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Abstract. We develop a rigorous asymptotic derivation of two mathematical models of water waves
that capture the full nonlinearity of the Euler equations up to quadratic and cubic interactions, respectively.
Specifically, letting ε denote an asymptotic parameter denoting the steepness of the water wave, we use a
Stokes expansion in ε to derive a set of linear recursion relations for the tangential component of velocity, the
stream function, and the water wave parameterization. The solution of the water waves system is obtained
as an infinite sum of solutions to linear problems at each Opεkq level, and truncation of this series leads to
our two asymptotic models, which we call the quadratic and cubic h-models.

These models are well-posed in spaces of analytic functions. We prove error bounds for the difference
between solutions of the h-models and the water waves system. We also show that the Craig-Sulem models
of water waves can be obtained from our asymptotic procedure.

We then develop a novel numerical algorithm to solve the quadratic and cubic h-models as well as the
full water waves system. For three very different examples, we show that the agreement between the model
equations and the water waves solution is excellent, even when the wave steepness is quite large. We also
present a numerical example of corner formation for water waves.
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1 Introduction
Both gravity and capillary water waves are modeled by the free-surface incompressible Euler
equations of fluid dynamics, and for many applications, the fluid is additionally assumed to
be irrotational. Well-posedness, stability, and singularity formation have been well studied
with many results; see, for example, [60, 83, 30, 14, 12, 80, 81, 82, 8, 50, 52, 26, 73, 24,
22, 6, 44, 37, 46, 45, 7, 20, 27, 35, 28, 32]. However, the Euler equations are sufficiently
complicated that for many physical scenarios, a precise understanding of the dynamics of
the solutions to the full water waves problem is not (at this time) known. Consequently,
since the pioneering works of Airy, Boussinesq and Stokes [1, 17, 18, 76], there has been a
sustained effort to find suitable approximations of the Euler equations, specific to certain
asymptotic regimes. Such approximate asymptotic models have closely related dynamics
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and can be significantly easier to analyze. Herein, we develop an asymptotic procedure
that yields approximate model equations for the water waves problem to various orders of
approximation of the nonlinearity. In particular, we present two models that respectively
capture the nonlinearity up to quadratic and cubic interactions.

We derive two asymptotic models for the evolution of both gravity and gravity-capillary
waves in deep water, using an asymptotic expansion in the steepness of the wave ε, which
we view as a small parameter, equivalent to the ratio of the amplitude to the wavelength.
Such an expansion has been used extensively since it was introduced by Stokes [76]; see,
for example, [3, 61, 62, 4, 5]). Starting with the case of gravity water waves, we employ
such a Stokes expansion and obtain linear recursion relations for the stream function, the
tangential component of velocity, and the free-surface parameterization. Truncating this
expansion to Opε3q yields a quadratic model equation for gravity water waves. We refer to
this PDE as the quadratic h-model

B 2
t h` gΛh “ ´Λp|HBth|2q ` gΛphΛhq ` gB1phB1hq . (1)

Keeping all terms in the recursion relation to Opε4q yields the cubic h-model, a new model of
water wave dynamics that accurately captures the cubic interactions of the Euler equations
and is given by

B 2
t h` gΛh “ ´Λ

“

pHBthq
2‰` gB1

`

hB1h
˘

` gΛ
`

hΛh
˘

`Qphq (2)

where the cubic nonlinearity Qphq is defined in (63). Asymptotic models for gravity-capillary
waves are derived in the same fashion (in section 5.3) when gravity and surface tension
forces are of the same order.

The same expansion procedure that we used for the one-fluid problem can be used to
derive models for two-fluid internal waves and the Rayleigh-Taylor instability (as noted in
Remark 2 below). Furthermore, our approach can be applied to the case of finite-depth
fluids as well.

We note that the quadratic h-model was derived using very different approaches by
Matsuno [53, 54, 55] and later by Akers & Milewski [2]. The cubic h-model was also written
down in the appendix of [54]. See also the papers of Benney & Luke [15], Choi [25], Lannes
& Bonneton [51], Berger & Milewski [16], Akers & Nicholls [3], and Granero & Shkoller [38]
for derivations of related models of water waves.

We show that both the quadratic and cubic h-models are well-posed in spaces of analytic
functions that are similar to the Wiener algebra but with a (growing) exponential weight
(used to guarantee analyticity). Well-posedness of the quadratic h-model follows from an
application of the Cauchy-Kowalewski theorem, while the well-posedness of the cubic h-model
is established using a slightly different approach1, wherein we prove the summability of the
Stokes expansion by obtaining bounds for our linear recursion, which can be estimated in
terms of the Catalan numbers [75] from number theory.

1It is likely that well-posedness of the cubic h-model follows also from an application of the Cauchy-
Kowalewski theorem once certain reductions of the cubic nonlinearity are established, but we did not pursue
this direction.

3



Cheng, Granero, Shkoller, and Wilkening Rigorous Asymptotic Models of Water Waves

We also establish rigorous error bounds for the difference between solutions of the
h-models and the full water waves system. We thus conclude that both the quadratic and
cubic h-models are accurate asymptotic models of water waves in the small ε-regime.

The asymptotic procedure that we shall describe below allows us to derive a large class
of asymptotic models of water waves, including the well-known hierarchy of models obtained
by Craig & Sulem [31]; in particular, we show that their most studied model, WW2 (or
water waves 2), is obtained from our approach. Moreover, we write the WW2 model as a
second-order wave equation and explain its connection with the quadratic h-model.

Finally, we present an arbitrary-order exponential time differencing scheme [29, 48, 21]
for solving the quadratic and cubic h-models accurately and efficiently and compare those
solutions against numerical solutions of the Euler equations. We show that the h-models
converge as expected: with ε denoting the maximum slope of the initial condition, the
quadratic and cubic h-models converge in L2 to solutions of the full water waves problem
with rates Opε2q and Opε3q, respectively, where the L2 error is scaled by ε´1 to account for
the decreasing (as a function of ε) norm of the exact solution. We give three examples of
initial data that show excellent agreement between the h-models and the full water waves
solution all the way up to ε “ Op1q. The first example is a multi-hump initial condition in
which a jet forms in each trough as the solution drops from rest; the second example is a
localized disturbance over a flat surface that propagates outward as time evolves; and the
third example is a family of standing water waves. In all three cases, the quadratic and cubic
models are much better than linear theory at capturing features of the dynamics. For large
ε, the quadratic model has a tendency to form a corner singularity while the cubic model
tracks the Euler solution quite well. We also present a continuation of the first example for
the Euler equations to show that the wave eventually overturns and appears to form a corner
singularity before self-intersecting, with dP {dn Ñ 0 at the tip of one of the overturning
waves.

Paper Outline. In Section 2, we introduce the notation and some important definitions
used throughout the paper. In Section 3, we introduce the water waves equations, and the
three fundamental variables that shall be evolved: the tangential component of velocity,
the stream function, and the free-surface parameterization. Section 4 is devoted the Stokes
expansion of the water waves system and the derivation of the linear recursion relations.
In Section 5, we derive the quadratic and cubic h-models, and in Section 6, we prove that
these models are well-posed. In Section 7, we derive the Craig-Sulem WW2 model, and
prove that it too is well-posed. Section 8 establishes the error estimates for solutions of
the h-models compared to the full water waves system. Then, in Section 9, we perform a
number of numerical experiments that compare the quadratic and cubic h-models with a
highly accurate numerical solution of the full water waves system.

2 Some notation and definitions

2.1 Matrix indexing

Let A be a matrix, and b be a column vector. Then, we write Aij for the component of A,
located on row i and column j; consequently, using the Einstein summation convention, we
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write
pAbqk “ Aki b

i and pAT bqk “ Aikb
i.

2.2 Power series summation

We adopt the convention that independent of the summand sj ,

k´
ÿ̀

j“0
sj “ 0 whenever k ă ` . (3)

2.3 The water wave parameterization

We identify S1 with the interval r´π, πs. We shall denote a general parameterization of the
free-surface of the fluid by the diffeomorphism zp¨, tq : S1 Ñ R2. This free-surface of the
fluid is the water wave, which we denote by Γptq. Hence, the water wave is given by

Γptq “
 `

z1px1, tq, z2px1, tq
˘

: ´π ď x1 ď π , t P r0, T s
(

.

For the majority of our analysis, we shall assume that the water wave evolves as a graph
over the horizontal x1-axis. in particular, pz1, z2q “ px1, hpx1, tqq and

Γptq “
 `

x1, hpx1, tq
˘

: ´π ď x1 ď π , t P r0, T s
(

. (4)

The one-to-one function hpx1, tq is often called the signed height function.

2.4 The fluid domain and some geometric quantities

The time-dependent fluid domain is defined as

Ωptq “
 

px1, x2q : ´π ď x1 ď π ,´8 ď x2 ď z2px1, tq , t P r0, T s
(

, (5)

i.e. for the sake of simplicity, we assume that the depth of the fluid is much larger than the
amplitude of the wave.

We define the reference domain D as

D “ S1 ˆ p´8, 0q . (6)

We let N “ e2 denote the outward unit normal to BD, and we let T p¨, tq and Np¨, tq denote,
respectively, the unit tangent and normal vectors to the water wave Γptq, where Np¨, tq
points outward to the set Ωptq. We then set

n “ N ˝ z and τ “ T ˝ z .

When the water wave is defined by graph parameterization (4), the induced metric g is given
by

g “ 1` pB1hq
2 . (7)

5



Cheng, Granero, Shkoller, and Wilkening Rigorous Asymptotic Models of Water Waves

2.5 Derivatives

We write

Bkf “
Bf

Bxk
for k “ 1, 2 , Btf “

Bf

Bt
, ∇ “ pB1, B 2q , ∇K “ p´B 2, B1q ,

and for a vector F ,
divF “ ∇ ¨ F and curlF “ ∇K ¨ F .

The Laplace operator is defined as ∆ “ B 2
1 ` B

2
2.

2.6 Fourier series

If f : S1 Ñ R is a square-integrable 2π-periodic function, then it has the Fourier series
representation fpx1q “

8
ř

k“´8

pfpkqeikx1 for all x1 P S1, where the complex Fourier coefficients

are defined by f̂pkq “ 1
2π

ż

S1
fpx1qe

´ikx1dx1. We shall sometimes write f̂k for f̂pkq. Functions

g : D Ñ R (which are square-integrable in x1 can be expanded as gpx1, x2q “
ř

kPZ
pgpx2, kqe

ikx1

for all px1, x2q P D, where pgpx2, kq “
1

2π

ż

S1
gpx1, x2qe

´ikx1dx1.

2.7 Singular integral operators

Let fpx1q denote a 2π periodic function on S1. Using the Fourier representation, we define
the Hilbert transform H and the Dirichlet-to-Neumann operator Λ as

yHfpkq “ ´isgnpkq pfpkq , xΛfpkq “ |k| pfpkq . (8)

In particular, we note that
B1H “ Λ, H2 “ ´1.

Equivalently, suppose that f : S1 Ñ R is a 2π periodic function and that Φ is its harmonic
extension to D. Then,

Λf “ B 2Φ on S1 ˆ t0u . (9)

Finally, we denote the commutator between f and the Hilbert transform acting on g as

JH, fKg “ Hpfgq ´ fHg.

Let us observe that Jf,HKg “ ´JH, fKg.

2.7.1 Function spaces

For 1 ă p ď 8, we denote by LppS1q the set of Lebesgue measurable 2π-periodic func-

tions such that }u}Lp ă 8 where }u}Lp “
ˆ

ż

S1
|upxq|p dx

˙
1
p

if 1 ă p ă 8 and }u}L8 “
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ess supxPS1 |upxq|. For integers k ě 0, we let HkpS1q “
!

u : L2pS1q
ˇ

ˇ

ˇ
}u}2

Hk :“
k
ř

j“0
}B

j
1u}L2 ă

8

)

. For s P R, we then define the space HspS1q to be the 2π-periodic distributions such

that }u}2Hs :“
8
ř

m“´8
p1`m2qs|ûm|

2 ă 8.

For a given τ ą 0, we define the following Banach scale of analytic functions as

Xτ “

!

u : S1 Ñ R
ˇ

ˇ

ˇ
}f}Xτ “

ÿ

mPZ
eτ |m||ûm| ă 8

)

. (10)

3 Water waves equations
Water waves are modeled by the incompressible and irrotational free-surface Euler equations,
written as

Btu ` pu ¨∇qu `∇p “ 0 in Ωptq , (11a)
curl u “ divu “ 0 in Ωptq , (11b)

p “ ´λ
B2

1h

p1` pB1hq2q3{2
on Γptq , (11c)

u “ u0 on Ωˆ tt “ 0u , (11d)
VpΓptqq “ u ¨ N , (11e)

where t P r0, T s, Ωptq is defined in (5), Γptq is defined in (4), 0 ď λ is the surface tension
parameter and VpΓptqq “ u ¨ N means that the free-surface Γptq moves with normal velocity
u ¨ N . We shall assume that all functions are 2π-periodic in x1.

Γptq

Ωptq

3.1 The Bernoulli equation

Since curlu “ 0 in Ωptq, u “ ∇φ for some scalar potential φ. Then, (11a) can be written as

Btφpx, tq `
1
2 |∇φpx, tq|

2 ` ppx, tq ` ρgx2 “ fptq @ x P Ωptq and t ą 0 . (12)

where f is a function independent of x.

3.2 The evolution of the tangential velocity

On S1, we define the following quantities:

v “ u ˝ z , Ψ “ φ ˝ z , and n “ N ˝ z .

7
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We shall make use of the tangential velocity

ω “ u ¨ T and sωpx1, tq “ vpx1, tq ¨ B1zpx1, tq on Γptq .

From (11e), Btz ¨ n “ v ¨ n so that

Btzpx1, tq “ vpx1, tq ` cpx1, tqB1zpx1, tq (13)

for an arbitrary scalar function c. (Note that B1z is a tangent vector and that the water
waves problem has a tangential reparameterization symmetry.)

By the chain rule,

B1Ψpx1, tq “ B1zpx1, tq ¨ p∇φq ˝ zpx1, tq “ pv ¨ B1zqpx1, tq “ sωpx1, tq , (14)

and

BtΨpx1, tq “ Btφpzpx1, tq, tq ` Btzpx1, tq ¨ p∇φq ˝ zpx1, tq

“ pBtφ ˝ z ` Btz ¨ vqpx1, tq .

From (14), B1BtΨpx1, tq “ Btsωpx1, tq, and (13) shows that

BtΨpx1, tq “ pBtφ ˝ zqpx1, tq ` |vpx1, tq|
2 ` cpx1, tq sωpx1, tq .

Therefore, we find that sω satisfies

Btsω “ B1
`

Btφ ˝ z ` |v|2 ` c sω
˘

. (15)

From (12),

pBtφ ˝ zqpx1, tq `
1
2 |vpx1, tq|

2 ` pp ˝ zqpx1, tq ` gz2px1, tq “ fptq ,

so that

B1pBtφ ˝ zq “ ´B1
`1

2 |v|
2 ` pp ˝ zq ` gz2

˘

,

where we have used the boundary condition (11c) in the last equality. Using (15), we find
that

Btsω “ B1
`1

2 |v|
2 ` c sω ` λ

B2
1h

p1` pB1hq2q3{2
´ gz2

˘

. (16)

We now suppose that the interface Γptq remains a graph and is given by (4). With the
definition of the metric (7), we write the unit normal and tangent vectors, respectively, to
Γptq as

n “ g´
1
2 p´B1h, 1q , and τ “ g´

1
2 p1, B1hq .

Using (11e), we decompose v as follows:

v “ pv ¨ nqn ` pv ¨ τ qτ “ g´
1
2 Bthn ` g´

1
2
sω τ , (17)

8
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and hence

|v|2 “ g´1p|Bth|
2 ` |ω̄|2q . (18)

Equations (13) and (17) then provide us with the identity

c “ B tz1 ´ v1 “ ´v1 “ g´1 pBthB1h´ sωq ,

so that (16) can be written as

Btsω “ ´gB1h` B1
“1

2g´1p|Bth|
2 ` |ω̄|2q ´ g´1|sω|2 ` g´1

sωBthB1h
‰

` λB1

ˆ

B2
1h

p1` pB1hq2q3{2

˙

“ ´gB1h`
1
2B1

“

g´1`|Bth|
2 ´ |ω̄|2 ` 2sωBthB1h

˘‰

` λB1

ˆ

B2
1h

p1` pB1hq2q3{2

˙

. (19)

3.3 The equation for the stream function

Since Ωptq is simply connected, by classical Hodge theory, we can uniquely determine the
velocity vector u by solving the following elliptic system:

curl u “ 0 and div u “ 0 in Ωptq , and u ¨ T “ ω on Γptq . (20)

Solutions of (20) have the form u “ ∇Kϑ for some stream function ϑ which satisfies the
scalar Neumann problem

∆ϑ “ 0 in Ωptq , and Bϑ

BN
“ ´ω on Γptq . (21)

Existence, uniqueness, and regularity of solutions to (21) is classical when Γptq is sufficiently
smooth and

ż

Γptq
ωdSptq “ 0; see [23] for the case that Γptq is of Sobolev class.

3.4 The evolution equation for the free-surface

We extend the parameterization (4) to a diffeomorphism ψ of D as

ψpx1, x2q “ px1, x2 ` hpx1, tqq @ px1, x2q P D , (22)

and set
∇ψ “

„

1 0
B1h 1



, A “ p∇ψq´1 “

„

1 0
´B1h 1



. (23)

We then define the stream function on the reference domain D as ϕ “ ϑ ˝ ψ. We then
compute that

v “ u ˝ ψ “ p∇Kϑq ˝ ψ “ p´Ak2Bkϕ,A
k
1Bkϕq “ p´B2ϕ, B1ϕ´ B1hB2ϕq .

From (11e), Bthpx1, tq “ v ¨ p´B1h, 1q on S1, so that

Bth “ B1ϕ on S1 . (24)

9
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4 Stokes expansion and linear recursion for the time-dependent
water waves

4.1 Stokes expansion

Letting 0 ă ε ă 1 denote the steepness parameter (which can be viewed as the ratio of the
amplitude to characteristic wavelength), we consider the following Stokes expansion ansatz :

hpx1, tq “ εrhpx1, tq , ϕpx, tq “ εrϕpx, tq , sωpx1, tq “ εrωpx1, tq , (25)

where
rhpx1, tq “ h0px1, tq ` εh1px1, tq ` ε

2h2px1, tq ` ¨ ¨ ¨ , (26a)
rϕpx, tq “ ϕ0px, tq ` εϕ1px, tq ` ε

2ϕ2px, tq ` ¨ ¨ ¨ , (26b)
rωpx1, tq “ ω0px1, tq ` εω1px1, tq ` ε

2ω2px1, tq ` ¨ ¨ ¨ . (26c)

In particular, at the initial time t “ 0, we have

phpx1, 0q, Bthpx1, 0q
˘

“

´

hinitpx1q, 9hinitpx1q
¯

for all x1 P S1. (27)

or, equivalently,

prhpx1, 0q, Btrhpx1, 0q
˘

“

˜

hinitpx1q

ε
,
9hinitpx1q

ε

¸

for all x1 P S1. (28)

4.2 Linear recursion for the stream function

Using (23), the scalar Neumann problem (21) can be written as

BkpA
k
`A

j
`Bjϕq “ 0 in D , (29a)

Ak` B kϕn` “ ´ω ˝ ψ on S1 . (29b)

and in expanded form,

∆ϕ “ 2B1hB12ϕ` B
2
1hB2ϕ´ pB1hq

2B 2
2ϕ in D , (30a)

Bϕ

BN “ ´
sω

1` pB1hq2
`

B1h

1` pB1hq2
B1ϕ on S1 . (30b)

Substitution of our Stokes expansion (25) shows that (30) is equivalent to the following
linear recursion relation for k ě 0:

∆ϕk “ B2

«

k´1
ÿ

j“0

`

2B1hjB1ϕk´1´j ` B
2
1 hjϕk´1´j

˘

´

k´2
ÿ

j“0

j
ÿ

r“0
B1hrB1hj´rB2ϕk´2´j

ff

in D ,

(31a)

Bϕk

BN “ ´ωk `
k´1
ÿ

j“0
B1hjB1ϕk´1´j ´

k´2
ÿ

j“0

j
ÿ

r“0
B1hrB1hj´rB2ϕk´2´j on S1 .

(31b)

10
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4.3 Linear recursion for the height function

Substitution of (25) into (24) shows that

Bthk “ B1ϕk on S1 . (32)

4.4 Linear recursion for the tangential velocity

In absence of surface tension effects (λ “ 0), we have that (19) is equivalent to

Btsω “ ´gB1h`
1
2B1

“

p1` pB1hq
2q´1`|Bth|

2 ´ |ω̄|2 ` 2sωBthB1h
˘‰

“ ´gB1h` p1` pB1hq
2q
B1
“

|Bth|
2 ´ |ω̄|2 ` 2sωBthB1h

‰

2
´ B1hB

2
1 h

“

|Bth|
2 ´ |ω̄|2 ` 2sωBthB1h

‰

´ Btsωp2pB1hq
2 ` pB1hq

4q

´ gB1hp2pB1hq
2 ` pB1hq

4q . (33)

Substitution of the asymptotic expansion (26) into (19) shows that

Btωk “ ´gB1hk `
k´1
ÿ

`“0

B1 rBthk´1´`Bth` ´ ω`ωk´1´`s

2 `

k´2
ÿ

`“0

ÿ̀

n“0
B1 rωnBth`´nB1hk´2´`s

`

k´3
ÿ

`“0

ÿ̀

n“0

n
ÿ

j“0
B1hjB1hn´j

B1
“

Bth`´nBthk´3´` ´ ω`´nωk´3´`
‰

2

`

k´4
ÿ

`“0

ÿ̀

n“0

n
ÿ

j“0

j
ÿ

m“0
B1hmB1hj´mB1

“

ωn´jBth`´nB1hk´4´`
‰

´

k´3
ÿ

`“0

ÿ̀

n“0

n
ÿ

j“0
B1hjB

2
1 hn´j rBth`´nBthk´` ´ ω`´nωk´3´`s

´ 2
k´4
ÿ

`“0

ÿ̀

n“0

n
ÿ

j“0

j
ÿ

m“0
B1hmB

2
1 hj´mωn´jBth`´nB1hk´4´`

´ 2
k´2
ÿ

`“0

ÿ̀

n“0
BtωnB1h`´nB1hk´2´` ´ 2g

k´2
ÿ

`“0

ÿ̀

n“0
B1hnB1h`´nB1hk´2´`

´

k´4
ÿ

`“0

ÿ̀

n“0

n
ÿ

j“0

j
ÿ

m“0
BtωmB1hj´mB1hn´jB1h`´nB1hk´4´`

´ g
k´4
ÿ

`“0

ÿ̀

n“0

n
ÿ

j“0

j
ÿ

m“0
B1hmB1hj´mB1hn´jB1h`´nB1hk´4´` . (34)

11
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5 Derivation of the quadratic and cubic h-models

5.1 Preliminary lemmas

The linear recursion for the stream function ϕk given in (31) can be decomposed into simpler
elliptic equations. Thus, given certain forcing functions h, ϕ and g, we shall focus on the
following two elliptic equations

∆X “ B2
“

2pB1hqpB1ϕq ` pB
2
1 hqϕ

‰

in D , and B2X “ pB1hqpB1ϕq on S1 , (35)

and
∆Y “ B2g in D , and B2Y “ g on S1 . (36)

We shall make use of two lemmas that show that the restriction of the solutions of (35) and
(35) to S1 can be expressed in terms of the functions on S1: h0, ¨ ¨ ¨ , hk´1 and ω0, ¨ ¨ ¨ , ωk´1.

Following our discussion in Section 2.6, a harmonic function fpx1, x2q in D can be
expanded as

fpx1, x2q “
8
ÿ

n“´8

pfpnqeinx1`|n|x2 for all px1, x2q P D

for some complex coefficients pfpnq that do not depend on x2. For example, the stream
function ϕ0, solving (31) with k “ 0, is harmonic and hence ϕ0px1, x2q “

ř

nPZ
xϕ0pnqe

inx1`|n|x2 .

For k “ 1, the right-hand side of (31a) is given by

B2
“

2pB1h0qpB1ϕ0q ` pB
2
1 h0qϕ0

‰

px1, x2q “
8
ÿ

n“´8

8
ÿ

m“´8

|m|pm2 ´ n2qxh0pn´mqxϕ0pmqe
inx1`|m|x2 ,

and the right-hand side of (31b) is

pB1h0qpB1ϕ0q “ ´
8
ÿ

n“´8

8
ÿ

m“´8

mpn´mqxh0pn´mqxϕ0pmqe
inx1`|m|x2 .

It follows that the solution ϕ1 can be written via the expansion

ϕ1px1, x2q “
ÿ

n,mPZ

xP1n,me
inx1`|m|x2 ,

where
ř

n,mPZ denotes the double sum
ř8
n“´8

ř8
m“´8 and txP1n,mun,mPZ is a (double)

sequence of complex numbers. Using the recursion formula (31), an induction argument
then shows that for all j P N, the stream function ϕj can be written as the expansion

ϕjpx1, x2q “
ÿ

n,mPZ

xPjn,mpx2qe
inx1`|m|x2 ,

where for each fixed j, n,m, xPjn,mpx2q is a polynomial (of degree j ´ 1) function of x2. This
motivates the following two lemmas.

12
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Lemma 1. Let h : S1 Ñ R and ϕ : D Ñ R denote 2π-periodic functions of x1, such that

hpx1q “
ÿ

kPZ,k‰0

phke
ikx1 , ϕpx1, x2q “

ÿ

k,mPZ

pPk,mpx2qe
ikx1`|m|x2 ,

where x2 ÞÑ pPk,mpx2q is a polynomial function. If X is the unique solution to (35), then

pB1Xqpx1, 0q “ ´H
“

pB1hqpB1ϕq
‰

´
ÿ

k,`,mPZ
isgnpkq|m|p`2 ´ k2qphk´`

8
ÿ

j“0

p´1qj pP pjq`,mp0q
p|m| ` |k|qj`1 e

ikx1 , (37)

where pP
pjq
`,mp0q denotes B

j
2
pP`,mpx2q evaluated at x2 “ 0. Moreover, if ϕ is harmonic in D so

that ϕpx1, x2q “
ř

kPZ
pϕke

ikx1`|k|x2, then

B1X “ ´ΛrhB1ϕs ` B1phΛϕq “ B1
`

Jh,HKB1ϕ
˘

on S1 , (38)

where J¨, ¨K denotes the commutator.
Proof. With Xpx1, x2q “

ř

kPZ
pXkpx2qe

ikx1 , pXkpx2q satisfies the differential equation

B 2
2 pXkpx2q ´ k

2
pXkpx2q “

ÿ

`,mPZ
|m|p`2 ´ k2qphk´` pP`,me

|m|x2 for x2 ă 0 ,

pB2 pXkqp0q “
ÿ

`,mPZ
p`´ kq`phk´` pP`,m ,

whose solution is given by the variation-of-parameters formula: for k ‰ 0,

pXkpx2q “
1
|k|

ÿ

`,mPZ
p`´ kq`phk´` pP`,mp0qe|k|x2

´
ÿ

`,mPZ

|m|p`2 ´ k2q

2|k|
phk´`

`

e|k|x2 ` e´|k|x2
˘

8
ÿ

j“0

p´1qj pP pjq`,mp0q
p|m| ` |k|qj`1

`
ÿ

`,mPZ

|m|p`2 ´ k2q

2k
phk´`

ż x2

0
pP`,mpy2q

“

ep|m|´kqy2`kx2 ´ ep|m|`kqy2´kx2
‰

dy2 .

Therefore,

ik pXkp0q “ isgnpkq
ÿ

`,mPZ

”

p`´ kq`phk´` pP`,m ´ |m|p`
2 ´ k2qphk´`

8
ÿ

j“0

p´1qj pP pjq`,mp0q
p|m| ` |k|qj`1

ı

, (39)

and (37) follows from the Fourier inversion formula.
In the case that ϕ is harmonic in D or equivalently, the Fourier coefficients are given as

pP`,m “ pϕ` if ` “ m and pP`,m “ 0 if ` ‰ m, then the identity (39) shows that

ik pXkp0q “ isgnpkq
ÿ

`PZ
p`´ kq`phk´`

ÿ

mPZ

pP`,m ´ isgnpkq
ÿ

`PZ

|m|p`2 ´ k2q

|m| ` |k|
phk´`

ÿ

mPZ

pP`m

“ isgnpkq
ÿ

`PZ
p`´ kq`phk´` pϕ` ´ isgnpkq

ÿ

`PZ

|`|p`2 ´ k2q

|`| ` |k|
phk´` pϕ`

“ isgnpkq
ÿ

`PZ

“

ipk ´ `qphk´`
‰

pi`pϕ`q ´ isgnpkq
ÿ

`PZ
p|`| ´ |k|qphk´`xΛϕ`

13
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and hence on S1,

B1X “ ´H
“

pB1hqpB1ϕq
‰

`HphΛϕq ` B1phΛϕq
“ ´H

“

hB 2
1ϕ` pB1hqpB1ϕq

‰

` B1phΛϕq “ ´ΛphB1ϕq ` B1phΛϕq

from which (38) follows. ˝

Lemma 2. Let g : D Ñ R be a 2π-periodic function of x1, such that

gpx1, x2q “
ÿ

k,mPZ
pgk,me

ikx1`|m|x2 ,

and let Y denote the unique solution to (36). Then

B1Y “ ´Hg ´ isgnpkq
ÿ

k,mPZ

|m|

|m| ` |k|
pgk,me

ikx1 on S1 . (40)

Proof. Letting Y px1, x2q “
ř

kPZ
pYkpx2qe

ikx1 , we find that

B 2
2 pYkpx2q ´ k

2
pYkpx2q “

ÿ

mPZ
|m|pgk,me

|m|x2 for x2 ă 0 ,

B2 pYkp0q “
ÿ

mPZ
pgk,m .

The solution for the case k ‰ 0 is obtained via the variation-of-parameters formula as

pYkpx2q “
1
|k|

ÿ

mPZ
pgk,me

|k|x2 ´
1

2|k|
ÿ

mPZ

|m|

|m| ` |k|
pgk,mpe

|k|x2 ` e´|k|x2q

`
ÿ

mPZ

|m|

2k pgk,m
ż x2

0

“

ep|m|´kqx2`kx2 ´ ep|m|`kqx2´kx2
‰

dx2 .

Therefore,

ikpYkp0q “ isgnpkq
ÿ

mPZ
pgk,m ´ isgnpkq

ÿ

mPZ

|m|

|m| ` |k|
pgk,m

which is (40). ˝

5.2 The quadratic h-model

From (31),
∆ϕ0 “ 0 in D and Bϕ0

BN “ ´ω0 on S1 , (41)

and

∆ϕ1 “ B2
`

2B1h0B1ϕ0 ` B
2
1 h0 ϕ0

˘

in D and Bϕ1

BN “ ´ω1 ` B1h0B1ϕ0 on S1 . (42)

14
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We decompose ϕ1 “ ϕ(a)
1 ` ϕ(b)

1 , where ϕ(a)
1 and ϕ(b)

1 satisfy

∆ϕ(a)
1 “ f :“ B2

`

2B1h0B1ϕ0 ` B
2
1 h0 ϕ0

˘

in D , (43a)
Bϕ(a)

1
BN “ g :“ B1h0B1ϕ0 on S1 , (43b)

and

∆ϕ(b)
1 “ 0 in D , (44a)

Bϕ(b)
1

BN “ ´ω1 on S1 . (44b)

We note that the solvability condition for (43) is satisfied since integration-by-parts shows
that
ż

S1ˆR´
B2

`

2B1h0B1ϕ0 ` B
2
1 h0 ϕ0

˘

dy “

ż

S1
2B1h0B1ϕ0 ` B

2
1 h0 ϕ0dx1 “

ż

S1
B1h0B1ϕ0dx1 ,

and similarly the solvability condition for (44) is also satisfied:
ż

S1
ω1dx1 “ 0. With the

solvability conditions satisfied, the elliptic problems (43) and (44) have unique solutions in
H1pDq by the Lax-Milgram theorem. Using the Hilbert transform,

B1ϕ0 “ Hω0 and B1ϕ
(b)
1 “ Hω1 on S1 . (45)

We can then apply Lemma 1 and conclude that

B1ϕ
(a)
1 px1, 0, tq “ B1

`

Jh0, HKHω0
˘

“ ´H
“

pB1h0qpHω0q ` h0Λω0
‰

´ B1ph0ω0q on S1 . (46)

From the recursion for the tangential velocity and (32), we have that

Bth0 “ Hω0 on S1 , (47a)
Btω0 “ ´gB1h0 on S1 , (47b)
Bth1 “ Hω1 ´H

“

pB1h0qpHω0q ` h0Λω0
‰

´ B1ph0ω0q on S1 , (47c)

Btω1 “ ´gB1h1 `
1
2B1

`

|B th0|
2 ´ |ω0|

2˘ on S1 . (47d)

We can write (47) as system of wave equations,

B 2
t h0 ` gΛh0 “ 0 (48a)

B 2
t h1 ` gΛh1 “

1
2Λ

`

|Bth0|
2 ´ |HBth0|

2˘

´H
“

pB1Bth0qpBth0q ´ gpB1h0qpΛh0q ` pBth0qpB1Bth0q ´ gh0ΛB1h0
‰

` B1
“

pBth0qpHBth0q
‰

` gB1ph0B1h0q

“ ´Λp|HBth0|
2q ` gΛph0Λh0q ` gB1ph0B1h0q , (48b)

where, in the last equality, we have used the Tricomi identity

2HpfHfq “ pHfq2 ´ f2 . (49)
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The quadratic h-model follows from setting

hpx1, tq “ εh0px1, tq ` ε
2h1px1, tq , (50)

so that

B 2
t h` gΛh “ ε2

`

´Λp|HBth0|
2q ` gΛph0Λh0q ` gB1ph0B1h0q

˘

“ ´Λp|HBth|2q ` gΛphΛhq ` gB1phB1hq `Opε3q .

Neglecting terms of order Opε3q, the quadratic h´model reads

B 2
t h` gΛh “ ´Λp|HBth|2q ´ gB1pJh,HKΛhq , (51a)

“ 2B1pBthHBthq ´ Λ
`

pBthq
2˘` gΛphΛhq ` gB1phB1hq . (51b)

The quadratic h-model (51) modeling gravity water waves in deep water reduces to
the “Model” equation obtained by Akers & Milewski [2], although in a very different way.
They first simplify the water waves problem by making the assumption that the potential
function at each recursion relation is set on the fixed domain with top boundary given by
x2 “ 0 (rather than x2 “ hpx1, tq). It is interesting to note that up to quadratic nonlinearity,
this simplification produces the same h-model as we have obtained by keeping the full
water waves system in the asymptotics. We note that Akers & Nicholls [3] later used a
diffeomorphism (similar to our φ) to fix the domain, but only study the linear recursion for
the traveling solitary wave ansatz.

Remark 1. We observe that the quadratic h-model (51) is kept invariant by the scaling

hµpx1, tq “
1
µ2hpµ

2x1, µtq.

This is the same scale invariance as for the full gravity water wave problem.

Remark 2. Following a similar approach, for the case of an internal wave separating two
perfect fluids with densities ρ` and ρ´, we can derive the equation

B2
t h “ AgΛh`AΛp|HBth|2q `A2g pΛphΛhq ` B1phB1hqq (52)

where
A “

ρ` ´ ρ´

ρ` ` ρ´

is the Atwood number.

A similar asymptotic model was derived in Granero-Belinchón & Shkoller [38] to study
the two-fluid problem.
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5.3 The quadratic h-model with surface tension

For surface waves in the regime where the effects of both gravity and surface tension are
similar in magnitude (wavelengths of order L «

a

73.5{981cm or, equivalently, the Bond
number λ

gL2 « 1), the previous recursion for the tangential velocity has to be changed. This
is somewhat challenging for general k due to the denominator present in the expression for
the mean curvature; however, for k “ 0 and 1 this modification takes the following form:

Bth0 “ Hω0 on S1 , (53a)
Btω0 “ ´gB1h0 ` λB

3
1h0 on S1 , (53b)

Bth1 “ Hω1 ´H
“

pB1h0qpHω0q ` h0Λω0
‰

´ B1ph0ω0q on S1 , (53c)

Btω1 “ ´gB1h1 ` λB
3
1h1 `

1
2B1

`

|B th0|
2 ´ |ω0|

2˘ on S1 . (53d)

Equivalently, taking a time derivative, we have that

B2
t h0 “ ´gΛh0 ´ λΛ3h0

B2
t h1 “ ´gΛh1 ´ λΛ3h1 `

1
2Λ

`

|B th0|
2 ´ |HB th0|

2˘

´H
“

pB1Bth0qpBth0q ` pB1h0qpHBtω0q ` Bth0B1Bth0 ` h0ΛBtω0
‰

´ B1pBth0ω0 ` h0Btω0q

“ ´gΛh1 ´ λΛ3h1 ´ Λ
`

|HB th0|
2˘´ Λ

“

h0HBtω0
‰

´ B1ph0Btω0q

“ ´gΛh1 ´ λΛ3h1 ´ Λ
`

|HB th0|
2˘` Λ

“

h0
`

gΛh0 ` λΛ3h0
˘ ‰

´ B1
`

h0
`

´gB1h0 ` λB
3
1h0

˘˘

.

Then, a similar argument as before shows that, up to Opε3q, the quadratic h´model (51)
with surface tension modeling gravity-capillary waves in deep water is written as

B2
t h “ ´gΛh´ λΛ3h´ Λ

`

|HB th|
2˘` Λ

“

h
`

gΛh` λΛ3h
˘ ‰

´ B1
`

h
`

´gB1h` λB
3
1h
˘˘

. (54)

5.4 The cubic h-model

In order to derive the cubic h-model, we shall also need the equation that ϕ2 satisfies; thus,
in addition to (41) and (42), we use (31) to find that

∆ϕ2 “ B2
“

2B1h0B12ϕ1 ` 2B1h1B1ϕ0 ` ϕ1B
2
1 h0 ` ϕ0B

2
1 h1 ´ pB1h0q

2B2ϕ0
‰

in D , (55a)
Bϕ2

BN “ ´ω2 ` B1h0B1ϕ1 ` B1h1B1ϕ0 ´ pB1h0q
2B2ϕ0 on S1 . (55b)
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We decompose ϕ2 as the sum ϕ2 “ ϕ(a)
2 ` ϕ(b)

2 ` ϕ(c)
2 ` ϕ(d)

2 , where ϕ(a)
2 , ϕ(b)

2 , ϕ(c)
2 and ϕ(d)

2
satisfy

∆ϕ(a)
2 “ 2B1h1B12ϕ0 ` B

2
1 h1B2ϕ0 in D Bϕ(a)

2
BN “ B1h1B1ϕ0 on S1 ,

∆ϕ(b)
2 “ 2B1h0B12ϕ1 ` B

2
1 h0B2ϕ1 in D Bϕ(b)

2
BN “ B1h0B1ϕ1 on S1 ,

∆ϕ(c)
2 “ ´pB1h0q

2B 2
2ϕ0 in D Bϕ(c)

2
BN “ ´pB1h0q

2B2ϕ0 on S1 ,

∆ϕ(d)
2 “ 0 in D Bϕ(d)

2
BN “ ´ω2 on S1 .

Note that B1ϕ
(d)
2 “ Hω2 on S1.

Solving (41), ϕ0px1, x2, tq “ ´
ř

kPZ,k‰0

xω0kptq

|k|
eikx1`|k|x2 , and by Lemma 1,

B1ϕ
(a)
2 “ B1pJh1, HKHω0q . (56)

Next, we write the solution to (44) using the Fourier components yϕ(b)
1 pk, x2, tq “ ´

xω1kptq

|k|
e|k|x2 ,

and using the variation-of-parameters solution to (43), we see that

yϕ(a)
1 pk, x2, tq “

sgnpkq
k

pgpk, tqe|k|x2 `

ż x2

0
pfpk, y2, tq

ekpx2´y2q ´ ekpy2´x2q

2k dy2

“
{pB1ph0Hω0qqkptq

|k|
e|k|x2 ´

ÿ

`PZ

xh0k´`ptqxω0`ptqe
|`|x2 ;

thus,

ϕ1px1, x2, tq “
ÿ

kPZ

´xω1kptq `
{pB1ph0Hω0qqkptq

|k|
eikx1`|k|x2 ´

ÿ

k,`PZ

xh0k´`ptqxω0`ptqe
ikx1`|`|x2 .

It then follows from Lemma 1 with pPk,m “ δkm
´xω1kptq ` {pB1ph0Hω0qqkptq

|k|
´xh0k´mptqxω0mptq

that

B1ϕ
(b)
2 “ B1

`

Jh0, HKHω1
˘

´ B1
`

Jh0, HKΛph0Hω0q
˘

`H
“

pB1h0qB1ph0ω0q
‰

`
ÿ

k,`,mPZ
isgnpkq |m|p`

2 ´ k2q

|m| ` |k|
xh0k´`xh0`´mxω0me

ikx1

“ B1
`

Jh0, HKHω1
˘

´ B1
`

Jh0, HKΛph0Hω0q
˘

`H
“

pB1h0qB1ph0ω0q
‰

´
ÿ

k,`,mPZ
sgnpkq |m|p`` kq

|m| ` |k|
{pB1h0qk´`

xh0`´mxω0me
ikx1 . (57)
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Using Lemma 2 with g “ ´pB1h0q
2pB1ϕ0q (or equivalently with pgk,m “ {pB1h0q2k´mxω0m), we

find that

pB1ϕ
(c)
2 qpx1, 0, tq

“ ´H
“

pB1h0q
2ω0

‰

ptq ´
ÿ

k,`PZ,k,`‰0
isgnpkq |m|

|m| ` |k|
{pB1h0q2k´mptqxω0mptqe

ikx1

“ ´H
“

pB1h0q
2ω0

‰

ptq ´
ÿ

k,`,mPZ
isgnpkq |m|

|m| ` |k|
{pB1h0qk´`ptq

{pB1h0q`´mptqxω0mptqe
ikx1

“ ´H
“

pB1h0q
2ω0

‰

ptq `
ÿ

k,`,mPZ
sgnpkq |m|p`´mq

|m| ` |k|
{pB1h0qk´`ptq

xh0`´mptqxω0mptqe
ikx1 . (58)

Hence, combining (56), (57) and (58) and the fact that B1ϕ
(d)
2 “ Hω2 on S1,

pB1ϕ2qpx1, 0q “ Hω2 ` B1pJh1, HKHω0q ` B1
`

Jh0, HKHω1
˘

´ B1
`

Jh0, HKΛph0Hω0q
˘

`H
“

pB1h0qB1ph0ω0q
‰

´H
“

pB1h0q
2ω0

‰

´
ÿ

k,`,mPZ
sgnpkq |m|pm` kq

|m| ` |k|
{pB1h0qk´`

xh0`´mxω0me
ikx1 .

Noting that for each fixed k,m P Z,

ÿ

`PZ

zB1h0k´`xh0`´m “ {h0B1h0k´m “
1
2
{B1ph2

0qk´m “
ipk ´mq

2
yph2

0qk´m ,

we have that
ÿ

k,`,mPZ
sgnpkq |m|pm` kq

|m| ` |k|
{pB1h0qk´`

xh0`´mptqxω0me
ikx1

“
ÿ

k,mPZ
isgnpkq |m|pm` kqpk ´mq2p|m| ` |k|q

yph2
0qk´mptqxω0me

ikx1

“
1
2

ÿ

k,mPZ
isgnpkq|m|p|k| ´ |m|qyph2

0qk´mptqxω0me
ikx1 “

1
2B1ph

2
0Λω0q `

1
2Hph

2
0Λ2ω0q .

Therefore, we have that

Bth2 ´Hω2 “ B1pJh1, HKHω0q ` B1
`

Jh0, HKHω1
˘

´ B1
`

Jh0, HKΛph0Hω0q
˘

`H
“

pB1h0qB1ph0ω0q
‰

´H
“

pB1h0q
2ω0

‰

´
1
2B1ph

2
0Λω0q ´

1
2Hph

2
0Λ2ω0q , (59a)

Btω2 “ ´gB1h2 ` B1 rBth1Bth0 ´ ω0ω1s ` B1 rω0Bth0B1h0s , (59b)
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We next time-differentiate (59a) and substitute (59b) to find that

B 2
t h2 ` gΛh2 “ B1pJBth1, HKHω0q ` B1pJh1, HKHBtω0q ` B1

`

JBth0, HKHω1
˘

` B1
`

Jh0, HKHBtω1
˘

´ B1
`

JBth0, HKΛph0Hω0q
˘

´ B1
`

Jh0, HKΛpBth0Hω0q
˘

´ B1
`

Jh0, HKΛph0HBtω0q
˘

`H
“

pB1Bth0qB1ph0ω0q
‰

`H
“

pB1h0qB1pBth0ω0q
‰

`H
“

pB1h0qB1ph0Btω0q
‰

´ 2H
“

pB1h0qpB1Bth0qω0
‰

´H
“

pB1h0q
2pBtω0q

‰

´ B1
“

h0pBth0qpΛω0q
‰

´
1
2B1

“

h2
0pΛBtω0q

‰

´H
“

h0pBth0qΛ2ω0
‰

´
1
2Hph

2
0Λ2Btω0q

` Λ rBth1Bth0 ´ ω0ω1s ` Λ rω0Bth0B1h0s .

Thanks to the identities in (47), we conclude that

ω0 “ ´HBth0 and ω1 “ ´HBth1 ` Λ
`

Jh0, HKBth0
˘

on S1.

Thus,

B 2
t h2 ` gΛh2 “ B1pJBth1, HKBth0q ´ gB1pJh1, HKΛh0q ` B1

`

JBth0, HK
“

Bth1 ´ B1
`

Jh0, HKBth0
˘‰ ˘

` B1

ˆ

Jh0, HK
„

´gΛh1 `
1
2Λ

`

|B th0|
2 ´ |HBth0|

2˘
˙

´ B1
`

JBth0, HKΛph0Bth0q
˘

´ B1
`

Jh0, HKΛppBth0q
2q
˘

` gB1
`

Jh0, HKΛph0Λh0q
˘

´H
“

pB1Bth0qB1ph0HBth0q
‰

´H
“

pB1h0qB1pBth0HBth0q
‰

´ gH
“

pB1h0qB1ph0B1h0q
‰

` 2H
“

pB1h0qpB1Bth0qHBth0
‰

` gH
“

pB1h0q
3‰´ B1

“

h0pBth0qpB1Bth0q
‰

`
g

2B1
“

h2
0pΛB 1h0q

‰

´H
“

h0pBth0qΛB1Bth0
‰

`
g

2Hph
2
0Λ2B1h0q

` Λ
“

Bth1Bth0 `HBth0
`

´HBth1 ` Λ
`

Jh0, HKBth0
˘˘‰

´ Λ rHBth0Bth0B1h0s .

Using Tricomi’s identity (49), we can reduce the previous expression to

B 2
t h2 ` gΛh2 “ B1pJBth1, HKBth0q ´ gB1pJh1, HKΛh0q ` B1

`

JBth0, HK
“

Bth1 ´ B1
`

Jh0, HKBth0
˘‰ ˘

´ B1
`

Jh0, HK
“

gΛh1 ´ B1
`

B th0HBth0
˘‰˘

´ B1
`

JBth0, HKΛph0Bth0q
˘

´ B1
`

Jh0, HKΛppBth0q
2q
˘

` gB1
`

Jh0, HKΛph0Λh0q
˘

´H
“

pB1Bth0qB1ph0HBth0q
‰

´H
“

pB1h0qB1pBth0HBth0q
‰

´ gH
“

pB1h0qB1ph0B1h0q
‰

` 2H
“

pB1h0qpB1Bth0qHBth0
‰

` gH
“

pB1h0q
3‰´ B1

“

h0pBth0qpB1Bth0q
‰

`
g

2B1
“

h2
0pΛB 1h0q

‰

´H
“

h0pBth0qΛB1Bth0
‰

`
g

2Hph
2
0Λ2B1h0q

` Λ
“

Bth1Bth0 `HBth0
`

´HBth1 ` Λ
`

Jh0, HKBth0
˘˘‰

´ Λ rHBth0Bth0B1h0s .

The cubic h-model follows from setting

hpx1, tq “ εh0px1, tq ` ε
2h1px1, tq ` ε

3h2px1, tq ,
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so that

B 2
t h` gΛh “ ε3

„

B1pJBth1, HKBth0q ´ gB1pJh1, HKΛh0q ` B1
`

JBth0, HK
“

Bth1 ´ B1
`

Jh0, HKBth0
˘‰ ˘

´ B1
`

Jh0, HK
“

gΛh1 ´ B1
`

B th0HBth0
˘‰˘

´ B1
`

JBth0, HKΛph0Bth0q
˘

´ B1
`

Jh0, HKΛppBth0q
2q
˘

` gB1
`

Jh0, HKΛph0Λh0q
˘

´H
“

pB1Bth0qB1ph0HBth0q
‰

´H
“

pB1h0qB1pBth0HBth0q
‰

´ gH
“

pB1h0qB1ph0B1h0q
‰

` 2H
“

pB1h0qpB1Bth0qHBth0
‰

` gH
“

pB1h0q
3‰´ B1

“

h0pBth0qpB1Bth0q
‰

`
g

2B1
“

h2
0pΛB 1h0q

‰

´H
“

h0pBth0qΛB1Bth0
‰

`
g

2Hph
2
0Λ2B1h0q

` Λ
“

Bth1Bth0 `HBth0
`

´HBth1 ` Λ
`

Jh0, HKBth0
˘˘‰

´ Λ rHBth0Bth0B1h0s



` ε2
„

´ Λp|HBth0|
2q ` gΛph0Λh0q ` gB1ph0B1h0q



.

Then, we find that

B 2
t h` gΛh “ B1pJε2Bth1, HKεBth0q ´ gB1pJh,HKεΛh0q ` B1

`

JεBth0, HK
“

ε2Bth1 ´ B1
`

Jh,HKBth
˘‰ ˘

´ B1
`

Jεh0, HK
“

gΛε2h1 ´ B1
`

B thHBth
˘‰˘

´ B1
`

JBth,HKΛphBthq
˘

´ B1
`

Jh,HKΛppBthq2q
˘

` gB1
`

Jh,HKΛphΛhq
˘

´H
“

pB1BthqB1phHBthq
‰

´H
“

pB1hqB1pBthHBthq
‰

´ gH
“

pB1hqB1phB1hq
‰

` 2H
“

pB1hqpB1BthqHBth
‰

` gH
“

pB1hq
3‰´ B1

“

hpBthqpB1Bthq
‰

`
g

2B1
“

h2pΛB 1hq
‰

´H
“

hpBthqΛB1Bth
‰

´
g

2Hph
2B3

1hq

` Λ
“

ε2Bth1εBth0 `HεBth0
`

´HBth` Λ
`

Jh,HKBth
˘˘‰

´ Λ rHBthBthB1hs `Opε
4q .

We observe that

´gB1pJh,HKεΛh0q ´ gB1
`

Jεh0, HKΛε2h1
˘

“ ´gB1 pJh,HKΛhq `Opε4q ;

thus, we can simplify the equation as follows:

B 2
t h` gΛh “ B1pJε2Bth1, HKεBth0q ´ gB1 pJh,HKΛhq ` B1

`

JεBth0, HK
“

ε2Bth1 ´ B1
`

Jh,HKBth
˘‰ ˘

` B1
`

Jh,HK
“

B1
`

B thHBth
˘‰˘

´ B1
`

JBth,HKΛphBthq
˘

´ B1
`

Jh,HKΛppBthq2q
˘

` gB1
`

Jh,HKΛphΛhq
˘

´H
“

pB1BthqB1phHBthq
‰

´H
“

pB1hqB1pBthHBthq
‰

´ gH
“

pB1hqB1phB1hq
‰

` 2H
“

pB1hqpB1BthqHBth
‰

` gH
“

pB1hq
3‰´ B1

“

hpBthqpB1Bthq
‰

`
g

2B1
“

h2pΛB 1hq
‰

´H
“

hpBthqΛB1Bth
‰

´
g

2Hph
2B3

1hq

` Λ
“

ε2Bth1εBth0 `HεBth0
`

´HBth` Λ
`

Jh,HKBth
˘˘‰

´ Λ rHBthBthB1hs `Opε
4q .

We also compute that

B1pJε2Bth1, HKεBth0q “ B1pJε2Bth1, HKBthq `Opε4q ,
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Λ
“

ε2Bth1εBth0
‰

“ Λ
“

ε2Bth1Bth
‰

`Opε4q ,

B1
`

JεBth0, HKε2Bth1
˘

“ B1
`

JBth,HKε2Bth1
˘

`Opε4q ,

so that

B1pJε2Bth1, HKεBth0q ` Λ
“

ε2Bth1εBth0
‰

` B1
`

JεBth0, HKε2Bth1
˘

“ B1pJε2Bth1, HKBthq ` Λ
“

ε2Bth1Bth
‰

` B1
`

JBth,HKε2Bth1
˘

`Opε4q

“ B1pε
2Bth1HBthq ` B1

`

JBth,HKε2Bth1
˘

`Opε4q

“ B1pε
2Bth1HBthq ` B1

`

BthHε
2Bth1

˘

´ Λ
“

ε2Bth1Bth
‰

`Opε4q. (60)

Using Tricomi’s identity for two functions, we find that

B1pε
2Bth1HBthq ` B1

`

BthHε
2Bth1

˘

“ ´Λ
“

HBthε
2HBth1 ´ Bthε

2Bth1
‰

. (61)

Grouping terms further using (60) and (61), together with

´Λ rHεBth0HBths “ ´Λ
”

pHBthq
2
ı

` Λ
“

Hε2Bth1HBth
‰

`Opε4q

we obtain that

B1pε
2Bth1HBthq ` B1

`

BthHε
2Bth1

˘

´ Λ
“

ε2Bth1Bth
‰

´ Λ rHεBth0HBths

“ ´Λ
“

HBthε
2HBth1 ´ Bthε

2Bth1
‰

´ Λ
“

ε2Bth1Bth
‰

´ Λ
”

pHBthq
2
ı

` Λ
“

Hε2Bth1HBth
‰

`Opε4q .

The cubic h´model is then given by

B 2
t h` gΛh “ ´Λ

“

pHBthq
2 ‰
´ gB1 pJh,HKΛhq ´ B1

`

JBth,HK
“

B1
`

Jh,HKBth
˘‰ ˘

` B1
`

Jh,HK
“

B1
`

B thHBth
˘‰˘

´ B1
`

JBth,HKΛphBthq
˘

´ B1
`

Jh,HKΛppBthq2q
˘

` gB1
`

Jh,HKΛphΛhq
˘

´H
“

pB1BthqB1phHBthq
‰

´H
“

pB1hqB1pBthHBthq
‰

´ gH
“

pB1hqB1phB1hq
‰

` 2H
“

pB1hqpB1BthqHBth
‰

` gH
“

pB1hq
3‰´ B1

“

hpBthqpB1Bthq
‰

`
g

2B1
“

h2pΛB 1hq
‰

´H
“

hpBthqΛB1Bth
‰

´
g

2Hph
2B3

1hq

` Λ
“

HBthΛ
`

Jh,HKBth
˘‰

´ Λ rHBthBthB1hs .

Therefore,

B 2
t h` gΛh “ ´Λ

“

pHBthq
2‰` gB1

`

hB1h
˘

` gΛ
`

hΛh
˘

`Qphq . (62)

Making use of the commutator identities in Appendix A, the cubic nonlinearity Qphq
can be written as

Qphq “ ´B1

„

JBth,HKB1
`

hHBth
˘

´ Jh,HKB1pJBth,HKBthq ´ gJh,HKΛphΛhq

`H
“

phBthqpΛBthq
‰

´
g

2Jh2, HKB2
1h` hBthB1Bth

´H
“

pHBthqΛ
`

hHBth
˘‰

´H
“

pHBthqhpB1Bthq
‰



. (63)
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6 Well-posedness of the h-models
We study local well-posedness in Wiener spaces (10) for the quadratic h´model (51) and
the cubic h´model (62).

In the case of the quadratic h´model (51), local well-posedness for analytic data can
be established using the Cauchy-Kowalewski theorem of Schneider & Wayne [71] (see also
[63, 64, 67]). However, the nonlinearity of the cubic h´model (62) is not directly suitable
for such an approach, due to terms containing three derivatives. While it may be possible
that the Cauchy-Kowalewski theorem can again be applied to the cubic h-model, either
by some further simplification of the cubic nonlinearity or by a modification of the proof
of the Cauchy-Kowalewski theorem, we have provided a different proof of well-posedness
that also works for nonlinearities with higher-order derivatives, and hence could be used
for even higher-order truncations of the Stokes expansion. Moreover, our method of proof
also provides the convergence of the Stokes expansion (25)–(26), which is of fundamental
importance to consequent error analysis. Such convergence does not directly follow from the
application of the Cauchy-Kowalewski theorem, but rather from a succession of inequalities
leading to a uniform radius of convergence for the power series.

Specifically, our method of proof relies upon the linear recursion derived in Equations
(111) and (112) in Appendix B. For the Navier-Stokes equations, the idea of using the
summability of an asymptotic expansion to prove well-posedness goes back to Oseen [65]
and Knightly [49]; however, for parabolic-type problems, the summability follows from the
diffusive properties of the Stokes semigroup. For hyperbolic wave equations with no diffusion
set on a spatially periodic domain (and hence without dispersive decay), a different approach
to summability must be established. For the h-models, summability of the Stokes expansion
follows from bounds of the nonlinearity at each step of the recursion relation. We show that
the Xτ -norms (10) have bounds that grow like the Catalan numbers tCku8k“0, which can be
defined recursively as

Ck “
k´1
ÿ

j“0
CjCk´1´j , C0 “ 1 . (64)

This idea of using the structure of the nonlinearity and the Catalan numbers is, to the best
of our knowledge, new to the analysis of water waves models.

We remark that a closely related two-fluid asymptotic model derived in [38] has been
shown to be well-posed in Sobolev spaces when the initial data satisfies a certain sign
condition. In particular, in the case that Bth|t“0 ă 0 for each point on the free-surface, that
model is locally well-posed for arbitrary data and globally well-posed under certain size
restrictions (see Theorems 7.1 and 7.6 in [38]).2 It is possible that the quadratic h-model is
also well-posed in Sobolev spaces when this sign condition holds for the initial data, and we
plan to investigate this in future work.

2The condition B th ă 0|t“0 can occur globally with certain in-flow boundary conditions.
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6.1 Well-posedness theory for the quadratic h-model

Well-posedness of the quadratic h-model can be established using the Cauchy-Kowalewski
theorem in [71]. We state this result as follows:

Theorem 3. Let ε ą 0, g ą 0 and the initial data in (27) phinit, 9hinitq P X1 ˆX1 be given.
Then there exists a unique analytic solution hpx1, tq P Cpr0, T s;X0.5q to (51) for t in the
time interval r0, T s with

T “
1
4ε .

Equivalently, the Stokes expansion for the quadratic h´model (51) converges for arbitrary
ε ą 0 and T ą 0 taken sufficiently small.

We provide a proof in Appendix B using the summability of the recursion relation. Note
that we simultaneously prove that the Stokes expansion converges.

6.2 Well-posedness theory for the cubic h-model

As we have seen, the cubic h´model can be written as the following nonlinear wave equation
(62) where Qphq is defined in (63). Using the ansatz (25), the cubic h´model (62) can be
written as

B2
t
rh “ ´gΛrh´ εΛpHBtrhq2 ` gε

´

B1prhB1rhq ` ΛprhΛrhq
¯

` ε2Qprhq, (65)

with initial conditions (28). We again consider the expansion rhpx1, tq “ h0px1, tq`εh1px1, tq`
ε2h2px1, tq ` ¨ ¨ ¨ . The quadratic nonlinearity follows as in (109). It thus suffices to expand
the cubic nonlinearity. We define

Qphr, hj´r, hk´2´jq “ ´B1

„

JBthr, HKB1
`

hj´rHBthk´2´j
˘

´ Jhr, HKB1pJBthj´r, HKBthk´2´jq

´ gJhr, HKΛphj´rΛhk´2´jq `H
“

phrBthj´rqpΛBthk´2´jq
‰

´
g

2Jhrhj´r, HKB2
1hk´2´j ` hrBthj´rB1Bthk´2´j

´H
“

pHBthrqΛ
`

hj´rHBthk´2´j
˘‰

´H
“

pHBthrqhj´rpB1Bthk´2´jq
‰



. (66)

Comparing powers of ε, we find that

B 2
t hk “ ´gΛhk `

k´1
ÿ

j“0
pΛ rghjΛhk´1´j ´HBthjHBthk´1´js ` gB1 rhjB1hk´1´jsq

`

k´2
ÿ

j“0

j
ÿ

r“0
Qphr, hj´r, hk´2´jq , (67)

with initial conditions (110)
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Our starting point is the linear recursion (67) and (66). Similarly, the solution to (67)
for k ą 0 verifies

phkp`, tq “
1

a

g|`|

ż t

0
fp`, sq sin

´

a

g|`|pt´ sq
¯

ds , (68)

and

Btphkp`, tq “

ż t

0
fp`, sq cos

´

a

g|`|pt´ sq
¯

ds , (69)

where f is the Fourier transform of the (linear) forcing

qf “
k´1
ÿ

j“0
pΛ rhjΛhk´1´j ´HBthjHBthk´1´js ` gB1 rhjB1hk´1´jsq

`

k´2
ÿ

j“0

j
ÿ

r“0
Qphr, hj´r, hk´2´jq , (70)

where Q is given by (66).

Theorem 4. Let ε ą 0, g ą 0 and the initial data in (27) phinit, 9hinitq P X1 ˆX1 be given.
Then there exists a unique analytic solution

hpx1, tq P Cpr0, T s;X0.5q

to (62) for t in the time interval r0, T s with

T ă min
"

1
8ε , 1

*

.

Equivalently, the Stokes expansion for the cubic h´model (62) converges for arbitrary ε ą 0
and T ą 0 taken sufficiently small.

Proof. The proof of this Theorem is similar to the proof of Theorem 3 in Appendix
B. As before, we fix 1 ă R P Z` and consider 0 ă k ď R. We need to estimate
}Qphr, hj´r, hk´2´jq}XR`1´k . Following Theorem 3 in Appendix B together with (119)
and the trivial identity

|`| ď |`´m| ` |m| ď |`´m| ` |m´ n| ` |n|,

we have that

}Qphr, hj´r, hk´2´jq}XR`1´k ď c1pgq

„

}Bthr}XR`2´k}hj´r}XR`2´k}Bthk´2´j}XR`2´k

` }hr}XR`2´k}hj´r}XR`2´k}hk´2´j}XR`2´k

` }hr}XR`2´k}Bthj´r}XR`2´k}Bthk´2´j}XR`2´k



.

25



Cheng, Granero, Shkoller, and Wilkening Rigorous Asymptotic Models of Water Waves

As before, we have that, for r ď j ď k ´ 2

R` 2´ k “ R´ pk ´ 2q ď R` 1´ r,

R` 2´ k ď R` 1´ j ` r “ R` 1´ pj ´ rq,
R` 2´ k ď R` 1´ pk ´ 2´ jq.

Thus, we can estimate

}Qphr, hj´r, hk´2´jq}XR`1´k ď c1pgq

„

}Bthr}XR`1´r}hj´r}XR`1´pj´rq}Bthk´2´j}XR`1´pk´2´jq

` }hr}XR`1´r}hj´r}XR`1´pj´rq}hk´2´j}XR`1´pk´2´jq

` }hr}XR`1´r}Bthj´r}XR`1´pj´rq}Bthk´2´j}XR`1´pk´2´jq



.

Recalling (120), we find that

}hkptq}XR`1´k ` }Bthkptq}XR`1´k

ď c2pgq

ż t

0

„ k´1
ÿ

j“0

„

}Bthjpsq}XR`1´j}Bthk´1´jpsq}XR`1´pk´1´jq

` }hjpsq}XR`1´j}hk´1´jpsq}XR`1´pk´1´jq



`

k´2
ÿ

j“0

j
ÿ

r“0

„

}Bthr}XR`1´r}hj´r}XR`1´pj´rq}Bthk´2´j}XR`1´pk´2´jq

` }hr}XR`1´r}hj´r}XR`1´pj´rq}hk´2´j}XR`1´pk´2´jq

` }hr}XR`1´r}Bthj´r}XR`1´pj´rq}Bthk´2´j}XR`1´pk´2´jq



ds .

We define
Akptq “ max tc2pgq, 1u

“

}hkptq}XR`1´k ` }Bthkptq}XR`1´k

‰

.

Then, we can conclude that

Akptq ď

ż t

0

k´1
ÿ

j“0
Ak´1´jpsqAjpsq `

k´2
ÿ

j“0

j
ÿ

r“0
Ak´2´jpsqAj´rpsqArpsq ds, A0 “ 1.

We assume that t ă 1. Recalling that for the Catalan numbers (64) we have that
k´2
ÿ

j“0

j
ÿ

r“0
CrCj´rCk´2´j “

k´2
ÿ

j“0
Cj`1Ck´1´pj`1q

“

k´1
ÿ

n“1
CnCk´1´n

ď

k´1
ÿ

n“1
CnCk´1´n ` C0Ck´1

ď Ck,
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we can prove by induction that
Ak ď 2kCktk`1.

Using this bound, we can conclude the existence and uniqueness as in Theorem 3 in Appendix
B. ˝

7 The Craig-Sulem WW2 model
Zakharov [84] formulated the water waves problem as the following system of one-dimensional
nonlinear and nonlocal equations:

Bth “ GphqΨ (71a)

BtΨ “ ´gh´
1
2 |B1Ψ|2 ` 1

2
pB1hB1Ψ`GphqΨq2

1` |B1h|2
, (71b)

where hpx1, tq is the free surface, Ψpx1, tq is the trace of the velocity potential u “ ∇φ on
the free surface

Ψpx1, tq “ φpx1, hpx1, tq, tq,

and Gphq is the Dirichlet-Neumann operator

GphqΨpx1, tq “
Bφ

Bx2

ˇ

ˇ

ˇ

ˇ

px1,hpx1,tq,tq

´ B1hpx1, tq
Bφ

Bx1

ˇ

ˇ

ˇ

ˇ

px1,hpx1,tq,tq

. (72)

As a way to numerically simulate the evolution of water waves when surface tension is
neglected, Craig and Sulem [31] gave a power series expansion for the Dirichlet-to-Neumann
operator (72) as3

Gphq “
8
ÿ

j“0
Gjphq, (73)

with
G0 “ Λ,

Gjphq “ ´Λj´1B1
hj

j! B1 ´
j´1
ÿ

i“0
Λj´i hj´i

pj ´ iq!Giphq.

By keeping terms up to certain order in the previous expansion (73) and starting from
the Zakharov formulation (71), Craig and Sulem obtained a hierarchy of new truncated
series models of the water waves problem. For instance, when we keep the terms up to
second order, G0 and G1, we obtain the WW2 (water waves 2 ) system

Bth “ ΛΨ´ B1 pJH,hKΛΨq (74a)

BtΨ “ ´gh`
1
2
`

pΛΨq2 ´ pB1Ψq2
˘

. (74b)

3This type of expansion for the Dirichlet-to-Neumann operator was first used in electromagnetism by
Milder [56] and Milder & Sharp [57].
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We define
ωpx1, tq “ εω0px1, tq ` ε

2ω1px1, tq . (75)

Similarly, defining h, ω as in (50) and (75), respectively, and using (47) we have that

1
2B1

`

|B th0|
2 ´ |ω0|

2˘ “
1
2B1

`

|Hω0|
2 ´ |ω0|

2˘.

Then, neglecting terms of order Opε3q, from (47) we obtain the following coupled transport
equations

Bth “ Hω ` B1 pJh,HKHωq , (76a)
Btω “ ´gB1h` Λ

`

ωHω
˘

. (76b)

These equations are the WW2 system obtained by Craig & Sulem writen in the variable
ω “ B1Ψ. Thus, our method is also able to recover the WW2 system. Following the proof of
Theorem 4, we can establish the following result for the WW2 Craig-Sulem system:

Theorem 5. Let g ą 0 and the initial data phinit, ωinitq P X1 ˆ X1 be given. Then there
exists a unique analytic solution phpx1, tq, ωpx1, tqq to (76) for t in the time interval r0, T s
with 0 ă T small enough.

In the following we are going to write the WW2 Craig-Sulem model as a wave equation.
For an arbitrary function f , we define the operator

T f “ B1JH,hKf.

The following inequalities hold

}T f}L2 ď C}B1h} 9H1}f}L2 ,

}T 2f}L2 ď C}B1h} 9H1}T f}L2 ď pC}B1h} 9H1q
2}f}L2 ,

}T kf}L2 ď C}B1h} 9H1}T
k´1f}L2 ď ... ď pC}B1h} 9H1q

k}f}L2 .

We define the following Neumann series

N “

8
ÿ

k“0
T k.

Then, if }B1h} 9H1C ă 1 we have that

}N f}L2 ď }f}L2

8
ÿ

k“0
pC}B1h}L2q

k ď rCp}B1h}L2q}f}L2 ,

so, denoting by where I the identity operator, we have that I ´T is invertible and

pI ´T q´1 “ N .
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We observe that (76a) is equivalent to

pI ´T q´1Bth “ Hω

Using the previous operators, we find the following equivalent formulation of the Craig-Sulem
WW2 model as a nonlinear wave equation:

B2
t h “ ´gΛh` B1pBthHBthq ´ B1JH, BthKBth` gB1JH,hKΛh` P (77)

where the cubic and higher nonlinearities are contained in

P “ B1 pHBthM Bthq ` B1 pHM Bth pBth`M Bthqq ´ B1 pJH, BthK pMhtqq

` B1 pJH,hK pB1 pp´HBth´HM Bthq pBth`M Bthqqqq , (78)

and the operator M is defined as

M “

8
ÿ

k“1
B1JH,hKk .

In particular, we observe that, when the cubic and higher nonlinearities in P are
neglected, the Craig-Sulem WW2 model reduces to the quadratic h´model (51) (or the,
so-called, “Model" by Akers and Milewski [2]). Note that in [9], the authors suggest that the
Craig-Sulem models may be unreliable for numerical simulation.

8 Estimating the difference between the h´models and the
solution of the full water waves problem

In this section we estimate the error of solutions of the h-models to solutions of the full
water waves system.

Let phinit, 9hinitq be a Opεq initial data and consider its corresponding local solution to the
full water waves problem phww, ωwwq in Cpr0, T s;X1q. As we described in the introduction,
the well-posedness of the water waves problem is well-known (see the works by Ovsjannikov
[66] and Shinbrot [74] for the case with analytic initial data), and that solutions exists for a
lifespan T “ Opε´1q. We have the following

Theorem 6. Let ε ą 0, g ą 0 and the initial data phinit, 9hinitq P X1 ˆX1 be given. Denote
by phww, ωwwq the local solution in Cpr0, T pεqs;X1q of the full water waves problem starting
from the initial data phinit, 9hinitq and let hqm denote the solution to the quadratic h´model
(51). Then, as long as both solutions exist,

}hww ´ hqm}Cpr0,T s;X0.5q ď Opε3q.

Proof. From [66] and[74], there exists analytic solutions to the full water waves problem;
hence, we write the solution hww as an asymptotic series We have that

hwwpx1, tq “ ε
8
ÿ

j“0
εjhwwj px1, tq. (79)
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It follows that each term hj evolves according to (31), (32) and (34). We have also shown
that

hqmpx1, tq “ ε
8
ÿ

j“0
εjhqmj px1, tq, (80)

with hqmj evolving according to (109).
It follows from (79) that

sup
0ďtďT

}hww ´ ε
1
ÿ

j“0
εjhwwj }X0.5 ď Opε3q ,

and from (80),

sup
0ďtďT

}hqm ´ ε
1
ÿ

j“0
εjhqmj }X0.5 ď Opε3q .

We have to estimate

}

1
ÿ

j“0
εjhwwj ´

1
ÿ

j“0
εjhqmj }X0.5 .

From (109) and (47), we have that

hww0 ´ hqm0 “ 0 ,

and from (48b) and (109), we also have that

hww1 ´ hqm1 “ 0 .

Thus, the terms in each series only begin to deviate at Opε3q, which establishes the result. ˝

Analogously, we have that

Theorem 7. Let ε ą 0, g ą 0 and the initial data phinit, 9hinitq P X1 ˆX1 be given. Denote
by phww, ωwwq the local solution in Cpr0, T pεqs;X1q of the full water waves problem starting
from the initial data phinit, 9hinitq and let hcm denote the solution to the cubic h´model (62).
Then, as long as both solutions exist,

}hww ´ hcm}Cpr0,T s,X0.5q ď Opε4q.

Proof. The proof follows as in Theorem 6 by noting that for the cubic h-model

hww2 ´ hcm2 “ 0 ,

and hence the deviation in the series representations of the two solutions occurs at Opε4q. ˝
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9 Numerical comparison of water waves and the h-model
In this section we compute solutions of the quadratic and cubic h-models and compare
them to numerical solutions of the Euler equations. We find that the linear, quadratic
and cubic h-models converge at the expected rates as εÑ 0, and show regimes where the
quadratic model captures the essential features of the wave beyond the linear regime, and
where the cubic model captures features beyond the quadratic regime. We also observe that
the quadratic model can form corner singularities in finite time, while the cubic model can
evolve to an unstable state where high-frequency Fourier modes of the solution start growing
rapidly. This only causes problems for large-amplitude waves on excessively fine grids.

9.1 Solving the Euler equations

To evolve the full water wave equations, we use the spectrally accurate boundary integral
method developed by Wilkening [78] and Wilkening and Yu [79] for computing standing
water waves. While a conformal mapping approach [33, 34, 58] is usually easier to implement,
the result would have to be re-parametrized to be equally-spaced in x in order to compare
with the h-model. This is not particularly difficult, but the boundary integral method is
more natural in this setting. We write the Euler equations in the form

ht “ φy ´ hxφx,

ϕt “ P

«

φyht ´
1
2φ

2
x ´

1
2φ

2
y ´ gh`

λ

ρ
Bx

˜

hx
a

1` h2
x

¸ff

,
(81)

where ϕpx, tq “ φpx, hpx, tq, tq is the restriction of the velocity potential to the free surface,
λ is the surface tension parameter (set to zero in this section), and P is the projection onto
zero mean in L2p0, 2πq. Only hpx, tq and ϕpx, tq are evolved in time since φpx, y, tq can be
computed from ϕpx, tq using (82) below. The velocity components u “ φx, v “ φy on the
free surface are computed from ϕ as follows. We identify R2 with C and attempt to represent
the complex velocity potential Φpzq “ φpzq ` iψpzq as a Cauchy integral

Φpzq “ 1
2πi

ż 2π

0

ζ 1pαq

2 cot ζpαq ´ z2 µpαq dα, ζpαq “ α` ihpαq, 0 ď α ă 2π, (82)

where µpαq is real-valued and we have suppressed t in the notation. Here we used α “ x to
parametrize the horizontal component of the free surface, but the formulas in this section
generalize to allow for mesh refinement or overturning waves if one writes ζpαq “ ξpαq`ihpαq.
The cotangent kernel comes from summing the Cauchy kernel over periodic images

1
2 cot z2 “ PV

ÿ

kPZ

1
z ` 2πk , pPV “ principal valueq. (83)

Letting z approach ζpαq from below and using the Plemelj formula [59] gives

Φpζpαq´q “ ´1
2µpαq `

i

2Hµpαq `
1

2πi

ż 2π

0
Kpα, βqµpβq dβ, (84)
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where
Kpα, βq “

ζ 1pβq

2 cot ζpβq ´ ζpαq2 ´
1
2 cot β ´ α2 . (85)

The second term of K is included to cancel the singularity of the first term, which makes
Kpα, βq continuous at α “ β, with Kpα, αq “ ζ2pαq{r2ζ 1pαqs. In fact, the components of K
are real analytic, periodic functions of α and β on R{2πZ if ζpαq (i.e. hpαq) is real-analytic
and periodic. Including this term in Kpα, βq is accounted for in (84) by the Hilbert transform
term, using

Hfpαq “
1
π
PV

ż 2π

0

1
2 cot α´ β2 fpβq dβ. (86)

The real part of (84) gives a second-kind Fredholm integral equation [36] that can be solved
for µ given ϕ,

´
1
2µpαq `

1
2π

ż 2π

0
ImtKpα, βquµpβq dβ “ ϕpαq, 0 ď α ă 2π. (87)

Differentiating (82), integrating by parts, and using a standard argument for principal value
integrals to handle the interchange of α and β in the kernel, one may show [79] that

ζ 1pαqΦzpζpαq
´q “ ´

1
2µ

1pαq `
i

2Hµ
1pαq ´

1
2πi

ż 2π

0
Kpβ, αqµ1pβq dβ. (88)

Since φx ´ iφy “ φx ` iψx “ Φz, (88) gives an explicit formula for φx and φy on the free
surface once µpαq is known from (87). Equations (87) and (88) are easily discretized with
spectral accuracy using the trapezoidal rule on a uniformly spaced grid

αj “ 2πj{M, j “ 0, . . . ,M ´ 1 (89)

to compute integrals, and the Fourier transform to compute derivatives and the Hilbert
transform (with symbol Ĥk “ ´i sgnpkq). For example, (87) becomes

´
1
2µi `

1
M

M´1
ÿ

j“0
ImtKpαi, αjquµj “ ϕi, i “ 0, . . . ,M ´ 1, (90)

where we recall that Kpαi, αiq “ ζ2pαiq{r2ζ 1pαiqs. We timestep (81) using an 8th order
Runge-Kutta method due to Dormand and Prince [39, 69]. We also need ht in the comparison
to the h-model, but this formula is part of the right-hand side of (81).

9.2 Timestepping the h-model

Next we describe an effective method of timestepping the h-model (linear, quadratic or
cubic). First, we write it as a first-order system of the form ut “ Lu`Npu, tq, which for
the cubic case is

B

Bt

ˆ

h
ht

˙

looomooon

ut

“

ˆ

0 P
´gΛ 0

˙ˆ

h
ht

˙

loooooooooomoooooooooon

Lu

`

ˆ

P0phtq
´Λ

“

pHhtq
2‰` gBx

`

hhx
˘

` gΛ
`

hΛh
˘

`Qphq

˙

looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

Npu, tq

. (91)
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For the quadratic model, we drop Qphq, and for the linear model, the entire second component
of N is set to zero. Here

Pfpxq “ fpxq ´ P0f, P0f “
1

2π

ż 2π

0
fpxq dx (92)

are the orthogonal projections onto zero mean, and onto the constant functions, respectively.
Though P0phtq is linear, it is convenient to move it from L to N to avoid a Jordan block
in the diagonalization of L (see below). To solve the stiff system (91), we use the spectral
exponential time differencing scheme of Chen and Wilkening [21], which is an arbitrary-order,
fully-implicit variant of the popular fourth-order ETD scheme of Cox and Matthews [29, 48].
To evolve the solution over a timestep, which, for simplicity, we take to be from t “ 0 to
t “ h, we solve the Duhamel integral equation

uptq “ eLtu0 `

ż t

0
ept´τqLN

`

τ, upτq
˘

dτ (93)

by collocation using a Chebyshev-Lobatto grid. In more detail, let

tj “ cjh, cj “
1´ cospπj{νq

2 , pj “ 0, . . . , νq. (94)

Given u0, we look for u1, . . . , uν such that

ur “ etrLu0 `

ż tr

0
eptr´τqL

ν
ÿ

j“0
Nptj , ujq`jpτ{hq dτ, pr “ 1, . . . , νq, (95)

where ljpsq “
ś

k‰j
s´ck
cj´ck

are the Lagrange polynomials for the Chebyshev-Lobatto grid on
r0, 1s. The change of variables τ “ hs, dτ “ h ds then gives

ur “ ecrhLu0 ` h
ν
ÿ

j“0

ˆ
ż cr

0
epcr´sqhL`jpsq ds

˙

Npcjh, ujq, pr “ 1, . . . , νq, (96)

which is a nonlinear system of equations that can be solved efficiently using a Newton-Krylov
solver; see [21] for details. The algorithm in [21] is designed so the user only has to supply
routines to apply U , S and U´1 to arbitrary vectors, where L “ USU´1. Internally, when
the Newton-Krylov solver needs to apply ecrhL and

şcr
0 epcr´sqhL`jpsq ds to a sequence of

vectors, it does so by asking the user to apply only U , S and U´1. This makes implementing
the method on new problems straightforward as long as L can be diagonalized efficiently.

In our case, L is diagonalized by the Fourier transform, as we now explain. Let F be the
“r2c” version of the Fast Fourier Transform, which maps

V Q

¨

˚

˚

˚

˝

u0
u1
...

uM´1

˛

‹

‹

‹

‚

F
ÞÝÑ

¨

˚

˚

˚

˝

û0 ` iûM{2
û1
...

ûM{2´1

˛

‹

‹

‹

‚

P V̂ , ûk “
1
M

M´1
ÿ

j“0
uje

´2πijk{M . (97)

33



Cheng, Granero, Shkoller, and Wilkening Rigorous Asymptotic Models of Water Waves

Here we assume M is even, and we note that û0 and ûM{2 are real since e´2πijk{M P t1,´1u
when k “ 0 or k “M{2. The “missing” Fourier modes are known implicitly from û´k “ ûk.
The mapping F is an isometry of real vector spaces if we endow V and V̂ with the inner
products

@

u, v
D

“
1
M

M´1
ÿ

j“0
ujvj ,

@

û, v̂
D

“ û0v̂0 ` ûM{2v̂M{2 `

M{2´1
ÿ

k“1
2 Retûkv̂ku. (98)

To diagonalize L, we note that both Λ and P in (91) kill constant functions, and we define
the finite-dimensional truncations of Λ and P to also kill the Nyquist mode uj “ p´1qj .
Thus

L “

ˆ

F´1

F´1

˙ˆ

0 E
´gK 0

˙ˆ

F
F

˙

, (99)

where E “ diagr0, 1, . . . , 1s, K “ diagr0, 1, 2, . . . ,M{2´ 1s, and multiplying a vector in V̂
by E or K via complex arithmetic is still linear when V̂ is regarded as a real vector space.
The inner matrix can be diagonalized into 2ˆ 2 blocks by a permutation matrix

ˆ

0 E
´gK 0

˙

“

ˆ

Ee
Eo

˙

¨

˚

˝

A0
. . .

AM{2´1

˛

‹

‚

`

ETe ETo
˘

,

A0 “

ˆ

0 0
0 0

˙

,

Akě1 “

ˆ

0 1
´gk 0

˙

,

(100)

where Ee,ij “ δ2i,j , Eo,ij “ δ2i`1,j for 0 ď i ă M{2, 0 ď j ă M . Left-multiplication by Ee
or Eo selects the even-index or odd-index rows, respectively; right-multiplication by ETe
or ETo selects even or odd-index columns; and applying pETe , ETo q to rĥ; ĥts interlaces the
components of ĥ P V̂ and ĥt P V̂ , so that Btĥk follows ĥk. Finally, A0 is already diagonal
while Ak “ QkSkQ

´1
k with

Qk “

ˆ

1 1
i
?
gk ´i

?
gk

˙

, Sk “

ˆ

i
?
gk

´i
?
gk

˙

, Q´1
k “

1
2

ˆ

1 ´i{
?
gk

1 i{
?
gk

˙

. (101)

The complex numbers in E, K, Ee, Eo, Ak, Qk, Q´1
k and Sk actually represent real 2ˆ 2

matrices with the identification

α` iβ ÐÑ

ˆ

α ´β
β α

˙

. Example: Sk “

¨

˚

˚

˝

0 ´
?
gk

?
gk 0

0
?
gk

´
?
gk 0

˛

‹

‹

‚

. (102)

Treating the entries of V̂ as complex numbers rather than flattening V̂ to RM by interlacing
real and imaginary parts is convenient, but gets confusing in the last step when complex
eigenvalues arise. The final step of diagonalizing L (had we flattened V̂ ) would be to
diagonalize the real matrix Sk in (102), which would lead to a pair of double eigenvalues
˘i
?
gk. But applying any power series to Sk in (101) and then flattening will give the

same result as applying the power series directly to Sk in (102). In particular, ecrhSk and
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epcr´sqhSk , which are needed to compute ecrhL and epcr´sqhL in (96), can be computed either
way. This justifies not flattening V̂ , and cuts the number of eigenvalues that are explicitly
dealt with in half — each double-eigenvalue in (102) appears only once in (101).

Note that moving P0phtq over to Npu, tq in (91) was necessary to avoid a Jordan block in
A0 in (100). We also remark that normally one wants to include the highest-order differential
operators in L, but in our case they are nonlinear and depend on time, so this was not
possible. However, the method still does not suffer from severe CFL constraints since fully
implicit Runge-Kutta schemes based on Lobatto quadrature are L-stable [39]. The above
method reduces to such a scheme when L “ 0, and we would not expect instabilities to arise
by separating the linear part of the operator into a Duhamel-based formulation.

9.3 Comparison of water waves and the h-model

As a first test, we consider the family of solutions hpx, tq “ εrhpx, tq, ϕpx, tq “ εrϕpx, tq with

Example 1: rhpx, 0q “ 1
5 sin x` 1

10 sinp2xq ` 1
5 sinp3xq, rϕpx, 0q “ 0. (103)

The maximum slope of the initial wave profile hpx, 0q occurs at the origin, and is equal to ε.
The wave starts at rest and evolves under the influence of gravity. The solution of the full
Euler equations for ε “ 5{3 for 0 ď t ď 0.625 is shown in Figure 1(a), along with the spatial
Fourier mode amplitudes (panel b) of hpx, tq at the times shown in panel (a). Only positive
index Fourier modes are shows since c´k “ ck. A 3072-point spatial grid was used, with
720 uniform timesteps of the DOPRI8 Runge-Kutta method [39, 69]. Every 18th step was
recorded (at t “ k{64, 0 ď k ď 40). At t “ 0.625 “ 40{64, a jet begins to form in each of
the troughs, with the lowest trough containing the strongest jet.

Panels pcq and pdq of Figure 1 compare the solutions of the linear, quadratic and cubic
h-models with that of the full Euler equations with ε “ 5{6 in (103) at t P t0, 1

2T,
3
4T, T u,

where T “ 40{64. At this amplitude, both the linear and quadratic models miss the bulge
in the lowest trough as the jet begins to form, whereas the cubic model captures it closely.
If ε is doubled to ε “ 5{3 (as in panel a), niether the cubic nor quadratic models can be
evolved all the way to t “ 40{64. Panel (e) of Figure 1 shows that the quadratic model (on
a 3072-point grid) appears to form a corner singularity around t “ 37{64, and is far from
the corresponding Euler solution at this time. For the cubic model (evolved on a 1024-point
grid), high-frequency Fourier modes begin to grow at t “ 12{64. By t “ 30{64, roundoff
errors in these high-frequency modes have been amplified to be comparable in size to the
leading modes. The solution completely blows up shortly afterwards, with values on the grid
jumping from Op1q at 30{64 to Op10250q at 31/64. Increasing the number of timesteps by a
factor of 1000 did not change the time at which the instability begins or the growth rate of
the modes, so this is not likely a CFL issue. However, increasing the spatial grid size does
affect the blow-up time since higher-frequency modes grow faster. We omit a figure showing
this for Example 1 as similar behavior is observed in Example 3 below. Panel (f) of Figure 1
shows the L2 error of the linear, quadratic and cubic models at t “ 40{64 versus ε, where the
L2 errors have been scaled by ε´1 to account for the decreasing norm of the exact solution.
As expected, these errors decay as Opεkq, where k “ 1 for the linear h-model, k “ 2 for the
quadratic h-model, and k “ 3 for the cubic h-model.
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Figure 1: Comparison of the linear, quadratic and cubic h-models to the full Euler equations
for Example 1. (a) Large-amplitude Euler solution with ε “ 5{3. (b) Amplitude of Fourier
modes for this solution. (c and d) The cubic model remains close to the true solution for
ε “ 5{6 and 0 ď t ď 0.625, whereas the linear and quadratic models miss key features. (e)
The quadratic model forms a corner in the ε “ 5{3 case. (f) Relative L2-errors versus ε.
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The second example we consider consists of an initial bulge over a flat surface evolving
from rest. More specifically, we consider the family of functions

Example 2: h̃npx, 0q “
2
n

ˆ

1` 1
n2

˙
n2´1

2
„

sinn2`1 x

2 ´
Γppn2{2q ` 1q

?
π Γppn2{2q ` p3{2qq



, (104)

where n P t1, 3, 5, 7, . . . u. The constants were chosen so that h̃npx, 0q has zero mean and
maximum slope ˘1, occuring where tanpx{2q “ ˘n. The cases n “ 7 and n “ 25 are shown
in panel (a) of Figure 2. Panel (b) shows that the L2 error at t “ 6, scaled by ε´1, decays at
the expected order as εÑ 0 for n “ 7 and n “ 25. For n “ 7, the best-fit lines shown are
0.0326ε, 0.0156ε2 and 0.00476ε3. For n “ 25, they are 0.00542ε, 0.00337ε2 and 0.000524ε3,
which are smaller than in the n “ 7 case. This is not surprising as the L2-norm of the
underlying wave is also smaller when n “ 25.

Panels (c, d, e) of Figure 2 compare solutions of the Euler equations with those of the
linear, quadratic and cubic h-models with ε “ 0.429 and n “ 25 over 0 ď t ď 1 (panel c),
1 ď t ď 2 (panel d), and 5 ď t ď 6 (panel e). The linear model already deviates substantially
from the exact solution by t “ 0.4 (panel c), when the initial bulge is still accelerating
downward. The quadratic and cubic models remain close to the Euler solution throughout
the evolution to t “ 6 (panel e), correctly damping out the wave near the origin and
propagating the correct number of ripplies outward in both directions. The quadratic model
develops a sharper crest at t “ 1 (panel d) than the Euler solution, which also sharpens
somewhat at this time. For both equations, the wave becomes smoother again. This can
be seen in panel (f), where the Fourier mode amplitudes decay more slowly at t “ 1 than
at t “ 0 or t “ 6. The minimum decay rate for both equations happens near t “ 1. The
quadratic model has roughly 6 times as many active modes as the Euler solution at t “ 1 due
to the excessive sharpening at the crest observed in panel (d). At later times (e.g. panel e),
the quadratic model retains remnants of the overly sharp crest that formed at t “ 1, with
smaller-scale features visibly deviating from the exact solution (though the overall wave
profiles are similar.) The cubic model is nearly indistinguishable from the Euler model at
the resolution of the graphs in panels (d) and (e). It has about twice as many active Fourier
modes as the Euler solution at t “ 1 and t “ 6, as shown in panel (g). The Euler modes are
the same in panels (f) and (g), and all three equations have the same Fourier coefficients at
t “ 0 in these plots.

Our third example consists of a family of standing water waves computed using the
overdetermined shooting method described in [78, 79]. Unlike the previous two examples,
the waves in this family are not related by a simple scaling of the initial condition via
hpx, 0q “ εh̃px, 0q, ϕpx, tq “ εϕ̃px, tq. In the previous examples, we chose h̃px, 0q to have
maximum slope 1 so that ε was the maximum slope of hpx, 0q. For standing waves, we match
this latter property:

Example 3 (standing waves): ε “ maximum slope of hpx, 0q. (105)

Here we assume the fluid is initially at rest. As before, we choose the length-scale so that the
spatial period is 2π after non-dimensionalization. Let T (which depends on ε) be half the
temporal period of the standing wave so that the wave comes to rest when t P TZ. At even
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Figure 2: Comparison of the linear, quadratic and cubic h-models to the full Euler equations
for Example 2. (a) Initial wave profiles before scaling by ε. (b) Relative L2-errors versus ε.
(c, d, e) Solutions with n “ 25 and ε “ 0.429 at the times shown. (f, g) Comparison of Fourier
mode amplitudes at t “ 0, 1, 6. The sharper wave crest in the solution of the quadratic
model at t “ 1 leads to slower mode decay than the Euler or cubic solutions.
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multiples of T , the wave crests are assumed to be located at x P 2πZ, and at odd multiples
they are located at x P pπ ` 2πZq.

Characterizing the amplitude of the wave by its maximum slope is useful for comparing
with Examples 1 and 2, but it is not the most convenient for actually computing standing
waves. In the numerical algorithm of Wilkening and Yu[79], a Fourier coefficient of the
initial condition was used as the bifurcation parameter. For low-amplitude waves, the initial
amplitude of the fundamental mode is a natural choice. Yet another choice is half the
maximum crest to trough height ( 1

2HCT ). In all three cases (slope, mode amplitude, or
1
2HCT ), assuming g “ 1,

hpx, tq “ ε cosx cos t`Opε2q. (106)

Building on previous work [70, 68, 77], Schwartz and Whitney [72] developed a recursive
algorithm to compute the power series expansion for standing water waves of this type in
conformal variables, and computed the first 25 terms. Their choice of amplitude was 1

2HCT ,
which we denote by ε. While the full representation of the wave profile and velocity potential
is too complicated to reproduce here, we can report the leading terms of the period and
maximum slope:

T

π
“ 1` 1

2ε
2 ´

7
256ε

4 `Opε6q, ε “ ε`
1
2ε

3 `Opε5q. (107)

Amick and Toland proved that the terms in the Schwartz/Whitney expansion are uniquely
determined to all orders [13], but the question of whether the series has a positive radius
of convergence remains open. Recent work using Nash-Moser theory has been able to
establish existence on a Cantor set of the bifurcation parameter close to zero-amplitude
[47]. Regardless of the eventual convergence or divergence of the series, truncating the
series yields a family of initial conditions (over a range 0 ď ε ď εmax « 0.06 when 25 terms
are retained) that return to their starting configurations to within machine precision when
evolved under the Euler equations. The shooting method in [79] gives solutions that agree
with the Schwartz and Whitney series to all 16 digits at small amplitude, but is not limited
to such a narrow range of ε to find solutions that are time-periodic to machine precision.

For each standing wave computed by the shooting method, we find the maximum slope
via Newton’s method to determine ε. We then evolve the h-models using the initial conditions
of the standing wave and compare them to the Euler solution at t “ T . Panel (a) of Figure 3
shows that the relative errors in the linear, quadratic and cubic models decay at the expected
rates. Panel (b) shows snapshots of the solutions of the h-models and the Euler equations for
the ε “ 0.498 wave at t “ 1

4T ,
1
2T ,

3
4T and t “ T . This choice of ε was the largest (among

the waves we computed) in which the solution of the quadratic h-model remains regular for
0 ď t ď T . We see in panel (b) that the quadratic model nearly forms a corner at t “ T ,
which also leads to slow decay of its Fourier modes in panel (c) as t approaches T . The Euler
solution returns to a spatial phase shift (by π) of its initial condition to 14 digits. Its Fourier
modes decay to 10´14 by k “ 60. We used 192 gridpoints in the computation. We also used
192 grid points to evolve the cubic model. The solution remains well-resolved in Fourier
space over this time (panel d), and remains nearly indistinguishable from the Euler solution
at the resolution of panel (b) over 0 ď t ď T . We also note in panel (b) that the solution of
the quadratic model remains close to the Euler solution until t “ 3T {4, but the linear model
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Figure 3: Comparison of the linear, quadratic and cubic h-models to the full Euler
equations for Example 3. (a) Relative L2-errors versus ε. (b) Snapshots of the solutions
at t “ 0, T {4, T {2, 3T {4, T for ε “ 0.498. The quadratic model nearly forms a corner at
t “ T . (c) The formation of a corner causes high-frequency Fourier mode amplitudes to
grow as t Ñ T in the quadratic model. (d) The cubic model and Euler equations remain
well-resoved with 192 Fourier modes. (Only 96 are shown since c´k “ ck.) (e, f) Over short
times or small amplitude, the cubic model remains well-posed; however, for ε “ 0.498, with
1024 modes, the cubic model loses stability for t ą T {16. The solution completely blows up
shortly after t “ T {4.
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already deviates substantially near x “ 0 and x “ 2π at t “ T {4. It remains accurate in the
trough at least until t “ T {4, but is completely wrong throughout the domain by t “ T {2.

At this large amplitude (ε “ 0.498), the cubic model relies on Fourier truncation to
remain well-posed. In panel (e) of Figure 3, we increase the number of gridpoints from 192 to
1024 with the same initial data as in panel (d), and find that high-frequency modes begin to
grow rapidly shortly after t “ T {16. This picture is independent of the number of timesteps
taken — increasing the number of timesteps by a factor of 1000 led to a similar picture
(not shown), except that applying the filter 1000 times as often led to slight suppression of
the mode amplitudes in the range 300 ď k ď 512. Thus, around t “ T {16, the solution of
the cubic model appears to evolve to a state where the PDE ceases to be well-posed. By
contrast, the solution of the quadratic model does not show signs of instability regardless of
the grid size until t “ T — the growth in mode amplitudes in panel (c) is due to formation
of a geometric singularity rather than ill-posedness. In panel (f), we see that the cubic
model remains well-posed over the whole interval 0 ď t ď T for a smaller amplitude wave
(ε “ 0.163). Here again we used 1024 gridpoints, even though 48 would have been sufficient
to fully resolve the solution spectrally. We observed similar behavior in Examples 1 and
2, where large-amplitude waves were found to form corners at their crests in the quadratic
model, and caused the solution to leave the realm of well-posedness for the cubic model. (The
sharpening feature in Figure 2d for the quadratic model forms a corner at larger amplitude).

In Figure 4, we return to the solution of the full Euler equations for Example 1 with ε “
5{3. Here we switch to an angle-arclength parametrization of the free surface [41, 42, 43, 11],
which allows for overturning waves. We continue to define T “ 0.625 and evolve to t “ 1.9T .
Panel (a) shows that the jets that were beginning to form in the troughs at t “ T grow
in height to become the tallest points on the free surface at t “ 1.9T . The jet from the
lowest trough overtakes that of the middle trough around t “ 1.4562T , and is on track to
overtake that of the highest trough around t “ 1.9451T , where we extrapolated from the
last 4 timesteps. Panel (b) shows a close-up of the jet from the lowest trough, which widens
and flattens out as it decelerates, causing the wave to overturn on both sides of the jet. The
overturn times are t “ 1.335T on the left and 1.343T on the right. Panel (c) shows the
aplitude of the Fourier modes as the solution evolves. The grid was refined 6 times, from
1024 gridpoints at the beginning to 16384 at the end. Roundoff errors become larger as
the grid is refined due to increased cancellation in the formula (85) for Kpα, βq. Each grid
refinement also leads to some growth in high-frequency modes that were being suppressed
by the filter on the coarser mesh and suddenly are not. (We use the 36th order filter of Hou
and Li [40]).

Once the wave overturns, there are 3 possible outcomes. It could return to being single-
valued, which sometimes happens after a vortex sheet with surface tension overturns [10, 11],
but seems unlikely here as there is no physical mechanism to slow down the overturning
wave. It could self-intersect in a splash singularity [19, 27]. Or it could form a corner at
the tip of the overturning wave, similar to the way the quadratic h-model tends to form
singularities. This would coincide with dP {dn approaching zero at the corner, so that the
Rayleigh-Taylor condition dP {dn ă 0 ceases to hold. Panels (d, e) of Figure 3 show dP {dn
plotted parametrically versus x at various times. We see that indeed, dP {dn appears to be
increasing to 0 at the tip of each overturning wave. However, computing dP {dn involves
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Figure 4: (a) Evolution of the ε “ 5{3 wave with initial condition (103) to t “ 1.9T , where
T “ 0.625 is the final time in Figure 1. The aspect ratio is 1:1. (b) A closer look at the
jet forming in the lowest trough, which overturns on the left around t “ 1.335T and on
the right around t “ 1.343T . (c) Amplitude of the Fourier modes at the times shown. The
spatial grid was refined 6 times in the course of the evolution. (d, e) The normal derivative
of pressure versus x as time evolves. The computed value of dP {dn runs out of precision
but approaches zero near the tip of the overturning wave at t “ 1.9T , indicating corner
formation.
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taking a derivative of the solution, and we were not able to maintain enough digits of
accuracy in double-precision to definitively say that dP {dn reaches zero. The Rayleigh-
Taylor condition plays a key role in the local well-posedness of the water wave problem
in the absence of surface tension (see the references given in the introduction). Further
investigation will be pursued in future work, where we will provide details of the method for
tracking overturning waves and computing dP {dn. Our main point in this example is to
show that the type of breakdown we observe in the quadratic h-model, where the solution
forms a geometric singularity, may occur in the Euler equations as well.

9.4 Conclusions from our numerical results

We have shown that the quadratic and cubic h-models can be solved efficiently using a Fourier
representation in space and an exponential time differencing scheme in time. Comparing
the results to the solution of the full water wave equations on three test problems, we find
that the quadratic and cubic h-models capture features of the solution that are completely
missed by linear theory, such as sharpening crests and jet formation. We confirm that the
linear, quadratic and cubic h-models converge to the exact solution at the expected rates as
εÑ 0, and explore how each model breaks down at very large amplitude. The linear model
does not form singularities since each mode of the initial condition evolves independently.
For large-amplitude initial conditions, the quadratic model appears to form sharp corners
at wave crests in finite time while the cubic model appears to evolve to an unstable state
in finite time after which the growth rate of Fourier modes increases without bound as the
mode index increases. In one of the examples, the full water wave appears to form a corner
singularity in finite time, with dP {dn approaching zero at a sharpening wave crest that
forms after the wave has overturned.
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A Basic commutator identities
In deriving the cubic h-model, we make use of the following identities:

Λ
“

pHBthqΛ
`

Jh,HKBth
˘‰

´ Λ
“

pHBthqpB1hqpBthq
‰

“ Λ
“

pHBthqΛ
`

hHBth
˘‰

` Λ
“

pHBthqhpB1Bthq
‰

,

´B1
`

JBth,HKB1
`

Jh,HKBth
˘˘

´ B1
`

JBth,HKΛphBthq
˘

“ ´B1
`

JBth,HKB1
`

hHBth
˘˘

,

B1
`

Jh,HKB1pBthHBthq
˘

´ B1
“

Jh,HKΛpBthq2
‰

“ B1
`

Jh,HKB1pJBth,HKBthq
˘

,

´H
“

pB1hqhB
2
1h
‰

`
1
2B1

“

h2pΛB 1hq
‰

´
1
2Hph

2B3
1hq “

1
2B1Jh2, HKB2

1h,

and

H
“

pB1BthqB1phHBthq
‰

`H
“

pB1hqB1
`

pBthqpHBthq
˘‰

´ 2H
“

pB1hqpB1BthqpHBthq
‰

`H
“

hpBthqB1ΛBth
‰

“ H
“

pB1BthqpB1hqpHBthq
‰

`H
“

hpB1BthqpΛBthq
‰

`H
“

pB1hqpB1BthqpHBthq
‰

`H
“

pB1hqpBthqpΛBthq
‰

´ 2H
“

pB1hqpB1BthqpHBthq
‰

`H
“

hpBthqB1ΛBth
‰

“ H
“

B1
`

phBthqpΛBthq
˘‰

“ Λ
“

phBthqpΛBthq
‰

.

B Another proof of Theorem 3
Proof of Theorem 3. The solution as a series. Using the ansatz (25), the quadratic
h´model (51) can be written as

B2
t
rh “ ´gΛrh´ εΛpHBtrhq2 ` gε

´

B1prhB1rhq ` ΛprhΛrhq
¯

, (108)

with initial conditions (28). We expand rh as in (26) for functions hk : S1 Ñ R to be
determined. Substituting into (108) we find that

B 2
t hk “ ´gΛhk `

k´1
ÿ

j“0

“

ΛpghjΛhk´1´j ´HBthjHBthk´1´jq ` gB1phjB1hk´1´jq
‰

(109)

with initial conditions

h0px1, 0q “
hinitpx1q

ε
, Bth0px1, 0q “

9hinitpx1q

ε
,

hkpx1, 0q “ Bthkpx1, 0q “ 0 k ě 1 . (110)

Using the Fourier series expansion, (109) shows that each Fourier component satisfies the
differential equation

B 2
t
phkp`, tq “ ´g|`|phkp`, tq ` fp`, tq , (111)
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where f is given by

fp`, tq “
k´1
ÿ

j“0

8
ÿ

m“´8

„

´ |`|
´

p´isgnp`´mqq Btphjp`´m, tq p´isgnpmqq Btphk´1´jpm, tq
¯

` g
´

i`phjp`´m, tqimphk´1´jpm, tq ` |`|phjp`´m, tq|m|phk´1´jpm, tq
¯



. (112)

We note that integration of (109) shows that
ż

S1
hkpx1, tq “ 0 and

ż

S1
Bthkpx1, tqds “ 0 @ t ě 0 . (113)

Solving the ODE (111) for k “ 0, we find that

ph0p`, tq “ ph0p`, 0q cos
´

a

g|`|t
¯

`
Btph0p`, 0q
a

g|`|
sin

´

a

g|`|t
¯

.

Similarly, the solution to (111) for k ą 0 is

phkp`, tq “ ´
cos

a

g|`|t
a

g|`|

ż t

0
fpsq sin

´

a

g|`|s
¯

ds`
sin

a

g|`|t
a

g|`|

ż t

0
fpsq cos

´

a

g|`|s
¯

ds

“
1

a

g|`|

ż t

0
fpsq sin

´

a

g|`|pt´ sq
¯

ds ,

and hence

Btphkp`, tq “

ż t

0
fpsq cos

´

a

g|`|pt´ sq
¯

ds . (114)

Using the expression (112), we have that for k ě 1, phk and Btphk verify the following recursion
relations:

phkp`, tq

“
1

a

g|`|

ż t

0

„

´

k´1
ÿ

j“0

8
ÿ

m“´8

|`|
´

p´isgnp`´mqq Btphjp`´m, sq p´isgnpmqq Btphk´1´jpm, sq
¯

` g
k´1
ÿ

j“0

8
ÿ

m“´8

i`phjp`´m, sqimphk´1´jpm, sq

` g
k´1
ÿ

j“0

8
ÿ

m“´8

|`|phjp`´m, sq|m|phk´1´jpm, sq



sin
´

a

g|`|pt´ sq
¯

ds , (115)
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and

Btphkp`, tq

“

ż t

0

„

´

k´1
ÿ

j“0

8
ÿ

m“´8

|`|
´

p´isgnp`´mqq Btphjp`´m, sq p´isgnpmqq Btphk´1´jpm, sq
¯

` g
k´1
ÿ

j“0

8
ÿ

m“´8

i`phjp`´m, sqimphk´1´jpm, sq

` g
k´1
ÿ

j“0

8
ÿ

m“´8

|`|phjp`´m, sq|m|phk´1´jpm, sq



cos
´

a

g|`|pt´ sq
¯

ds . (116)

Existence. We fix 1 ! R P Z`. Given ε ą 0, we seek solutions h of (51) having the
form

hpx1, tq “
8
ÿ

k“0
εk`1hkpx1, tq and Bthpx1, tq “

8
ÿ

k“0
εk`1Bthkpx1, tq. (117)

The series in (117) are respectively bounded by

sup
0ďtďT

8
ÿ

k“0
εk`1}hkptq}X1 and sup

0ďtďT

8
ÿ

k“0
εk`1}Bthkptq}X1 . (118)

Thus, by proving the boundedness of (118), we obtain the absolute convergence of (117)
and, in particular, the existence of solutions to (51).

To obtain the required estimates, we first consider the truncated series (for 0 ă k ď R)

R
ÿ

j“0
εj`1hjpx1, tq.
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Using (115), we have that

}hkptq}XR`1´k

ď

8
ÿ

`“´8

epR`1´kq|`|
a

g|`|

ż t

0

„ k´1
ÿ

j“0

8
ÿ

m“´8

|`||Btphjp`´m, sq||Btphk´1´jpm, sq|

` 2g
k´1
ÿ

j“0

8
ÿ

m“´8

|`||phjp`´m, sq||m||phk´1´jpm, sq|



ds

ď
1
?
g

ż t

0

„ k´1
ÿ

j“0
}Bthjpsq}XR`2´k}Bthk´1´jpsq}XR`2´k

` 8g
k´1
ÿ

j“0
}hjpsq}XR`1.5´k}hk´1´jpsq}XR`2´k



ds

ď
1
?
g

ż t

0

„ k´1
ÿ

j“0
}Bthjpsq}XR`2´k}Bthk´1´jpsq}XR`2´k

` 8g
k´1
ÿ

j“0
}hjpsq}XR`2´k}hk´1´jpsq}XR`2´k



ds ,

where we have used Tonelli’s theorem together with the fact that xhkp0, tq “ 0, which follows
from (113), and the important inequality

|`| ď ce
|`|
c ď ce

|`´m|`|m|
c @ c P Z` . (119)

Using (116), we can find a similar bound Bthkptq:

}Bthkptq}XR`1´k ď
1
?
g

ż t

0

„ k´1
ÿ

j“0
}Bthjpsq}XR`2´k}Bthk´1´jpsq}XR`2´k

` 8g
k´1
ÿ

j“0
}hjpsq}XR`2´k}hk´1´jpsq}XR`2´k



ds .

Since R` 2´ k ď R` 2´ k ` j “ R` 1´ pk ´ 1´ jq, it follows that

}uk´1´jpsq}XR`2´k ď }uk´1´jpsq}XR`1´pk´1´jq .

Similarly, if j ď k ´ 1, then R` 2´ k “ R` 1´ pk ´ 1q ď R` 1´ j and

}ujpsq}XR`2´k ď }ujpsq}XR`1´j .
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Then, we have that

}hkptq}XR`1´k ` }Bthkptq}XR`1´k

ď
2
?
g

ż t

0

„ k´1
ÿ

j“0
}Bthjpsq}XR`2´k}Bthk´1´jpsq}XR`2´k

` 16g
k´1
ÿ

j“0
}hjpsq}XR`2´k}hk´1´jpsq}XR`2´k



ds

ď
2
?
g

ż t

0

„ k´1
ÿ

j“0
}Bthjpsq}XR`1´j}Bthk´1´jpsq}XR`1´pk´1´jq

` 16g
k´1
ÿ

j“0
}hjpsq}XR`1´j}hk´1´jpsq}XR`1´pk´1´jq



ds

ď max
"

2
?
g
, 16g

*
ż t

0

„ k´1
ÿ

j“0
}Bthjpsq}XR`1´j}Bthk´1´jpsq}XR`1´pk´1´jq

`

k´1
ÿ

j“0
}hjpsq}XR`1´j}hk´1´jpsq}XR`1´pk´1´jq



ds . (120)

We define

Akptq “ max
"

2
?
g
, 16g

*

“

}hkptq}XR`1´k ` }Bthkptq}XR`1´k

‰

, if 1 ď k, A0 “ 1.

We then obtain that the previous recursion for }hkptq}XR`1´k ` }Bthkptq}XR`1´k can equiva-
lently be stated as

Akptq ď

ż t

0

k´1
ÿ

j“0
Ak´1´jpsqAjpsq ds, A0 “ 1.

Then, we want to prove by induction that

Ak ď Cktk , (121)

where Ck are the Catalan numbers (64). Remarkably, the Catalan numbers Ck “ Opk´
3
2 4kq

as k Ñ8 [75, page 136].
Having already established that (121) holds for k “ 0, we proceed with the induction
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step. For 1 ď k, we have that

Akpsq ď

ż t

0

k´1
ÿ

j“0
Ak´1´jpsqAjpsq ds

ď

ż t

0

k´1
ÿ

j“0
Ck´1´js

k´1´jCjsj ds

ď Ck
ż t

0
sk´1 ds

ď Ck
tk

k
.

Thus, using the asymptotic growth of the Catalan numbers, we have that

}hkptq}X1 ` }Bthkptq}X1 ď }hkptq}XR`1´k ` }Bthkptq}XR`1´k ď tk4k.

Analogously,
}h0ptq}X1 ` }Bth0ptq}X1 ď

rCp}hinit}X1 , }
9hinit}X1q.

We define the series

I1
R “ Bth0px1, tq ` εBth1px1, tq ` ε

2Bth2px1, tq ` ¨ ¨ ¨ ` ε
RBthRpx1, tq ,

I2
R “ h0px1, tq ` εh1px1, tq ` ε

2h2px1, tq ` ¨ ¨ ¨ ` ε
RhRpx1, tq .

Then

}I1
R}X1 ď

rCp}hinit}X1 , }
9hinit}X1q `

R
ÿ

k“1
pεt4qk .

Similarly,

}I2
R}X1 ď

rCp}hinit}X1 , }
9hinit}X1q `

R
ÿ

k“1
pεt4qk .

We conclude that if
t ă

1
ε4 ,

then we can take the limit in R and we compute that

Bthpx1, tq “ I1
8 and hpx1, tq “ I2

8.

Our estimates lead to
h, Bth P L

8p0, T ;X1q.

Moreover, using the Cauchy product of power series, we have that

php`, tq “ ph0p`, 0q cos
´

a

g|`|t
¯

` Btph0p`, 0q sin
´

a

g|`|t
¯

`
1

a

g|`|

ż t

0
N p`, sq sin

´

a

g|`|pt´ sq
¯

ds ,

Btphp`, tq “ ´ph0p`, 0q sin
´

a

g|`|t
¯

` Btph0p`, 0q cos
´

a

g|`|t
¯

`

ż t

0
N p`, sq cos

´

a

g|`|pt´ sq
¯

ds ,
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where

N p`, tq “
8
ÿ

m“´8

„

´ |`|
´

p´isgnp`´mqq Btphp`´m, tq p´isgnpmqq Btphpm, tq
¯

` g
´

i`php`´m, tqimphpm, tq ` |`|php`´m, tq|m|phpm, tq
¯



.

Since h and Bth are analytic functions in space, using the previous expression, we obtain
that h and Bth satisfy

h, Bth P Cpr0, T s, X0.5q.

In particular, they are continuous functions in time, h, Bth P Cpr0, T s ˆ S1q.
Uniqueness. Let us assume that there exist two solutions hp1q, hp2q P Cpr0, T s, X0.5q

emanating from the same initial data. Then, the difference

z “ hp1q ´ hp2q

satisfies

pzp`, tq “
1

a

g|`|

ż t

0
Mp`, sq sin

´

a

g|`|pt´ sq
¯

ds ,

Btpzp`, tq “

ż t

0
Mp`, sq cos

´

a

g|`|pt´ sq
¯

ds ,

with

Mp`, tq “
8
ÿ

m“´8

„

´ |`|
´

p´isgnp`´mqq Btpzp`´m, tq p´isgnpmqq Btphp1qpm, tq
¯

´ |`|
´

p´isgnp`´mqq Btphp2qp`´m, tq p´isgnpmqq Btpzpm, tq
¯

` g
´

i`pzp`´m, tqimphp1qpm, tq ` |`|pzp`´m, tq|m|php1qpm, tq
¯

` g
´

i`php2qp`´m, tqimpzpm, tq ` |`|php2qp`´m, tq|m|pzpm, tq
¯



.

Then, following the same argument as in the previous section, we expand hpjqk , j “ 1, 2 as
in (114) and find that hpjqk , j “ 1, 2 satisfy the cascade of linear problems (111) and (112).
Equivalently, we have that

zk “ h
p1q
k ´ h

p2q
k ,

satisfies

pzkp`, tq “
1

a

g|`|

ż t

0
fkp`, sq sin

´

a

g|`|pt´ sq
¯

ds ,

Btpzkp`, tq “

ż t

0
fkp`, sq cos

´

a

g|`|pt´ sq
¯

ds ,
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with

fkp`, tq “
k´1
ÿ

j“0

8
ÿ

m“´8

„

´ |`|
´

p´isgnp`´mqq Btpzjp`´m, tq p´isgnpmqq Btphp1qk´1´jpm, tq
¯

´ |`|
´

p´isgnp`´mqq Btphp2qk´1´jp`´m, tq p´isgnpmqq Btpzjpm, tq
¯

` g
´

i`pzjp`´m, tqimph
p1q
k´1´jpm, tq ` |`|pzjp`´m, tq|m|

ph
p1q
k´1´jpm, tq

¯

` g
´

i`ph
p2q
k´1´jp`´m, tqimpzjpm, tq ` |`|ph

p2q
k´1´jp`´m, tq|m|pzjpm, tq

¯



.

As before, we consider R P Z` and define

A
p1q
k ptq “ max

"

2
?
g
, 16g

*

”

}h
p1q
k ptq}XR`1´k ` }Bth

p1q
k ptq}XR`1´k

ı

, A
p1q

0 “ 1,

A
p2q
k ptq “ max

"

2
?
g
, 16g

*

”

}h
p2q
k ptq}XR`1´k ` }Bth

p2q
k ptq}XR`1´k

ı

, A
p2q

0 “ 1,

Bkptq “ max
"

2
?
g
, 16g

*

“

}zkptq}XR`1´k ` }Btzkptq}XR`1´k

‰

.

Following the arguments in the previous section, we find that

A
pjq
k ď Cktk, j “ 1, 2

Bkptq ď

ż t

0

k´1
ÿ

j“0

´

A
p1q
k´1´jpsq `A

p2q
k´1´jpsq

¯

Bjpsq ds,

B0ptq “ 0.

Due to the previous inequalities, we prove that Bkptq “ 0 using induction and we conclude
the uniqueness. ˝
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