Proceedings of the Society for Computation in Linguistics
Volume 3 Article 27

2020

The Subregular Complexity of Syntactic Islands

Nazila Shafiei
Stony Brook University, nazila.shafiei@stonybrook.edu

Thomas Graf
Stony Brook University, mail@thomasgraf.net

Follow this and additional works at: https://scholarworks.umass.edu/scil

b Part of the Computational Linguistics Commons

Recommended Citation

Shafiei, Nazila and Graf, Thomas (2020) "The Subregular Complexity of Syntactic Islands," Proceedings of
the Society for Computation in Linguistics: Vol. 3, Article 27.

Available at: https://scholarworks.umass.edu/scil/vol3/iss1/27

This Paper is brought to you for free and open access by ScholarWorks@UMass Ambherst. It has been accepted for
inclusion in Proceedings of the Society for Computation in Linguistics by an authorized editor of
ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.



The Subregular Complexity of Syntactic Islands

Nazila Shafiei and Thomas Graf
Department of Linguistics
Stony Brook University
Stony Brook, NY 11794, USA
nazila.shafiei@stonybrook.edu

Abstract

We provide a formal framework for analyz-
ing syntactic island effects from a subregu-
lar perspective. Key aspects of the syntac-
tic representation are encoded as strings where
precedence represents containment. Island ef-
fects then are expressed as constraints on the
shape of these strings. The constraints fit in
the class IBSP (Interval-Based Strictly Piece-
wise), which has been previously explored in
subregular phonology. Consequently, the char-
acterization of islands in terms of IBSP string
constraints not only provides a computational
upper bound on the inventory of feasible island
effects, but also establishes a surprising link
between syntax on the one hand and phonol-
ogy on the other.

1 Introduction

The subregular program is concerned with analyz-
ing the complexity of linguistic dependencies that
are at most regular. The program has found great
success in computational phonology (see Heinz
2018 and references therein), where it has resulted
in a computational typology of phonological pat-
terns and corresponding learning algorithms. Syn-
tax, by virtue of being mildly context-sensitive,
may seem far beyond the purview of the sub-
regular program. But syntax is also subregular
once one considers more suitable representations.
Two routes have been explored: lifting subreg-
ular classes from strings to trees (Graf, 2018b;
Vu et al., 2019), and putting string constraints on
particular path languages of syntactic trees (Graf
and Shafiei, 2019). Whereas the former has been
mostly used in the analysis of structure building
operations, the latter has been applied to syntactic
constraints such as NPI-licensing.

This paper focuses on an area where these two
aspects of syntax meet: island constraints. Is-
land constraints impose additional restrictions on
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displacement, which in the tradition of Transfor-
mational grammar is equated with the operation
Move. The shape of islands is narrowly circum-
scribed, indicating that they are very limited from
a computational perspective. In this paper, we
confirm this intuition. Island constraints are ex-
pressed as constraints over a path language where
linear precedence in the string encodes (a specific
notion of) containment. Given such a string repre-
sentation, island constraints fall into the subregu-
lar class Interval-Based Strictly Piecewise (IBSP),
which has been argued to play a central role in
phonology (Graf, 2017, 2018a). At the same time,
IBSP is sufficiently weak to rule out many unat-
tested island constraints. Our paper thus makes
several contributions: it deepens our understand-
ing of subregular syntax, establishes parallels to
phonology, and provides linguists with a compu-
tational theory of islands.

Due to space constraints, we focus largely on
strong islands, and only on the canonical cases for
most of them. We also investigate the that-trace
constraint and the coordinate structure constraint,
and we show that they cannot be handled in the
system proposed here. This paper thus marks but
the first step towards a fully articulated, empiri-
cally grounded theory of islands.

The discussion proceeds as follows: the pre-
liminaries section (§2) discusses Minimalist gram-
mars (§2.1), our string representation format
(§2.2), and the subregular class IBSP (§2.3). Sec-
tion 3 presents the central result that a number of
(strong) island constraints follow a uniform IBSP
pattern of very low complexity. We start with the
adjunct island constraint (§3.1) and then general-
ize the analysis to wh-islands, the complex np con-
straints, the subject condition, and freezing effects
(§3.2). Section 4 then explores the limits of IBSP
over a-strings. On the one hand this allows us
to correctly rule out many unattested island con-
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straints, but it also means that the approach cannot
handle all aspects of the that-trace constraint and
the coordinate structure constraint. In addition,
our approach currently lacks any notion of linguis-
tic naturalness, which allows for some very odd
(albeit computationally simple) island constraints

(85).
2 Preliminaries

The paper rests on several research traditions,
which are briefly sketched in this section: Min-
imalist grammars as a formal model of syntax
(§2.1), string representations for syntax (§2.2),
and the subregular class of IBSP string languages

(§2.3).

2.1 Minimalist Grammars

Since island constraints have mostly been studied
in the generative tradition, we adopt Minimalist
grammars (MGs; Stabler, 1997) as a formal model
of syntax. MGs are a derivational grammar for-
malism for building tree structures by combining
feature-annotated lexical items via the operations
Merge and Move. Figure 1 gives a concrete exam-
ple of this process. Only a few key aspects of MGs
matter for this paper, in particular their feature sys-
tem (see Stabler 2011 for a full discussion).

Each lexical item consists of a phonetic expo-
nent and a string of features. There are four dis-
tinct types of features. Category features (X7)
and selector features (XT) establish head argu-
ment relations via Merge. The other two feature
types drive the operation Move. A licensee feature
f~ indicate that the phrase headed by the lexical
item undergoes f-movement, and the matching /i-
censor feature T indicates the landing site of f-
movement. As in Minimalist syntax, movement is
a mechanism for displacing subtrees of an already
assembled tree, and movement always targets the
closest available landing site (encoded in MGs via
licensor features).

Given the special role of adjuncts in island con-
straints, we also adopt the adjunction mechanism
of (Frey and Girtner, 2002). Instead of a category
feature, a lexical item [ may carry an adjunction
feature X~ which allows it to adjoin to an XP.

An MG’s structure building process is usually
represented as a derivation tree like the one in
Fig. 1. But we will frequently represent deriva-
tion trees with the more compact format of depen-
dency trees. The rightmost tree in Fig. 1 presents
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a concrete example.

2.2 String Representations for Syntax

Our investigation of island constraints will not op-
erate directly over trees, but rather over strings
that represent specific aspects of the tree struc-
ture. This follows recent work by Graf and Shafiei
(2019), who analyze syntactic constraints such as
NPI-licensing and Principle A as operating over
strings that encode asymmetric c-command rela-
tions. A tree is well-formed iff it holds for every
node n in the tree that the relevant string repre-
sentation for n is well-formed with respect to the
syntactic string constraints.

Graf and Shafiei (2019) choose a string rep-
resentation that encodes both containment and a
limited form of c-command (cf. Frank and Vijay-
Shanker, 2001). These augmented command
strings (or simply c-strings) can be defined in var-
ious ways, but the easiest option uses MG depen-
dency trees. We adopt this definition but simplify
it so that the resulting string representation only
keeps track of containment. For this reason, we
call these strings ancestor strings (or simple a-
Strings).

Definition 1 (A-strings). Let ¢t be an MG depen-
dency tree. If n is the root of ¢, then as(n) := n.

If n has mother m, then as(n) := n as(m). 4
Example. In Fig. 1, as(Mary :: D nom~) =
Mary :: D nom™ buy :: DDV~ 4 ¢ =

VFTnom™T~ 1 did :: TTwh*C~. For increased
readability, we may omit features and replace
empty heads by their category. Then as(Mary) =
Mary buy T did. J

The use of strings is a matter of mathematical
convenience. The results obtained this way can be
backported to subregular machinery that operates
directly on dependency trees or derivation trees
(Graf and De Santo, 2019). This will be discussed
further in §5.

2.3 Subregular Complexity

Formal language theory has a rich tradition of
studying proper subclasses of the regular string
languages (McNaughton and Papert, 1971; Pin,
1997; Yli-Jyrd, 2005, a.0.). More recently, this
line of work has been picked up and extended
by computational phonologists (see Heinz 2018
and references therein). The class Interval-Based
Strictly Piecewise (IBSP) was proposed as a lin-
guistically natural unification of previously pro-



CP Move did :: T*whtC~
—_— | | v,
DP, c Merge g Vinom™ T~
I — — b4 I
D C TP did :: T*wh*C~  Move /" buy:: DDV
o~ | — [ Vet /\
D NP did DP, T Merge \
| | | o — . yesterday :: V™ Mary :: D nom~  which :: NTD~wh~
which N’ DT VP e Vrnom™ T~  Adjoin I
| | | — . car:: N™
N D ¢ VP AdvP yesterday :: V™ Merge
| | S | —_—
car Mary ¢, V' Adv’ Mary :: D nom~  Merge
P | —
V t, Adv buy :: D¥D*V~  Merge
| | —_—
buy yesterday which :: N¥D~wh™  car:: N—

Figure 1: X'-tree, MG derivation tree, and equivalent dependency tree for Which car did Mary buy yesterday

posed classes for subregular phonology (Graf,
2017, 2018a). IBSP constitutes an approximate
upper bound on string dependencies in phonology.

Definition 2 (k-val). A segmented k-interval
(k > 0) over alphabet X, or simply segmented
k-val, is a tuple (L, R, F})(;<}, such that

e L, R C XU{e} specify the left edge and right
edge, respectively, and

o [ C X specifies the i-th filler slot. g

Definition 3 (IBSP-k). Let ¥ be some fixed al-
phabet and %, x ¢ ¥ two distinguished symbols.
An IBSP-k grammar over ¥ (kK > 0) is a pair
G = (i,S5), where i is a segmented k-val over
YU{x,x}and S C (U {x,x})* is a set of
forbidden k-grams. A string s € ¥* is generated
by G iff there is no k-gram uy - - - u;, € S such that
x*sx* is a member of the language

(U} L Ff - {w} - FF - {ug} ...
Fiy Auw} - Fy - R- (B U {>, x})*

The language L(G) is the set of all s € X* that
are generated by G. A stringset L is IBSP-k iff
L = L(QG) for some IBSP-k grammar G. J

In the definition above, *

Kleene closure. The symbol - denotes string
concatenation, lifted to sets: A - B =
{ab|a € A,b e B}.

Following Graf and Shafiei (2019), we can use
IBSP grammars over strings to regulate the shape
of trees.

Definition 4 (IBSP over trees). Let G be an
IBSP grammar, ¢ an MG dependency tree, and f;
a total function from nodes of ¢ to strings. Then ¢

represents the usual
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is well-formed with respect to G iff it holds for all
lexical items [ in ¢ that f;(1) is generated by G. _

Example. Suppose that nom-movement is forbid-
den out of VPs. Over a-strings, this corresponds
to the requirement that no V-head may occur be-
tween a node with nom™ and the closest node with
nom™ (because movement in MGs always targets
the closest head with a matching feature). This can
be expressed as the following IBSP-1 grammar:

:= {1 | | carries nom™ }
Fy := {1 | I does not carry nom™ }
Fy :={l| 1 does not carry nom™ }
R :={l | carries nom™ }

S :={l|1lcarries V" }

Then as(Mary) = Mary buy T did will be deemed
illicit because it matches a forbidden pattern with
L := Mary, Fj := ¢, Ff == ¢, R := T, and
buy € S. Consequently, the dependency tree is
not well-formed, either. g

It is often convenient to represent IBSP gram-
mars in a more visual format. The example gram-
mar above corresponds to the diagram below.

(1) Graphical representation of an IBSP
grammar

—nom™

—nom™

nom- V- 110111+
The outermost vertical boxes represent the left and
right edge, respectively. The square in the mid-

dle represents a position of the forbidden k-grams



— since the example grammar uses forbidden un-
igrams, there is only one such square. The verti-
cally offset boxes represent the fillers, in this case
Fy and F7. We use features to as a shorthand for
the set of lexical items that carry this feature. For
instance, nom~ denotes the set of all lexical items
carrying nom™~. The expression —-nom™ denotes
the of all lexical items that do not carry the rele-
vant feature, in this case nom™. This visual format
can also be used to show that a string is ill-formed.

Example. Recall that as(Mary) = Mary buy T did
is illicit. We can show this by giving a specific
instantiation of the interval and the k-gram in the

string.
m i

This disagram conveys the same information as
the formal description in the previous example. _

In the next section, we use this machinery to
analyze syntactic island effects from a subregular
perspective. We show that strong islands follow
a fixed IBSP pattern over a-strings that is exceed-
ingly simple.

3 Strong Islands over A-Strings

The notion of syntactic islands originates from
Transformational Grammar (Ross, 1967). From
the perspective of MGs, a constituent C' is an is-
land iff no phrase contained by C' may have a li-
censee feature checked by a matching licensor fea-
ture outside C'. A distinction is commonly made
between strong islands and weak islands. Strong
islands limit movement irrespective of whether the
mover is an argument or an adjunct. Weak islands,
on the other hand, limit adjunct movement but not
argument movement. We will focus mostly on
strong islands in this paper. We first analyze the
adjunct island constraint (§3.1) as an IBSP per-
spective over a-strings, and then show how the
same template can be used for several other strong
island effects (§3.2).

3.1 Adjunct Island Constraint

The adjunct island constraint is arguably the most
robust case of a strong island. It is illustrated by
the contrast in (2).

(2) Adjunct island constraint

a. Which car did John complain
[cp that he can’t fix _]?
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b. * Which car did John complain
[cp because he can’t fix _]?

In both (2a) and (2b) the wh-phrase which car
moves out of an embedded clause. But in (2a) the
embedded clause is an argument of the verb com-
plain, whereas it is an adjunct in (2b). That move-
ment is allowed out of the argument clause but not
the adjunct clause is referred to as the adjunct is-
land constraint.

The adjunct island constraint can be easily ex-
pressed as an IBSP constraint on a-strings. In
fact, it uses the template we already encountered
in §2.3, except that the set of forbidden unigrams
consists of all adjuncts rather than all verbs. As
explained in §2.1, we adopt the proposal of Frey
and Girtner (2002) that every adjunct carries an
adjunct feature X~ that allows it to adjoin to XPs.
The IBSP grammar for the adjunct island con-
straint thus corresponds to the following template.

(3) IBSP-1 grammar for adjunct islands

Note that this template actually represents multi-
ple IBSP grammars as f must be correctly instan-
tiated for each movement feature: nom for subject
movement, wh for wh-movement, top for topical-
ization, and so on. If all of those were put inside
a single IBSP grammar, then one lose the fact that
the left edge and the right edge must be opposite
polarities of the same feature — a nom™ for the
left edge could be paired up with an wh™ as the
right edge. Since IBSP lacks a direct means of co-
ordinating left and right edges like this, we instead
have to posit a separate grammar for each move-
ment feature in order to correctly enforce the ad-
junct island constraint for that specific movement

type.

Example. Figure 2 shows the MG dependency
tree for which topic did you leave because Mary
talked about _. This sentence contains illicit
wh-movement out of an adjunct. Now consider
the a-string for which, with the relevant fea-
tures indicated in square brackets: as(which) =
which[wh~] talked about T because[V™] leave T
did[wh™]. As shown by the diagram below, this a-
string is ill-formed with respect to the IBSP gram-
mar in (3) (assuming f := wh).



did :: Ctwh™C~
| \\
g: Vrnom*tT~
| v ‘J
leave :: DTV~ )
T )
because :: T¥V~  you:: D nom™
| ,
.+ ¢ Vinom™ T~
! |
' talked about :: D¥D+V—
N
Mary :: D"nom™  which :: N*D~wh~
|
topic :: N™

’

Figure 2: Adjunct island violation

talked about T leave T

which because did

As the a-string is illicit, the whole sentence is ill-
formed. -

The reader may wonder why the template ex-
plicitly forbids f* as fillers. This ensures that the
right edge is always the closest £, which is the
one targeted for movement by the lexical item with
f~ in the left edge. Without this restriction, the
IBSP grammar would incorrectly rule out well-
formed movement patterns.

Example. Consider once more the example sen-
tence which topic did you leave because Mary
talked about _ as depicted in Fig. 2. This sentence
contains two instances of nom-movement, both
of which are well-formed. But now consider the
IBSP grammar regulating nom-movement. Sup-
pose that this grammar allows for lexical items
with nom™ to appear in the filler slots. Then this
grammar would incorrectly rule out as(Mary) =
Mary[nom™] talked about T[nom™] because[V"™]
leave T[nom™] did.

talked about T leave

Mary because N did

_l

The reader should also keep in mind that the use
of X™ is just a notational shorthand for specify-
ing a list of lexical items. One can remove some
items from this set to allow for exceptions to the
adjunct island constraint, such as the ones noted
by Truswell (2007).

(4) a. *Which car did John drive Mary
crazy [while he tried to fix _]?
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b. Which car did John drive Mary
crazy [while trying to fix _]?

Assuming a distinction between finite T-heads
(T7) and other T-heads (Ti_nf), we can account for
this by excluding while :: T;:LfVN from the list of
forbidden lexical items.

In sum, the adjunct island constraint can be han-
dled by a very simple and intuitive IBSP grammar
(or rather, a collection of such grammars, one for
each movement type). From a formal perspective,
this IBSP grammar looks very similar to the IBSP
treatment of blocking effects in phonology. In
phonology, an intervening consonant cluster may
block long-distance harmony. In syntax, an inter-
vening head with an adjunction feature interrupts
the dependency between an f~ and an f™. The
existence of the adjunct island constraint thus be-
comes a bit less mysterious: it is very simple from
a computational perspective, and it employs a gen-
eral blocking mechanism that also seems to be ac-
tive in other parts of language.

3.2 Other Strong Islands

Besides the adjunct island constraint, the class of
strong islands also includes wh-islands, complex
NPs, and subjects. The corresponding constraints
are illustrated below.

(5) Whe-island constraint
a. Which movie did John say that
Mary liked _?
b. * Which movie did John wonder
whether Mary liked _?

(6) Complex NP constraint

a. What did you say [that John
bought _]?

b. * What did you hear rumors [that
John bought _]?

(7) Subject condition

a. Who did John write [a story
about _]?

b. * Who was [a story about _] written
by John?

These all use minor variations of the template for
the adjunct island constraint.

Let us start with the wh-island constraint. Here
it suffices to make two changes. Since most types
of movements, e.g. topicalization, are not affected



by this constraint, we limit the possible instantia-
tions for f~ and ™ to just wh™ and wh, respec-
tively. Then the list of blockers is changed from
adjuncts to all elements that induce wh-islands.
These are commonly taken to be all C-heads that
have some kind of question semantics, including
whether, how, and if. We denote this set C~[Q].

(8) IBSP-1 grammar for wh-islands

Next we turn to the complex NP constraint. This
one, too, uses the basic template of the adjunct is-
land constraint, but we once again have to change
the list of blockers. In the complex NP constraint,
the blocking is not done by an adjunct, but by a
more complex structural configuration: movement
out of a CP is illicit if the CP is the argument of a
noun. Thanks to the MG feature calculus, we can
rephrase this as a ban against moving out of an
NP that selects a CP,! which means that the set of
blockers contains all lexical items, and only those,
that contain a selector feature C* and a category

feature N~. We denote this set of lexical items by
Ct...N".

(9) IBSP-1 grammar for complex NP con-
straint

The reader is invited to verify that this grammar
correctly rules out the sentence what did you hear
rumors that John bought, which is depicted in
Fig. 3.

This leaves us with the subject condition, which
can actually be regarded as an instance of what
is known as freezing effects. This describes the
phenomenon that once a phase XP has undergone
movement, it becomes opaque to extraction. Any
mover inside XP has to move out of the phrase
before it starts moving. From the perspective of
MG:s, this can be rephrased as a constraint on the
distribution of movement features. Let f;” and g

'Our feature-based interpretation of the complex NP con-
straint is actually stronger than the original version. Suppose
that the NP selects a CP as its complement and some XP as
its specifier. The complex NP constraint as originally stated
would allow the XP to be extracted, whereas our version does
not. As far as we have been able to determine, there are no
nouns that take two arguments in this configuration, let alone
one where the XP then is allowed to undergo movement.
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did :: TtwhtC~
| \\

_-= & Vinom*tT™
e | ,

o hear :: DTDTV~ |
! —_— \\
‘-you: D"nom™ e NTD™ |
| \
rumors :: CTN~

|
that :: THC—
|
_»e: Vtnom™T—

. |
bought :: D*D+V~!
/ .
*-John:: D" nom~ what:: D"wh™

Figure 3: Violation of the complex NP constraint

denote lexical items whose first movement feature
is f~ and g, respectively. If the phrase headed
by g, contains f;, then the target of f; must be
contained by the target of g; . We can capture this
generalization by moving from an IBSP-1 gram-
mar to an IBSP-2 grammar (or rather, a collection
of such grammar for every possible choice of f~
and g7).

(10) IBSP-2 grammar for freezing effects

The step up from IBSP-1 to IBSP-2 makes
freezing effects appear more complex. But it is
actually possible to get the same effect just with
an IBSP-1 grammar. The trick is to make g™ the
right edge of the k-val rather than f*.

(11) IBSP-1 grammar for freezing effects

Example. Consider the  abstract
flabg mngrayft 2

correctly rule it out as illicit.

a-string
Both grammars

zyftz

Similarly, both grammars agree that the minimally
different f; a b gf m n fTz y gt 2z is well-
formed. N



did :: TtwhtC~

| A S

__-»ex Vinom* T~ b
bother :: ]‘)+C+V‘ \\j
(» that :: T*mz D*//
->en V+I‘1()II1+T7
) kissed :: ]‘D+D+V*
(» Mary :: mﬁ’wh’

Figure 4: Violation of the subject condition

Both grammars also agree that the tree in Fig. 4 is
illicit because of the ill-formed a-string of who.
Note that we can apply the same kind of trun-
cation strategy to the IBSP grammars for the other
island constraints. This effectively reduces their
complexity of IBSP-1 to IBSP-0. As laid out in
Def. 3, an IBSP-0 grammar consists only of the
left edge L, the right edge R, and a single filler Fj
inbetween. The set of forbidden k-grams is im-
material as every string is ruled out that matches
EU{x,x)*-L-F*-R-(ZU{x,x})*"

(12) IBSP-0 grammar for adjunct islands

H

(13) IBSP-0 grammar for wh-islands

(14) IBSP-0 grammar for complex NP con-
straint

H

In sum, all four island constraints can be cap-
tured with very simple IBSP-1 grammars (or even
IBSP-0 grammars) over a-strings. Adjunct is-
lands, wh-islands, and the complex NP constraint
all follow the very same pattern. Subject islands,
as a specific subcase of freezing effects, have a
slightly higher complexity in that they are either
IBSP-2 or IBSP-1. This depends on whether one
requires the left and right edge of the k-val to be
tied to the same feature f. Since freezing effects
are widely considered to be more complex than
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standard island constraints and depend on the in-
teraction of multiple movements, it is unsurpris-
ing that their IBSP complexity should be slightly
higher. Nonetheless the IBSP approach with a-
string provides a unified perspective of several
movement restrictions that highlights their compu-
tational simplicity and treats them as a natural syn-
tactic counterpart of blocking effects in phonol-

ogy.
4 The Limits of A-Strings

The previous section has argued that IBSP gram-
mars over a-strings provide an insightful perspec-
tive on movement constraints that highlights their
simplicity and their formal parallels to blocking
effects in phonology.

It is also noteworthy just how limited the ma-
chinery is. For instance, it is now unsurprising that
no language has island constraints such as “you
may move out of as many adjuncts as you have
movement features”. This simply cannot be ex-
pressed with IBSP-1 or IBSP-0. Similarly, we cor-
rectly predict that no language has complex struc-
tural conditions like “an adjunct is an island iff it
is c-commanded by another adjunct”. Not only
would this require a larger k-val than IBSP-1 and
IBSP-0 provide, the use of a-strings makes it com-
pletely impossible to refer to c-commanders. By
adopting a string representation that only keeps
track of containment, c-command conditions be-
come inexpressible. While every Y in as(X) c-
commands X, not every c-commander of X ap-
pears in as(X) — only those that are heads of
phrases containing X do so. The absence of some
c-commanders in a-strings thus makes them un-
suitable to express c-command conditions.

The limits of a-strings with respect to c-
command is both a curse and a blessing. As just
discussed, it has the advantage of greatly limiting
the predicted typology of island constraints. At the
same time, it also means that the current approach
is entirely incapable of handling some well-known
restrictions on movement: the that-trace effect,
and the coordinate structure constraint.

Let us first consider the that-trace effect, the
core cases of which are illustrated below:

(15) a. Who do you think [Mary will
leave _]?

b. Who do you think [- will leave
Mary]?



c. Who do you think [that Mary will
leave _]?

d. * Who do you think [that _ will leave
Mary]?

The that-trace filter forbids a subject to move
across the head of the smallest containing senten-
tial CP if that head is empty. This adds several
new complications, but these can all be handled
with IBSP.

The restriction to subjects amounts to the re-
quirement that the left edge of the k-val must be
a mover whose first movement feature is nom—,
followed by some f~. Similarly, the limitation to
sentential CPs can be expressed in terms of the
MG feature calculus. The complementizer in the
examples above has the feature make-up TTC—,
whereas the complementizer of a relative clause,
for instance, would have TN~ (under an analy-
sis of relative clauses as NP-adjuncts; other anal-
yses require different features, but it will never be
T*C™). So this aspect of the that-trace effect does
not challenge the IBSP perspective either. Finally,
the requirement that the constraint only applies to
the closest such complementizer can be captured
by restricting the appropriate filler. Overall, the
typical instances of the that-trace constraint can
be handled by an IBSP-1 grammar that uses the
same truncation trick as our IBSP-1 treatment of
freezing effects in (11).

(16) IBSP-1 grammar for the that-trace effect

For the core cases, then, the that-trace effect ex-
ceeds the strong island constraints in complexity,
but is comparable to freezing effects.

However, there are cases where that-trace vio-
lations are repaired, and these cannot be handled
in our approach. For instance, the that-trace effect
does not apply when the gap is c-commanded by
additional material.

(17)  'Who do you think [that [under no circum-
stances] _ will leave Mary]?

Here under no circumstances is an adjunct that
attaches to TP or some other position below
the complementizer and above the subject gap.
This adjunct does not contain the gap, it only c-
commands it. As a result, it is not present in
the relevant a-strings, which makes it impossible
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for us to suspend the that-trace constraint. In or-
der to handle this case, one needs a representation
that encodes both c-command and containment,
e.g. the c-strings of Graf and Shafiei (2019).

But the addition of c-command actually under-
mines the whole approach because it becomes im-
possible to determine a mover’s landing site. Re-
call that our grammars block f* from occurring
in the fillers so that we can correctly pick out the
landing site for f-movement, i.e. the closest con-
taining head with f*. Crucially, heads that c-
command the mover but do not contain it are not
viable landing sites. For instance, if we are look-
ing at the c-string of some f-mover that is the com-
plement of some head H, the specifier of H may
be some lexical item carrying . This specifier
should be allowed to go into a filler slot. At the
same time, a c-commander that both carries f*
and contains the f-mover should not be allowed
to go into a filler slot. Since fillers are specified
as lists of lexical items, there is no way to dis-
tinguish in their specification between containing
c-commanders and all other c-commanders. Ei-
ther we allow both in the filler or neither, and in
each case we end up with an unsuitable grammar.
IBSP is too weak to make the relevant distinctions
with a representation format that encodes both c-
command and containment.

While that-trace repair points out a limitation
of IBSP, the coordinate structure constraint chal-
lenges the very notion of string-based representa-
tions for movement. This constraint forbids ex-
traction from a conjunct, except if movement takes
place across-the-board from all conjuncts.

(18) a. * Which wine did [Ed brew beer and
Greg drink _]?

b. Which wine did [Ed brew _ and
Greg drink _]?

Since there is no c-command or containment rela-
tion between the gaps in (18b), neither one appears
in the other’s c-string or a-string. Consequently,
the c-strings for the object of drink do not differ
at all between the two sentences, which makes it
impossible to give a c-string account of this island
constraint irrespective of how powerful one’s com-
putational apparatus is.

These two constraints show that IBSP over a-
strings does not provide a fully exhaustive theory
of islands or movement constraints. But the IBSP
approach does highlight the structural uniformity
of many islands, their computational simplicity,



and their parallels to blocking effects in phonol-
ogy. While our findings are still preliminary and
need to be vetted by detailed analysis of a much
wider range of constraints across many languages,
it is encouraging that they closely mirror previous
findings in phonology and yield rigorous claims
about the possible shapes of islands.

S5 Linguistic Naturalness

The previous section focused on some shortcom-
ings of our approach with respect to expressiv-
ity, but there is also the issue of linguistic natu-
ralness. First, the choice of string representations
is unusual. Second, the reliance on lists of lexical
items for specifying the components of an IBSP
grammar means that there is no notion of natural-
ness. We acknowledge both issues, but we think
that they can be insightfully addressed in future
work.

As was briefly mentioned in §2.2, a-strings are
just a convenient abstraction and the findings of
this paper can be restated in terms of formal ma-
chinery that operates over trees instead of strings.
This includes the tree tiers of Graf (2018b) and
the sensing tree automata of Graf and De Santo
(2019). But in both cases the necessary math is
more likely to obfuscate the simplicity of the un-
derlying principles, and the use of tree structures
hides that the simple notion of containment is al-
ready enough to state many conditions on move-
ment. We thus maintain that a-strings are method-
ologically useful even if they may not be cogni-
tively real.

This leaves the lack of natural classes. It is
true that our current approach is still too lenient
a characterization of the class of possible island
constraints. For instance, one can easily write an
IBSP grammar over a-strings that does not allow
topicalization across a ditransitive verb. Similarly,
the ability to account for some exceptions such as
(4) also allows us to specify ludicrous exceptions,
for instance that the head of an adjunct induces an
island unless it is a palindrome. These are clearly
undesirable options, but they are typical of com-
putational work. Our primary goal was to analyze
island constraints from a subregular perspective to
more accurately pinpoint their overall complexity.
This allows us to put an upper bound on what is-
land constraint may look like, but this is still a very
generous bound. The formal restrictions must be
paired with a theory of linguistic substance to ac-
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curately circumscribe the class of possible island
constraints (see e.g. Graf 2013 for one such ac-
count for the adjunct island constraint).

6 Conclusion

We have argued that the most common cases of
strong islands can be expressed as IBSP-1 (or
IBSP-0) constraints on string representations that
encode only containment. This formal characteri-
zation establishes new parallels to phonology and
tightens the linguistic typology by excluding logi-
cally conceivable yet unattested island constraints.
While a lot of empirical modeling work remains to
be done, we are confident that this novel perspec-
tive on islands will prove very fertile.
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