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Recent progresses in Convolutional Neural Networks (CNNs) and GPUs have greatly advanced the state-
of-the-art performance for face recognition. However, training CNNs for face recognition is complex and
time-consuming. Multiple factors need to be considered: deep learning frameworks, GPU platforms, deep
network models, training datasets and test datasets. The deep models under different frameworks may
perform differently. Based on this concern, we compare three deep learning frameworks and benchmark
the performance of different CNNmodels on five GPU platforms. The scalability issue is also explored. Our
findings can help researchers select appropriate face recognition models, deep learning frameworks, GPU
platforms, and training datasets for their face recognition tasks.
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1. Introduction

During the past several decades, numerous face recognition
approached are proposed [1–4 where various hand-crafted fea-
tures are used. Recently, Convolutional Neural Networks (CNNs)
greatly advance the face recognition performance. For example,
the accuracy on the Labeled Faces in the Wild (LFW) dataset [5]
has increased to 99.83% [6].

However, training deep neural networks is a very complex pro-
cess. There are several factors that can affect the training process
and evaluation performance. Firstly, there are a number of deep
learning frameworks available, including Caffe from UC Berkeley
[7], TensorFlow from Google [8] and PyTorch from Facebook [9],
which are widely used frameworks among deep learning research-
ers [10]. However, these frameworks may have different data lay-
outs (e.g. NCWH, NWHC) and convolution implementations (e.g.
GEMM, FFT, Winograd), resulting in different performance.

Secondly, recent progress in deep CNNs has substantially
improved state-of-the-art performance in face recognition, and
there are a number of models available, such as AlexNet [11],
VGG [12], GoogLeNet [13], ResNet [14], DenseNet [15], LightCNN
[16], Incepetion-DenseNet [17], DDML [18], Center-loss [19],
SphereFace [20], CosFace [21], UniformFace [22] and ArcFace [6].
The inherent structures in these models are somehow different.
For example, GoogLeNet and DenseNet emphasize multi-scale fea-
ture learning; ResNet and DenseNet are deep networks to model
complex data with a large spectrum of variations. Further, the
developed deep models are usually reported on different training
datasets, making it difficult to understand how different these
models intrinsically, using the same training datasets.

Thirdly, training CNNs is a very time-consuming process.
Graphical Processing Units (GPUs) are playing a key role in training
networks. However, there are a number of GPU types, such as Titan
Xp, GTX 1080Ti, Titan X(Pascal), Titan X(Maxwell) and Titan Z. It is
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interesting to know how differently these GPUs could perform in
training deep models in practice.

Fourthly, there are different test datasets that may have differ-
ent characteristics. In LFW dataset, almost all faces are frontal or
close to frontal views; VGGFace2-test dataset [23] mainly focuses
on pose and age variations; As for our processed IJB-A [24] quality
dataset, it contains faces of different qualities; Disguise Faces in
Wild (DFW) dataset [25] is the largest dataset of disguised faces
and impostors; UMDFaces-test dataset [26] contains three tracks
with different pose variations.

Fifthly, recent progress in face recognition is mainly being dri-
ven by advanced CNNs, fast GPUs, and large training datasets.
Meanwhile, as CNNs are getting deeper, the requirement of
large-scale training datasets becomes urgent. In recent years, sev-
eral face datasets are made public with different scales, ranging
from a few hundred thousand images, e.g., FaceScrub [27],
CASIA-WebFace [28] and UMDFaces [26], to a few million images,
e.g., VGGFace [29], MegaFace [30], MS-Celeb-1M [31] and
VGGFace2 [23]. The deep CNNs may behave differently as the
training datasets change. Many current face recognition models
are trained on different training datasets, making it difficult to
compare these models directly.

Given the variety of deep learning frameworks, face recognition
models, GPU platforms, and training datasets, it is quite difficult for
end users to select appropriate platforms to conduct their face
recognition tasks. However, few works systematically investigate
this issue. In [32], different types of neural networks are evaluated
on a set of deep learning frameworks with different hardware plat-
forms. However, there were no specific face recognition models or
performance explored in [32]. Besides, more recent GPU types and
newer versions of deep learning frameworks were not included in
their study.

In this paper, based on several training datasets (i.e., UMDFaces,
WebFace, MS-Celeb-1M and VGGFace2), we benchmark several
face recognition models (i.e., AlexNet, VGG, GoogLeNet, ResNet,
DenseNet, LightCNN, Center-loss, SphereFace, CosFace and Arc-
Face) under different deep learning frameworks (i.e., Caffe, Ten-
sorFlow and PyTorch) using different GPUs (i.e., Titan Xp, GTX
1080Ti, Titan X(Pascal), Titan X(Maxwell) and Titan Z) and test
their performance on different datasets (i.e., LFW, VGGFace2-test,
IJB-A quality, DFW challenge and UMDFaces-test).

The rest of paper is organized as follows. Section 2 introduces
frameworks, deep models, and GPU platforms. Section 3 presents
training and test datasets. Benchmarking results are presented in
Section 4. Conclusion and future work are given in Section 5.
2. Frameworks, deep models, and GPU platforms

We briefly review three main deep learning frameworks, some
popular deep learning face recognition models, and five widely
used GPU platforms.
2.1. Deep learning frameworks

With the growing success of deep learning, there are many pop-
ular open-source deep learning frameworks which aim to help
researchers quickly develop deep learning models, including Caffe,
TensorFlow and PyTorch.

Caffe [7] is developed by Berkeley AI Research (BAIR) and
GitHub community contributors. It enables researchers and practi-
tioners to train and deploy general-purpose CNNs and other deep
models efficiently on commodity architectures based on Python
and MATLAB bindings.

TensorFlow [8] is designed by Google to operate at large scale
and in heterogeneous environments. It uses dataflow graphs to
represent both the computation in an algorithm and the state on
which the algorithm operates.

PyTorch [9] is a scientific computing framework with two high-
level features: tensor computation with strong GPU acceleration;
deep neural networks built on a tape-based autodiff system. It
aims to provide users with maximum flexibility and speed.

2.2. Deep models for face recognition

With the availability of large datasets, researchers have devel-
oped a number of CNN models. In this paper, we mainly focus on
several publicly available models: AlexNet [11,33], VGG [12], Goo-
gLeNet [13], Inception-v3 [34], ResNets [14], DenseNets [15],
LightCNN [16], Center-loss [19], SphereFace [20], CosFace [21],
and ArcFace [6]. The last five ones are specifically designed for face
recognition, while others are originally developed for ImageNet
classification [35].

The AlexNet-v1 [11] model is the first model that successfully
applies CNNs for large-scale image classification. The Dropout
technique is employed to reduce overfitting; Rectified Linear Units
(ReLU) can prevent neurons from saturating; Local response nor-
malization (LRN) layers aid generalization. In AlexNet-v2 [33],
LRN layers are removed without remarkable performance change.

The VGG-16 [12] model is substantially deeper than the net-
works used before. 3� 3 convolutional kernels are used to increase
the network depth and reduce the number of parameters. In VGG-
16-BN model, Batch Normalization (BN) layers [36] are added
before ReLU, which can accelerate network training.

The GoogLeNet [13] model has much fewer parameters than the
VGG-16, while still achieves a rather good performance. The Incep-
tion module is proposed to increase depth and width of deep net-
works. 1� 1 convolutional kernels are applied to reduce the
computational burden.

The Inception-v3 [34] model is one of the Inception families. It
has high computational efficiency and low parameter number. Fac-
torizing large convolutional filters is implemented by smaller and
asymmetric convolutions. Efficient grid size reduction is proposed
to reduce computational cost.

The ResNets [14] can be a depth of up to 152 layers but with a
low complexity. A residual learning module is presented to ease
the training of substantially deeper networks. ResNet-50 is a net-
work with 50 layers.

The DenseNets [15] also have much deeper architectures. It
connects each layer to every other layer in a feed-forward fashion.
It can alleviate the vanishing-gradient problem, strengthen feature
propagation, encourage feature reuse, and substantially reduce the
number of parameters.

LightCNN [16] introduces Max-Feature-Map (MFM) to learn a
robust face representation, which not only separates between
noisy features and informative signals but also plays an important
role in feature selection.

The Softmax loss function for LightCNN and ImageNet models is
in the following:

LðIÞ ¼ � 1
N

XN

i¼1

eW
T
yi
xi þ byiPc

j¼1e
WT

j xiþbj
; ð1Þ

where N and c denote the number of samples and classes, respec-

tively. xi 2Rd refers the ith deep feature, belonging to the ythi class.

d is the feature dimension. Wj 2 Rd are the weights in the last fully

connected layer connecting to the jth class. bj is the bias term of the

jth class.
The main drawback of Softmax loss is that it aims to separate

different subjects well but does not explicitly minimize the intra-
subject variations. To this aim, several loss functions are used to
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enhance the discriminative power of the learned features. Center
loss [19] is proposed to reduce intra-class variations. It can simul-
taneously learn a center for deep features of each class and penal-
ize the distances between the deep features and their
corresponding class centers. On one hand, center loss focuses on
increasing intra-subject compactness. On the other hand, softmax
loss aims at enlarging the inter-class distance. Intuitively, it is nec-
essary to employ them jointly to supervise the training of CNNs.
The formulation is in the following:

LðIÞ ¼ �
XN

i¼1

eW
T
yi
xi þ byiPc

j¼1e
WT

j xiþbj
þ k
2

XN

i¼1

kxi � cyik22; ð2Þ

where the former part is the Softmax loss, and the later one is about
Center loss. k is used to balance the two loss functions. cyi is the ythi
class center of deep features.

There exits another trend in the research community which
increases the margin between different subjects in training.
SphereFace [20] presents A-Softmax loss to impose discriminative
constraints on a hypersphere manifold, which intrinsically
matches the prior that faces lie on a manifold. Formally it
optimizes:

LðIÞ ¼ � 1
N

XN

i¼1

log
ekxikwðhyi ;iÞ

ekxikwðhyi ;iÞ þP
j–yi

ekxikcoshj;i
; ð3Þ

where wðhyi ;iÞ ¼ ð�1Þkcosðmhyi ;iÞ � 2k; hyi ;i 2 kp
m ; ðkþ1Þp

m

h i
and

k 2 ½0;m� 1�. m P 1 is an integer which controls the size of angular
margin. hj;i is the angle between weight wj and sample xi.

In the CosFace loss, m is the cosine margin to maximize the
decision margin in the angular space. The sample xi is normalized
and re-scaled to s.

LðIÞ ¼ � 1
N

XN

i¼1

log
esðcosðhyi ;iÞ�mÞ

esðcosðhyi ;iÞ�mÞ þP
j–yi

es cos hj;i
: ð4Þ

In the ArcFace loss, the additive angular margin penaltym is used to
encourage the intra-class compactness and inter-class discrepancy.

LðIÞ ¼ � 1
N

XN

i¼1

log
esðcosðhyi ;iþmÞÞ

esðcosðhyi ;iþmÞÞ þP
j–yi

es cos hj;i
: ð5Þ
2.3. GPU platforms

Deep learning is a field with intense computational require-
ments, and the choice of GPUs can make big differences. In this
work, three major GPU architectures are investigated. Further-
more, it is necessary to use multi-GPUs to speed up the training
process and improve the model performance.

Table 1 gives some details of GPUs used in our experiments.
Three different GPU architectures are benchmarked: Kepler (Titan
Z), Maxwell (Titan X(Maxwell)) and Pascal (Titan X(Pascal), GTX
1080Ti and Titan Xp). Notice that we only use one of the two
GK110 chips in Titan Z for the single GPU comparison.
Table 1
Some details about various GPUs that we tested.

Titan Z Titan X (Maxwell)

Boost Clock (MHz) 876 1075
CUDA Cores 5760 3072
Memory Speed (Gbps) 7 7
Standard Memory Config (GB) 12 12
Memory Interface width (bit) 768 384
Memory Bandwidth (GB/s) 672 336.5
GPU Architecture Kepler Maxwell
3. Datasets

In this section, five test datasets with different characteristics
and four popular training datasets are introduced.

3.1. Training datasets

Experiments prove that a large number of labeled faces can help
CNNs learn about variations they need to handle in the prediction
stage [37]. We compare four training datasets and explore their
effects on several test datasets.

The web-collected CASIA-WebFace [28] has 494,414 images of
10,575 identities. The authors claim that not all faces are detected
and annotated correctly. However, they think a small number of
noisy images may make trained models more robust.

The UMDFaces dataset [26] contains 367,888 faces from 8277
identities. Humanly curated bounding boxes for faces are provided.
The authors claim that it provides more pose variations than the
popular WebFace dataset.

The VGGFace2 dataset [23] has 3,141,890 images and 8631 sub-
jects. Human verified bounding boxes around faces are provided. It
covers a large range of poses, ages, professions, and ethnicities.

The original MS-Celeb-1M dataset [31] contains too much
noise. To get a high-quality dataset, DeepGlint (http://trillion-
pairs.deepglint.com/) refined the dataset and made it publicly
available. There are 86,878 subjects with 3.92 million aligned
images.

3.2. Test datasets

The LFW dataset [5] can be viewed as a milestone dataset in
which images are crawled from the Internet. It contains 13,233
images of 5749 subjects with many variations in illumination,
expression, etc. Following the verification protocol of unrestricted
with label outside data [38], 6000 pairs are evaluated.

The VGGFace2-test dataset [23] has 169,396 images from 500
celebrities. The test has two scenarios. Pose template: a template
consists of five faces from the same subject with a consistent pose
which can be frontal, three-quarter or profile view. Age template: a
template consists of five faces from the same subject with either an
apparent age below 34 (deemed young) or 34 and above (deemed
mature). Each subject is represented by averaging the feature vec-
tor of all faces in each subject set. Then the similarity score is com-
puted as the cosine similarity between feature vectors
representing each subject.

Based on the method in [39], the quality value for each face
image in the IJB-A dataset [24] can be assessed [40]. The dataset
has 1543, 13,491, and 6196 images of 500, 483, and 489 subjects
for high, middle and low qualities, respectively. The cross-quality
matching performance on two scenarios is tested: low to high
(Low2High) and middle to high (Middle2High). We evaluate the
performance at different False Acceptance Rate (FAR) values.

The DFW dataset [25] is the largest dataset of disguised faces
and impostors. There are 1000 subjects (400 in the training set
Titan X (Pascal) GTX 1080Ti Titan Xp

1531 1582 1582
3584 3584 3840
10 11 11.4
12 11 12
384 352 384
480 484 547.7

Pascal Pascal Pascal

http://trillionpairs.deepglint.com/
http://trillionpairs.deepglint.com/
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and 600 in the test set) and 11,155 images. Each subject in the test
set has one genuine image, some validation images, several dis-
guised images and a few images of impostors. Each pair in the test
set is assigned a ground-truth label (‘positive’, ‘negative’ or ‘do not
care’). The task is to recognize disguised faces as the subject that
they belong to and identify impostors. The performance is evalu-
ated when FAR ¼ 1%;0:1%, respectively.

On top of a subset of the UMDFaces dataset [26], they developed
a large testing protocol that contains three tracks: small pose vari-
ations (easy), medium pose variations (moderate) and large pose
variations (difficult). There are 5000 positive pairs and 5000 nega-
tive pairs within each track. A large number of image pairs make it
possible to compare performance at a low FAR.

4. Benchmarking experiments

We first discuss the implementation details in Section 4.1. Dif-
ferent face recognition models are compared in Section 4.2
wwhere model comparisons within the same deep learning frame-
work and between different frameworks are discussed. Running
time comparison of different models on various GPU platforms
and scalability of different deep learning frameworks on multi-
GPUs are presented in Section 4.3. Finally, Section 4.4 shows per-
formance comparison of different training datasets on several test
datasets.

4.1. Implementation details

For DFW and UMDFaces datasets, faces are cropped using the
provided face coordinates and resized to the target image size.
Other images are detected and cropped by the MTCNN [41]
method. We use the Python implementation of the method
MTCNN in [42]. Fig. 1 demonstrates the workflow on an example
image. Referring to pre-processing operations in [43], we enlarge
the bounding box size by 15% on each side and crop the image
without the alignment procedure. If face detection is failed on
one image, this image will be discarded if it is in the training
dataset.

Deep models are trained on the WebFace dataset if not speci-
fied, so their relative performances can be compared. There are
453,413 detected faces in WebFace dataset. In order to reduce
overfitting, all images are shuffled under PyTorch, Caffe and Ten-
sorFlow if the dataset is used for training. Let b;n refer to the batch
size used in training and the image number in the dataset, respec-
tively. There are dnbe batches in the dataset. Then a batch with b
images is loaded sequentially from the beginning of the dataset,
and then these images are pre-processed to feed the CNN model.
Repeat these operations dnbe times until the end of the dataset.
When the image number n is not divisible by the batch size b,
the last batch size will be smaller than b. Under such a scenario
in training, different frameworks have different strategies: the
image pointer will seek to the start of the dataset recursively to
get enough b images when training in Caffe; the last insufficient
batch is directly used in PyTorch; TensorFlow will discard the
smaller batch. During testing, the last insufficient batch will be
Fig. 1. The pre-processing on an example image, which consists of two stages, i.e.
detection and crop stages. The detection stage is used to detect faces with the pre-
trained MTCNN model, and the crop stage is to crop the face based on the bounding
box.
processed in PyTorch, Caffe and TensorFlow. We input the face
image and extract features from the penultimate layer for later
analysis.

4.2. Accuracy comparison of different face recognition models

Table 2 shows hyper-parameter settings and # of parameters of
different face recognition models. After comparisons of different
hyper-parameter settings on several models, there is little perfor-
mance change compared with the original parameter settings in
the proposed papers. Therefore, we decided that parameter set-
tings of every model are the same as the paper in which the model
was initially proposed. The momentum is 0.9. The weight-decay of
the DenseNet-121, LightCNN-29, ResNet-50 models is 1e-4, Goo-
gLeNet is 2e-4, Inception-v3 is 4e-4, and for other models, it is
5e-4. 2 GPUs are used to train the DenseNet-121, ResNet-50,
VGG-16, VGG-16-BN, Center-loss and SphereFace models. 4 GPUs
are employed to train the Softmax, CosFace and ArcFace based
models.

We also compare the number of parameters in different frame-
works. One can observe that the same face recognition model has
similar number of parameters on three deep learning frameworks
except the AlexNet-v2 and GoogLeNet. The AlexNet-v2 models in
TensorFlow and PyTorch apply a zero padding of size 0 and 2 in
the first convolutional layer, resulting in the last convolutional
layer with size 256 � 5 � 5 and 256 � 6 � 6, separately. Because
this layer is connected with a fully connected layer with units
4096, the PyTorch has 4096 � 256 � (6 � 6–5 � 5) = 11.5 million
more parameters compared with TensorFlow. As for the GoogLeNet
model, the parameter number difference between Caffe and Ten-
sorFlow is that Caffe adds two auxiliary classifiers connected to
intermediate layers, while TensorFlow does not.

We first compare model accuracy within the same deep learn-
ing framework and several loss functions in Section 4.2.1 and Sec-
tion 4.2.2, respectively, and then illustrate model accuracy
comparison between different frameworks in Section 4.2.3.

4.2.1. Model accuracy comparison within the same deep learning
framework

Table 3 is about experimental results of PyTorch based models.
For LFW dataset, the AlexNet-v2 model performs the worst, while
others have similar performances. This is because the LFW dataset
is a relatively easy dataset. For VGGFace2-test dataset, the VGG-
16-BN and Inception-v3 models rank the first. For IJB-A quality
dataset, the ResNet-50 model gets the first place on cross-quality
face matching. This proves the fact that the network depth is
important. VGG-16-BN achieves better performance than VGG-
16. This is because BN layers act as a regularizer to improve the
performance for the VGG-16. However, BN layers may fail for some
models, and an appropriate batch size is needed to avoid the pos-
sible out-of-memory problem [44].

Experimental results about Caffe based models are shown in
Table 4. For LFW dataset, GoogLeNet model can reach 97.8% accu-
racy. For VGGFace2-test and IJB-A datasets, LightCNN-29 model
beats other models by a pronounced margin. It can be seen that
LightCNN-29 can get better performance than other ImageNet
based models. This proves that the effectiveness of Max-Feature-
Map designed for the face recognition task.

Table 5 shows the performance of TensorFlow based models.
For LFW dataset, Inception-v3 gets 98.5% accuracy, slightly better
than other models. For VGGFace2-test dataset, GoogLeNet,
Inception-v3 and DenseNet-121 are obviously better than others.
For IJB-A quality dataset, GoogLeNet dramatically improves the
matching accuracy across diverse qualities.

Among these models, results show that the GoogLeNet model is
the most discriminative which gets 3 highest accuracies though



Table 2
The hyper-parameter settings and # of parameters in the models. The momentum is 0.9; iter means the global step during training; iterations per epoch (ipe) = # of images/(batch
size).

Model Batch size Image size Input size Learning rate Epochs or iters Weight decay # of params (million)

Caffe TensorFlow PyTorch

AlexNet-v1 256 256 � 256 227 � 227 0:01 � 0:1ðfloorðiter=ð21�ipeÞÞ 96 5e�4 100.17 – –

AlexNet-v2 256 256 � 256 224 � 224 0:01 � 0:1ðfloorðiter=ð21�ipeÞÞÞ 96 5e�4 – 89.53 100.33

DenseNet-121 40 256 � 256 224 � 224 0:1 � 0:1ðfloorðiter=ð10�ipeÞÞÞ 30 1e�4 17.78 17.76 17.79

GoogLeNet 32 256 � 256 224 � 224 0:01 � ð1� iter=ð64 � ipeÞÞ0:5 64 2e�4 42.78 16.43 –

Inception-v3 25 299 � 299 299 � 299 0:045 � 0:94ðfloorðiter=ð2�ipeÞÞÞ 100 4e�4 43.43 54.13 43.45

LightCNN-29 128 144 � 144 128 � 128 0:1 � 0:457ðfloorðiter=ð10�ipeÞÞÞ 80 1e�4 8.19 – –

ResNet-50 50 256 � 256 224 � 224 0:1 � 0:1ðfloorðiter=ð28�ipeÞÞÞ 128 1e�4 45.16 45.18 45.18

VGG-16 128 256 � 256 224 � 224 0:1 � 0:1ðfloorðiter=ð17�ipeÞÞÞ 74 5e�4 177.56 177.59 177.59

VGG-16-BN 128 256 � 256 224 � 224 0:1 � 0:1ðfloorðiter=ð17�ipeÞÞÞ 74 5e�4 – – 177.59

Softmax 512 112 � 112 112 � 112 0:1 � 0:1ðfloorðiter=½16000;24000;28000�ÞÞ 30,000 5e�4 – – –

Center-loss 256 112 � 96 112 � 96 0:1 � 0:1ðfloorðiter=½16000;24000�ÞÞ 28,000 5e�4 32.95 – –

SphereFace 128 112 � 96 112 � 96 0:1 � 0:1ðfloorðiter=½16000;24000�ÞÞ 28,000 5e�4 68.45 – –

CosFace 512 112 � 112 112 � 112 0:1 � 0:1ðfloorðiter=½16000;24000;28000�ÞÞ 30,000 5e�4 – – –

ArcFace 512 112 � 112 112 � 112 0:1 � 0:1ðfloorðiter=½16000;24000;28000�ÞÞ 32,000 5e�4 – – –

Table 3
Experimental results of various models in PyTorch.

PyTorch-based LFW (%) VGGFace2 (Similarity Score) IJB-A (%)

Pose Age Low2High Middle2High

Front Three-quarter Profile Young Mature 1% 0.1% 0.01% 1% 0.1% 0.01%

AlexNet-v2 93.1 Front 0.625 0.595 0.393 Young 0.534 0.231 29.1 11.9 5.1 55.3 34.9 23.0
Three-quarter 0.599 0.651 0.510 Mature 0.259 0.606
Profile 0.390 0.508 0.625

VGG-16 97.2 0.726 0.698 0.510 0.648 0.353 47.3 23.7 7.5 77.6 54.4 35.5
0.705 0.739 0.603 0.382 0.711
0.517 0.604 0.695

VGG-16-BN 97.6 0.778 0.756 0.599 0.714 0.431 51.5 28.0 7.9 81.3 60.0 38.7
0.760 0.789 0.669 0.452 0.761
0.610 0.671 0.730

Inception-v3 97.9 0.778 0.749 0.595 0.700 0.454 51.3 28.2 7.9 81.4 60.2 38.8
0.756 0.789 0.671 0.497 0.758
0.606 0.680 0.743

ResNet-50 98.2 0.756 0.726 0.556 0.669 0.412 62.3 38.9 12.7 85.9 68.0 48.9
0.727 0.755 0.629 0.447 0.710
0.559 0.635 0.693

DenseNet-121 97.8 0.755 0.731 0.576 0.682 0.419 58.8 33.1 9.8 83.3 62.4 42.1
0.735 0.763 0.648 0.452 0.722
0.582 0.654 0.709
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unavailable in PyTorch because the LRN regularization is not sup-
ported. Despite only supported in Caffe, the LightCNN-29 model
obtains 2 best results. The ResNet-50 and Inception-v3 models
get 2 and 2 best results, respectively. The GoogLeNet and
Inception-v3 models have Inception modules which consist of par-
allel convolutional kernels (1 � 1, 3 � 3 and 5 � 5). Inception mod-
ules allow to extract both local features (small convolutional
kernels) and abstract features (larger convolutional kernels). The
extracted multi-scale features can characterize face images at var-
ious levels, improving the face recognition performance. The
ResNet-50 model uses identity mappings as bypassing paths, eas-
ing the training of very deep networks and improving the capacity
to describe faces. On the other side, identity mappings connect fea-
tures from two layers, which have different receptive field sizes.
The Max-Feature-Map design allows the LightCNN-29 model to
extract informative signals from noisy features.

4.2.2. Model accuracy comparison of several loss functions
Table 6 compares the Softmax loss function with several loss

functions: Center-loss, SphereFace, CosFace and ArcFace.
In these models, SphereFace and ArcFace based models achieve

the best accuracy on LFW dataset. Center-loss based model has the
best accuracy on VGGFace2-test task. SphereFace based model out-
performs others on the IJB-A quality task overall. It is observed that
due to the complex face distributions, some loss functions may
tend to perform well on some tasks, while have poor results on
some specific tasks. Comprehensive investigation is necessary to
achieve good results on specific tasks.

4.2.3. Model accuracy comparison between different frameworks
Tables 7–10 compare the VGG-16, Inception-v3, ResNet-50 and

DenseNet-121 models across different deep learning frameworks.
For the VGG-16 model, PyTorch gets the best accuracy on LFW
and IJB-A quality datasets, and TensorFlow achieves the best result
on VGGFace2-test dataset. For the Inception-v3 model, PyTorch
gets the best accuracy on IJB-A quality dataset, and TensorFlow
achieves the best result on LFW and VGGFace2-test datasets. For
the ResNet-50 model, PyTorch can get the best results on LFW,
VGGFace2-test and IJB-A quality datasets. For the DenseNet-121
model, PyTorch achieves the best performance on LFW and IJB-A
quality datasets, and TensorFlow performs best on VGGFace2-test
dataset.

Based on the above experiments, PyTorch based models tend to
perform the best among these three frameworks, especially on



Table 4
Experimental results of various models in Caffe.

Caffe-based LFW (%) VGGFace2 (Similarity Score) IJB-A (%), different FARs

Pose Age Low2High Middle2High

Front Three-quarter Profile Young Mature 1% 0.1% 0.01% 1% 0.1% 0.01%

AlexNet-v1 94.6 Front 0.595 0.543 0.301 Young 0.477 0.259 12.1 4.2 1.7 35.8 21.3 13.2
Three-quarter 0.557 0.609 0.432 Mature 0.281 0.541
Profile 0.310 0.430 0.583

VGG-16 95.3 0.692 0.663 0.462 0.610 0.384 29.6 12.3 4.5 61.0 38.5 24.2
0.675 0.709 0.564 0.395 0.656
0.476 0.565 0.681

GoogLeNet 97.8 0.698 0.652 0.440 0.605 0.372 45.4 21.2 5.6 75.8 55.4 36.3
0.660 0.701 0.540 0.392 0.658
0.450 0.541 0.644

Inception-v3 96.1 0.712 0.692 0.560 0.626 0.415 29.65 12.34 4.52 61.2 38.53 24.24
0.706 0.719 0.600 0.442 0.653
0.572 0.602 0.596

ResNet-50 97.5 0.744 0.710 0.505 0.667 0.425 39.2 1.4 0.2 74.5 46.3 5.8
0.718 0.753 0.591 0.455 0.697
0.513 0.594 0.677

DenseNet-121 97.6 0.737 0.699 0.520 0.655 0.413 38.8 6.8 0.4 73.5 49.5 22.6
0.707 0.746 0.604 0.442 0.698
0.533 0.611 0.690

LightCNN-29 97.6 0.764 0.740 0.600 0.691 0.472 50.4 28.2 14.0 76.2 55.9 36.7
0.748 0.774 0.666 0.501 0.729
0.607 0.665 0.703

Table 5
Experimental results of various models in TensorFlow.

TensorFlow-based LFW (%) VGGFace2 (Similarity Score) IJB-A (%), differnt FARs

Pose Age Low2High Middle2High

Front Three-quarter Profile Young Mature 1% 0.1% 0.01% 1% 0.1% 0.01%

AlexNet-v2 91.1 Front 0.588 0.563 0.376 Young 0.497 0.255 25.2 11.5 5.9 47.9 31.4 20.7
Three-quarter 0.567 0.608 0.470 Mature 0.262 0.563
Profile 0.380 0.473 0.574

VGG-16 95.3 0.714 0.710 0.538 0.657 0.372 39.4 17.4 6.2 69.8 44.5 24.5
0.713 0.751 0.624 0.386 0.721
0.545 0.621 0.708

GoogLeNet 97.9 0.829 0.811 0.683 0.783 0.543 58.3 34.1 15.6 84.1 62.8 37.9
0.816 0.836 0.739 0.559 0.825
0.693 0.746 0.791

Inception-v3 98.5 0.814 0.790 0.652 0.752 0.512 47.7 25.6 9.7 76.6 53.4 31.6
0.791 0.815 0.709 0.532 0.776
0.661 0.714 0.752

ResNet-50 97.3 0.734 0.690 0.459 0.654 0.394 47.3 23.3 4.5 77.4 57.6 33.2
0.695 0.726 0.557 0.423 0.687
0.464 0.562 0.654

DenseNet-121 97.2 0.805 0.787 0.632 0.728 0.468 47.7 25.7 9.8 76.7 53.5 31.8
0.791 0.811 0.700 0.488 0.790
0.646 0.707 0.766
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LFW and IJB-A quality datasets. TensorFlow based models can get
excellent results on VGGFace2-test dataset. Caffe based models
have the worst performance. These frameworks have diverse
default settings, including data pre-processing steps as shown in
Table 11 and weight initialization methods as indicted in Table 12,
resulting in different performance as well. Diverse kernel initializa-
tion methods may have 1% effect on accuracy [45]. It is suggested
that the PyTorch framework should be used in order to have better
accuracy.
4.3. Running time comparison

Running time is a main factor that a user should take into con-
sideration when training deep networks. These deep learning
frameworks are benchmarked by using different batch sizes in 4
CNN models (i.e. VGG-16, Inception-v3, ResNet-50 and
DenseNet-121). These four models have their characteristics to test
the performance of frameworks. The below batch sizes are tried in
every model: 16, 32, 64, 128, 256 and 512. However, some of them
may fail because a too large batch size may lead to the out of mem-
ory problem.

The system configuration is Ubuntu 16.04.3 LTS. Hardwares
include Intel(R) Core(TM) i7-6850 K CPU @ 3.60 GHz, 32 GB RAM
and 512 GB SSD. Detailed information about several types of GPUs
is shown in Table 1. Table 13 shows the information about differ-
ent frameworks used in experiments. cuDNN [46] is a GPU-
accelerated deep learning library, for neural network computing.

In subsequent experiments, running performance is evaluated
by averaging 2000 iterations. The timing method used is shown
in the following:

� Caffe: ‘‘Caffe time” function is used to calculate the average run-
ning time between two consecutive iterations. It reads original
images from hard disk provided by a file list.



Table 6
Experimental results of several loss functions.

LFW (%) VGGFace2 (Similarity Score) IJB-A (%), different FARs

Pose Age Low2High Middle2High

Front Three-quarter Profile Young Mature 1% 0.1% 0.01% 1% 0.1% 0.01%

Softmax 99.0 Front 0.512 0.492 0.392 Young 0.477 0.419 55.3 39.6 20.4 81.3 72.7 53.6
Three-quarter 0.510 0.517 0.412 Mature 0.417 0.404
Profile 0.406 0.411 0.397

Center-loss 98.2 0.857 0.846 0.751 0.816 0.606 57.9 33.3 16.1 88.1 68.8 46.4
0.847 0.863 0.788 0.631 0.842
0.752 0.791 0.812

SphereFace 99.2 0.549 0.396 0.201 0.401 0.253 54.7 38.8 22.2 90.3 80.0 64.3
0.398 0.498 0.334 0.249 0.428
0.217 0.332 0.487

CosFace 99.1 0.552 0.539 0.427 0.531 0.468 59.6 31.8 0.4 81.9 78.4 20.9
0.562 0.570 0.445 0.450 0.437
0.450 0.446 0.407

ArcFace 99.2 0.580 0.571 0.462 0.559 0.501 59.6 0.7 0 82.9 77.6 0.3
0.593 0.600 0.478 0.488 0.472
0.481 0.478 0.436

Table 7
Experimental results of the VGG-16 model on Caffe, PyTorch and TensorFlow.

VGG-16 LFW (%) VGGFace2 (Similarity Score) IJB-A (%), different FARs

Pose Age Low2High Middle2High

Front Three-quarter Profile Young Mature 1% 0.1% 0.01% 1% 0.1% 0.01%

Caffe-based 97.6 Front 0.737 0.699 0.520 Young 0.655 0.413 38.8 6.8 0.4 73.5 49.5 22.6
Three-quarter 0.707 0.746 0.604 Mature 0.442 0.698
Profile 0.533 0.611 0.690

PyTorch-based 97.2 0.726 0.698 0.510 0.648 0.353 47.3 23.7 7.5 77.6 54.4 35.5
0.705 0.739 0.603 0.382 0.711
0.517 0.604 0.695

TensorFlow-based 95.3 0.714 0.710 0.538 0.657 0.372 39.4 17.4 6.2 69.8 44.5 24.5
0.713 0.751 0.624 0.386 0.721
0.545 0.621 0.708

Table 8
Experimental results of the Inception-v3 model on Caffe, PyTorch and TensorFlow.

Inception-v3 LFW (%) VGGFace2 (Similarity Score) IJB-A (%), different FARs

Pose Age Low2High Middle2High

Front Three-quarter Profile Young Mature 1% 0.1% 0.01% 1% 0.1% 0.01%

Caffe-based 96.1 Front 0.712 0.692 0.559 Young 0.626 0.415 29.7 12.3 4.5 61.2 38.5 24.2
Three-quarter 0.706 0.719 0.597 Mature 0.442 0.653
Profile 0.572 0.602 0.596

PyTorch-based 97.9 0.778 0.749 0.595 0.700 0.454 51.3 28.2 7.9 81.4 60.2 38.8
0.756 0.789 0.671 0.497 0.758
0.606 0.680 0.743

TensorFlow-based 98.5 0.814 0.790 0.652 0.752 0.512 47.7 25.6 9.7 76.6 53.4 31.6
0.791 0.815 0.709 0.532 0.776
0.661 0.714 0.752

Table 9
Experimental results of the ResNet-50 model on Caffe, PyTorch and TensorFlow.

ResNet-50 LFW (%) VGGFace2 (Similarity Score) IJB-A (%), different FARs

Pose Age Low2High Middle2High

Front Three-quarter Profile Young Mature 1% 0.1% 0.01% 1% 0.1% 0.01%

Caffe-based 97.5 Front 0.744 0.710 0.505 Young 0.667 0.425 39.2 1.4 0.2 74.5 46.3 5.8
Three-quarter 0.718 0.753 0.591 Mature 0.455 0.697
Profile 0.513 0.594 0.677

PyTorch-based 98.2 0.756 0.726 0.556 0.669 0.412 62.3 38.9 12.7 85.9 68 48.9
0.727 0.755 0.629 0.447 0.710
0.559 0.635 0.693

TensorFlow-based 97.3 0.734 0.690 0.459 0.654 0.394 47.3 23.3 4.5 77.4 57.6 33.2
0.695 0.726 0.557 0.423 0.687
0.464 0.562 0.654
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Table 10
Experimental results of the DenseNet-121 model on Caffe, PyTorch and TensorFlow.

DenseNet-121 LFW (%) VGGFace2 (Similarity Score) IJB-A (%), different FARs

Pose Age Low2High Middle2High

Front Three-quarter Profile Young Mature 1% 0.1% 0.01% 1% 0.1% 0.01%

Caffe-based 97.6 Front 0.737 0.699 0.520 Young 0.655 0.413 38.8 6.8 0.4 73.5 49.5 22.6
Three-quarter 0.707 0.746 0.604 Mature 0.442 0.698
Profile 0.533 0.611 0.690

PyTorch-based 97.8 0.755 0.731 0.576 0.682 0.419 58.8 33.1 9.8 83.3 62.4 42.1
0.735 0.763 0.648 0.452 0.722
0.582 0.654 0.709

TensorFlow-based 97.2 0.805 0.787 0.632 0.728 0.468 47.7 25.7 9.7 76.7 53.5 31.6
0.791 0.811 0.700 0.488 0.790
0.646 0.707 0.767

Table 11
The data pre-processing of different CNN models in PyTorch/TensorFlow/Caffe.

Model name (Framework) During training During evaluation

AlexNet-v2, VGG-16,
VGG-16-BN, ResNet-50,
Inception-v3, DenseNet-121
(PyTorch)

(1) Crop the image to random size and aspect ratio, followed by
the resizing operation.
(2) Randomly flip the image horizontally.
(3) Convert range of the image to [0, 1].
(4) Normalize the image with mean [0.485, 0.456, 0.406] and
standard deviation [0.229, 0.224, 0.225].

(1) Center cropping and resize the image.
(2) Convert the image pixel range to [0, 1].
(3) Normalize the image with mean [0.485, 0.456,
0.406] and standard deviation [0.229, 0.224, 0.225].

AlexNet-v2, VGG-16,
ResNet-50, DenseNet-121
(TensorFlow)

(1) Get the smaller side of the image, followed by aspect-
preserving resizing.
(2) Randomly flip the image horizontally.
(3) Randomly crop the image to 224 � 224.
(4) Subtract means [123.68, 116.779, 103.939] from each image
channel.

(1) Get the smaller side of the image, followed by
aspect-preserving resizing.
(2) Center cropping image to 224 � 224.
(3) Subtract means [123.68, 116.779, 103.939]
from each image channel.

GoogLeNet, Inception-v3
(TensorFlow)

(1) Convert the image pixel range to [0, 1].
(2) Generate cropped images using a randomly distorted
bounding box and resize it.
(3) Randomly distort the colors (brightness, hue, saturation or
contrast).
(4) Transform the image range to [�1, 1].

(1) Convert the image pixel range to [0, 1].
(2) Center cropping and resize the image.
(3) Transform the image range to [�1, 1].

LightCNN-29
(Caffe)

(1) Randomly crop the image to the input size.
(2) Randomly flip the image horizontally.
(3) Transform dimensions.
(4) Reorder image channels to BGR.
(5) Subtract mean [127.5, 127.5, 127.5] and scale the image to
range [�1, 1].

(1) Center cropping and resize the image.
(2) Transform dimensions.
(3) Reorder image channels to BGR.
(4) Subtract mean [87.1, 102.7, 134.6] and scale the
image to range [0, 1].

AlexNet-v1, VGG-16,
GoogLeNet, ResNet-50,
Inception-v3, DenseNet-121
(Caffe)

(1) Randomly crop the image to the input size.
(2) Randomly flip the image horizontally.
(3) Transform dimensions.
(4) Reorder image channels to BGR.
(5) Subtract mean [87.1, 102.7, 134.6] and scale the image to
range [0, 1].
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� PyTorch: the timing function in Python is used to calculate aver-
age iteration time. It directly reads original images from hard
disks.

� TensorFlow: the internal timing function in the TensorFlow-
Slim library [47] outputs time details in a specified number of
iterations. It uses a processed file format called TFRecord.

It should be noted that these frameworks have very flexible pro-
gramming APIs. It is possible that there exist other timing meth-
ods. Therefore, we should make it clear that our implementations
are not necessarily the best approach for training.

4.3.1. Running time comparison of different frameworks and GPU
platforms

The performance of the VGG-16 model is shown in the top left
of Fig. 2. When the batch size is 128, the VGG-16 model fails to run
on GTX 1080Ti. This is because GTX 1080Ti has a 11 GB memory
space, compare to 12 GB in Titan Xp, Titan X(Pascal) and Titan X
(Maxwell). Since only one of the two GK110 chips in Titan Z is
used, there is 6 GB memory available, which is the reason why
batch sizes 64 and 128 fail on Titan Z. On the other side, across dif-
ferent frameworks, PyTorch obtains the best performance among
these three frameworks, followed by Caffe and then TensorFlow.
For Titan Xp, the improvement of PyTorch compared with Caffe
and TensorFlow is 26.5% and 45.1% when the batch size is 16,
31.5% and 40% when the batch size is 32, and 34.1% and 38.3%
when batch size is 64. Besides, PyTorch is more memory-efficient
since Caffe and TensorFlow have the out of memory problem under
the batch size 128, 256 or 512.

The performance comparison of the Inception-v3 is shown in
the top right of Fig. 2. Batch sizes 128, 256 and 512 fail, due to
the out of memory issue. Across different GPU platforms, the
Inception-v3 model displays relatively similar performance on 5
types of GPUs like the VGG-16 model. Across different frameworks,
PyTorch obtains better performance than TensorFlow and Caffe
under nearly each batch size. However, the speedup is different
between PyTorch and TensorFlow when batch size changes. As
for Titan Xp, when batch size is 16, PyTorch achieves about 1.16%



Table 12
The default weight initialization of diverse CNN models in Caffe/TensorFlow/PyTorch. Suppose parameters of one layer have shape
ðoutput channel num; input channel num; kernel size; kernel sizeÞ, fanin ¼ input channel num � kernel size � kernel size and fanout ¼ output channel num � kernel size � kernel size.

Model name (framework) Convolutional layers Fully connected layers

VGG-16 (PyTorch) W 2 N 0;
ffiffiffiffiffiffiffiffiffi

2
fanout

q� �
W 2 �

ffiffiffiffiffiffiffiffi
1

fanin

q
;

ffiffiffiffiffiffiffiffi
1

fanin

qh i

VGG-16 (Caffe) W 2 �
ffiffiffiffiffiffiffiffi
3

fanin

q
;

ffiffiffiffiffiffiffiffi
3

fanin

qh i
W 2 �

ffiffiffiffiffiffiffiffi
3

fanin

q
;

ffiffiffiffiffiffiffiffi
3

fanin

qh i

VGG-16 (TensorFlow) W 2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6
faninþfanout

q
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

faninþfanout

qh i
-

Inception-v3 (PyTorch) W 2 Nð0; stddevÞ;�2 6 W 6 2 W 2 �
ffiffiffiffiffiffiffiffi
1

fanin

q
;

ffiffiffiffiffiffiffiffi
1

fanin

qh i

Inception-v3 (Caffe) Winput 2 N 0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
faninþfanout

q� �
Winput 2 N 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

faninþfanout

q� �

Inception-v3 (TensorFlow) W 2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6
faninþfanout

q
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

faninþfanout

qh i
-

ResNet-50 (PyTorch) W 2 N 0;
ffiffiffiffiffiffiffiffiffi

2
fanout

q� �
W 2 �

ffiffiffiffiffiffiffiffi
1

fanin

q
;

ffiffiffiffiffiffiffiffi
1

fanin

qh i

ResNet-50 (Caffe) Winput 2 N 0;
ffiffiffiffiffiffiffiffiffi

2
fanout

q� �
, Wothers 2 N 0;

ffiffiffiffiffiffiffiffi
2

fanin

q� �
W 2 Nð0;0:01Þ

ResNet-50 (TensorFlow) W 2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6
faninþfanout

q
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

faninþfanout

qh i
-

DenseNet-121 (PyTorch) W 2 N 0;
ffiffiffiffiffiffiffiffi
2

fanin

q� �
W 2 �

ffiffiffiffiffiffiffiffi
1

fanin

q
;

ffiffiffiffiffiffiffiffi
1

fanin

qh i

DenseNet-121 (Caffe) W 2 �
ffiffiffiffiffiffiffiffi
3

fanin

q
;

ffiffiffiffiffiffiffiffi
3

fanin

qh i
-

DenseNet-121 (TensorFlow) W 2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6
faninþfanout

q
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

faninþfanout

qh i
W 2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

faninþfanout

q
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

faninþfanout

qh i
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speedup. However, when batch sizes are 32, 64 separately, the
improvements are 20%, 27%. This shows that the larger the batch
size is, the more obvious the speedup is. In addition, Caffe is less
Table 13
Versions of deep learning frameworks used in experiments.

Frameworks Major version cuDNN CUDA

Caffe 1.0.0 V7.0 V9.0
TensorFlow 1.6.0 V7.0 V9.0
PyTorch 0.3.1 V7.0 V9.0

Fig. 2. Running time comparison of VGG-16 (top left), Inception-v3 (top right), ResN
memory-efficient compared with TensorFlow and PyTorch because
Caffe runs out of memory if the batch size is 32 or 64.

The performance of the ResNet-50 model is shown in the bot-
tom left of Fig. 2. There is out of memory problem if the batch size
is 256 or 512. Across different frameworks, PyTorch achieves the
best performance compared with TensorFlow and Caffe, except
that the batch size is 64 on GTX 1080Ti. For the Titan Xp, speedup
between PyTorch and TensorFlow is 25.4%, 28.2%, 31.5% and 27%
when the batch size is 16, 32, 64 or 128 respectively. Titan Z and
GTX 1080Ti cannot afford the batch size 128 under these three
frameworks. Caffe based ResNet-50 model can run with a batch
et-50 (bottom left), and DenseNet-121 (bottom right) models on GPU platforms.



Fig. 3. Scalability comparison of the VGG-16 model with a batch size 64 (top left),
the Inception-v3 model with a batch size 25 (top right), the ResNet-50 model with a
batch size 25 (bottom left) and the DenseNet-121 model with a batch size 20
(bottom right) w.r.t. multiple GPUs.
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size 16 on Titan X(Maxwell), Titan X(Pascal), GTX 1080Ti and Titan
Xp. Since one of two chips on Titan Z has less memory, Caffe based
ResNet-50 model fails when the batch size is 16.

The performance of the DenseNet-121 model is shown in the
bottom right of Fig. 2. It fails when the batch size is 128, 256 or
512. PyToch is better than other frameworks. For Titan Z, batch
sizes of PyTorch and TensorFlow are 16 and 32; Caffe fails even
when the batch size is 16. For other GPU platforms, PyTorch and
TensorFlow can run with the batch size 64. For Titan Xp, PyTorch
obtains 36.5%, 41.7% and 43.4% speedup than TensorFlow when
batch sizes are 16, 32 and 64, respectively.

Across different GPU platforms for the VGG-16, Inception-v3,
ResNet-50 and DenseNet-121 models, Titan Xp obtains the best
performance, which is slightly better than GTX 1080Ti, Titan X
(Pascal) and Titan X(Maxwell). Other four GPUs are at least 2 times
faster than Titan Z. As shown in Table 1, architectures of Titan Z,
Titan X(Maxwell) are Kepler, Maxwell, and the architecture of
Titan X(Pascal), GTX 1080Ti and Titan Xp is Pascal. This shows that
the more recent GPU architecture is, the faster the running perfor-
mance is. Although Titan X(Pascal), GTX 1080Ti and Titan Xp have
the same GPU architecture, their specifications are more or less dif-
ferent. GTX 1080Ti has better boost clock, memory speed and
memory bandwidth than Titan X(Pascal), and Titan Xp has more
CUDA cores, higher memory speed, wider memory interface width
and memory bandwidth than GTX 1080Ti. This explains why Titan
Xp is a little faster than GTX 1080Ti, and GTX 1080Ti is faster than
Titan X(Pascal).

Across different frameworks, there are mainly two factors
which may result in different computation time. First, in training
CNNs, convolutional layers which are the most time-consuming
layers are usually invoked by the high performance library cuDNN
[46]. However, there are several types of convolution implementa-
tions, such as GEMM, FFT and Winograd. TensorFlow prefers to use
the Winograd algorithm, and PyTorch could autotune to find the
most efficient convolutional algorithm. While Caffe uses GEMM-
based convolution. The FFT- and Winograd-based convolutions
are faster than GEMM-based convolution in general [24]. The
sub-optimal convolution makes Caffe slower than TensorFlow
and PyTorch in most cases. Second, PyTorch uses NCHW layout
naively which is implicitly supported in cuDNN, while TensorFlow
uses NHWC layout. As shown in [48], changing data layout in Ten-
sorFlow from NHWC from NCHW leads to 15% speedup. This
explains why PyTorch is faster. It is worth noting that PyTorch is
a dynamic framework to maximize flexibility, and TensorFlow is
a static framework with less computation cost. However, PyTorch
minimizes the computational cost of graph construction in every
iteration and implements faster GPU kernels for frequent work-
loads, allowing for more efficient dynamic computation.

4.3.2. Scalability of different deep learning frameworks on multi-GPUs
Since the AlexNet model [11] won the ILSVRC 2012 challenge

[35], CNNs have become ubiquitous in various computer vision
tasks [49–58]. Making deeper and more complicated networks
has been the general trend to improve the performance
[12,14,15,34]. However, a single GPU only has a limited memory
space, which seriously limits the network capacity. On the other
side, training CNNs is time-consuming, especially for deeper net-
works and large training datasets. Therefore, scalability is very crit-
ical for deep learning frameworks, allowing for accelerating the
training process by spliting the data across multiple GPUs or
machines, and training extremely large models which would not
fit into the limited memory of one GPU. Support of multiple GPUs
and machines becomes necessary for frameworks. The distributed
synchronous stochastic gradient descent (SGD) method [59,60] is
widely used to achieve a better scaling performance on multiple
GPUs or machines.
In this Section, running time of the VGG-16, Inception-v3,
ResNet-50 and DenseNet-121 model is evaluated on 1, 2 and 4
Titan X(Pascal) GPUs. A proper batch size for each model is deter-
mined to make the model run on every framework and better uti-
lize the GPU resources. We use the metric (i.e. # of samples
processed per second) to measure the throughput. To show the
scalability, the speedup is calculated to indicate how much the
throughput with GPUs could be increased:

speedup ¼ throughput2�ð#of gpusÞ � throughput#of gpus

throughput#of gpus
ð6Þ

Ideally, the value of speedup should be 100%when the GPU number
is doubled.

Results of the VGG-16 model with a batch size 64 per GPU are
shown in the top left of Fig. 3. PyTorch has the highest throughput,
which can process 127, 203 and 377 images per second as the GPU
number increases from 1, 2 to 4, compared with 79, 156 and 316
images in Caffe. TensorFlow has the lowest processing speed on
the VGG-16 model, which can process 76, 117 and 196 images
per second, respectively. It can be seen that on a single GPU,
PyTorch is the best, and Caffe is slightly better than TensorFlow.
With the number of GPUs doubls, scalability of Caffe is the most
remarkable (97%), while PyTorch and TensorFlow have similar
speedup performances, over 50%. When the GPU number is 4,
speedup of Caffe is up to 103% compared with 68% in TensorFlow
and 86% in PyTorch.

The performance of the Inception-v3 model with a batch size 25
per GPU is shown in the top right of Fig. 3. As for the throughput
across deep learning frameworks, PyTorch (114, 192 and 357
images per second on 1, 2 and 4 GPUs) is faster than Caffe (74,
146 and 294 images) and TensorFlow (106, 160 and 279 images).
On a single GPU, PyTorch displays a better performance than Ten-
sorFlow and Caffe. When the GPU number doubles, speedup of
Caffe, TensorFlow and PyTorch is 97%, 51% and 68%. When the
number of GPUs increases to 4, Caffe, TensorFlow and PyTorch
have 101%, 68% and 86% improvement than the performance on
2 GPUs.

The performance of the ResNet-50 model with a batch size 25
per GPU is shown in the bottom left of Fig. 3. PyTorch can process
464, 268 and 171 images per second on 4, 2 and 1 GPUs, compared
with 300, 149 and 77 images in Caffe and 252, 222 and 160 images
in TensorFlow. On a single GPU, PyTorch is the fastest compared
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with TensorFlow and Caffe. When the number of GPUs doubles,
speedup of Caffe, TensorFlow and PyTorch is 94%, 39% and 57%. If
the number of GPUs changes to 4, Caffe has the best speedup
(101%), while PyTorch is much better than TensorFlow (73% com-
pared with 13.5%).

The batch size per GPU of the DenseNet-121 model is set to 20
in our experiments, and results are shown in the bottom right of
Fig. 3. TensorFlow (368, 212 and 119 images per second) has the
second-best throughput behind PyTorch (388, 237 and 155), with
Caffe lagging relatively far behind (238, 115 and 59). The through-
put of PyTorch is slightly better than TensorFlow, and PyTorch and
TensorFlow are almost two times faster than Caffe on a single GPU.
When the number of GPUs is doubled, scalability of Caffe (95%) is
the best, followed by TensorFlow (78%) and PyTorch (53%). With 4
GPUs, Caffe, TensorFlow and PyTorch further achieve 107%, 74%
and 64% speedup, respectively.

As for the efficiency of frameworks, TensorFlow implicitly uses
NHWC tensor layout. On the contrary, PyTorch adopts NCHW lay-
out naively in which cuDNN is better optimized. This can explain
why PyTorch is able to process more images per second than Ten-
sorFlow. Meanwhile, PyTorch tends to use FFT-based convolutions
which are faster than GEMM-based convolutions used in Caffe [48].
Because the convolutional operation is the computation bottleneck
in CNN models, PyTorch is faster than Caffe. Due to its excellent
throughput in above experiments, PyTorch is selected to conduct
the remaining experiments.

But as for the scalability of different frameworks, it should be
noted that the speedup of Caffe is around 100%. We attribute this
to the reason that loading images from hard disks instead of more
efficient LMDB data format becomes a bottleneck in Caffe. To train
CNN models with SGD, the model is iteratively updated with the
feeding data. There are four steps generally in one iteration. (1)
Load a mini-batch of data from hard disks to CPU memory and
transfer the data to GPU memory. The time in this step is repre-
sented by tdata. (2) Each GPU launches kernels to finish the
forward- and backward- operations. (3) The gradients from all
GPUs are aggregated. tagg refers to the time of the gradient aggre-
gation. (4) The model in each GPU is updated based on the aggre-
gated gradients. Let tgpu represent the total time in step (2) and (3).
It is obvious to represent the time titer in one iteration with the fol-
lowing equation:

titer ¼ tdata þ tgpu þ tagg ð7Þ
Since loading images for the next iteration can be overlapped

with GPU computation for the current iteration, and gradient
aggregation on the previous iteration can be parallelized with
backward operation on the current iteration. So the average itera-
tion time in Caffe is:

titer ¼ maxftdata; tgpu; taggg ð8Þ
Because we receive info ‘‘waiting for data” during training in

Caffe, prefetching data is too slow for the next iteration, and GPU
computation and gradient aggregation needs to wait for the data
loading in every iteration. In other words, tdata is larger than tgpu
and tagg . When more GPUs are used, GPU computation and gradient
aggregation are still hidden behind the data loading, which leads to
a bottleneck in the scaling performance. Therefore a linear speedup
is achieved in Caffe.

Efficient data communication between GPUs is important to
ease the overhead of gradient synchronization: TensorFlow and
PyTorch use the Googles Remote Procedure Call (gRPC) [61] Library
and NVIDIA Collective Communications Library (NCCL) [62],
respectively. Since NCCL has a higher efficiency and lower latency
in collective gradient communications [63], TensorFlow has a sub-
optimal scaling performance compared with PyTorch.
4.4. Comparison of different training datasets

In this section, we investigate the effect of different training
datasets (i.e. UMDFaces, WebFace, VGGFace2 and MS-Celeb-1M)
on five test datasets (i.e. LFW, VGGFace2-test, IJB-A quality, DFW
and UMDFaces). Experimental results are shown in Tables 14 and
15.

Based on comparative results of different frameworks, PyTorch
is selected to run experiments in this section because of its high
throughput and relatively good accuracies. Due to its good perfor-
mance, the ResNet-50 is used as the baseline model. The model is
trained with 14 epochs. The learning rate is set to 0.1 and divided
by 10 every 6 epochs. The batch size is 210 on 3 GPUs. In order to
compare training datasets fairly, overlapped subjects between
training and test datasets are removed. After removing, an over-
view of MS-Celeb-1M, UMDFaces, VGGFace2, and WebFace data-
sets is presented in Table 16. In terms of breadth (number of
subjects), MS-Celeb-1M dataset (84,936) gets the first place, fol-
lowed by WebFace dataset (10,182), VGGFace2 dataset (8410),
and then UMDFaces dataset (5222). As for depth (number of
images per subject), VGGFace2 dataset (374) is significantly supe-
rior than both UMDFaces (45), MS-Celeb-1M (45) and WebFace
(39) datasets. The depth of UMDFaces, MS-Celeb-1M and WebFace
datasets are very similar.

For the LFW verification task, MS-Celeb-1M dataset achieves
the best performance, 0.1% improvement compared with the
VGGFace2 dataset. The performance of WebFace dataset slightly
lags behind, while UMDFaces dataset ranks the last by a large mar-
gin. This indicates that MS-Celeb-1M, VGGFace2 and WebFace
datasets are more suitable for this task. This may be because these
three datasets are broader compared to UMDFace dataset, allowing
the model to learn more discriminative features to increase inter-
class distances and verify if one pair of images belong to the same
subject or not. It is worth noting that the LFW dataset was an early
benchmark for face verification. Its performance is almost satu-
rated [21,6]because most faces in LFW dataset are close to frontal.
MS-Celeb-1M and VGGFace2 datasets may have good potentials for
more challenging tasks.

For the cross-pose face matching task on VGGFace2-pose and
UMDFaces-test, the VGGFace2 dataset outperforms the UMDFaces
for training by a significant margin. WebFace and MS-Celeb-1M
datasets lag behind. Since modern deep learning is heavily data-
driven, the generalization performance depends on the distribu-
tion of the training dataset [64]. It is known that the data genera-
tion pipeline in VGGFace2 dataset aims to encourage age and pose
diversity for each subject [23]. Pose information is provided in
UMDFaces dataset which has more pose variations compared to
the WebFace [26]. Although both UMDFaces and VGGFace2 data-
sets have pose information, their large gaps on depth and breadth
explains why VGGFace2 dataset achieves much better perfor-
mances than UMDFaces dataset for cross-pose matching tasks. In
contrast, despite a large number of images in the MS-Celeb-1M
dataset, most of them are frontal faces because of without specific
data collection rules in the data collection stage.

For the cross-quality face matching task on IJB-A, VGGFace2
dataset ranks the first on the Low2High task, and MS-Celeb-1M
gets the first place on the Middle2High task, respectively, followed
by WebFace dataset and then UMDFaces dataset. Because images
in these four datasets are crawled from the Internet, they contain
various quality levels. If there are more images in the training data-
set, there are more images with different image qualities, which
guide the model to learn robust features to various image qualities.
This explains why VGGFace2 and MS-Celeb-1M datasets are sub-
stantially superior to WebFace and UMDFaces. On the other side,
MS-Celeb-1M dataset (cleaned by DeepGlint) tends to have high
ratios about middle- and high- level image qualities than



Table 14
Experimental results of the ResNet-50 trained on the UMDFaces, WebFace and VGGFace2 datasets and tested on the LFW, VGGFace2-test and IJB-A quality datasets.

Dataset LFW (%) VGGFace2 (Similarity Score) IJB-A (%), different FARs

Pose Age Low2High Middle2High

Front Three-quarter Profile Young Mature 1% 0.1% 0.01% 1% 0.1% 0.01%

UMDFaces 95.5 Front 0.783 0.755 0.555 Young 0.707 0.436 40.8 19.5 7.7 69.4 45.5 29.3
Three-quarter 0.760 0.793 0.645 Mature 0.452 0.743
Profile 0.558 0.642 0.749

WebFace 98.2 0.783 0.761 0.601 0.707 0.438 54.5 29.8 6.9 82.3 62.2 41.8
0.767 0.793 0.677 0.464 0.762
0.611 0.683 0.739

VGGFace2 98.8 0.820 0.792 0.673 0.748 0.497 81.8 62.8 38.1 94.8 85.4 69.0
0.798 0.826 0.736 0.522 0.790
0.678 0.740 0.786

MS-Celeb-1M 98.9 0.776 0.734 0.610 0.683 0.412 76.2 59.5 37.6 95.0 89.1 77.2
0.739 0.777 0.684 0.431 0.739
0.615 0.685 0.741

Table 15
Experimental results of the ResNet-50 trained on the UMDFaces, WebFace and VGGFace2 datasets and tested on the DFW and UMDFaces-test datasets.

Dataset DFW (%),
different FARs

UMDFaces (%), different FARs

1% 0.1% Easy Moderate Difficult

1% 0.1% 0.01% 1% 0.1% 0.01% 1% 0.1% 0.01%

UMDFaces 21.4 7.6 76.5 59.3 44.9 65.6 43.0 23.8 56.7 32.6 19.4
WebFace 50.6 26.6 69.8 54.3 42.7 57.7 36.8 22.6 48.0 24.4 10.4
VGGFace2 49.0 25.3 80.3 66.6 54.5 72.2 55.9 43.5 66.0 43.4 24.7

MS-Celeb-1M 26.8 8.4 66.9 49.4 37.1 55.1 30.2 14.5 47.1 22.9 8.3

Table 16
An overview of MS-Celeb-1M, UMDFaces, VGGFace2, and WebFace datasets, after
removing overlapped subjects with test datasets.

Dataset # of subjects # of images # of images per
subject (average)

MS-Celeb-1M 84,936 3,838,654 45
UMDFaces 5222 236,856 45
VGGFace2 8410 3,141,890 374
WebFace 10,182 393,700 39
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VGGFace2 dataset, resulting in a better performance in the Mid-
dle2High task.

For the DFW challenge, WebFace dataset performs better than
other two datasets, although it is just marginally better than
VGGFace2 dataset. The reason may be that images from WebFace
dataset are not manually identity labeled and appropriate noise
level makes the model more robust to recognize the disguised
faces and reject impersonators. VGGFace2 dataset contains much
more information and has closer gap with DFW dataset than UMD-
Faces dataset in terms of depth and breadth, resulting in the
remarkable performance improvement. On the other side, MS-
Celeb-1M dataset cleaned by DeepGlint (http://trillionpairs.deep-
glint.com/) may have fewer disguised faces in the dataset, leading
to an inferior performance.

For the cross-age face matching task on VGGFace2-age dataset,
VGGFace2 dataset obviously obtains a better performance, achiev-
ing around 3% improvement because it contains more age varia-
tions within the same subject during the image crawling stage
[23]. As shown in Table 14, for these three training datasets, the
performance improvement is more significant when face matching
across young and mature faces, which is more difficult than young
to young and mature to mature face matching. Besides, young to
young matching has more remarkable improvement compared
with mature to mature matching. These results can be attributed
to the reason that more young faces in VGGFace2 dataset enable
the model to learn more age-invariant features, especially for
young to mature face matching. Although WebFace dataset has
more images than UMDFaces dataset, these images are more likely
to deem as mature faces. This explains why mature to mature face
matching has better accuracy improvement, followed by young to
mature matching. Young to young face matching performance
remains almost the same for WebFace and UMDFaces datasets.
The ratio of mature faces in the MS-Celeb-1M dataset may be much
higher than young faces. Therefore, MS-Celeb-1M dataset performs
poorly in the cross-age task.

Because VGGFace2 dataset takes depth and breadth into consid-
eration, guaranteeing rich intra-subject variations and inter-
subject diversity. Moreover, it collects face images with a wide
range of poses and ages. This explains why it obtains the best accu-
racy on cross-pose, cross-age and cross-quality face matching
tasks. Since a large number of high-quality faces in the revised
MS-Celeb-1M dataset, it achieves the best result on the LFW veri-
fication task. For the DFW challenge, some outliers in WebFace
dataset make CNN more robust to disguised faces and imperson-
ators, so WebFace provides slightly better performance than
VGGFace2. Although UMDFaces dataset has a smaller number of
images than WebFace dataset, it has more pose variations and per-
forms better on the cross-pose face matching task.
5. Conclusions and future work

We have performed a benchmark of various models (i.e.
AlexNet-v1, AlexNet-v2, VGG-16, VGG-16-BN, GoogLeNet,
Inception-v3, ResNet-50, DenseNet-121 and LightCNN-29, Center-
loss, SphereFace, CosFace and ArcFace) for face recognition under
different frameworks (i.e. PyTorch, TensorFlow and Caffe) in two
folds. First, we compare the accuracy of different CNN models
within the same deep learning framework. Experimental results
show that models, such as the Center-loss, SphereFace, CosFace,
ArcFace, GoogLeNet, Inception-v3 and ResNet-50 models achieve

http://trillionpairs.deepglint.com/
http://trillionpairs.deepglint.com/
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better performances. Second, we compare the accuracy of the same
CNN model under different frameworks. Results show that the
PyTorch based models tend to obtain the best performance among
these three frameworks because of its better weight initialization
methods and data pre-processing steps, followed by TensorFlow
and then Caffe.

The running time performance of frameworks PyTorch, Ten-
sorFlow and Caffe, and GPU platforms are compared as well.
PyTorch has the highest throughput and TensorFlow obtains
slightly better throughput than Caffe in most cases because of
the difference of data layout and convolution implementations
among these frameworks. For five GPU platforms, five different
designs (e.g. architecture, CUDA core number, memory speed and
bandwidth) are tested and we found that the Titan Xp displays
slightly faster speed than GTX 1080Ti, Titan X(Pascal) and Titan
X(Maxwell) and Titan Z is nearly 2 times slower than the other four
GPUs. We also compare the scalability of different frameworks.
Experiments show that Caffe has almost linear speedup because
of the data loading bottleneck. Because the communication library
used in PyTorch (i.e. NCCL) is better than TensorFlow (i.e. gRPC),
PyTorch has a slightly better scaling performance.

Four training datasets (i.e. UMDFaces, WebFace, VGGFace2 and
MS-Celeb-1M) are investigated for training the CNN models, and
five test datasets (i.e. LFW, VGGFace2-test, IJB-A, DFW and
UMDFaces-test) are used for recognition accuracy measures.
Because of its rich intra-subject variations and inter-class diversity,
age and pose information, VGGFace2 dataset is preferable to train
CNN models; MS-Celeb-1M dataset (http://trillionpairs.deep-
glint.com/) has more high-quality frontal faces, which makes it
suitable for the controlled face verification task, like access control;
Due to the larger pose variations, UMDFaces dataset achieves a
good performance on pose related tasks than the WebFace dataset;
WebFace allows CNNs to learn more robust features, distinguishing
disguised faces and impersonators and surpassing UMDFaces and
VGGFace2 datasets on the DFW challenge.

Further, a set of deep face models trained on the WebFace data-
set under three frameworks will be made publicly available. Users
can take them as baselines to further fine-tune them for their tasks.
This will save the training time significantly required for face
recognition models, and helpful for beginners.

In future, we plan to evaluate the performance of distributed
frameworks over multi-machine environments. And also, newer
state-of-the-art face recognition models will be added continu-
ously with more and more newer GPU platforms.
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