— J
2 Z 7CirCro—j = ZC]+1ck 1-(j+1)

< D) CaChotn + CoCr

Q=
=
L
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we can prove by induction that
@, < chktk+1.

Using this bound, we can conclude the existence and uniqueness as in Theorem 3 in Appendix
B. o

7 The Craig-Sulem WW2 model

Zakharov [84] formulated the water waves problem as the following system of one-dimensional
nonlinear and nonlocal equations:

ouh = G(h)¥ (71a)
(alhal\lf + G(h)¥ )

8t\Ij - _gh‘ - 7‘61\:[/‘2 1 + |(91h’2 )

(71b)

where h(z1,t) is the free surface, ¥(x1,t) is the trace of the velocity potential u = V¢ on
the free surface

\Ij(‘rla t) = ¢($17 h(l’l, t)7 t)a
and G(h) is the Dirichlet-Neumann operator

0

0
57@ — alh(.ﬁl,t)i

G(h)¥(21,t) = 2
(z1,h(z1,t),t) 1

(72)

(1’1,h(1’1,t),t) '

As a way to numerically simulate the evolution of water waves when surface tension is
neglected, Craig and Sulem [31] gave a power series expansion for the Dirichlet-to-Neumann

operator (72) as®
0¢]
= > Gi(h), (73)
j=0
with
Go = A,

. pi—i
Gj(h) = =N~ 1alfal ZAJ 1]—7,' i(h).

By keeping terms up to certain order in the previous expansion (73) and starting from
the Zakharov formulation (71), Craig and Sulem obtained a hierarchy of new truncated
series models of the water waves problem. For instance, when we keep the terms up to
second order, Gy and G7, we obtain the WW2 (water waves 2) system

Oth = AV — (91 ([H, h]AT) (74a)
oV = —gh + = ((A\I/) — (11)?) . (74b)

3This type of expansion for the Dirichlet-to-Neumann operator was first used in electromagnetism by
Milder [56] and Milder & Sharp [57].

27



Cheng, Granero, Shkoller, and Wilkening  Rigorous Asymptotic Models of Water Waves

We define
w(z1,t) = ewo(z1,t) + 2w (21, 1). (75)

Similarly, defining h,w as in (50) and (75), respectively, and using (47) we have that
la 0 2 _ 2\ _ la 2 2
5 1(|0¢hol® — wo|?) = 5 1(|Hwo|* — Jwol?).

Then, neglecting terms of order O(e?), from (47) we obtain the following coupled transport
equations

oh = Hw + &1 ([h, H]Hw) (76a)
Ow = —gd1h + A(wHw). (76b)

These equations are the WW2 system obtained by Craig & Sulem writen in the variable
w = 01¥. Thus, our method is also able to recover the WW2 system. Following the proof of
Theorem 4, we can establish the following result for the WW2 Craig-Sulem system:

Theorem 5. Let g > 0 and the initial data (hinit, winit) € X1 X X1 be given. Then there
exists a unique analytic solution (h(x1,t),w(x1,t)) to (76) for t in the time interval [0, T]
with 0 < T small enough.

In the following we are going to write the WW2 Craig-Sulem model as a wave equation.
For an arbitrary function f, we define the operator

T f=ao[H,h]f.
The following inequalities hold

|7 fllr> < Clorh| gl flze,
|72 fll2 < Clowhl g |7 fllzz < (Clovhl )2 £z,
|75 flz2 < Clowhl | 75 flze < oo < (Clorhl ) I f | 2.

We define the following Neumann series

0
N =D T
k=0
Then, if |01h] ;. C < 1 we have that
w ~
| e < [ fl2 3 (Clorhlp2)* < C(lorh]12)]1f] 2z,
k=0

so, denoting by where I the identity operator, we have that I — .7 is invertible and

I-F) =
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We observe that (76a) is equivalent to
(I—7)'0h = Hw

Using the previous operators, we find the following equivalent formulation of the Craig-Sulem
WW2 model as a nonlinear wave equation:

0?h = —gAh + 01(0thHoh) — 01[H, 0:h]0sh + g1 [H, R]Ah + P (77)
where the cubic and higher nonlinearities are contained in

P = 0y (Hoshat 0,h) + 1 (H.M 3, (dh + M k) — 01 ([H, 8] (M Dy))
+ 0y ([H, h] (01 ((—Hoh — Ht &uh) (0sh + M 4h)))) | (78)

and the operator .Z is defined as

M = i o1[H, n]" .

k=1

In particular, we observe that, when the cubic and higher nonlinearities in P are
neglected, the Craig-Sulem WWW2 model reduces to the quadratic h—model (51) (or the,
so-called, “Model" by Akers and Milewski [2]). Note that in [9], the authors suggest that the
Craig-Sulem models may be unreliable for numerical simulation.

8 Estimating the difference between the h—models and the
solution of the full water waves problem

In this section we estimate the error of solutions of the h-models to solutions of the full
water waves system.

Let (hinit, hinit) be a O(e) initial data and consider its corresponding local solution to the
full water waves problem (h"",w®") in C([0,T]; X1). As we described in the introduction,
the well-posedness of the water waves problem is well-known (see the works by Ovsjannikov
[66] and Shinbrot [74] for the case with analytic initial data), and that solutions exists for a

lifespan T = O(e~'). We have the following

Theorem 6. Let € >0, g > 0 and the initial data (hinit, hinit) € X1 X X1 be given. Denote
by (K™, w®™) the local solution in C([0,T(€)]; X1) of the full water waves problem starting
from the initial data (hin;t, hinit) and let h?™ denote the solution to the quadratic h—model
(51). Then, as long as both solutions exist,

[R* = hI™| o ((0.1]: X0.5) < O(€%).

Proof. From [66] and[74], there exists analytic solutions to the full water waves problem;
hence, we write the solution A" as an asymptotic series We have that

(X)
WY (21,t) = € | € (an,t). (79)
=0
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It follows that each term h; evolves according to (31), (32) and (34). We have also shown
that

0
W™ (w1, t) = € >, RI" (21, 1), (80)
j=0
with 7™ evolving according to (109).
It follows from (79) that

1
sup [h*" — € Z E]h;uwHXo.5 < 0(63) )

0<t<T Jory

and from (80),
1

sup |hI™ —e Z ejh?mﬂxw <O().

0<t<T 20

We have to estimate .

1
[ Z ejh;v'uw - Z EjhgmHX()ﬁ'
7=0 j=0

From (109) and (47), we have that
h§" —h™M =0,
and from (48b) and (109), we also have that
Y —h{™ =0.
Thus, the terms in each series only begin to deviate at O(e?), which establishes the result. o

Analogously, we have that

Theorem 7. Let € >0, g > 0 and the initial data (hinit, hinit) € X1 X X1 be given. Denote
by (K™, w™™) the local solution in C([0,T(€)]; X1) of the full water waves problem starting
from the initial data (hinit, himt) and let h°™ denote the solution to the cubic h—model (62).
Then, as long as both solutions exist,

[P = B 0,11, x0.5) < O(€Y).
Proof. The proof follows as in Theorem 6 by noting that for the cubic A-model
hs" —hg™ =0,

and hence the deviation in the series representations of the two solutions occurs at O(e?). o
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9 Numerical comparison of water waves and the h-model

In this section we compute solutions of the quadratic and cubic A-models and compare
them to numerical solutions of the Euler equations. We find that the linear, quadratic
and cubic h-models converge at the expected rates as e — 0, and show regimes where the
quadratic model captures the essential features of the wave beyond the linear regime, and
where the cubic model captures features beyond the quadratic regime. We also observe that
the quadratic model can form corner singularities in finite time, while the cubic model can
evolve to an unstable state where high-frequency Fourier modes of the solution start growing
rapidly. This only causes problems for large-amplitude waves on excessively fine grids.

9.1 Solving the Euler equations

To evolve the full water wave equations, we use the spectrally accurate boundary integral
method developed by Wilkening [78] and Wilkening and Yu [79] for computing standing
water waves. While a conformal mapping approach [33, 34, 58] is usually easier to implement,
the result would have to be re-parametrized to be equally-spaced in x in order to compare
with the h-model. This is not particularly difficult, but the boundary integral method is
more natural in this setting. We write the Euler equations in the form

ht = (z)y - h:v¢:va
B 1L, 1, A By (81)

where p(z,t) = ¢(z, h(x,t),t) is the restriction of the velocity potential to the free surface,
A is the surface tension parameter (set to zero in this section), and P is the projection onto
zero mean in L2(0,27). Only h(x,t) and ¢(x,t) are evolved in time since ¢(z,y,t) can be
computed from ¢(x,t) using (82) below. The velocity components u = ¢, v = ¢, on the
free surface are computed from ¢ as follows. We identify R? with C and attempt to represent
the complex velocity potential ®(z) = ¢(z) + i1)(z) as a Cauchy integral

L ¢(a)

D(z) = — cot

=5 , 5 5 p(a) da, ((a) =a+ih(a), 0<a<2m, (82)

where u(a) is real-valued and we have suppressed ¢ in the notation. Here we used o = z to
parametrize the horizontal component of the free surface, but the formulas in this section
generalize to allow for mesh refinement or overturning waves if one writes (o) = () +ih(«).
The cotangent kernel comes from summing the Cauchy kernel over periodic images

1 z 1
5 cot 5 14 kZ% e (PV = principal value) (83)

Letting z approach ((«) from below and using the Plemelj formula [59] gives
2m

B(C(0)7) = —gnlo) + 5Hp(0) + 5 | Kl Bu(s)as. (31)
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where

K(a,B) = C/(f) cot ¢(8) ; cla) _ %cot ﬁ%a. (85)

The second term of K is included to cancel the singularity of the first term, which makes
K(a, B) continuous at « = 3, with K(a, ) = ¢"(«)/[2¢'(«)]. In fact, the components of K
are real analytic, periodic functions of o and 5 on R/27Z if ((«) (i.e. h(a)) is real-analytic
and periodic. Including this term in K («, /3) is accounted for in (84) by the Hilbert transform
term, using

1 2m 1 _
Hf(a) = 1Py f Lot “=8 ¢(8)y . (86)
s 0 2 2
The real part of (84) gives a second-kind Fredholm integral equation [36] that can be solved
for p given ¢,

1 1 27
~gh(@) + oo | Im{K(,)u(3)d8 = pl),  0<a<om (87)

2 2T 0
Differentiating (82), integrating by parts, and using a standard argument for principal value
integrals to handle the interchange of & and § in the kernel, one may show [79] that

1 21

_ 1 1
(@) -(C0)) =~ (@) + LHp(0) — o [ KB (B)ds. ()
™ Jo
Since ¢ — iy = ¢y + 11h, = D, (88) gives an explicit formula for ¢, and ¢, on the free
surface once () is known from (87). Equations (87) and (88) are easily discretized with
spectral accuracy using the trapezoidal rule on a uniformly spaced grid

a; =2mj/M, j=0,...,M—1 (89)

to compute integrals, and the Fourier transform to compute derivatives and the Hilbert
transform (with symbol Hy = —isgn(k)). For example, (87) becomes

M-1
1 1 .
—5kit 37 ;O Im{K (v, aj)}pj = i, i=0,...,M —1, (90)
where we recall that K(a;, ;) = ("(a;)/[2¢'(a;)]. We timestep (81) using an 8th order

Runge-Kutta method due to Dormand and Prince [39, 69]. We also need h; in the comparison
to the h-model, but this formula is part of the right-hand side of (81).

9.2 Timestepping the h-model

Next we describe an effective method of timestepping the h-model (linear, quadratic or
cubic). First, we write it as a first-order system of the form w; = Lu + N (u,t), which for
the cubic case is

% <f};> B <—2A ]03> (’D +\<—A[(Hht)2] + 90, (]Z)lgf)t)+ gA(hAR) + Q(h))j' (91)
—_— ~

N J

U Lu N(u,t)
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For the quadratic model, we drop Q(h), and for the linear model, the entire second component
of N is set to zero. Here

27
Pi@)= @)~ Rof,  Rof=y | fa)d (92)

0
are the orthogonal projections onto zero mean, and onto the constant functions, respectively.
Though Py(h¢) is linear, it is convenient to move it from L to N to avoid a Jordan block
in the diagonalization of L (see below). To solve the stiff system (91), we use the spectral
exponential time differencing scheme of Chen and Wilkening [21], which is an arbitrary-order,
fully-implicit variant of the popular fourth-order ETD scheme of Cox and Matthews [29, 48].
To evolve the solution over a timestep, which, for simplicity, we take to be from ¢t = 0 to
t = h, we solve the Duhamel integral equation
t
u(t) = eltug + J e(t_T)LN(T, u(T)) dr (93)
0

by collocation using a Chebyshev-Lobatto grid. In more detail, let

1 —cos(mj/v)

tj =th, C; = 9 5 (] =0,...,V). (94)
Given ug, we look for uq,...,u, such that
Ly v
uy = etrfug + j eltr=m)L Z N(tj,uj)l;(t/h)dr, (r=1,...,v), (95)
0 =0

where ;(s) = [ [;.; =% are the Lagrange polynomials for the Chebyshev-Lobatto grid on

Cj—Ck

[0,1]. The change of variables 7 = hs, dr = hds then gives

14
up = ey + h Z <

f ' eler=9hly.(s) dS) N(cjh, uj), (r=1,....,v),  (96)
7=0

0

which is a nonlinear system of equations that can be solved efficiently using a Newton-Krylov
solver; see [21] for details. The algorithm in [21] is designed so the user only has to supply
routines to apply U, S and U~! to arbitrary vectors, where L = USU™!. Internally, when
the Newton-Krylov solver needs to apply e“** and SST e(CT*S)hLEj(s) ds to a sequence of
vectors, it does so by asking the user to apply only U, S and U~!. This makes implementing
the method on new problems straightforward as long as L can be diagonalized efficiently.

In our case, L is diagonalized by the Fourier transform, as we now explain. Let F be the
“r2¢” version of the Fast Fourier Transform, which maps

UuUQ U + iﬁM/Q
f M-1
Ul Ul N 1 ..
val . |5 , eV, dp=-— Y uje 2TRM, (97)
: : ’ M J
. . J:O
UM-1 Upr/2—1
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Here we assume M is even, and we note that @p and @,/ are real since e 2mik/M ¢ 1 1}
when k = 0 or k = M /2. The “missing” Fourier modes are known implicitly from @_j;, = .
The mapping F is an isometry of real vector spaces if we endow V and V' with the inner
products

| M-l M/2—1 o
(uv) = 57 Doy, (,0) = dgdo + g+, 2Re{igin}.  (98)
7=0 k=1

To diagonalize L, we note that both A and P in (91) kill constant functions, and we define
the finite-dimensional truncations of A and P to also kill the Nyquist mode u; = (—1).

Thus .
0 ) D)

where F = diag[0,1,...,1], K = diag[0,1,2,...,M/2 — 1], and multiplying a vector in 1%
by E or K via complex arithmetic is still linear when V' is regarded as a real vector space.
The inner matrix can be diagonalized into 2 x 2 blocks by a permutation matrix

e n-(a(" e e MR

—gK 0 E, 0 1
Apjot A1 = (—gk 0> ;

where Ee,ij = 521‘,]', Eo,ij = 52i+1,j for0<i< M/2, 0 < j < M. Left-multiplication by E,
or E, selects the even-index or odd-index rows, respectively; right-multiplication by EI
or ET selects even or odd-index columns; and applying (EX, ET) to [h; hy] interlaces the
components of heV and hy € V, so that dyhy follows hy. Finally, A is already diagonal
while Ay = Q1.S,Q; " with

Qi = <z\/197€ _2\1@> Sp = (Zx/g? —MTk)’ -1 G ;;Qg) (101)

The complex numbers in E, K, E., E,, A, Q, Q,;l and S actually represent real 2 x 2
matrices with the identification

0  —+gk
a+if <g _cv/6> . Example: Sj = vok 0 0 Jak | (102)
—Vgk 0

Treating the entries of V as complex numbers rather than flattening V to RM by interlacing
real and imaginary parts is convenient, but gets confusing in the last step when complex
eigenvalues arise. The final step of diagonalizing L (had we flattened V) would be to
diagonalize the real matrix Sk in (102), which would lead to a pair of double eigenvalues
+i4/gk. But applying any power series to Sk in (101) and then flattening will give the
same result as applying the power series directly to Sy in (102). In particular, e?% and
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eler=3)hSk which are needed to compute e“"L and eler—)nL ip (96), can be computed either
way. This justifies not flattening V, and cuts the number of eigenvalues that are explicitly
dealt with in half — each double-eigenvalue in (102) appears only once in (101).

Note that moving Py(h:) over to N (u,t) in (91) was necessary to avoid a Jordan block in
Ap in (100). We also remark that normally one wants to include the highest-order differential
operators in L, but in our case they are nonlinear and depend on time, so this was not
possible. However, the method still does not suffer from severe CFL constraints since fully
implicit Runge-Kutta schemes based on Lobatto quadrature are L-stable [39]. The above
method reduces to such a scheme when L = 0, and we would not expect instabilities to arise
by separating the linear part of the operator into a Duhamel-based formulation.

9.3 Comparison of water waves and the h-model

As a first test, we consider the family of solutions h(z,t) = eh(z, t), (z,t) = e@(z, t) with

~ 1 1 1
Example 1: h(z,0) = 5 sinz + 10 sin(2z) + = sin(3x), ®(z,0) = 0. (103)

The maximum slope of the initial wave profile h(z,0) occurs at the origin, and is equal to e.
The wave starts at rest and evolves under the influence of gravity. The solution of the full
Euler equations for € = 5/3 for 0 < ¢ < 0.625 is shown in Figure 1(a), along with the spatial
Fourier mode amplitudes (panel b) of h(x,t) at the times shown in panel (a). Only positive
index Fourier modes are shows since c_; = ¢;. A 3072-point spatial grid was used, with
720 uniform timesteps of the DOPRI8 Runge-Kutta method [39, 69]. Every 18th step was
recorded (at t = k/64, 0 < k < 40). At ¢t = 0.625 = 40/64, a jet begins to form in each of
the troughs, with the lowest trough containing the strongest jet.

Panels (¢) and (d) of Figure 1 compare the solutions of the linear, quadratic and cubic
h-models with that of the full Euler equations with € = 5/6 in (103) at ¢ € {0, 3T, 3T, T},
where T' = 40/64. At this amplitude, both the linear and quadratic models miss the bulge
in the lowest trough as the jet begins to form, whereas the cubic model captures it closely.
If € is doubled to € = 5/3 (as in panel a), niether the cubic nor quadratic models can be
evolved all the way to t = 40/64. Panel (e) of Figure 1 shows that the quadratic model (on
a 3072-point grid) appears to form a corner singularity around t = 37/64, and is far from
the corresponding Euler solution at this time. For the cubic model (evolved on a 1024-point
grid), high-frequency Fourier modes begin to grow at ¢ = 12/64. By ¢t = 30/64, roundoff
errors in these high-frequency modes have been amplified to be comparable in size to the
leading modes. The solution completely blows up shortly afterwards, with values on the grid
jumping from O(1) at 30/64 to O(10%°) at 31/64. Increasing the number of timesteps by a
factor of 1000 did not change the time at which the instability begins or the growth rate of
the modes, so this is not likely a CFL issue. However, increasing the spatial grid size does
affect the blow-up time since higher-frequency modes grow faster. We omit a figure showing
this for Example 1 as similar behavior is observed in Example 3 below. Panel ( f) of Figure 1
shows the L? error of the linear, quadratic and cubic models at ¢ = 40/64 versus €, where the
L? errors have been scaled by ¢! to account for the decreasing norm of the exact solution.
As expected, these errors decay as O(e), where k = 1 for the linear h-model, k& = 2 for the
quadratic h-model, and k£ = 3 for the cubic h-model.
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Figure 1: Comparison of the linear, quadratic and cubic h-models to the full Euler equations

for Example 1. (a) Large-amplitude Euler solution with € = 5/3. (b) Amplitude of Fourier
modes for this solution. (¢ and d) The cubic model remains close to the true solution for
e =5/6 and 0 < t < 0.625, whereas the linear and quadratic models miss key features. (e)
The quadratic model forms a corner in the € = 5/3 case. (f) Relative L?-errors versus e.
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The second example we consider consists of an initial bulge over a flat surface evolving
from rest. More specifically, we consider the family of functions

o 2 1\ w241 T I'((n?/2) +1)
Example 2: hp(z,0) = . (1 + n2> {sm ! 2T T2 1 (3/2))] , (104)

where n € {1,3,5,7,...}. The constants were chosen so that A, (z,0) has zero mean and
maximum slope +1, occuring where tan(z/2) = +n. The cases n = 7 and n = 25 are shown
in panel (a) of Figure 2. Panel (b) shows that the L? error at ¢ = 6, scaled by e, decays at
the expected order as e — 0 for n = 7 and n = 25. For n = 7, the best-fit lines shown are
0.0326¢, 0.0156€2 and 0.00476€3. For n = 25, they are 0.00542¢, 0.00337¢ and 0.000524¢3,
which are smaller than in the n = 7 case. This is not surprising as the L?-norm of the
underlying wave is also smaller when n = 25.

Panels (¢, d, e) of Figure 2 compare solutions of the Euler equations with those of the
linear, quadratic and cubic h-models with € = 0.429 and n = 25 over 0 < t < 1 (panel ¢),
1 <t <2 (panel d), and 5 < t < 6 (panel e). The linear model already deviates substantially
from the exact solution by ¢t = 0.4 (panel ¢), when the initial bulge is still accelerating
downward. The quadratic and cubic models remain close to the Euler solution throughout
the evolution to ¢t = 6 (panel e), correctly damping out the wave near the origin and
propagating the correct number of ripplies outward in both directions. The quadratic model
develops a sharper crest at ¢ = 1 (panel d) than the Euler solution, which also sharpens
somewhat at this time. For both equations, the wave becomes smoother again. This can
be seen in panel (f), where the Fourier mode amplitudes decay more slowly at ¢ = 1 than
at t = 0 or t = 6. The minimum decay rate for both equations happens near t = 1. The
quadratic model has roughly 6 times as many active modes as the Euler solution at ¢ = 1 due
to the excessive sharpening at the crest observed in panel (d). At later times (e.g. panel e),
the quadratic model retains remnants of the overly sharp crest that formed at ¢ = 1, with
smaller-scale features visibly deviating from the exact solution (though the overall wave
profiles are similar.) The cubic model is nearly indistinguishable from the Euler model at
the resolution of the graphs in panels (d) and (e). It has about twice as many active Fourier
modes as the Euler solution at ¢ = 1 and ¢ = 6, as shown in panel (g). The Euler modes are
the same in panels (f) and (g), and all three equations have the same Fourier coefficients at
t = 0 in these plots.

Our third example consists of a family of standing water waves computed using the
overdetermined shooting method described in [78, 79]. Unlike the previous two examples,
the waves in this family are not related by a simple scaling of the initial condition via
h(x,0) = €h(z,0), p(z,t) = ep(x,t). In the previous examples, we chose h(z,0) to have
maximum slope 1 so that € was the maximum slope of h(z,0). For standing waves, we match
this latter property:

Example 3 (standing waves): € = maximum slope of h(x,0). (105)

Here we assume the fluid is initially at rest. As before, we choose the length-scale so that the
spatial period is 27 after non-dimensionalization. Let T (which depends on €) be half the
temporal period of the standing wave so that the wave comes to rest when ¢t € TZ. At even
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Figure 2: Comparison of the linear, quadratic and cubic h-models to the full Euler equations
for Example 2. (a) Initial wave profiles before scaling by e. (b) Relative L2-errors versus e.
(¢,d, e) Solutions with n = 25 and € = 0.429 at the times shown. (f, g) Comparison of Fourier
mode amplitudes at t = 0,1,6. The sharper wave crest in the solution of the quadratic
model at ¢ = 1 leads to slower mode decay than the Euler or cubic solutions.
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multiples of T', the wave crests are assumed to be located at x € 2nZ, and at odd multiples
they are located at x € (7 + 27Z).

Characterizing the amplitude of the wave by its maximum slope is useful for comparing
with Examples 1 and 2, but it is not the most convenient for actually computing standing
waves. In the numerical algorithm of Wilkening and Yu[79], a Fourier coefficient of the
initial condition was used as the bifurcation parameter. For low-amplitude waves, the initial
amplitude of the fundamental mode is a natural choice. Yet another choice is half the
maximum crest to trough height (%HCT). In all three cases (slope, mode amplitude, or
1Her), assuming g = 1,

h(z,t) = ecosz cost + O(e?). (106)

Building on previous work [70, 68, 77], Schwartz and Whitney [72] developed a recursive
algorithm to compute the power series expansion for standing water waves of this type in
conformal variables, and computed the first 25 terms. Their choice of amplitude was %HCT,
which we denote by €. While the full representation of the wave profile and velocity potential
is too complicated to reproduce here, we can report the leading terms of the period and
maximum slope:

= 1+ 26 2—;654 +0(e9), e=¢+ %e‘g + 0(e%). (107)
Amick and Toland proved that the terms in the Schwartz/Whitney expansion are uniquely
determined to all orders [13], but the question of whether the series has a positive radius
of convergence remains open. Recent work using Nash-Moser theory has been able to
establish existence on a Cantor set of the bifurcation parameter close to zero-amplitude
[47]. Regardless of the eventual convergence or divergence of the series, truncating the
series yields a family of initial conditions (over a range 0 < & < eyax ~ 0.06 when 25 terms
are retained) that return to their starting configurations to within machine precision when
evolved under the Euler equations. The shooting method in [79] gives solutions that agree
with the Schwartz and Whitney series to all 16 digits at small amplitude, but is not limited
to such a narrow range of € to find solutions that are time-periodic to machine precision.
For each standing wave computed by the shooting method, we find the maximum slope
via Newton’s method to determine e. We then evolve the h-models using the initial conditions
of the standing wave and compare them to the Euler solution at ¢ = T'. Panel (a) of Figure 3
shows that the relative errors in the linear, quadratic and cubic models decay at the expected
rates. Panel (b) shows snapshots of the solutions of the h-models and the Euler equations for
the € = 0.498 wave at t = %T, %T, %T and ¢t = T. This choice of € was the largest (among
the waves we computed) in which the solution of the quadratic h-model remains regular for
0 <t <T. We see in panel (b) that the quadratic model nearly forms a corner at t = T,
which also leads to slow decay of its Fourier modes in panel (c¢) as ¢t approaches T'. The Euler
solution returns to a spatial phase shift (by ) of its initial condition to 14 digits. Its Fourier
modes decay to 107 by k = 60. We used 192 gridpoints in the computation. We also used
192 grid points to evolve the cubic model. The solution remains well-resolved in Fourier
space over this time (panel d), and remains nearly indistinguishable from the Euler solution
at the resolution of panel (b) over 0 <t < T. We also note in panel (b) that the solution of
the quadratic model remains close to the Euler solution until ¢ = 37'/4, but the linear model
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Figure 3: Comparison of the linear, quadratic and cubic h-models to the full Euler
equations for Example 3. (a) Relative L2-errors versus e. (b) Snapshots of the solutions
at t = 0,7/4,T/2,3T/4,T for e = 0.498. The quadratic model nearly forms a corner at
t =T. (¢) The formation of a corner causes high-frequency Fourier mode amplitudes to
grow as t — T in the quadratic model. (d) The cubic model and Euler equations remain
well-resoved with 192 Fourier modes. (Only 96 are shown since c_; = ¢.) (e, f) Over short
times or small amplitude, the cubic model remains well-posed; however, for ¢ = 0.498, with
1024 modes, the cubic model loses stability for ¢ > 7'/16. The solution completely blows up
shortly after ¢t = T'/4.
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already deviates substantially near z = 0 and x = 27 at t = T'/4. Tt remains accurate in the
trough at least until ¢ = T'/4, but is completely wrong throughout the domain by ¢ = T'/2.

At this large amplitude (e = 0.498), the cubic model relies on Fourier truncation to
remain well-posed. In panel (e) of Figure 3, we increase the number of gridpoints from 192 to
1024 with the same initial data as in panel (d), and find that high-frequency modes begin to
grow rapidly shortly after ¢ = T'/16. This picture is independent of the number of timesteps
taken — increasing the number of timesteps by a factor of 1000 led to a similar picture
(not shown), except that applying the filter 1000 times as often led to slight suppression of
the mode amplitudes in the range 300 < k < 512. Thus, around t = T'/16, the solution of
the cubic model appears to evolve to a state where the PDE ceases to be well-posed. By
contrast, the solution of the quadratic model does not show signs of instability regardless of
the grid size until ¢ = 7" — the growth in mode amplitudes in panel (c) is due to formation
of a geometric singularity rather than ill-posedness. In panel (f), we see that the cubic
model remains well-posed over the whole interval 0 <t < T for a smaller amplitude wave
(e = 0.163). Here again we used 1024 gridpoints, even though 48 would have been sufficient
to fully resolve the solution spectrally. We observed similar behavior in Examples 1 and
2, where large-amplitude waves were found to form corners at their crests in the quadratic
model, and caused the solution to leave the realm of well-posedness for the cubic model. (The
sharpening feature in Figure 2d for the quadratic model forms a corner at larger amplitude).

In Figure 4, we return to the solution of the full Euler equations for Example 1 with € =
5/3. Here we switch to an angle-arclength parametrization of the free surface [41, 42, 43, 11],
which allows for overturning waves. We continue to define 7' = 0.625 and evolve to ¢t = 1.97.
Panel (a) shows that the jets that were beginning to form in the troughs at t = T' grow
in height to become the tallest points on the free surface at t = 1.97. The jet from the
lowest trough overtakes that of the middle trough around t = 1.45627, and is on track to
overtake that of the highest trough around ¢ = 1.94517, where we extrapolated from the
last 4 timesteps. Panel (b) shows a close-up of the jet from the lowest trough, which widens
and flattens out as it decelerates, causing the wave to overturn on both sides of the jet. The
overturn times are ¢t = 1.3357" on the left and 1.3437 on the right. Panel (c¢) shows the
aplitude of the Fourier modes as the solution evolves. The grid was refined 6 times, from
1024 gridpoints at the beginning to 16384 at the end. Roundoff errors become larger as
the grid is refined due to increased cancellation in the formula (85) for K (a, ). Each grid
refinement also leads to some growth in high-frequency modes that were being suppressed
by the filter on the coarser mesh and suddenly are not. (We use the 36th order filter of Hou
and Li [40]).

Once the wave overturns, there are 3 possible outcomes. It could return to being single-
valued, which sometimes happens after a vortex sheet with surface tension overturns [10, 11],
but seems unlikely here as there is no physical mechanism to slow down the overturning
wave. It could self-intersect in a splash singularity [19, 27]. Or it could form a corner at
the tip of the overturning wave, similar to the way the quadratic A-model tends to form
singularities. This would coincide with dP/dn approaching zero at the corner, so that the
Rayleigh-Taylor condition dP/dn < 0 ceases to hold. Panels (d,e) of Figure 3 show dP/dn
plotted parametrically versus x at various times. We see that indeed, dP/dn appears to be
increasing to 0 at the tip of each overturning wave. However, computing dP/dn involves
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Continuation of Example 1 for the Euler equations
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Figure 4: (a) Evolution of the € = 5/3 wave with initial condition (103) to ¢t = 1.97', where
T = 0.625 is the final time in Figure 1. The aspect ratio is 1:1. (b) A closer look at the
jet forming in the lowest trough, which overturns on the left around ¢t = 1.3357 and on
the right around ¢ = 1.3437". (¢) Amplitude of the Fourier modes at the times shown. The
spatial grid was refined 6 times in the course of the evolution. (d,e) The normal derivative
of pressure versus x as time evolves. The computed value of dP/dn runs out of precision
but approaches zero near the tip of the overturning wave at ¢ = 1.97, indicating corner
formation.
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taking a derivative of the solution, and we were not able to maintain enough digits of
accuracy in double-precision to definitively say that dP/dn reaches zero. The Rayleigh-
Taylor condition plays a key role in the local well-posedness of the water wave problem
in the absence of surface tension (see the references given in the introduction). Further
investigation will be pursued in future work, where we will provide details of the method for
tracking overturning waves and computing dP/dn. Our main point in this example is to
show that the type of breakdown we observe in the quadratic h-model, where the solution
forms a geometric singularity, may occur in the Euler equations as well.

9.4 Conclusions from our numerical results

We have shown that the quadratic and cubic A-models can be solved efficiently using a Fourier
representation in space and an exponential time differencing scheme in time. Comparing
the results to the solution of the full water wave equations on three test problems, we find
that the quadratic and cubic h-models capture features of the solution that are completely
missed by linear theory, such as sharpening crests and jet formation. We confirm that the
linear, quadratic and cubic h-models converge to the exact solution at the expected rates as
€ — 0, and explore how each model breaks down at very large amplitude. The linear model
does not form singularities since each mode of the initial condition evolves independently.
For large-amplitude initial conditions, the quadratic model appears to form sharp corners
at wave crests in finite time while the cubic model appears to evolve to an unstable state
in finite time after which the growth rate of Fourier modes increases without bound as the
mode index increases. In one of the examples, the full water wave appears to form a corner
singularity in finite time, with dP/dn approaching zero at a sharpening wave crest that
forms after the wave has overturned.
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A Basic commutator identities
In deriving the cubic h-model, we make use of the following identities:

A[(HR)A([h, H]oR)| — A[(Hoh) (01h)(0h)] = A[(HaR)A(hHaR)| + A[(Hoh)h(210h)]
— o1 ([ovh, H121 ([h, H]Ok)) — o1 ([0ch, HIA(hR)) = —y ([6ch, H] oy (hHER))
01([h, H]01(0:hHo,h)) — o1 [[h, H]A(0,h)?] = 01([[h H]oy([0:h, H]0:h))
) =

—H[(1h)h?h] + %al [h2(A01h)] — —H(h203 al [h2, H]22h,
and

[(51@ )01 (hH é:h)| + H[(01h)01((0sh)(HOeh)) | — 2H [(01h)(010¢h) (Hdsh)]

H[h(2:h)o1Adh]

H[(2101)(01h)(Hoh)] + H[h(616h) (Adsh)] + H[(21h)(6100h)(Herh)]
+ H[(01h)(@uh) (Aowh)] — 2H [(21h)(@10:h) (Hoh)| + H[h(0h)o1Adsh)]

H| 01 ((hoeh)(Adih))]

A[(hoeh)(Adsh)] .

B Another proof of Theorem 3

Proof of Theorem 3. The solution as a series. Using the ansatz (25), the quadratic
h—model (51) can be written as

20 = —gAh — eA(HOh)? + ge (51 (hovh) + A(%A%)) , (108)
with initial conditions (28). We expand h as in (26) for functions hy : S! — R to be

determined. Substituting into (108) we find that

k—1
8t2hk = —gAhy + Z [A(gthhk_l_j — H&tth&thk_l_j) + g&l(hjélhk_l_j)] (109)
j=0

with initial conditions

hinit (1'1)

ho(z1,0) = , Otho(x1,0) = pa—

hi(z1,0) = Othk(z1,0) =0 k> 1. (110)

hinit (1)
€

Using the Fourier series expansion, (109) shows that each Fourier component satisfies the
differential equation

OPhi(L,t) = —gltlhi(C,t) + f(L,1), (111)
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where f is given by

k—1 o
Y [ w( isgn(e—m))atﬁj(e—m,t)(—isgn(m))atﬁk_l_j(m,t))
j=0m=

g (wﬁj(e — i t)imhy_1—j(m, ) + |€h; (€ — m, t)|[m|hp_1_; (m, t)) ] . (112)
We note that integration of (109) shows that
f hi(z1,t) =0 and Othg(x1,t)ds =0Vt > 0. (113)
St St

Solving the ODE (111) for k = 0, we find that

ho(£,t) = ho(£,0) cos (Ft) atf;gio i (Ft)

Similarly, the solution to (111) for k& > 0 is
~ \/ 0]t \/ Ot
hi(4,t) = f f(s)sin g|€]s> sm f f(s)cos «/ glt ]3) ds

rff sin m(t—s)> ds,

and hence
atﬁk(e,t):ﬂf(s)cos( ot~ 5)) ds. (114)

Using the expression (112), we have that for k > 1, ’ﬁk and Gtﬁk verify the following recursion
relations:

_ \/ﬁ Lt[ i i ( isgn(e—m))atﬁj(z—m,s)(—isgn(m))atﬁk_l_j(m,s))

8

k—1
+g Z Z th (€ —m, s)imhy_1_;(m, s)
j=0m=—00
k=1 R R
+g Z [€|h; (£ —m,s)|m|hg—1—j(m, 5)] sin ( glel(t — s)) ds, (115)

7j=0m=—00

8
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and

Orhi (£, 1)

7j=0 m=—00
k—1 o R R
+g Z Z ilh; (0 —m, s)imhi_1_;(m, s)
j=0m=—00
k—1 o R R
193 N 1Ry — my ) mlhy—1—j(m, s)} cos( g|€|(t—5)> ds.  (116)
j=0m=—00

Existence. We fix 1 « R e Z". Given € > 0, we seek solutions h of (51) having the
form

0 o0
h(zq,t Z Mlh(x1,t) and Oih(xy,t) = Z Loy (1, 1). (117)
k=0 k=0
The series in (117) are respectively bounded by
sup Z ¢ hi(t)]x, and  sup Z e 0rhy (1)) x, - (118)

0<t<Tk 0 0<t \Tk 0

Thus, by proving the boundedness of (118), we obtain the absolute convergence of (117)
and, in particular, the existence of solutions to (51).
To obtain the required estimates, we first consider the truncated series (for 0 < k < R)

R

Z 6j+1hj(x1, t).

J=0
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Using (115), we have that
Ik () X 1

© (R+1-K)|(]

i 0[2 N S L)

{=—0 j=0m=—o0

k—1 o0
u3 % 10175 (¢ = m, 8)]mllg_r_j (m, s>|] s
1 (t ’“21
< [ 1005 (5) | xmea o 1t () s
\/g 0 J_O R+2—k R4+2—k
+892 Hh HXR+15 k”hk 1 j( )HXR+2I@:| ds
<! f {Zralus)r oy (5)]
< — 't () X ryoi | Othk—1—3(8) | X pya
\/g 0 ]_0 R+2—k R+2—k

+8gz 115 (5) a5 >|XR+M] ds

where we have used Tonelli’s theorem together with the fact that h/\k((), t) = 0, which follows
from (113), and the important inequality

€] [£=m|+|m|

U] <cee <ce” ¢ VeelZ'. (119)

Using (116), we can find a similar bound 0 hg(t):
1 t
10ehie ()| X g1 < \@L [Z 10eh; (5)]|x i | Ot Pb—1—5 () | X o

+8g2 11 ()] X mne s s >|XR+“} ds.

Since R+2—k<R+2—-k+j=R+1—(k—1-j), it follows that

Jur—1-5 () Xpras < lur1-5 () Xps1_geoyy-

Similarly, if j <k —1,then R+2—k=R+1—(k—1)<R+1—jand

Huj(3> HXR+2—k < HUJ(S) HXR+17]"
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Then, we have that

1) xp 1+ [0hk () X a

fj [Z 1603 () xmem o e1 s (5) s

k—1

£169 3 15 (5) xmsa s ks (s >||XR+H] ds
7=0

<[ [Zat P Y TR P

+ 169 Z Hh ‘XR-H JHhk 1-— J( )‘XR+1(/€1J')] ds
7=0

2
< maX{ }f [2 Hat ‘XR+1 JHathk 1- j( )HXR+1—(1¢—1—,7')
2
; 2 (O >|XR+1_(k_1_j>] ds.  (120)

We define

2 .
“(t) = max {\/g’ 169} 1Pk X1 + 10k () gy ] 5 1L < Ky oty = 1.

We then obtain that the previous recursion for |[hy ()| xp,, , + [0:hi ()| xp,,_, can equiva-
lently be stated as
t k—1
St < f S ()i (s) ds, o = 1.
0 =0
Then, we want to prove by induction that
o, < Cpt®, (121)

where Cj, are the Catalan numbers (64). Remarkably, the Catalan numbers Cj, = O(kfgélk)
as k — oo [75, page 136].
Having already established that (121) holds for k£ = 0, we proceed with the induction
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step. For 1 < k, we have that

thZlﬂk 1—5( (s)ds

< J Z Ck_l_jsk_l_Jst] ds

Thus, using the asymptotic growth of the Catalan numbers, we have that
k gk
[k (@)l + 10 () 1 < [ x50 + 10ehe (D) xpp0 - < 747

Analogously, N _
1ho(t)]x, + [10tho(t) | x, < C||Pinitll x5 [Pinit | x,)-

We define the series
Ill:i = 0th0(:z:1,t) + Eathl(l‘l, t) + 62ath2(l'1,t) + -+ ERathR(l'l,t) R
112% = ho(fL‘l,t) + Ehl(l’l,t) + €2h2($1,t) + -+ ERhR(:L‘l,t) .

Then

H—711~2HX1 < 5("hinit‘|X17 HhinitHxl) + (et4)k.

M=

x>
Il

1

Similarly,

(etd)" .

M=

117, < Clhimit s [initx,) +

T

1

We conclude that if

t< —,
€4

then we can take the limit in R and we compute that
Oth(z1,t) = I and h(xy,t) = IZ.

Our estimates lead to
h, oth € LOO(O, T; Xl)

Moreover, using the Cauchy product of power series, we have that

h(ﬁt)—hOZOcos<\/7t>+(7th0€()sm(\/7t rf/\/ﬁssm \/W(t—s)> ds,
Oh(0,t) = —ho (L, 0) sin (Wt) + 8ho (L, 0) cos (Mt + L N (L, 5) cos gm(t—s)) ds,
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where

o0

Nty = Y [—w ((~isgn(e = m)) bt — m, 1) (~isgn(m)) oth(m, 1))

m=—00

+g (m?(z — m, t)imh(m, t) + |€|h(€ — m, )| m|h(m, t)) ] .

Since h and 0;h are analytic functions in space, using the previous expression, we obtain
that h and 0;h satisfy
h, é’th € C([O, T], X0.5).

In particular, they are continuous functions in time, h, o;h € C([0,T] x St).
Uniqueness. Let us assume that there exist two solutions h(V), h(2) e C([0,T7], Xo.5)
emanating from the same initial data. Then, the difference

s = pM _ 2
satisfies
zZ(,t) = rJMﬁssm m(tfs)) ds,
230 1) = L M(t.s)cos (/o — 5)) ds.
with
M(L,t) = _Z [ .y ((—isgn(z —m)) 8,5(€ — m, t) (—isgn(m)) &h D (m, t))

.y ((—isgn(e —m)) 8, (€ — m, t) (—isgn(m)) &,2(m, t))
+g (wg(e — m, £)imh D (m, t) + [€|3(¢ — m, )|m[pD (m, t))

+g (wﬁ@) (€ — m, t)im3(m, t) + [(|A® (€ — m, £)|m|2(m, t)) ] :
,7=1,2as

Then, following the same argument as in the previous section, we expand h(J )

in (114) and find that h,(g), j = 1,2 satisfy the cascade of linear problems (111) and (112).
Equivalently, we have that

2 = hi) —h?,
satisfies
Zk(¢,1) J fr(l,s) sm( g\E|(t—3)> ds,

B3(l,) = jo (2. ) cos (Vglfl(t — 5)) ds.
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|10 (st = m) 0356 = ) (isen(m) ALY, m. )
— 0] ((—isgn(e = m)) b, (€~ m. 1) (—isgn(m)) 02 (m, 1))
+g (ng (¢ —m, tyimhg? | (m,t) + 102506 — m,O)|m|RY | (m, t))

+g (wﬁ,@l_j(e — m, t)imZ(m, t) + (0B (€~ m,t)|m|2;(m, t)) ] .

As before, we consider R € Z" and define

2

M (t) = max { mg} IR O xisn e + 100 O x|+ o7 =1,
V9
2

A1) = v { T 16 L[ Oy + 100 Ol ] 67 =1

By (1) = max {jg 169} 2 xmen e+ 12200 s ]

Following the arguments in the previous section, we find that
g <ot j=1,2

t k—1
PBr(t) < J;) Z (ﬂk(i)l,j(s) + 52{16(3)17]'(50 %j(s) ds,
j=0

By(t) = 0.
Due to the previous inequalities, we prove that % (t) = 0 using induction and we conclude
the uniqueness. o
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