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a b s t r a c t 

Subspace learning for dimensionality reduction is an important topic in pattern analysis and machine 

learning, and it has extensive applications in feature representation and image classification. Linear dis- 

criminant analysis (LDA) is a well-known subspace learning approach for supervised dimensionality re- 

duction due to its effectiveness and efficacy in discriminant analysis. However, LDA is not stable and 

suffers from the singularity problem when addressing small sample size and high-dimensional data. In 

this paper, we develop a novel subspace learning model, named sparse approximation to discriminant 

projection learning (SADPL), to learn the sparse projection matrix. Different from the traditional LDA- 

based methods, we learn the projection matrix based on a new objective function rather than the Fisher 

criterion, which avoids the matrix singularity problem. In order to distinguish which features play an 

important role in discriminant analysis, we embed a feature selection framework to the subspace learn- 

ing model to select the informative features. Finally, we can attain a convex objective function which 

can be solved by an effective optimization algorithm, and theoretically prove the convergence of the 

proposed optimization algorithm. Extensive experiments on all sorts of image classification tasks, such 

as face recognition, palmprint recognition, object categorization and texture classification show that our 

SADPL achieves competitive performance compared to the state-of-the-art methods. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

In computer vision and machine learning, image classification is

n important research topic whose goal is to classify an individual

mage into a specific category [1] . However, the high-dimensional

mages make the classification problem difficult. In order to deal

ith this problem, many subspace learning-based dimensionality

eduction methods have been proposed [2–4] . They in general in-

lude unsupervised [5] , semi-supervised [6] and supervised learn-

ng approaches [7] . Among them, the classical ones include prin-

ipal component analysis (PCA) [8] , linear discriminant analysis

LDA) [9–11] , and so on. PCA is an unsupervised subspace learning

pproach, which is to find a projection matrix by maximizing the
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eterminant of the total scatter matrix of the training images and

roject the original image space into a low-rank subspace. LDA has

een shown better performance than PCA, and it has been used

ith success in a variety of specific applications such as face recog-

ition [12–14] and image classification [15,16] . The basic idea of

DA is to find a projection matrix by maximizing the between-class

ariation and minimizing the within-class variation, and it needs

o estimate the inverse of within-class covariance matrix, thus the

erformance will degenerate rapidly in the case of small sample

ize (SSS). 

In the past few years, this problem has attracted a lot of atten-

ions, and many methods-based LDA have been presented to im-

rove the performance and efficiency. The straightforward method

s PCA plus LDA which first adopts PCA to decrease the dimen-

ion of the image space, and then utilizes the classical LDA to de-

rease the dimension to C − 1 , where C is the number of sample

lasses. However, Dai et al. [17] have proven that LDA still fails

ven after a PCA procedure. They propose a regularized discrim-

nant analysis (RDA) model to deal with the SSS problem. Penal-

zed discriminant analysis (PDA) is also an improvement of LDA

18,19] . The objective of PDA is to deal with the SSS problem and

mprove the discriminative ability to smooth the coefficients of

https://doi.org/10.1016/j.patcog.2019.106963
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2019.106963&domain=pdf
https://doi.org/10.13039/501100001809
mailto:yuyufeng220@163.com
mailto:rchuanx@mail.sysu.edu.cn
mailto:minjiang.aca@gmail.com
mailto:sunmy8@mail2.sysu.edu.cn
mailto:stsddq@mail.sysu.edu.cn
mailto:guodong.guo@mail.wvu.edu
https://doi.org/10.1016/j.patcog.2019.106963


2 Y.-F. Yu, C.-X. Ren and M. Jiang et al. / Pattern Recognition 96 (2019) 106963 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

t

 

t  

t  

[  

i  

g  

t  

(  

s  

d  

[  

r  

f  

r  

t

 

t  

i  

t  

h  

o  

l  

S  

m  

S  

 

a  

l  

t  

d  

p  

r  

s  

p  

S  

t  

M  

o  

f  

F  

t  

i  

i  

a  

b

 

 

 

 

 

 

 

 

 

 

 

S  

a  
discriminant vectors. However, the major shortcoming of PDA is

that it has no good flexibility [20] . Considering that graph embed-

ding technique has been used with success, Cai et al. [21] con-

sider both spectral graph and regression analysis to present a

novel method for improving the discriminative ability, called SRDA.

Specifically, SRDA does not need to compute the eigenvector, and

only deals with the regularized least square problems. Thus, it can

reduce the computational complexity and storage cost. Zheng et al.

[22] argue that the class empirical mean may not be equivalent to

the expectation in practice and develop a perturbation LDA via uti-

lizing the perturbation random vectors. Cai et al. [23] consider that

the covariance matrix cannot be computed effectively if the train-

ing samples are not enough and present a semi-supervised dis-

criminant analysis model (SDA), in which the labeled training sam-

ples are utilized to extract discriminant structure and both labeled

and unlabeled training samples are used to extract the intrinsic ge-

ometrical structure. Lai et al. [24] argue that these methods which

utilize the l 2 -norm to depict the scatter matrix of the data are

sensitive to the outliers, and adopt the l 2,1 -norm to propose an

unified rotational invariant LDA (RILDA) model for dimensionality

reduction. 

Recently, local structure has been proven that it is important to

subspace learning for dimensionality reduction. Cai et al. [25] con-

sider that local structure is more helpful for improving discrimi-

native ability than global structure when the training samples are

not enough, and propose a locality sensitive discriminant analysis

(LSDA) model. The objective of LSDA is to learn a projection ma-

trix and project the original sample space into a subspace. And in

the subspace the samples of the same class should be close and

the samples of the different class should be far apart. Moreover,

locality preserving projection (LPP) [26] has also been embedded

into subspace learning. Sugiyama [27] utilizes the locality preserv-

ing property of LPP to deal with multi-modal samples, and present

a local FDA model. Fan et al. [28] argue that the local sample struc-

ture is more effectively than the global structure for discriminant

subspace learning and propose an LLDA algorithm, in which the

local linear discriminant vectors are learnt to construct the projec-

tion matrix. 

It should be noted that these subspace learning methods have a

common shortcoming that the learnt low-dimensional features are

the combination of all original features. These features are not dis-

tinguished which ones play an important role in discriminant sub-

space learning [29] . In order to address this problem, some sparse

and robust methods have been presented to extract the important

information for subspace learning and dimensionality reduction.

Typical ones like l 1 -PCA [30] , R 1 -PCA [31] and l 1 -LDA [32] adopt

l 1 -norm to replace l 2 -norm for improving the sparsity and robust-

ness. Kwak [30] proposes a robust PCA based on l 1 -norm ( l 1 -PCA),

which is robust to outliers and is also rotational invariant. The l 1 -

norm optimization can be solved by a simple and efficient algo-

rithm to find a locally maximal solution. Similar to Kwak [30] , Ding

et al. [31] also present a rotational invariant l 1 -norm PCA ( R 1 -PCA)

which softens the effects of outliers. Different from l 1 -PCA, R 1 -PCA

can find a unique global solution. To improve the robustness and

sparsity of LDA, Zhong et al. [32] propose a l 1 -norm LDA, which

can also effectively overcome the singular problem. In addition,

sparse PCA (SPCA) [33] extracts the sparse principle components

by combining the least angle regression [34] and l 1 -norm elastic

net [35] regression. Sparse discriminant analysis (SDA) [36] im-

poses a sparseness criterion to linear discriminant analysis such

that feature selection and classification can be implemented at the

same time. Sparse locality-preserving embedding (SLPE) [37] in-

corporates l 1 penalty with conventional locality preserving projec-

tions to learn sparse projections. In addition, sparse LDA (SLDA)

[38] learns the sparse projections via imposing the lasso constraint

[39] . It can be used to address the data piling problem. However,
s mentioned in [40] , for SDA, SLPE, and SLDA, there may still be

he matrix singularity and small sample size problems. 

Recently, l 2,1 -norm has been commonly used in feature selec-

ion. For instance, Liu et al. [41] impose the l 2,1 -norm on the

ransformation matrix to implement feature selection. He et al.

42] present a l 2,1 -norm regularized correntropy model to extract

nformative features. Then an effective alternate optimization al-

orithm is proposed to solve the non-convex correntropy objec-

ive function. In [43] , a novel robust linear discriminant analysis

RLDA) via using the l 2,1 -norm to replace l 2 -norm has been pre-

ented, in which the l 2,1 -norm can be embedded into the linear

iscriminant analysis to improve the robustness. As mentioned in

44] , Yang et al. incorporate discriminative analysis and l 2,1 -norm

egularization term into a joint model to select the discriminative

eatures. Nie et al. [45] adopt l 2,1 -norm on both loss function and

egularization term to improve the effectiveness of feature selec-

ion. 

Motivated by recent process in subspace learning and fea-

ure selection, in this paper we propose a novel subspace learn-

ng and feature selection algorithm, called sparse approximation

o discriminant projection learning (SADPL). The proposed SADPL

as resemblance to some subspace learning-based LDA meth-

ds [13,27,28,46,47] , but is different from those. Those subspace

earning-based LDA methods consider the eigenvectors-matrix of

 W 

−1 S B corresponding to nonzero eigenvalues as the projection

atrix (Here S B denotes the between-class scatter matrix and

 W 
is the within-class scatter matrix.), while SADPL considers

( S W 
+ S B ) 

−1 A as projection matrix (Here A is a low-rank matrix

nd S B = AA 
T .). In addition, SADPL differs from other subspace

earning-based LDA methods in that SADPL estimates the projec-

ion matrix based on a new objective function rather than the tra-

itional Fisher criterion, and thus without the matrix singularity

roblem caused by the eigenvalue decomposition on Fisher crite-

ion to get the projection matrix. In addition, there is no feature

election in [13,27,28,46] to distinguish which features play an im-

ortant role in discriminant subspace learning, while the proposed

ADPL utilizes feature selection to extract the important informa-

ion for subspace learning and dimensionality reduction. Although

GSDA [48] and L21FLDA [29] also consider feature selection, they

nly add l 2,1 -norm penalty term to the objective function, different

rom the objective function of SADPL. Moreover, SADPL adopts the

 -norm and l 2,1 -norm penalty terms simultaneously, which makes

he solution of the objective function more stable while achiev-

ng sparse. Finally, the derived objective function of SADPL, which

s convex, can be solved by an effective optimization algorithm,

nd the convergence of the proposed optimization algorithm can

e proved theoretically. 

Our main contributions include: 

• Developing a new estimation method of projection matrix.

Different from the conventional subspace learning based LDA

methods, SADPL computes ( S W 
+ S B ) 

−1 A as projection matrix,

which can avoid the matrix singularity problem. 
• Joint using of F -norm and l 2,1 -norm to embed a feature selec-

tion framework into the subspace learning, which is effective to

select informative features and lead a sparse subspace. 
• Proposing a supervised sparse discriminant projection learning

algorithm, which preforms subspace learning and feature selec-

tion simultaneously. It also guarantees a globally optimal solu-

tion. 
• Proposing an efficient optimization algorithm to effectively

solve the derived objective function, which can be theoretically

proved for the convergence. 

The remainder of this paper is organized as follows.

ection 2 presents our subspace learning and feature selection

lgorithm, i.e., sparse approximation to discriminant projection
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earning. In Section 3 , experiments are conducted to validate the

roposed method, and compared to the state-of-the-art methods

n various image databases to show the competitive performance

f our algorithm. Finally, we draw the conclusion in Section 4 . 

. Sparse approximation to discriminant projection learning 

In this section, we introduce the proposed method called sparse

pproximation to discriminant projection learning. The main con-

ent will be separated into the following several parts including

heoretical background, the derived objective function, algorithm

ptimization and computational complexity analysis. 

.1. Notations 

For a vector x ∈ R d , we define the l 2 -norm as ‖ x ‖ 2 = 

√ ∑ d 
i =1 x 

2 
i 
.

or a matrix M ∈ R d ×n , the i th row and j th column are defined

s m 
i and m j , respectively. The F -norm and l 2,1 -norm of the ma-

rix M are defined as ‖ M ‖ F = 

√ ∑ d 
i =1 ‖ m 

i ‖ 2 
2 

= 

√ ∑ n 
j=1 ‖ m j ‖ 2 2 and

 M ‖ 2 , 1 = 

∑ d 
i =1 ‖ m 

i ‖ 2 = 

∑ d 
i =1 

√ ∑ n 
j=1 m 

2 
i j 
, respectively. 

.2. Theoretical background 

We assume that X = [ x 1 , x 2 , . . . , x n ] ∈ R d×n is a data matrix

hich consists of n samples from C classes. For the c th class, it

ontains n c samples, c = 1 , 2 , . . . , C. Let u c and u be the sample

ean for class c and the overall sample mean, respectively. Then

he between-class scatter matrix S B and within-class scatter ma-

rix S W 
are denoted as [11] 

 B = 

C ∑ 

c=1 

n c (u 
c − u )(u 

c − u ) T , (1)

 W = 

C ∑ 

c=1 

n c ∑ 

i =1 

(x c i − u 
c )(x c i − u 

c ) T , (2)

here x c 
i 
is the i th sample from class c . 

Our subspace learning algorithm is built on the proper-

ies of low-rank decomposition of matrix and representation of

igenvectors-matrix [48] , which are shown in Propositions 1 and 2 .

roposition 1. Define S B as in (1) . There exists a low-rank matrix A

uch that S B = AA 
T 
, and the kth column of A is denoted as 

 k = 

√ 

n k +1 

(∑ k 
r=1 n r (u 

r − u 
k +1 ) 

)
√ 

n 
√ ∑ k 

r=1 n r 
∑ k +1 

r=1 n r 

, (3) 

here k = 1 , . . . , C − 1 . 

Note that the columns of the matrix A can be seen as the dif-

erences among the class means. Moreover, they denote orthogonal

ontrasts among the means of C classes. The proof of this Proposi-

ion can be found in [48] . 

Based on the Proposition 1 , we obtain the intuitive representa-

ion for the eigenvectors-matrix of S W 

−1 S B . 

roposition 2. Assume A is defined as in (3) , then existing an or-

hogonal matrix Q such that ( S W 
+ S B ) 

−1 AQ is the eigenvectors-

atrix of S W 

−1 S B , corresponding to nonzero eigenvalues. 

roof. According to the eigenvalue decomposition of matrix, ex-

sting an orthogonal matrix Q such that A 
T ( S W 

+ S B ) 
−1 A = Q�Q 

T ,

nd � is a diagonal matrix, in which the i th diagonal element μi is

he i th nonzero eigenvalue. Assume � = ( S W 
+ S B ) 

−1 AQ , then we

ave 

( S W + S B ) 
−1 S B � = ( S W + S B ) 

−1 S B ( S W + S B ) 
−1 AQ . 
ubstituting S B by AA 
T , we get 

( S W + S B ) 
−1 S B � = ( S W + S B ) 

−1 AQ�

= ��. (4) 

hen let’s multiply both sides of Eq. (4) by S W 
+ S B , we have 

 B � = S W �� + S B ��. 

fter performing a simple transformation, we have 

 B �(I − �) = S W ��, 

nd 

 W 

−1 S B � = ��(I − �) −1 . (5) 

�

In (5) , according to the definition of eigenvalue decomposition,

e can see that � = ( S W 
+ S B ) 

−1 AQ is the eigenvectors-matrix of

 W 

−1 S B . 

It should be noted that we assume the matrix I − � is invertible

n (5) , that is, every nonzero eigenvalue in � is not equal to one.

n most cases, this assumption always holds. However, if it is not

nvertible, we can set I − � as I − � + εI , here ε is a perturbation

onstant. It also holds to our method. 

Similar to the LDA-based methods, a straightforward way is to

enote � as the projection matrix, but the orthogonal matrix Q

s unknown. In many state-of-the-art image classification methods,

n image is represented as a high-dimensional feature vector, and

he high-dimensional feature vector can be projected into a low-

imensional feature vector by a projection matrix, then the simi-

arity between a query image and a gallery image is evaluated on

he basis of the similarity measure between the low-dimensional

eature vectors. Here we will prove that the orthogonal transforma-

ion makes no difference to the classification criteria based on vari-

us similarity measures, such as Euclidean distance, inner product,

orrelation coefficient and Mahalanobis distance. Without loss of

enerality, we consider Euclidean distance as the similarity mea-

ure, and have the following proposition. 

roposition 3. For any orthogonal matrix Q , the Euclidean distance

f any two samples based on the projection matrix P is the same as

he Euclidean distance based on the projection matrix PQ . 

roof. Assume y is the new testing sample and x is the

raining sample, then we have the Euclidean distance based

n the projection matrix P as ‖ P T y − P T x ‖ 2 
2 

= (y − x ) T PP T (y −
 ) . The Euclidean distance based on the projection matrix

Q can be defined as ‖ ( PQ ) T y − ( PQ ) T x ‖ 2 
2 

= (y − x ) T PQ Q 
T P T (y −

 ) = (y − x ) T PP T (y − x ) . Hence, it proves the correctness of

roposition 3 . �

Note that the Proposition 3 also holds to other similarity mea-

ures, such as inner product, correlation coefficient and Maha-

anobis distance. 

.3. Objective function 

Propositions 2 and 3 show that we can consider ˜ P =
( S W 

+ S B ) 
−1 A as the projection matrix, then we can denote the ob-

ective function as: 

(P ) = min 
P 

1 

2 
‖ ( S W + S B ) 

1 / 2 P − ( S W + S B ) 
−1 / 2 A ‖ 

2 
F 

= min 
P 

1 

2 
T r 

(
P 
T ( S W + S B ) P − 2 A 

T P 

)
. (6) 

Obviously, by performing the derivative of (6) with respect to P

s zero, we can get ˜ P = ( S + S ) −1 A . 
W B 
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For simplification, we have the following objective function: 

J(P ) = min 
P 

1 

2 
T r(P 

T S W P ) + 

1 

2 
T r(P 

T S B P − 2 A 
T P ) 

= min 
P 

1 

2 
T r(P 

T S W P ) + 

1 

2 
‖ A 

T P − I ‖ 
2 
F . (7)

Our next aim is to propose a regularizer and integrate it into

(7) to construct a sparse feature selection model. Note that l 1 -

norm regularizer ‖ P ‖ 1 is widely used to improve the sparsity of

the elements. As indicated in [49] , a common feature of the meth-

ods using l 1 -norm is that they do not distinguish the difference of

the two indices (row and column of P ). But in general they have

different meaning. Here they are the spatial dimensions and the

number of features, respectively. In addition, our objective function

estimates the eigenvectors-matrix of S W 

−1 S B up to an orthogonal

transformation and the element-wise sparsity via l 1 -norm cannot

be maintained under the orthogonal transformation. 

Instead of l 1 -norm, we consider the l 2,1 -norm regularizer as fol-

lows: 

‖ P ‖ 2 , 1 = 

d ∑ 

i =1 

‖ p i ‖ 2 = 

d ∑ 

i =1 

√ √ √ √ 

C−1 ∑ 

j=1 

p 2 
i j 
, (8)

where p i denotes the i th row of matrix P . The l 2,1 -norm regularizer

leads to the row sparsity, namely it promotes the rows of matrix

to get zero elements and considers the correlations of all features.

Moreover, we can see that the row sparsity via l 2,1 -norm is main-

tained under orthogonal transformation. It should be noted that

l 2,1 -norm is also introduced in [50,51] , but they use it for multi-

task learning and semi-supervised learning rather than subspace

learning. 

In addition, we embed the F -norm regularizer ‖ P ‖ 2 
F 
and equa-

tion (8) into (7) , we have the objective function of the presented

method as: 

J(P ) = min 
P 

1 

2 
T r(P 

T S W P ) + 

1 

2 
‖ A 

T P − I ‖ 
2 
F 

+ 

λ1 

2 
‖ P ‖ 

2 
F + λ2 ‖ P ‖ 2 , 1 , (9)

where both λ1 and λ2 are tuning parameters. The goal of the

first two items of the objective function in (9) is to minimize the

within-class variation and control the between-class variation. It

can be seen that the third item helps to avoid the matrix sin-

gularity problem. The fourth item can eliminate noisy features in

the process of feature selection, and reduce the model complexity.

Moreover, as indicated in [52] , the joint use of ‖ P ‖ 2 
F 

and ‖ P ‖ 2,1
is to select the informative features and make the solution of J ( P )

more stable while being sparse. 

2.4. Optimization algorithm 

Notice that (9) is a convex optimization problem, and thus it

does not suffer from the multiple local minima issue, and its global

minimization can be solved efficiently. Some algorithms have been

presented to solve a similar problem [52,53] . In this paper, we

adopt an alternating optimization strategy to find the global so-

lution. 

Taking the derivative of J ( P ) with respect to P as zero, we can

get 

∂ J(P ) 

∂P 

= S W P + A (A 
T P − I ) + λ1 P + λ2 BP , (10)

where B is a diagonal matrix with the i th diagonal element 

B i,i = 

1 

2 ‖ p i ‖ 2 

. (11)
etting the derivative in (10) to zero, we get 

 = ( S W + AA 
T + λ1 I + λ2 B ) −1 A . (12)

By observing (11) , we can see that the matrix B is not indepen-

ent of the value of P . Hence, we utilize an iterative strategy to op-

imize P and B alternately. Algorithm 1 summarizes the optimiza-

ion procedure. At each iteration, one of the variables P and B is

xed, while the other is updated, and then the roles of P and B are

xchanged. We will prove that the value of the objective function

 ( P ) monotonically decreases along with P and B being updated at

ach iteration, and iterations are repeated until convergence. 

lgorithm 1 SADPL algorithm. 

Input : X ∈ R d×n , λ1 and λ2 . 

Output : P ∈ R d×C−1 . 

1: Compute within-class scatter matrix S W 
and between-class

scatter matrix S B ; 

2: Compute the matrix A based on Proposition 1; 

3: Initialize t = 0 ; 

4: Initialize B 0 ; 

5: while Not convergent do 

6: P [ t+1] = ( S W 
+ AA 

T + λ1 I + λ2 B 
[ t] ) −1 A ; 

7: Update B [ t+1] , here the i th diagonal element 

B 
[ t+1] 
i,i 

= 1 / 2 ‖ (p [ t+1] ) i ‖ 2 ; 
8: t = t + 1 ; 

9: end while 

heorem 1. In Algorithm 1 , the value of the objective function J ( P )

onotonically decreases along with the iteration. 

roof. Assume P [ t+1] is the result of the t + 1 th iteration, and ac-

ording to the Algorithm 1 , we can get 

 
[ t + 1 ] ← min 

P 

1 

2 
T r(P 

T S W P ) + 

1 

2 
‖ A 

T P − I ‖ 
2 
F 

+ 

λ1 

2 
‖ P ‖ 

2 
F + λ2 T r(P 

T B 
[ t] P ) , (13)

hen, we have 

1 

2 
T r 

(
(P 

[ t+1] ) T S W P 
[ t+1] 

)
+ 

1 

2 
‖ A 

T P 
[ t+1] − I ‖ 

2 
F 

+ 

λ1 

2 
‖ P 

[ t+1] ‖ 
2 
F + λ2 T r 

(
(P 

[ t+1] ) T B 
[ t] P 

[ t+1] 
)

≤ 1 

2 
T r 

(
(P 

[ t] ) T S W P 
[ t] 

)
+ 

1 

2 
‖ A 

T P 
[ t] − I ‖ 

2 
F 

+ 

λ1 

2 
‖ P 

[ t] ‖ 
2 
F + λ2 T r 

(
(P 

[ t] ) T B 
[ t] P 

[ t] 
)
. (14)

rom (14) , we get 

1 

2 
T r 

(
(P 

[ t+1] ) T S W P 
[ t+1] 

)
+ 

1 

2 
‖ A 

T P 
[ t+1] − I ‖ 

2 
F 

+ 

λ1 

2 
‖ P 

[ t+1] ‖ 
2 
F + λ2 

d ∑ 

i =1 

‖ (p [ t+1] ) i ‖ 
2 
2 

2 ‖ (p [ t] ) i ‖ 2 

≤ 1 

2 
T r 

(
(P 

[ t] ) T S W P 
[ t] 

)
+ 

1 

2 
‖ A 

T P 
[ t] − I ‖ 

2 
F 

+ 

λ1 

2 
‖ P 

[ t] ‖ 
2 
F + λ2 

d ∑ 

i =1 

‖ (p [ t] ) i ‖ 
2 
2 

2 ‖ (p [ t] ) i ‖ 2 

. (15)

Taking a simple transformation, we obtain 

λ2 

d ∑ 

i =1 

‖ (p [ t+1] ) i ‖ 
2 
2 

2 ‖ (p [ t] ) i ‖ 2 

= λ2 

d ∑ 

i =1 

‖ (p [ t+1] ) i ‖ 2 

− λ2 

( 

d ∑ 

i =1 

‖ (p [ t+1] ) i ‖ 2 −
d ∑ 

i =1 

‖ (p [ t+1] ) i ‖ 
2 
2 

2 ‖ (p [ t] ) i ‖ 2 

) 

, (16)
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Fig. 1. Some face images of the FRGC database. First row: Uncontrolled lighting 

variations; Second row: Controlled lighting variations. 

Fig. 2. Some palmprint images of the 2D plus 3D palmprint database. First row: 

Session 1; Second row: Session 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nd 

λ2 

d ∑ 

i =1 

‖ (p [ t] ) i ‖ 
2 
2 

2 ‖ (p [ t] ) i ‖ 2 

= λ2 

d ∑ 

i =1 

‖ (p [ t] ) i ‖ 2 

− λ2 

( 

d ∑ 

i =1 

‖ (p [ t] ) i ‖ 2 −
d ∑ 

i =1 

‖ (p [ t] ) i ‖ 
2 
2 

2 ‖ (p [ t] ) i ‖ 2 

) 

. (17) 

Substitute ‖ (p [ t+1] ) i ‖ 2 and ‖ ( p [ t ] ) i ‖ 2 by b and a , respectively.
sing the property b − b 2 

2 a ≤ a − a 2 

2 a and combining (15)–(17) to-

ether, we get 

1 

2 
T r 

(
(P 

[ t+1] ) T S W P 
[ t+1] 

)
+ 

1 

2 
‖ A 

T P 
[ t+1] − I ‖ 

2 
F 

+ 

λ1 

2 
‖ P 

[ t+1] ‖ 
2 
F + λ2 

d ∑ 

i =1 

‖ (p [ t+1] ) i ‖ 2 

≤ 1 

2 
T r 

(
(P 

[ t] ) T S W P 
[ t] 

)
+ 

1 

2 
‖ A 

T P 
[ t] − I ‖ 

2 
F 

+ 

λ1 

2 
‖ P 

[ t] ‖ 
2 
F + λ2 

d ∑ 

i =1 

‖ (p [ t] ) i ‖ 2 . (18) 

Obviously, from (18) , we can see that the objective function J ( P )

onotonically decreases along with the iteration, i.e. J(P [ t+1] ) ≤
(P [ t] ) . �

Hence, based on Algorithm 1 , the objective function J ( P ) can get

he optimum solution. In Section 3.3 , we can find that the objective

unction converges very fast. 

.5. Complexity analysis 

We now discuss the computational complexity of the presented

ADPL algorithm. Similar to the other LDA-based approaches, such

s LLDA, we first perform PCA to obtain p principal components,

nd then use SADPL algorithm to learn projection matrix, namely

CA + SADPL. Because the PCA stage of SADPL is the same as the

ther algorithms, we only consider the computational complex-

ty of the SADPL stage. The SADPL algorithm contains two main

arts: the computation of the scatter matrix and the optimization

f the projection matrix. Suppose that the number of training sam-

les and the maximum number of iterations are n and T , respec-

ively, the time complexities of the scatter matrix and the projec-

ion matrix optimization are O ( np 2 ) and O ( Tp 3 ), respectively. Thus,

he time complexity of SADPL stage is O (np 2 + T p 3 ) . 

. Experiments 

To evaluate performance of the presented SADPL model, we

ompare it with both the classical and the state-of-the-art ap-

roaches for image classification, including PCA [8] , LDA [11] , LPP

26] , LSDA [25] , SRDA [21] , RILDA [24] , LLDA [28] and SRRS [54] .

e use MATLAB codes of these compared methods (except for

CA and LDA), which are released/provided by the correspond-

ng authors. Five publicly available image databases, that is, the

RGC [55] face database, the KTH-TIPS [56] texture database, the 2D

lus 3D palmprint database [57] , the COIL-20 [58] object database

nd the CIFAR-10 [59] tiny images database are used to demon-

trate the performance of different methods. In our experiments,

e consider PCA as the baseline algorithm, and retain 600 princi-

le components for all the compared algorithms on the five image

atabases. The 1-nearest neighbor classifier is applied to the pro-

ected samples for classification. 

.1. Databases 

The descriptions of the four databases are as follows: 
(1) FRGC face database: The FRGC database [55] includes 625

subjects and there are about 50,0 0 0 images. These im-

ages were collected at different time, under controlled and

uncontrolled variations (occlusion, expression, illumination, 

etc.). In order to show the different evaluation purposes, we

perform two groups of experiments. In the first group, the

images with controlled illumination variations are used as a

subset, which contains 1375 images of 275 subjects and 5

images for each. These images are cropped and resized to

100 ×100. For each classification, we randomly choose three

images from each subject for training and the rest two for

testing. In the second group, the images with uncontrolled

illumination variations are used as the other subset, which

were obtained in large illumination variations (outside, atri-

ums, hallways, etc.), ageing and image blur. This subset also

has 275 subjects and 5 images for each. Similar to the first

group, these images are cropped and resized to 100 ×100

and we also choose three images from each subject for train-

ing and the rest two for testing. Some cropped images in

this database are shown in Fig. 1 . 

(2) 2D plus 3D palmprint database: The 2D plus 3D palmprint

database [57] includes 400 different palms, and there are

80 0 0 samples, that is, each palm has two separated sessions

and each session has ten palmprint samples. The interval of

time between the two sessions is about 30 days. Each sam-

ple includes a 2D ROI (region of interest) and its correspond-

ing 3D ROI. All samples are cropped and sized to 128 ×128.

Some 2D palmprint images in this database are shown in

Fig. 2 . In this paper, the 2D ROI images are utilized to eval-

uate the performance. In order to show the different evalu-

ation purposes, we divide the experiments into two groups.

In the first group, that is, each palm has ten palmprint sam-

ples, and two of which are randomly selected for training

and the other eight images for testing. In the second group,

all images in session 2 are used as the other subset. Similar

to the first group, we also choose 2 samples from each palm

for training and the other eight for testing. 

(3) K TH-TIPS texture database: K TH-TIPS [56] is a texture

database for material categorization. It contains images of

ten materials, e.g., Sponge, Corduroy, Brown bread. These
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Fig. 3. Some cropped texture images of the KTH-TIPS database. 

Fig. 4. Some cropped object images of the COIL-20 object database. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Classification accuracies for different approaches on the FRGC 

face database (Mean ± STD (%)). 

Method Controlled Uncontrolled 

PCA 90.78 ± 5.79 57.14 ± 3.26 

LDA 91.96 ± 2.91 87.74 ± 1.28 

LPP 99.27 ± 0.59 86.73 ± 1.31 

LSDA 99.29 ± 0.59 86.89 ± 1.25 

SRDA 99.09 ± 0.64 86.65 ± 1.27 

RILDA 98.53 ± 0.91 82.20 ± 1.18 

SRRS 94.91 ± 0.47 60.93 ± 2.32 

LLDA 92.91 ± 0.59 72.98 ± 2.18 

SADPL 99.33 ± 0.54 88.87 ± 1.15 
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images were collected at nine different scales crossing 2 oc-

taves. There are nine images in a combination of 3 lighting

and 3 poses conditions for each scale. All these variations on

lighting, pose, and scale make it large challenging. Most of

these images are cropped to 200 ×200 size. Some cropped

images in this database are shown in Fig. 3 . In our experi-

ments, we randomly choose T s ( T s = 20, 30, 40) images of

each subject for training, and the remaining are used for

testing. 

(4) COIL-20 object database: COIL-20 [58] is an object database.

There are 20 different objects, and each object has 72 im-

ages. These images were collected at pose intervals of five

degrees (i.e., 72 different poses per object). All images are

cropped and resized to 64 ×64. Some cropped images are

shown in Fig. 4 . In our experiments, we randomly choose T s 
( T s = 10, 20, 30) images of each subject for training, and the

remaining are used for testing. 

(5) CIFAR-10 tiny images database: CIFAR-10 [59] is a tiny im-

ages database. It contains images of ten classes, i.e., Airplane,

Automobile, Bird, Cat, Deer, Dog, Frog, Horse, Ship, and

Truck. There are 60 0 0 images per class and totally 60,0 0 0

images in 10 classes. Each image is cropped to 32 ×32 size.

In our experiments, we use 50,0 0 0 images for training, and

the rest 10,0 0 0 images for testing. 

3.2. Parameters evaluation 

In this subsection, we discuss the effect of the different param-

eters to the proposed SADPL model. We take the experiments on

the five databases to test different settings of parameters λ1 and

λ2 in the presented SADPL. In particular, we take the values of λ1 

and λ2 changing by {1e + 01, 1e + 02, 1e + 03, 1e + 04, 1e + 05, 1e + 06}

and {0.001, 0.01, 0.1, 1, 10, 100}, respectively. The classification re-

sults of the presented SADPL model are shown in Fig. 5 . According

to the experimental results, we can see that the performance of the

presented SADPL is not changeless to the variations of parameters.

It could achieve the best performance when the values of param-

eter pair ( λ1 , λ2 ) are set as (10 0,0.0 01), (10 0 0 0,0.01), (10 0 0,0.01),

(10 0 0 0 0,0.1) and (10,0.01) for FRGC, 2D plus 3D, KTH-TIPS, COIL-20

and CIFAR-10 databases, respectively. 
.3. Convergence analysis 

As mentioned in Section 2.4 , the value of the objective function

 ( P ) monotonically decreases along with the iteration, and it will

onverge to the global optimum. Here we report the convergence

ate of our method with respect to the objective function value.

ig. 6 (a) and (b) show the convergence rate of our SADPL on the

RGC and COIL-20 databases. It can be seen that our SADPL con-

erges very fast. The objective function value achieves stable after

bout 8–10 iterations. 

.4. Comparisons between SADPL and other approaches 

In this subsection, comparisons between SADPL and the related

pproaches on the five databases are given. 

(1) Comparisons on the FRGC face database: The experiments

are independently repeated 10 times and the average clas-

sification accuracies and the standard deviations are calcu-

lated and reported. The classification results are summarized

in Table 1 . For the controlled illumination variation sub-

set, we can see that this is a relatively easy classification

task, four algorithms can achieve high accuracies, over 99%.

But the unsupervised PCA only can correctly classify 90.78%

testing samples. Note that the accuracies of LPP, LSDA and

SRDA are 99.27%, 99.29% and 99.09%, respectively. However,

the proposed SADPL algorithm obtains accuracy of 99.33%,

which outperforms the other methods. For uncontrolled sub-

set, all these algorithms decrease their accuracies by differ-

ent degrees due to the more complex illumination varia-

tions. But the proposed SADPL still achieves the best perfor-

mance compared with other algorithms. 

In addition, the Friedman’s test [60] is used to further

demonstrate the significant difference of the classification

performance between the presented SADPL and the com-

pared approaches. It should be mentioned that the Fried-

man’s test is performed by evaluating the hypothesis that

the column impacts are all the same vs they are not all

the same. We combine the results under illumination con-

trolled subset and uncontrolled subset together to perform

the Friedman’s test. Eight columns of the data matrix which

are input to the Friedman’s test procedure, are constituted

from the eight approaches shown in Table 1 . After per-

forming the Friedman’s test, we obtain that the p -value is

2.35e −21, which indicates the significant difference among

these approaches. Besides the p -value, we utilize the result

output by the Friedman’s test and construct an interactive

graph with multiple comparison intervals to further show

the significance, which is displayed in Fig. 7 . Note that the

performance of two methods are not significantly different if

their intervals overlap. Conversely, they are significantly dif-

ferent if their intervals are non-overlap. From the interactive
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Fig. 5. Classification results of the proposed SADPL with different parameter settings on the different databases. (a) FRGC face database. (b) 2D plus 3D palmprint database. 

(c) KTH-TIPS texture database. (d) COIL-20 object database. (e) CIFAR-10 tiny images database. 

Fig. 6. Convergence rate of our SADPL with respect to the objective function value on the different databases. (a) FRGC face database. (b) COIL-20 object database. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

graph shown in Fig. 7 , we can see that six approaches have

mean column ranks significantly different from our SADPL. 

(2) Comparisons on the 2D plus 3D palmprint database: The

experiments are independently repeated 20 times and the

average classification accuracies and the standard devia-

tions are calculated and reported. The results are shown in

Table 2 . As we can see, except for LLDA and RILDA, each of

the other algorithms can obtain the accuracies higher than

96%. The best performance is achieved by our SADPL and the

classification accuracies are 99.28% and 99.66%, respectively.

It indicates that our feature selection model is effective to
select the informative features. 
In addition, we also perform the Friedman’s test to further

evaluate the significant difference between the presented

SADPL and other algorithms on the palmprint database. Be-

ing similar to the test protocol of face image database, eight

columns of the data matrix which are input to the Fried-

man’s test procedure, are constituted from the eight ap-

proaches shown in Table 2 . After performing the Friedman’s

test, we get that the p -value is 4.15e −62. It demonstrates

the significant difference among the classification results ob-

tained by these algorithms. The multicomparison results are

shown in Fig. 8 , in which seven approaches have mean col-

umn ranks significantly different from SADPL. 
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Fig. 7. Significant difference between the presented SADPL and the compared ap- 

proaches on the FRGC face database. 

Fig. 8. Significant difference between the presented SADPL and the compared ap- 

proaches on the 2D plus 3D palmprint database. 

Fig. 9. Significant difference between the presented SADPL and the compared ap- 

proaches on the KTH-TIPS texture database. 

 

 

 

 

 

 

 

 

 

Table 2 

Classification accuracies for different approaches on the 2D plus 

3D palmprint database (Mean ± STD (%)). 

Method Session 1 Session 2 

PCA 97.92 ± 0.67 98.65 ± 0.48 

LDA 98.05 ± 0.64 99.14 ± 0.28 

LPP 96.66 ± 0.70 97.59 ± 0.49 

LSDA 96.67 ± 0.73 97.93 ± 0.48 

SRDA 96.60 ± 0.73 97.75 ± 0.50 

RILDA 94.02 ± 1.14 95.34 ± 0.85 

SRRS 89.29 ± 2.66 89.71 ± 2.54 

LLDA 94.04 ± 2.06 94.25 ± 2.12 

SADPL 99.28 ± 0.29 99.66 ± 0.17 

Table 3 

Classification accuracies for different approaches on the KTH-TIPS 

texture database (Mean ± STD (%)). 

Method T s = 20 T s = 30 T s = 40 

PCA 75.33 ± 3.27 79.92 ± 2.62 82.88 ± 2.71 

LDA 80.83 ± 1.70 84.83 ± 2.69 87.47 ± 2.59 

LPP 81.92 ± 2.24 86.08 ± 2.32 88.08 ± 2.11 

LSDA 45.67 ± 7.59 42.12 ± 2.12 33.08 ± 11.82 

SRDA 82.78 ± 1.67 86.25 ± 2.43 88.14 ± 2.36 

RILDA 48.43 ± 14.33 57.33 ± 13.31 58.75 ± 11.14 

SRRS 75.91 ± 2.98 80.92 ± 2.74 84.57 ± 2.66 

LLDA 75.80 ± 3.15 79.87 ± 2.57 85.61 ± 2.71 

SADPL 84.37 ± 2.36 88.62 ± 2.15 90.41 ± 2.26 

Table 4 

Classificationaccuracies for different approaches onthe COIL-20 ob- 

ject database (Mean ± STD (%)). 

Method T s = 10 T s = 20 T s = 30 

PCA 91.70 ± 3.16 96.03 ± 1.68 97.88 ± 1.21 

LDA 90.79 ± 3.24 94.29 ± 1.50 95.76 ± 1.24 

LPP 87.28 ± 3.31 39.82 ± 43.76 27.38 ± 39.78 

LSDA 79.75 ± 3.70 65.76 ± 16.13 64.83 ± 15.06 

SRDA 86.96 ± 3.46 91.21 ± 1.74 93.13 ± 1.50 

RILDA 70.53 ± 6.73 76.47 ± 10.31 78.80 ± 11.13 

SRRS 93.64 ± 3.22 97.70 ± 1.70 99.03 ± 0.93 

LLDA 87.63 ± 2.88 92.38 ± 1.82 93.88 ± 1.08 

SADPL 94.77 ± 3.34 98.48 ± 1.17 99.32 ± 0.66 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3) Comparisons on the KTH-TIPS texture database: As men-

tioned above, the KTH-TIPS is an extremely challenging tex-

ture database. For all these compared methods, consider-

ing that LBP [61] is effective to texture classification, we

first extract LBP features on this database, and then project

the corresponding subspaces. The experiments are indepen-

dently repeated 20 times and the average classification ac-

curacies are calculated and reported. The classification re-

sults are presented in Table 3 . When twenty images are ran-
domly selected from each subject for training, the unsuper-

vised PCA only can correctly classify 75.33% testing samples.

The supervised algorithms such as LDA, LPP and SRDA at-

tain better results than PCA, and their accuracies are 80.83%,

81.92% and 82.78%, respectively. Almost all these algorithms

can obtain better results as the training size of each class

increases. However, the performance of LSDA is gradually

declining. The main reason may be that the local geomet-

rical information could not be extracted correctly. We can

see that the presented SADPL obtains the best performance,

which is reflected by its accuracies, and the detailed results

for the three different training settings are 84.37%, 88.62%

and 90.41%, respectively. 

We perform the Friedman’s test and get the p -value of

9.97e −88. The multiple comparison results are shown in

Fig. 9 , in which seven groups have mean column ranks sig-

nificantly different from SADPL. Therefore, the statistical sig-

nificance of the differences between SADPL and the com-

pared algorithms are shown. 

(4) Comparisons on the COIL-20 object database: Following the

recognition protocol in Section 3.1 , the experiments are in-

dependently repeated 20 times and the average classifica-

tion accuracies are calculated and reported. The results are

shown in Table 4 . We can see that the performance of the

SADPL model are better than the compared approaches, and

the accuracies are 94.77%, 98.48% and 99.32% respectively.
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Fig. 10. Significant difference between the presented SADPL and the compared ap- 

proaches on the COIL-20 object database. 

Table 5 

Classification accuracies for different approaches on the CIFAR-10 database (%). 

PCA LDA LPP LSDA SRDA RILDA SRRS LLDA SADPL 

91.22 90.63 88.65 90.59 90.57 89.78 90.23 89.58 91.25 

Table 6 

Classification accuracies of SADPL under different regularization terms (%). 

Database FRGC 2D + 3D KTH-TIPS COIL-20 CIFAR-10 

Adding F -norm 99.33 99.28 88.62 99.32 91.25 

Without F -norm 99.07 96.57 86.37 93.14 91.08 

Using l 1 -norm 99.27 99.28 88.59 99.31 91.20 
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In addition, experimental results of three subsets are com-

bined together to perform the Friedman’s test and get the

p -value of 2.98e −89. Hence, it validates a significant differ-

ence among the classification results obtained by the com-

pared subspace learning algorithms. We also use the result

output by the Friedman’s test to conduct a multiple compar-

ison test, and show the multicomparison results in Fig. 10 .

One can see that the performance of SADPL is significantly

different from other algorithms. 

(5) Comparisons on the CIFAR-10 database: For all these com-

pared methods, considering that the CIFAR-10 is an ex-

tremely challenging tiny images database, we utilize train-

ing set to fine-tune all layers of the pre-trained AlexNet

[62] model by continuing the back propagation. Then we

remove the last fully connected layer and treat the rest of

the network as fixed feature extractor. The dimension of the

extracted features is 4096. Finally, we project the features

into the corresponding subspaces. The classification accura-

cies are reported in Table 5 . One can see that all these com-

pared methods obtain the high accuracies around 90%, and

our SADPL gets the best performance. 

.5. Discussion 

In this section, we discuss the effect of the different regulariza-

ion terms to our SADPL algorithm. 

(1) Impact analysis by adding F -norm vs. without F -norm. To an-

alyze the effect of SADPL by adding F -norm in model (9) , we

conduct the compared experiments on the five databases.

The performance comparison results are shown in Table 6 .

Here without F-norm means we do not add F -norm in model

(9) . From the second and third rows in Table 6 , we can see
that the performance of SADPL is better by adding the F -

norm than without F -norm, especially on the 2D + 3D palm-

print database, KTH-TIPS texture database and COIL-20 ob-

ject database. SADPL adding F -norm obtains the accura-

cies of 99.28%, 88.62% and 99.32% on the three databases,

whereas the accuracies of SADPL without F -norm are 96.57%,

86.37% and 93.14%, respectively. It indicates that the joint us-

ing of F -norm and l 2,1 -norm is effective to select the infor-

mative features. 

(2) l 2,1 -norm vs. l 1 -norm. We further discuss the effect of our

SADPL by using l 2,1 -norm to replace l 1 -norm. The corre-

sponding results are shown in Table 6 . Here the results of

the second row in Table 6 are obtained by the joint using of

F -norm and l 2,1 -norm, and the results of the fourth row are

obtained by the joint using of F -norm and l 1 -norm. One can

see that they have the similar performance. However, the

computational cost of SADPL using l 1 -norm is much higher

than using l 2,1 -norm. For instance, on our computer with i7-

6700K CPU and 16.0G memory, the running time of SADPL

using l 2,1 -norm is 18.5 s and 32.1 s on the FRGC and 2D + 3D

databases, while the corresponding running time of SADPL

using l 1 -norm reaches up to 286.5 s and 610.6 s, respectively.

. Conclusion 

We have presented a supervised sparse discriminant projection

earning algorithm which preforms subspace learning and feature

election simultaneously. The proposed method learns the projec-

ion matrix based on a new objective function rather than the tra-

itional Fisher criterion, avoiding the matrix singularity problem

nd also can selecting the informative features. Furthermore, we

ave presented an effective optimization approach to deal with the

ew objective function and proved that the presented optimization

lgorithm is convergent. Extensive experiments have shown that

he proposed approach could achieve competitive performance on

arious image classification tasks. It is clear that the proposed

ethod is a vector-based SADPL. In the future, we will extend the

ector-based SADPL to a matrix-based formulation. 
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