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Subspace learning for dimensionality reduction is an important topic in pattern analysis and machine
learning, and it has extensive applications in feature representation and image classification. Linear dis-
criminant analysis (LDA) is a well-known subspace learning approach for supervised dimensionality re-
duction due to its effectiveness and efficacy in discriminant analysis. However, LDA is not stable and
suffers from the singularity problem when addressing small sample size and high-dimensional data. In
this paper, we develop a novel subspace learning model, named sparse approximation to discriminant
projection learning (SADPL), to learn the sparse projection matrix. Different from the traditional LDA-
based methods, we learn the projection matrix based on a new objective function rather than the Fisher
criterion, which avoids the matrix singularity problem. In order to distinguish which features play an
important role in discriminant analysis, we embed a feature selection framework to the subspace learn-
ing model to select the informative features. Finally, we can attain a convex objective function which
can be solved by an effective optimization algorithm, and theoretically prove the convergence of the
proposed optimization algorithm. Extensive experiments on all sorts of image classification tasks, such
as face recognition, palmprint recognition, object categorization and texture classification show that our

SADPL achieves competitive performance compared to the state-of-the-art methods.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

In computer vision and machine learning, image classification is
an important research topic whose goal is to classify an individual
image into a specific category [1]|. However, the high-dimensional
images make the classification problem difficult. In order to deal
with this problem, many subspace learning-based dimensionality
reduction methods have been proposed [2-4]. They in general in-
clude unsupervised [5], semi-supervised [6] and supervised learn-
ing approaches [7]. Among them, the classical ones include prin-
cipal component analysis (PCA) [8], linear discriminant analysis
(LDA) [9-11], and so on. PCA is an unsupervised subspace learning
approach, which is to find a projection matrix by maximizing the
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determinant of the total scatter matrix of the training images and
project the original image space into a low-rank subspace. LDA has
been shown better performance than PCA, and it has been used
with success in a variety of specific applications such as face recog-
nition [12-14] and image classification [15,16]. The basic idea of
LDA is to find a projection matrix by maximizing the between-class
variation and minimizing the within-class variation, and it needs
to estimate the inverse of within-class covariance matrix, thus the
performance will degenerate rapidly in the case of small sample
size (SSS).

In the past few years, this problem has attracted a lot of atten-
tions, and many methods-based LDA have been presented to im-
prove the performance and efficiency. The straightforward method
is PCA plus LDA which first adopts PCA to decrease the dimen-
sion of the image space, and then utilizes the classical LDA to de-
crease the dimension to C — 1, where C is the number of sample
classes. However, Dai et al. [17] have proven that LDA still fails
even after a PCA procedure. They propose a regularized discrim-
inant analysis (RDA) model to deal with the SSS problem. Penal-
ized discriminant analysis (PDA) is also an improvement of LDA
[18,19]. The objective of PDA is to deal with the SSS problem and
improve the discriminative ability to smooth the coefficients of
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discriminant vectors. However, the major shortcoming of PDA is
that it has no good flexibility [20]. Considering that graph embed-
ding technique has been used with success, Cai et al. [21] con-
sider both spectral graph and regression analysis to present a
novel method for improving the discriminative ability, called SRDA.
Specifically, SRDA does not need to compute the eigenvector, and
only deals with the regularized least square problems. Thus, it can
reduce the computational complexity and storage cost. Zheng et al.
[22] argue that the class empirical mean may not be equivalent to
the expectation in practice and develop a perturbation LDA via uti-
lizing the perturbation random vectors. Cai et al. [23] consider that
the covariance matrix cannot be computed effectively if the train-
ing samples are not enough and present a semi-supervised dis-
criminant analysis model (SDA), in which the labeled training sam-
ples are utilized to extract discriminant structure and both labeled
and unlabeled training samples are used to extract the intrinsic ge-
ometrical structure. Lai et al. [24] argue that these methods which
utilize the I,-norm to depict the scatter matrix of the data are
sensitive to the outliers, and adopt the I,;-norm to propose an
unified rotational invariant LDA (RILDA) model for dimensionality
reduction.

Recently, local structure has been proven that it is important to
subspace learning for dimensionality reduction. Cai et al. [25] con-
sider that local structure is more helpful for improving discrimi-
native ability than global structure when the training samples are
not enough, and propose a locality sensitive discriminant analysis
(LSDA) model. The objective of LSDA is to learn a projection ma-
trix and project the original sample space into a subspace. And in
the subspace the samples of the same class should be close and
the samples of the different class should be far apart. Moreover,
locality preserving projection (LPP) [26] has also been embedded
into subspace learning. Sugiyama [27] utilizes the locality preserv-
ing property of LPP to deal with multi-modal samples, and present
a local FDA model. Fan et al. [28] argue that the local sample struc-
ture is more effectively than the global structure for discriminant
subspace learning and propose an LLDA algorithm, in which the
local linear discriminant vectors are learnt to construct the projec-
tion matrix.

It should be noted that these subspace learning methods have a
common shortcoming that the learnt low-dimensional features are
the combination of all original features. These features are not dis-
tinguished which ones play an important role in discriminant sub-
space learning [29]. In order to address this problem, some sparse
and robust methods have been presented to extract the important
information for subspace learning and dimensionality reduction.
Typical ones like [;-PCA [30], R;{-PCA [31] and [;-LDA [32] adopt
l;-norm to replace l,-norm for improving the sparsity and robust-
ness. Kwak [30] proposes a robust PCA based on [;-norm (l;-PCA),
which is robust to outliers and is also rotational invariant. The I;-
norm optimization can be solved by a simple and efficient algo-
rithm to find a locally maximal solution. Similar to Kwak [30], Ding
et al. [31] also present a rotational invariant /;-norm PCA (R;-PCA)
which softens the effects of outliers. Different from I;-PCA, R;-PCA
can find a unique global solution. To improve the robustness and
sparsity of LDA, Zhong et al. [32] propose a l{-norm LDA, which
can also effectively overcome the singular problem. In addition,
sparse PCA (SPCA) [33] extracts the sparse principle components
by combining the least angle regression [34] and l;-norm elastic
net [35] regression. Sparse discriminant analysis (SDA) [36] im-
poses a sparseness criterion to linear discriminant analysis such
that feature selection and classification can be implemented at the
same time. Sparse locality-preserving embedding (SLPE) [37] in-
corporates [; penalty with conventional locality preserving projec-
tions to learn sparse projections. In addition, sparse LDA (SLDA)
[38] learns the sparse projections via imposing the lasso constraint
[39]. It can be used to address the data piling problem. However,

as mentioned in [40], for SDA, SLPE, and SLDA, there may still be
the matrix singularity and small sample size problems.

Recently, I;;-norm has been commonly used in feature selec-
tion. For instance, Liu et al. [41] impose the I,;-norm on the
transformation matrix to implement feature selection. He et al.
[42] present a I,;-norm regularized correntropy model to extract
informative features. Then an effective alternate optimization al-
gorithm is proposed to solve the non-convex correntropy objec-
tive function. In [43], a novel robust linear discriminant analysis
(RLDA) via using the I,;-norm to replace l,-norm has been pre-
sented, in which the [,;-norm can be embedded into the linear
discriminant analysis to improve the robustness. As mentioned in
[44], Yang et al. incorporate discriminative analysis and I,;-norm
regularization term into a joint model to select the discriminative
features. Nie et al. [45] adopt I,;-norm on both loss function and
regularization term to improve the effectiveness of feature selec-
tion.

Motivated by recent process in subspace learning and fea-
ture selection, in this paper we propose a novel subspace learn-
ing and feature selection algorithm, called sparse approximation
to discriminant projection learning (SADPL). The proposed SADPL
has resemblance to some subspace learning-based LDA meth-
ods [13,27,28,46,47], but is different from those. Those subspace
learning-based LDA methods consider the eigenvectors-matrix of
Sw_!Sg corresponding to nonzero eigenvalues as the projection
matrix (Here Sg denotes the between-class scatter matrix and
Sw is the within-class scatter matrix.), while SADPL considers
(Sw +Sg)'A as projection matrix (Here A is a low-rank matrix
and Sg=AAT.). In addition, SADPL differs from other subspace
learning-based LDA methods in that SADPL estimates the projec-
tion matrix based on a new objective function rather than the tra-
ditional Fisher criterion, and thus without the matrix singularity
problem caused by the eigenvalue decomposition on Fisher crite-
rion to get the projection matrix. In addition, there is no feature
selection in [13,27,28,46] to distinguish which features play an im-
portant role in discriminant subspace learning, while the proposed
SADPL utilizes feature selection to extract the important informa-
tion for subspace learning and dimensionality reduction. Although
MGSDA (48] and L21FLDA [29] also consider feature selection, they
only add I, ;-norm penalty term to the objective function, different
from the objective function of SADPL. Moreover, SADPL adopts the
F-norm and l;-norm penalty terms simultaneously, which makes
the solution of the objective function more stable while achiev-
ing sparse. Finally, the derived objective function of SADPL, which
is convex, can be solved by an effective optimization algorithm,
and the convergence of the proposed optimization algorithm can
be proved theoretically.

Our main contributions include:

Developing a new estimation method of projection matrix.
Different from the conventional subspace learning based LDA
methods, SADPL computes (Sw + Sg)~'A as projection matrix,
which can avoid the matrix singularity problem.

Joint using of F-norm and I,;-norm to embed a feature selec-
tion framework into the subspace learning, which is effective to
select informative features and lead a sparse subspace.
Proposing a supervised sparse discriminant projection learning
algorithm, which preforms subspace learning and feature selec-
tion simultaneously. It also guarantees a globally optimal solu-
tion.

Proposing an efficient optimization algorithm to effectively
solve the derived objective function, which can be theoretically
proved for the convergence.

The remainder of this paper is organized as follows.
Section 2 presents our subspace learning and feature selection
algorithm, i.e.,, sparse approximation to discriminant projection
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learning. In Section 3, experiments are conducted to validate the
proposed method, and compared to the state-of-the-art methods
on various image databases to show the competitive performance
of our algorithm. Finally, we draw the conclusion in Section 4.

2. Sparse approximation to discriminant projection learning

In this section, we introduce the proposed method called sparse
approximation to discriminant projection learning. The main con-
tent will be separated into the following several parts including
theoretical background, the derived objective function, algorithm
optimization and computational complexity analysis.

2.1. Notations

For a vector x € RY, we define the l,-norm as ||x||; = ,/Zle xl.z.

For a matrix MeR?*" the ith row and jth column are defined
as m' and m;, respectively. The F-norm and l,;-norm of the ma-

trix M are defined as [M|[f =,/>% , [mi[2 = /351 Ilm;[13 and

IMll2.1 = X5, [lmill; = 3o /520 m2, respectively.
2.2. Theoretical background

We assume that X =[Xq,X,...,X;] € R¥" is a data matrix
which consists of n samples from C classes. For the cth class, it
contains n. samples, c=1,2,...,C. Let u® and u be the sample
mean for class ¢ and the overall sample mean, respectively. Then
the between-class scatter matrix Sg and within-class scatter ma-
trix Syy are denoted as [11]

C
Sp=) nc(u —u(u —w, (1
c=1
C ne
Sw= 3D —u) (¢ — ), )

c=1 i=1
where x¢ is the ith sample from class c.
Our subspace learning algorithm is built on the proper-
ties of low-rank decomposition of matrix and representation of
eigenvectors-matrix [48], which are shown in Propositions 1 and 2.

Proposition 1. Define Sg as in (1). There exists a low-rank matrix A
such that Sg = AAT, and the kth column of A is denoted as

p, - Y (Er @ -t ) 3)

VS

where k=1,..., Cc-1.

Note that the columns of the matrix A can be seen as the dif-
ferences among the class means. Moreover, they denote orthogonal
contrasts among the means of C classes. The proof of this Proposi-
tion can be found in [48].

Based on the Proposition 1, we obtain the intuitive representa-
tion for the eigenvectors-matrix of Sy~ !Sg.

Proposition 2. Assume A is defined as in (3), then existing an or-
thogonal matrix Q such that (Sw +Sg) 'AQ is the eigenvectors-
matrix of Sy~ 'Sg, corresponding to nonzero eigenvalues.

Proof. According to the eigenvalue decomposition of matrix, ex-
isting an orthogonal matrix Q such that AT (S + Sg)~'A = QAQT,
and A is a diagonal matrix, in which the ith diagonal element p; is
the ith nonzero eigenvalue. Assume ® = (Sy +Sg) 'AQ, then we
have

(Sw +Sp) 'Sg® = (Sw + Sg) 'Sg(Sw + Sp) "'AQ.

Substituting Sg by AAT, we get

(Sw +Sg) 'Sg® = (Sw + Sg) 'AQA
= ®A. (4)

Then let’s multiply both sides of Eq. (4) by Sw + Sg, we have

Sg® = SwPA +SgPA.

After performing a simple transformation, we have

Sg®(I1— A) =SywPA,

and

Sw !Sg® = PA(I- A)". (5)
O

In (5), according to the definition of eigenvalue decomposition,
we can see that ® = (Sy +Sg) !AQ is the eigenvectors-matrix of
Sw'Sg.

It should be noted that we assume the matrix I — A is invertible
in (5), that is, every nonzero eigenvalue in A is not equal to one.
In most cases, this assumption always holds. However, if it is not
invertible, we can set I — A as I — A +¢€l, here € is a perturbation
constant. It also holds to our method.

Similar to the LDA-based methods, a straightforward way is to
denote @ as the projection matrix, but the orthogonal matrix Q
is unknown. In many state-of-the-art image classification methods,
an image is represented as a high-dimensional feature vector, and
the high-dimensional feature vector can be projected into a low-
dimensional feature vector by a projection matrix, then the simi-
larity between a query image and a gallery image is evaluated on
the basis of the similarity measure between the low-dimensional
feature vectors. Here we will prove that the orthogonal transforma-
tion makes no difference to the classification criteria based on vari-
ous similarity measures, such as Euclidean distance, inner product,
correlation coefficient and Mahalanobis distance. Without loss of
generality, we consider Euclidean distance as the similarity mea-
sure, and have the following proposition.

Proposition 3. For any orthogonal matrix Q, the Euclidean distance
of any two samples based on the projection matrix P is the same as
the Euclidean distance based on the projection matrix PQ,

Proof. Assume y is the new testing sample and x is the
training sample, then we have the Euclidean distance based
on the projection matrix P as |[PTy—P'x||2 = (y —x)"PPT(y —
x). The Euclidean distance based on the projection matrix
PQ can be defined as ||(PQ)Ty — (PQ)"x||2 = (y — x)TPQQ'PT (y —
X) = (y—x)TPPT(y —x). Hence, it proves the correctness of
Proposition 3. O

Note that the Proposition 3 also holds to other similarity mea-
sures, such as inner product, correlation coefficient and Maha-
lanobis distance.

2.3. Objective function

Propositions 2 and 3 show that we can consider P=
(Sw + Sg)'A as the projection matrix, then we can denote the ob-
jective function as:

-1
J(P) = min = || Sw + Sp)"/°P — (Sw + Sp) " *Al7
1 T T
= min 5Tr(P (Sw +Sp)P — 2AP). (6)

Obviously, by performing the derivative of (6) with respect to P
as zero, we can get P = (Sw + Sg)'A.
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For simplification, we have the following objective function:

J(P)

mpin %Tr(PTSWP) + %Tr(PTSBP —2ATP)

min lTr(PTsWP) + 1||ATP—1||§. (7)
P 2 2

Our next aim is to propose a regularizer and integrate it into
(7) to construct a sparse feature selection model. Note that [;-
norm regularizer ||P|; is widely used to improve the sparsity of
the elements. As indicated in [49], a common feature of the meth-
ods using l;-norm is that they do not distinguish the difference of
the two indices (row and column of P). But in general they have
different meaning. Here they are the spatial dimensions and the
number of features, respectively. In addition, our objective function
estimates the eigenvectors-matrix of Syy~'Sg up to an orthogonal
transformation and the element-wise sparsity via [;-norm cannot
be maintained under the orthogonal transformation.

Instead of [;-norm, we consider the l,;-norm regularizer as fol-
lows:

d
P2y =3 lIpill = 2 Zpl] (8)

i=1 i=1 j=1
where p' denotes the ith row of matrix P. The Iy;-norm regularizer
leads to the row sparsity, namely it promotes the rows of matrix
to get zero elements and considers the correlations of all features.
Moreover, we can see that the row sparsity via l,;-norm is main-
tained under orthogonal transformation. It should be noted that
I,1-norm is also introduced in [50,51], but they use it for multi-
task learning and semi-supervised learning rather than subspace
learning.

In addition, we embed the F-norm regularizer ||P||§ and equa-

tion (8) into (7), we have the objective function of the presented
method as:

(P)_mm Tr(PTSWP)—I— IIATP—I||F

+ 71||P||§+)»2||P||2.1, 9)

where both A; and A, are tuning parameters. The goal of the
first two items of the objective function in (9) is to minimize the
within-class variation and control the between-class variation. It
can be seen that the third item helps to avoid the matrix sin-
gularity problem. The fourth item can eliminate noisy features in
the process of feature selection, and reduce the model complexity.
Moreover, as indicated in [52], the joint use of ||P[|2 and |P||5;
is to select the informative features and make the solution of J(P)
more stable while being sparse.

2.4. Optimization algorithm

Notice that (9) is a convex optimization problem, and thus it
does not suffer from the multiple local minima issue, and its global
minimization can be solved efficiently. Some algorithms have been
presented to solve a similar problem [52,53]. In this paper, we
adopt an alternating optimization strategy to find the global so-
lution.

Taking the derivative of J(P) with respect to P as zero, we can
get

% =SwP +A(A'P —1I) + A1P + 1,BP, (10)
where B is a diagonal matrix with the ith diagonal element
1
= m 11
= 2, a

Setting the derivative in (10) to zero, we get
P = (Sw+AAT + A1+ A,B) A (12)

By observing (11), we can see that the matrix B is not indepen-
dent of the value of P. Hence, we utilize an iterative strategy to op-
timize P and B alternately. Algorithm 1 summarizes the optimiza-
tion procedure. At each iteration, one of the variables P and B is
fixed, while the other is updated, and then the roles of P and B are
exchanged. We will prove that the value of the objective function
J(P) monotonically decreases along with P and B being updated at
each iteration, and iterations are repeated until convergence.

Algorithm 1 SADPL algorithm.

Input: X € R™*", A4 and A,.

Output: P ¢ RIxC-1

1: Compute within-class scatter matrix Syy and between-class
scatter matrix Sg;

2: Compute the matrix A based on Proposition 1;

3: Initialize t = 0;

4: Initialize By;

5: while Not convergent do

6: P+ = (Syy + AAT + A 1+ A,BU)-1A;

7:  Update Bl+1l here the ith diagonal element
BT = 172 (ple 1y

8: t_t+1

9: end while

Theorem 1. In Algorithm 1, the value of the objective function J(P)
monotonically decreases along with the iteration.

Proof. Assume Pl‘+1] is the result of the t + 1th iteration, and ac-
cording to the Algorithm 1, we can get

1 1
Pt min jTr(PTsWP) + §||ATP 1|2
A
+ S IIPIF + 22 Tr(PTBUIP), (13)
then, we have

1 1
5Tr((l:p[t+l])TSWP[t+l]) + j ||ATP[t+1] _ I”Iz-‘

+ )‘21 ”p[tﬂ]”IZE +A.zTr((P[t+1])TB[[]P[[+I])
1 1

[tI\T [t] Tplt] 2

< iTr((P ) SwP )+§||A Pl |2

+ %HP[”H% + Ao Tr((PTBUIPI), (14)
From (14), we get

1 1
5Tr((l:p[[+l])TSWl)[t+l]) + i ||ATP[t+1] _ I”Iz-‘

M 4|l (pleehyi|2
+ == P[t+1] 2 +A 72
2 IPEE+ 22 2 Sy,
< Tr((P“])TSwP[‘]) + S IATRE 2
Il (plth)i]|2
+ = ||P“]|| +A = 12 (15)
F ZZ 2[[(p,

Taking a simple transformation, we obtain

[ICESSN ! -
i —A ( [r+1])1
2 2 2yl 2? I (p ll2

d
i | ()13
_ [t+1]yi
x(z @]l z e ”2> (16)
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and

@D &g
22 215 )ng: @Dl

[t] 2
- (Z @Yl Z 2””((‘:)“]))””2). (a7)

Substitute [|(p‘*'i[l, and ||(p!)[l, by b and a, respectively.
Using the property b — % <a- 3% and combining (15)-(17) to-
gether, we get

1 1
jTr.((l)[t+l])TS‘NP[l'Jrl]) + i ”ATP[H]] _ I”%

A d .
+ 71IIP“+”II% + A2 ) 1,

i=1

! Tr((P)TSyPI) +

IA

1
5 IATPH 1|2

A d :
+ S IPIE + 22 3 11 2. (18)
i=1
Obviously, from (18), we can see that the objective function J(P)
monotonically decreases along with the iteration, ie. J(Pl+1]) <
Jeh, O

Hence, based on Algorithm 1, the objective function J(P) can get
the optimum solution. In Section 3.3, we can find that the objective
function converges very fast.

2.5. Complexity analysis

We now discuss the computational complexity of the presented
SADPL algorithm. Similar to the other LDA-based approaches, such
as LLDA, we first perform PCA to obtain p principal components,
and then use SADPL algorithm to learn projection matrix, namely
PCA+SADPL. Because the PCA stage of SADPL is the same as the
other algorithms, we only consider the computational complex-
ity of the SADPL stage. The SADPL algorithm contains two main
parts: the computation of the scatter matrix and the optimization
of the projection matrix. Suppose that the number of training sam-
ples and the maximum number of iterations are n and T, respec-
tively, the time complexities of the scatter matrix and the projec-
tion matrix optimization are O(np?) and O(Tp3), respectively. Thus,
the time complexity of SADPL stage is O(np? + Tp3).

3. Experiments

To evaluate performance of the presented SADPL model, we
compare it with both the classical and the state-of-the-art ap-
proaches for image classification, including PCA [8], LDA [11], LPP
[26], LSDA [25], SRDA [21], RILDA [24], LLDA [28] and SRRS [54].
We use MATLAB codes of these compared methods (except for
PCA and LDA), which are released/provided by the correspond-
ing authors. Five publicly available image databases, that is, the
FRGC [55] face database, the KTH-TIPS|56] texture database, the 2D
plus 3D palmprint database [57], the COIL-20 [58] object database
and the CIFAR-10 [59] tiny images database are used to demon-
strate the performance of different methods. In our experiments,
we consider PCA as the baseline algorithm, and retain 600 princi-
ple components for all the compared algorithms on the five image
databases. The 1-nearest neighbor classifier is applied to the pro-
jected samples for classification.

3.1. Databases

The descriptions of the four databases are as follows:

e ol ok 'HR‘ AT |
e de el o

Fig. 1. Some face images of the FRGC database. First row: Uncontrolled lighting
variations; Second row: Controlled lighting variations.

Fig. 2. Some palmprint images of the 2D plus 3D palmprint database. First row:
Session 1; Second row: Session 2.

(1) FRGC face database: The FRGC database [55] includes 625
subjects and there are about 50,000 images. These im-
ages were collected at different time, under controlled and
uncontrolled variations (occlusion, expression, illumination,
etc.). In order to show the different evaluation purposes, we
perform two groups of experiments. In the first group, the
images with controlled illumination variations are used as a
subset, which contains 1375 images of 275 subjects and 5
images for each. These images are cropped and resized to
100 x 100. For each classification, we randomly choose three
images from each subject for training and the rest two for
testing. In the second group, the images with uncontrolled
illumination variations are used as the other subset, which
were obtained in large illumination variations (outside, atri-
ums, hallways, etc.), ageing and image blur. This subset also
has 275 subjects and 5 images for each. Similar to the first
group, these images are cropped and resized to 100 x 100
and we also choose three images from each subject for train-
ing and the rest two for testing. Some cropped images in
this database are shown in Fig. 1.

(2) 2D plus 3D palmprint database: The 2D plus 3D palmprint
database [57] includes 400 different palms, and there are
8000 samples, that is, each palm has two separated sessions
and each session has ten palmprint samples. The interval of
time between the two sessions is about 30 days. Each sam-
ple includes a 2D ROI (region of interest) and its correspond-
ing 3D ROL All samples are cropped and sized to 128 x 128.
Some 2D palmprint images in this database are shown in
Fig. 2. In this paper, the 2D ROI images are utilized to eval-
uate the performance. In order to show the different evalu-
ation purposes, we divide the experiments into two groups.
In the first group, that is, each palm has ten palmprint sam-
ples, and two of which are randomly selected for training
and the other eight images for testing. In the second group,
all images in session 2 are used as the other subset. Similar
to the first group, we also choose 2 samples from each palm
for training and the other eight for testing.

(3) KTH-TIPS texture database: KTH-TIPS[56] is a texture
database for material categorization. It contains images of
ten materials, e.g., Sponge, Corduroy, Brown bread. These
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Fig. 4. Some cropped object images of the COIL-20 object database.

images were collected at nine different scales crossing 2 oc-
taves. There are nine images in a combination of 3 lighting
and 3 poses conditions for each scale. All these variations on
lighting, pose, and scale make it large challenging. Most of
these images are cropped to 200 x 200 size. Some cropped
images in this database are shown in Fig. 3. In our experi-
ments, we randomly choose Ts (Ts = 20, 30, 40) images of
each subject for training, and the remaining are used for
testing.

(4) COIL-20 object database: COIL-20 [58] is an object database.
There are 20 different objects, and each object has 72 im-
ages. These images were collected at pose intervals of five
degrees (i.e., 72 different poses per object). All images are
cropped and resized to 64 x 64. Some cropped images are
shown in Fig. 4. In our experiments, we randomly choose Ty
(Ts=10, 20, 30) images of each subject for training, and the
remaining are used for testing.

(5) CIFAR-10 tiny images database: CIFAR-10 [59] is a tiny im-
ages database. It contains images of ten classes, i.e., Airplane,
Automobile, Bird, Cat, Deer, Dog, Frog, Horse, Ship, and
Truck. There are 6000 images per class and totally 60,000
images in 10 classes. Each image is cropped to 32 x 32 size.
In our experiments, we use 50,000 images for training, and
the rest 10,000 images for testing.

3.2. Parameters evaluation

In this subsection, we discuss the effect of the different param-
eters to the proposed SADPL model. We take the experiments on
the five databases to test different settings of parameters A; and
X, in the presented SADPL. In particular, we take the values of A4
and A, changing by {1e+01, 1e+02, 1e+03, 1e+04, 1e+05, 1e+06}
and {0.001, 0.01, 0.1, 1, 10, 100}, respectively. The classification re-
sults of the presented SADPL model are shown in Fig. 5. According
to the experimental results, we can see that the performance of the
presented SADPL is not changeless to the variations of parameters.
It could achieve the best performance when the values of param-
eter pair (Aq, Ay) are set as (100,0.001), (10000,0.01), (1000,0.01),
(100000,0.1) and (10,0.01) for FRGC, 2D plus 3D, KTH-TIPS, COIL-20
and CIFAR-10 databases, respectively.

Table 1
Classification accuracies for different approaches on the FRGC
face database (Mean + STD (%)).

Method Controlled Uncontrolled
PCA 90.78 £ 5.79 57.14 + 3.26
LDA 91.96 + 291 87.74 + 1.28
LPP 99.27 £+ 0.59 86.73 + 1.31
LSDA 99.29 £ 0.59 86.89 + 1.25
SRDA 99.09 + 0.64 86.65 + 1.27
RILDA 98.53 + 0.91 82.20 + 1.18
SRRS 94.91 £+ 047 60.93 + 2.32
LLDA 9291 + 0.59 7298 + 2.18
SADPL 99.33 + 0.54 88.87 + 1.15

3.3. Convergence analysis

As mentioned in Section 2.4, the value of the objective function
J(P) monotonically decreases along with the iteration, and it will
converge to the global optimum. Here we report the convergence
rate of our method with respect to the objective function value.
Fig. 6(a) and (b) show the convergence rate of our SADPL on the
FRGC and COIL-20 databases. It can be seen that our SADPL con-
verges very fast. The objective function value achieves stable after
about 8-10 iterations.

3.4. Comparisons between SADPL and other approaches

In this subsection, comparisons between SADPL and the related
approaches on the five databases are given.

(1) Comparisons on the FRGC face database: The experiments
are independently repeated 10 times and the average clas-
sification accuracies and the standard deviations are calcu-
lated and reported. The classification results are summarized
in Table 1. For the controlled illumination variation sub-
set, we can see that this is a relatively easy classification
task, four algorithms can achieve high accuracies, over 99%.
But the unsupervised PCA only can correctly classify 90.78%
testing samples. Note that the accuracies of LPP, LSDA and
SRDA are 99.27%, 99.29% and 99.09%, respectively. However,
the proposed SADPL algorithm obtains accuracy of 99.33%,
which outperforms the other methods. For uncontrolled sub-
set, all these algorithms decrease their accuracies by differ-
ent degrees due to the more complex illumination varia-
tions. But the proposed SADPL still achieves the best perfor-
mance compared with other algorithms.

In addition, the Friedman’s test [60] is used to further
demonstrate the significant difference of the classification
performance between the presented SADPL and the com-
pared approaches. It should be mentioned that the Fried-
man'’s test is performed by evaluating the hypothesis that
the column impacts are all the same vs they are not all
the same. We combine the results under illumination con-
trolled subset and uncontrolled subset together to perform
the Friedman'’s test. Eight columns of the data matrix which
are input to the Friedman’s test procedure, are constituted
from the eight approaches shown in Table 1. After per-
forming the Friedman’s test, we obtain that the p-value is
2.35e—21, which indicates the significant difference among
these approaches. Besides the p-value, we utilize the result
output by the Friedman’s test and construct an interactive
graph with multiple comparison intervals to further show
the significance, which is displayed in Fig. 7. Note that the
performance of two methods are not significantly different if
their intervals overlap. Conversely, they are significantly dif-
ferent if their intervals are non-overlap. From the interactive
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graph shown in Fig. 7, we can see that six approaches have
mean column ranks significantly different from our SADPL.
Comparisons on the 2D plus 3D palmprint database: The
experiments are independently repeated 20 times and the
average classification accuracies and the standard devia-
tions are calculated and reported. The results are shown in
Table 2. As we can see, except for LLDA and RILDA, each of
the other algorithms can obtain the accuracies higher than
96%. The best performance is achieved by our SADPL and the
classification accuracies are 99.28% and 99.66%, respectively.
It indicates that our feature selection model is effective to
select the informative features.

In addition, we also perform the Friedman’s test to further
evaluate the significant difference between the presented
SADPL and other algorithms on the palmprint database. Be-
ing similar to the test protocol of face image database, eight
columns of the data matrix which are input to the Fried-
man’s test procedure, are constituted from the eight ap-
proaches shown in Table 2. After performing the Friedman’s
test, we get that the p-value is 4.15e—62. It demonstrates
the significant difference among the classification results ob-
tained by these algorithms. The multicomparison results are
shown in Fig. 8, in which seven approaches have mean col-
umn ranks significantly different from SADPL.
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Fig. 7. Significant difference between the presented SADPL and the compared ap-
proaches on the FRGC face database.
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Fig. 8. Significant difference between the presented SADPL and the compared ap-
proaches on the 2D plus 3D palmprint database.
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Fig. 9. Significant difference between the presented SADPL and the compared ap-
proaches on the KTH-TIPS texture database.

(3)

Comparisons on the KTH-TIPS texture database: As men-
tioned above, the KTH-TIPS is an extremely challenging tex-
ture database. For all these compared methods, consider-
ing that LBP [61] is effective to texture classification, we
first extract LBP features on this database, and then project
the corresponding subspaces. The experiments are indepen-
dently repeated 20 times and the average classification ac-
curacies are calculated and reported. The classification re-
sults are presented in Table 3. When twenty images are ran-

—

Table 2
Classification accuracies for different approaches on the 2D plus
3D palmprint database (Mean =+ STD (%)).

Method Session 1 Session 2

PCA 97.92 £+ 0.67 98.65 + 0.48
LDA 98.05 + 0.64 99.14 + 0.28
LPP 96.66 + 0.70 97.59 + 0.49
LSDA 96.67 £+ 0.73 97.93 £+ 0.48
SRDA 96.60 + 0.73 97.75 £+ 0.50
RILDA 94.02 + 1.14 95.34 + 0.85
SRRS 89.29 + 2.66 89.71 £+ 2.54
LLDA 94.04 + 2.06 94.25 + 2.12
SADPL 99.28 + 0.29 99.66 + 0.17

Table 3

Classification accuracies for different approaches on the KTH-TIPS
texture database (Mean + STD (%)).

Method Ts = 20 Ts = 30 Ts = 40

PCA 75.33 + 3.27 79.92 + 2.62 82.88 + 2.71

LDA 80.83 + 1.70 84.83 + 2.69 87.47 + 2.59

LPP 81.92 + 2.24 86.08 + 2.32 88.08 + 2.11

LSDA 45.67 + 7.59 4212 + 2.12 33.08 + 11.82
SRDA 82.78 + 1.67 86.25 + 2.43 88.14 + 2.36

RILDA 4843 + 1433  57.33 £ 1331 58.75 + 11.14
SRRS 7591 + 2.98 80.92 + 2.74 84.57 + 2.66

LLDA 75.80 + 3.15 79.87 + 2.57 85.61 + 2.71

SADPL 84.37 + 236 88.62 + 2.15 90.41 + 2.26

Table 4

Classificationaccuracies for different approaches onthe COIL-20 ob-
ject database (Mean =+ STD (%)).

Method T, =10 T, =20 T; = 30

PCA 91.70 + 3.16  96.03 + 1.68 97.88 + 1.21

LDA 90.79 + 324  94.29 £ 1.50 95.76 + 1.24

LPP 87.28 + 3.31 39.82 + 43.76  27.38 £ 39.78
LSDA 79.75 + 370  65.76 + 16.13  64.83 + 15.06
SRDA 86.96 + 346  91.21 + 1.74 93.13 £ 1.50

RILDA 70.53 + 6.73 76.47 + 10.31 78.80 + 11.13
SRRS 93.64 + 3.22 97.70 £ 1.70 99.03 + 0.93

LLDA 87.63 + 2.88 92.38 + 1.82 93.88 + 1.08

SADPL 94.77 + 334 9848 + 1.17 99.32 + 0.66

domly selected from each subject for training, the unsuper-
vised PCA only can correctly classify 75.33% testing samples.
The supervised algorithms such as LDA, LPP and SRDA at-
tain better results than PCA, and their accuracies are 80.83%,
81.92% and 82.78%, respectively. Almost all these algorithms
can obtain better results as the training size of each class
increases. However, the performance of LSDA is gradually
declining. The main reason may be that the local geomet-
rical information could not be extracted correctly. We can
see that the presented SADPL obtains the best performance,
which is reflected by its accuracies, and the detailed results
for the three different training settings are 84.37%, 88.62%
and 90.41%, respectively.

We perform the Friedman's test and get the p-value of
9.97e—88. The multiple comparison results are shown in
Fig. 9, in which seven groups have mean column ranks sig-
nificantly different from SADPL. Therefore, the statistical sig-
nificance of the differences between SADPL and the com-
pared algorithms are shown.

Comparisons on the COIL-20 object database: Following the
recognition protocol in Section 3.1, the experiments are in-
dependently repeated 20 times and the average classifica-
tion accuracies are calculated and reported. The results are
shown in Table 4. We can see that the performance of the
SADPL model are better than the compared approaches, and
the accuracies are 94.77%, 98.48% and 99.32% respectively.
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Fig. 10. Significant difference between the presented SADPL and the compared ap-
proaches on the COIL-20 object database.

Table 5
Classification accuracies for different approaches on the CIFAR-10 database (%).

PCA LDA LPP LSDA  SRDA  RILDA  SRRS LLDA  SADPL

91.22 90.63 88.65 90.59 90.57 89.78 90.23 89.58 91.25

Table 6

Classification accuracies of SADPL under different regularization terms (%).
Database FRGC 2D+3D  KTH-TIPS  COIL-20  CIFAR-10
Adding F-norm 99.33  99.28 88.62 99.32 91.25
Without F-norm  99.07  96.57 86.37 93.14 91.08
Using I;-norm 99.27  99.28 88.59 99.31 91.20

In addition, experimental results of three subsets are com-
bined together to perform the Friedman’s test and get the
p-value of 2.98e—89. Hence, it validates a significant differ-
ence among the classification results obtained by the com-
pared subspace learning algorithms. We also use the result
output by the Friedman’s test to conduct a multiple compar-
ison test, and show the multicomparison results in Fig. 10.
One can see that the performance of SADPL is significantly
different from other algorithms.

Comparisons on the CIFAR-10 database: For all these com-
pared methods, considering that the CIFAR-10 is an ex-
tremely challenging tiny images database, we utilize train-
ing set to fine-tune all layers of the pre-trained AlexNet
[62] model by continuing the back propagation. Then we
remove the last fully connected layer and treat the rest of
the network as fixed feature extractor. The dimension of the
extracted features is 4096. Finally, we project the features
into the corresponding subspaces. The classification accura-
cies are reported in Table 5. One can see that all these com-
pared methods obtain the high accuracies around 90%, and
our SADPL gets the best performance.

(5

—

3.5. Discussion

In this section, we discuss the effect of the different regulariza-
tion terms to our SADPL algorithm.

(1) Impact analysis by adding F-norm vs. without F-norm. To an-
alyze the effect of SADPL by adding F-norm in model (9), we
conduct the compared experiments on the five databases.
The performance comparison results are shown in Table 6.
Here without F-norm means we do not add F-norm in model
(9). From the second and third rows in Table 6, we can see

that the performance of SADPL is better by adding the F-
norm than without F-norm, especially on the 2D+3D palm-
print database, KTH-TIPS texture database and COIL-20 ob-
ject database. SADPL adding F-norm obtains the accura-
cies of 99.28%, 88.62% and 99.32% on the three databases,
whereas the accuracies of SADPL without F-norm are 96.57%,
86.37% and 93.14%, respectively. It indicates that the joint us-
ing of F-norm and I,;-norm is effective to select the infor-
mative features.

(2) I1-norm vs. l;-norm. We further discuss the effect of our
SADPL by using Iy;-norm to replace l;-norm. The corre-
sponding results are shown in Table 6. Here the results of
the second row in Table 6 are obtained by the joint using of
F-norm and l,;-norm, and the results of the fourth row are
obtained by the joint using of F-norm and /;-norm. One can
see that they have the similar performance. However, the
computational cost of SADPL using [;-norm is much higher
than using l,;-norm. For instance, on our computer with i7-
6700K CPU and 16.0G memory, the running time of SADPL
using l;-norm is 18.5 s and 32.1 s on the FRGC and 2D+3D
databases, while the corresponding running time of SADPL
using [;-norm reaches up to 286.5 s and 610.6 s, respectively.

4. Conclusion

We have presented a supervised sparse discriminant projection
learning algorithm which preforms subspace learning and feature
selection simultaneously. The proposed method learns the projec-
tion matrix based on a new objective function rather than the tra-
ditional Fisher criterion, avoiding the matrix singularity problem
and also can selecting the informative features. Furthermore, we
have presented an effective optimization approach to deal with the
new objective function and proved that the presented optimization
algorithm is convergent. Extensive experiments have shown that
the proposed approach could achieve competitive performance on
various image classification tasks. It is clear that the proposed
method is a vector-based SADPL. In the future, we will extend the
vector-based SADPL to a matrix-based formulation.
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