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Abstract

Graf (2017) warns that every syntactic formal-

ism faces a severe overgeneration problem be-

cause of the hidden power of subcategoriza-

tion. Any constraint definable in monadic

second-order logic can be compiled into the

category system so that it is indirectly enforced

as part of subcategorization. Not only does

this kind of feature coding deprive syntactic

proposals of their empirical bite, it also un-

dermines computational efforts to limit syn-

tactic formalisms via subregular complexity.

This paper presents a subregular solution to

feature coding. Instead of features being a

cheap resource that comes for free, features

must be assigned by a transduction. In par-

ticular, category features must be assigned by

an input strictly local (ISL) tree-to-tree trans-

duction, defined here for the first time. The

restriction to ISL transductions correctly rules

out various deviant category systems.

1 Introduction

Theoretical and computational linguists both

strive to identify limited models of language that

furnish sufficient power without allowing for ex-

cessive overgeneration. Recently, Graf (2017)

noted that the findings of Graf (2011) and Kobele

(2011) point towards a major loop hole in all cur-

rent theories of syntax. The category system can

be abused to encode additional information about

the syntactic tree, and the usual subcategorization

requirements can then be used to enforce a certain

kind of synchronization between parts of the tree.

For instance, the category DP may be split into

DP[+NPI] and DP[−NPI] depending on whether

the DP is an NPI, and the category X of each se-

lecting head becomes X[+NPI] if the argument it

selects contains an unlicensed NPI. This simple

strategy has been known for a long time but did

not raise serious concerns as it is widely accepted

that all grammar formalisms “leak” in the sense

that they also allow for some unnatural patterns.

But the extent of the problem for linguistic the-

ory has not been fully appreciated. Graf (2017)

shows how this strategy can be generalized to flout

all island constraints, enforce constraints that lack

any notion of locality, and even add highly unnat-

ural counting requirements to the grammar. Every

constraint that can be defined in monadic second-

order logic is expressible through category refine-

ment. This allows for very unnatural constraints,

e.g. enforcing verb-second word order iff the sen-

tence contains exactly three relative clauses or

both a Principle A violation and a word in which

unbounded tone plateauing is not obeyed. The

only way to preclude this is to restrict the shape

of category systems, but Graf (2017) argues that

the usual linguistic requirements on syntactic cat-

egories are insufficient. Hence every syntactic for-

malism lacks a key mechanism to distinguish natu-

ral patterns from unnatural ones, resulting in mas-

sive overgeneration.

This paper proposes a computational solution to

this problem, drawing from recent work on sub-

regular complexity. Features no longer come part

and parcel with lexical items, but must be assigned

to tree structures by a transduction. An unnatural

feature system that keeps track of, say, a counting

dependency, requires a very powerful transduc-

tion. The category systems of natural languages,

on the other hand, can be handled by much simpler

means. I argue that these category systems only

require inspection of a lexical item’s local con-

text. This intuition is formalized by generalizing

the input-strictly local (ISL) string-to-string map-

pings of Chandlee (2014) to ISL tree-to-tree trans-

ductions. To the best of my knowledge, this is the

first time a subregular tranduction class is defined

for trees, and I hope it will be a fertile vantage

point for mathematical and empirical work alike.
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The paper deviates slightly from the usual struc-

ture. Since the problem is also of interest to theo-

retical linguists and the proposed solution is fairly

intuitive, the first half focuses on the big picture

and keeps formal concepts to a minimum (§2).

The mathematical aspects are then worked out in

§3, the most important of which is the formal def-

inition of ISL tree transductions (§3.2).

2 Problem and Solution: Informal

Sketch

The power of category systems and subcategoriza-

tion is best illustrated with an example (§2.1). This

makes it clear what unnatural category systems

may look like, and in what respects they clearly

differ from natural ones (§2.2). The problem of

category abuse in syntax is actually an instance of

the more general phenomenon of feature coding,

which also appears in the domain of subregular

complexity (§2.3). But subregular complexity also

provides a way of measuring the complexity of

feature systems via transductions. With strict lim-

its on the power of these transductions, many of

the unnatural category systems are correctly ruled

out (§2.4) while it becomes possible to formulate

new syntactic universals (§2.5).

2.1 A Grammar with Odd/Even Counting

Let us start with a toy example from Minimal-

ist grammars (MGs; Stabler, 1997, 2011) that il-

lustrates the power of syntactic categories. MGs

are closely modeled after Minimalist syntax, and

subcategorization is encoded via category and se-

lector features that drive the operation Merge. A

head with selector feature X+ can only be merged

with a phrase whose head has category feature

X−. This matching of features is called feature

checking. The category feature of a lexical item l
can only be checked once all selector features of

l have been checked. While exceedingly simple,

this system is already too powerful as a model of

subcategorization in natural languages.

Consider the MG G where the only pronounced

lexical items are foo and bar, which may have the

category features E− or O−. By default, the cate-

gory feature is O−. But if the lexical item carries

a selector feature O+ or E+, the category feature

must be the opposite of that selector feature (E−

or O−, respectively). Hence foo and bar may have

the feature strings O−, E+O−, or O+E−. Besides

foo and bar, the MG only has an unpronounced C-

Merge

" :: O+C− Merge

foo :: E+O− Merge

bar :: O+E− Merge

bar :: E+O− Merge

foo :: O+E− bar :: O−

Figure 1: Derivation tree for foo bar bar foo bar

head, which must always be the last lexical item to

be merged. The C-head carries the selector feature

O+. Overall, G consists of the following lexical

items:

(1) MG G with even/odd alternation

" :: O+C− foo :: E+O− foo :: O−

foo :: O+E−

bar :: E+O− bar :: O−

bar :: O+E−

The MG generates any string over foo and bar

whose length is odd. The reasoning for this is

as follows: the derivation must start with either

foo :: O− or bar :: O−. From this point on, se-

lecting heads alternate between E− and O−, but

only a head carrying O− can be selected by the C-

head to end the derivation. The end result is that

the number of pronounced lexical items in the tree

must be odd, as is also illustrated in Fig. 1. The

MG above thus instantiates a simple case of mod-

ulo counting at the string level.

2.2 (Un)Naturalness of the Example MG

The example grammar G in (1) is highly unnatu-

ral in several respects. First of all, string length

does not seem to be a relevant criterion for natural

language syntax. This definitely holds for mod-

ulo counting, which is unheard of. But even ab-

solute size requirements are hard to come by un-

less one abandons the well-motivated competence-

performance distinctions. A potential counterex-

ample is Heavy NP-shift, which is sensitive to

a constituent’s size and thus, possibly, its string

length. But even here processing provides a more

plausible explanation (cf. Liu, 2018). Syntax itself

seems to be completely blind to size, be it string

length or the size of a tree.

Perhaps even more important is the fact that O−

and E− do not convey intrinsic information of the
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lexical item l that carries them. Instead, these cat-

egories represent properties of the whole subtree.

Hence the category is highly context-dependent. If

one wanted to insert another instance of foo or bar

in the subtree headed by l, one would also have to

change the category of l because of how O− and

E− have to alternate. The change of l’s category

then requires changing the category of l’s selector,

the selector of l’s selector, and so on. This directly

contradicts a basic principle of selection: a lexical

item selects for its argument, not the argument(s)

of its argument. A verb selecting a PP may restrict

the shape of the P-head, but not the DP inside the

PP. And no lexical item can freely select any head

of any category as long as the selected subtree sat-

isfies some other property. Subcategorization en-

forces head-head dependencies, not head-subtree

dependencies, and any category system that allows

the latter to be reduced to the former is missing a

key aspect of natural language.

2.3 The Full Extent of the Problem

As was already mentioned in the introduction, the

example above is but the tip of the iceberg. With-

out restrictions on the category system, any ar-

bitrary constraint can be enforced as long as it

is definable in monadic second-order logic. Graf

(2017, p. 22–24, p. 27f) gives several illustrative

examples of overgeneration and explains in de-

tail why the usual heuristics (e.g. syntactic dis-

tribution, morphological inflection) are not suf-

ficient to distinguish natural from unnatural cat-

egory systems. Beyond modulo counting, this

kind of feature coding also allows for, among

other things, strange constraint interactions (“Sat-

isfy either verb-second or Principle A, but not

both”), symmetric counterparts of existing con-

straints (Reverse Principle A: every reflexive must

c-command a suitable R-expression), and dis-

placement mechanisms that do not use movement

and hence bypass island constraints. All of this be-

comes possible because feature coding abuses cat-

egories as a local buffer for non-local information,

erasing all locality and complexity differences be-

tween constraints.

The potential abuse of syntactic categories is ac-

tually an instance of a more general problem that

has to be carefully avoided in subregular phonol-

ogy. Subregular phonology (see Heinz 2018 and

references therein) has identified very restricted

subclasses of the regular string languages that still

furnish enough power for phonology. Crucially,

though, these claims depend on the choice of fea-

tures because every regular pattern can be made

subregular by introducing additional features. In

formal terms: every recognizable set is a projec-

tion of a local set (cf. Rogers, 1997).

For instance, the regular string language of odd-

length strings over a can be pushed into the ex-

tremely weak subclass of strictly 2-local string

languages if one introduces a feature [±odd]. A

string like a a a a a would then be represented

as a[+odd] a[−odd] a[+odd] a[−odd] a[+odd].
The language with the diacritic [±odd] feature

is strictly 2-local because it can be expressed in

terms of constraints that involve at most two seg-

ments:

(2) Strictly 2-local constraints

a. Every string must start with a[+odd]
and end with a[+odd].

b. a[+odd] must not follow a[+odd].

c. a[−odd] must not follow a[−odd].

The example in §2.1 is a syntactic analog of this

trick, with O− and E− filling the roles of [±odd].
In all these cases, feature coding obfuscates sub-

regular complexity by precompiling complex de-

pendencies into an invisible alphabet of features

and diacritics.

The feature coding problem is less severe in

subregular phonology thanks to the restriction to

articulatory features, which can usually be re-

placed by the actual segments without changing

anything substantive about the analysis.1 In syn-

tax, features play a much more vital role as two

representations may look exactly the same except

for their feature make-up.

For instance, Fig. 2 gives an MG dependency

tree representation for the gardeners water their

flowers, while adding the movement features top−

to their and top+ to water yields the MG depen-

dency tree representation of the very different top-

icalization sentence their flowers, the gardeners

water. The movement features are an essential

part of the representation. Similarly, category and

selector features can be crucial for head-argument

relations in MG derivation trees. In Fig. 1, switch-

ing the feature strings of the bottom-most foo and

1One notable exception is Baek (2018). She adds a limited
number of structural features to define a subregular class that
lies strictly between the classes TSL (Heinz et al., 2011) and
ITSL (De Santo and Graf, 2019).
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bar would yield a new string foo bar bar bar

foo. This is because derivation trees encode head-

argument relations only via Merge features, not

via dominance or linear order. It is not surprising,

then, that all the recent work extending the subreg-

ular perspective from phonology to syntax relies

on feature in one way or another (Graf, 2018; Graf

and Shafiei, 2019; Graf and De Santo, 2019; Vu,

2018; Vu et al., 2019).

But even if features could be done away with,

that would be too extreme a step as they can still

be useful. Consider once more the case of topical-

ization movement. This involves three computa-

tional steps: I) identifying the mover and the target

site, II) determining whether topicalization move-

ment is licit, and III) displacing the topicalized

phrase. Without features, the first two steps would

have to be handled by the same computational de-

vice, which first makes a non-deterministic choice

as to what should move where, and then decides

whether this instance of movement obeys all rel-

evant constraints. By making features an integral

part of the representation, we factor out the first

step in order to isolate the complexity of the sec-

ond step. But without a restrictive theory of fea-

tures, there is the risk of factoring out more than

intended. This would lead to misleading claims

about subregular complexity that are merely ar-

tifacts of feature coding. Subregular syntax thus

finds itself in a precarious situation where the very

thing it depends on also threatens to undermine all

its findings.

The original problem of syntactic categories

thus is but a piece of the larger puzzle of how

to avoid feature coding. The brute force solution

of shunning features altogether is not workable

in syntax. Features distinguish otherwise identi-

cal representations; theoretical and computational

linguists alike are too accustomed to thinking in

terms of features; and features do allow for in-

sightful factorizations of complexity. The problem

is not features as such, it is the lack of a measur-

ing rod for how much complexity has been shifted

into the feature system.

2.4 Solution: Strictly Local Feature

Assignment

Features come for free under current models of

complexity because they are representational de-

vices. Subregular complexity takes the representa-

tions for granted and then investigates how hard a

water :: D+D+V−

the :: N+D−

gardeners :: N−

their :: N+D−

flowers :: D−

water

the

gardeners

their

flowers
removal

ISL assignment

Figure 2: Feature assignment as a transduction problem

between a feature-annotated MG dependency tree (left)

and its feature-free counterpart (right)

given dependency would be to enforce over these

representations. In order to assess the complex-

ity of feature systems, we have to decouple them

from the representations. Intuitively speaking, we

want to measure the complexity of constructing a

feature-annotated representation from its feature-

free counterpart.

Formally, this takes the shape of a transduction

problem. For strings, transductions are a formal

counterpart of rewrite rules, and for trees they are

similar to syntactic transformations in the sense of

Chomsky (1965). Chandlee (2014) defines a par-

ticularly weak kind of string transductions known

as input strictly local (ISL). An ISL transduction

considers only the local context of a symbol when

deciding how it should be rewritten. Word-final

devoicing and intervocalic voicing are examples

of ISL transductions in phonology, whereas long-

distance sibilant harmony would not be ISL be-

cause the rewriting of a sibilant can depend on

other segments that are arbitrarily far away. ISL

can be lifted from strings to trees: a node in a tree

may be rewritten in various ways depending on its

local context in the tree. A transduction is ISL-k
iff all local contexts can be limited to at most k lev-

els (a mother-daughter configuration, for example,

involves two levels).

Figure 2 illustrates the approach with a feature-

annotated MG dependency tree for the garden-

ers water their flowers. The question at hand is

whether the familiar categories D, N, and V can

be assigned by an ISL transduction. We take a

feature-annotated representation like the one of

the left and remove all category and selector fea-

tures. Then we have to define an ISL transduction

that takes us back to the original representation. If

this can be done with any well-formed tree, then

the whole feature system is ISL recoverable.

For the specific tree in Fig. 2, we need an ISL-

2 transduction. The feature annotations for the,

their, and gardeners can be recovered without any

further context information just from the phonetic
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exponents. That is the case because there simply

are no alternative feature annotations for these lex-

ical items in English. With water and flowers, on

the other hand, there is ambiguity as each one of

them could be either a noun or a verb. But in both

cases a minimum amount of context is sufficient

to disambiguate their categories. Since flowers is

selected by the, which can only be a determiner,

flowers must be a noun. Similarly, water must be

a verb because it selects the and their, neither one

of which could be an argument of the noun water.

Inspecting the daughters or the mother of a node

requires a context with two levels, so the transduc-

tion is ISL-2 for this specific example. The com-

plexity of the whole feature system corresponds to

the weakest transduction that works for all well-

formed trees (usually there will be infinitely many

of those; therefore, conclusive complexity results

require proofs rather than examples).

The feature system of the MG G in Sec. 2.1 is

not ISL recoverable. This follows from the fact

that it is not ISL-k recoverable for any k ≥ 1. For

the sake of simplicity, we will once again use a

dependency tree format as in Fig. 2 instead of the

derivation tree format in Fig. 1. Now suppose that

the features for the left tree in Fig. 3 could be cor-

rectly assigned from the middle tree by an ISL-

k transduction. Since the transduction is ISL-k,

the features assigned to foo depend exclusively on

some context with at most k levels. Crucially, foo

will always receive the same features as long as

the context remains the same. But now compare

this to the tree on the right. Here foo has switched

positions with bar below it, inducing a change in

its feature make-up. Yet the locally bounded con-

text for foo has not changed at all — the middle

tree could also be a description for the right tree

depending on the values of m0 ≥ k and n0 ≥ k.

Hence the feature annotation for foo varies despite

identical contexts, which proves that the feature

system is not ISL recoverable. In fact, no ISL

transduction can handle any feature system that in-

volves modulo counting.

2.5 Some Linguistic Implications

ISL recoverability correctly rules out some of the

most egregious patterns and constraints. But we

can try to further limit feature systems based on

the size of contexts. Instead of ISL recoverabil-

ity, the relevant restriction would be ISL-k recov-

erability for some small k.

" :: O+E−

bar :: E+O−

bar :: O+E−

foo :: E+O−

bar :: O+E−

bar :: E+O−

bar :: O+E−

bar :: O−

"

bar

bar

foo

bar

bar

bar

" :: O+E−

bar :: E+O−

bar :: O+E−

bar :: E+O−

foo :: O+E−

bar :: E+O−

bar :: O+E−

bar :: O−

m ≥ k

n ≥ k

m ≥ k
m0 ≥ m

n ≥ k
n0 ≥ n

Figure 3: Modulo systems are not ISL-k recoverable

Note first that the value of k can vary depending

on other assumptions. MG derivation trees like the

one in Fig. 1 display a greater distance between

heads and arguments than MG dependency trees

like the one in Fig. 2, so the latter will minimize

the value for k. This does not mean that the latter

is linguistically preferable, but rather that k cannot

be fixed independently of the choice of representa-

tion. The value of k will also depend greatly on the

shape of the phonetic exponents. Fully inflected

forms can provide crucial clues about a lexical

item’s category that would be missing from the un-

inflected roots postulated in Distributed morphol-

ogy (Halle and Marantz, 1993). It remains to be

seen which set of assumptions and parameters will

prove most insightful.

At this point, though, I put forward a maximally

restrictive conjecture. Based on a preliminary sur-

vey of English data and the linguistic bon mot that

heads do not select for arguments of arguments, I

contend that the category systems of natural lan-

guages are maximally simple:

(3) Complexity of category systems

Given MG dependency trees with unin-

flected roots as exponents (e.g.
p

destroy,p
water), it holds for every natural lan-

guage that all its category and selector fea-

tures are ISL-2 recoverable.

The conjecture in (3) predicts that whenever a lex-

ical item is categorially ambiguous, its category

feature can be determined by inspecting the select-

ing head or the heads of the selected arguments.

Even if ISL-2 recoverability ultimately turns out

to be too strong an assumption, ISL-k recoverabil-

ity still rules out many undesirable feature systems
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and reins in feature coding while allowing for lim-

ited categorial ambiguity.

ISL recoverability also has some more indirect

consequences. One prediction is that no natural

language can have an arbitrarily long sequence

x1, . . . , xn such that I) each xi is an empty head,

and II) xi selects xi+1 and nothing else (1 ≤ i <
n). This prediction follows from the fact that un-

pronounced lexical items provide no overt clues

about their category. If the local context does

not furnish any pronounced material, local cat-

egory inference hinges on structural differences.

Since the configuration above is structurally uni-

form, there is insufficient information to correctly

infer the categories of all empty heads. This case

is interesting because of the proliferation of empty

heads in Minimalist syntax. If there is any clear

counterexample to (3), it is likely to involve empty

heads.

It should also be noted that ISL recoverabil-

ity is only expected to hold for category and se-

lector features. Features that participate in long-

distance dependencies like movement cannot be

reliably assigned by an ISL transduction.2 Con-

sider once more our topicalization example from

before. Whether water should receive a top+ fea-

ture to license topicalization depends on whether

there is some head with a matching top− feature

to undergo topicalization. In the case at hand, this

can be made based on the local context alone. But

in general, a mover can be arbitrarily far away

from its target site, as in this author, John thinks

that Bill said that Mary really adores. Correct as-

signment of top+ thus requires a context of un-

bounded size, which is impossible with ISL trans-

ductions.

Many empirical and theoretical issues remain to

be settled. The MG corpus of Torr (2017) may

provide valuable clues about the feasibility of con-

jecture (3), but it must be supplemented by a broad

range of typological data. On the formal side,

studying the recoverability of movement features

will require more powerful extensions of ISL tree

transductions. The next section fully formalizes

ISL transductions to provide a suitable vantage

point for this future work.

2In grammars with adjunction, subcategorization can also
become a long-distance dependency depending on one’s
choice of representation (Graf, 2018). A modified version
of (3) would predict that the uninflected root of each adjunct
still provides enough information to reliably infer category
and selector features. I am much more skeptical that this will
turn out to be true across all languages.

3 Formal Definitions

This section puts the informal discussion of the

preceding section on a formal footing by defining

ISL recoverability in terms of ISL tree relabelings.

But in order to simplify future work on feature re-

coverability, I define the more general class of ISL

tree transductions, which ISL tree relabelings are

a particular simple subtype of. The definition of

ISL tree transductions differs markedly from that

of other tree transductions. Building on Gorn do-

mains and tree contexts (§3.1), I define an ISL tree

transducer as a finite set of triples, each one of

which maps a node n to a tree context based on

the configuration n appears in. The ISL transduc-

tion then combines all these tree contexts to yield

the final output tree (§3.2). Given this formal ap-

paratus, feature recoverability is easy to state in

rigorous terms (§3.3).

3.1 Technical Preliminaries

We define trees as finite, labeled Gorn domains

(Gorn, 1967). First note, though, that we use N to

denote the set of all positive natural numbers, i.e.

{1, 2, 3, . . .} rather than {0, 1, 2, 3, . . .} — this is

non-standard, but will slightly simplify the usage

of indices in the definition of ISL-k transducers.

A Gorn domain D is a set of strings drawn from

N
∗, which are called (Gorn) addresses, or simply

nodes. Every Gorn domain must satisfy two clo-

sure properties: for all u 2 N
∗ and 1 ≤ i ≤ j

it holds that uj 2 D implies both u 2 D and

ui 2 D. This entails the inclusion of the empty

string ", which denotes the root. Addresses are in-

terpreted such that u immediately dominates each

ui, and each ui is the immediate left sibling of

u(i+ 1).
A Σ-tree is a pair t := hD, `i where D is a finite

Gorn domain and ` : D ! Σ is a total function

that maps each address to its label, i.e. a member

of the alphabet Σ. The depth of t is equivalent to

the length of the longest Gorn address.

A (Σ, n)-context is a Σ-tree whose leaf

nodes may also have labels drawn from the set

{!1, . . . ,!n} of ports, which must be disjoint

from Σ. Suppose we are given a (Σ, n)-context

c := hDc, `ci with m ≤ n ports labeled !i at ad-

dresses a1, . . . , am, as well as a tree (or context)

s := hDs, `si. Then we use c[!i ← s] to denote

the result of substituting s for each !i in c. This is

a new tree t := hD, `i such that

• D := Dc [ {ajd | 1 ≤ j ≤ m, d 2 Ds}, and
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• for every b 2 D

`(b) :=











`s(d) if b = ajd

(1 ≤ j ≤ m, d 2 Ds)

`c(b) otherwise

The construction also generalizes to multiple si-

multaneous substitutions, as in c[!i ← s,!j ←
t]. If c contains no node labeled !i, then c[!i ←
s,!j ← t] = c[!j ← t] (and c[ ] = c).

If S is a set, then substitution can apply

in two ways. With synchronous substitution,

t[!i ← S] := {t[!i ← s] | s 2 S}. Asyn-

chronous substitution, denoted t[!i ( S], yields

{t[!i1 ← s1, . . . ,!in ← sn] | s1, . . . , sn 2 S},

assuming that t contains exactly n occurrences

of !i. Substitution with sets and multiple si-

multaneous substitutions will be crucial for ISL

transductions.

3.2 ISL Transductions

Chandlee (2014) defines ISL string-to-string map-

pings in terms of deterministic, finite-state string-

to-string transducers. Even though the definition

does not provide an explicit look-ahead compo-

nent, ISL mappings can emulate finitely bounded

look-ahead via a delayed-output strategy. Sup-

pose, for instance, that a is rewritten as b before

d, as c before e, and just as a before f . This is em-

ulated by deleting a and rewriting the next symbol

as either bd, ce, or af . Later works define ISL

functions in terms of local contexts (not to be con-

fused with (Σ, n)-contexts), and those definitions

make look-ahead a standard component to sim-

plify practical work (Chandlee and Heinz, 2018;

Graf and Mayer, 2018; De Santo and Graf, 2019).

With tree transducers, the emulation of finitely

bounded look-ahead is a much more complex af-

fair that depends on various parameters such as di-

rectionality (top-down or bottom-up), totality, and

determinism. For this reason, I explicitly add fi-

nite look-ahead in the subsequent definitions. I

will also allow for non-determinism as future work

may require transductions than can handle option-

ality (e.g. whether a node should receive a move-

ment feature to undergo topicalization).

For the sake of generality and as a starting point

for future work, I first define a version of ISL tree

transductions that allows for non-determinism,

deletion, and copying, and that can run in two dif-

ferent modes of operation (synchronous or asyn-

chronous). This is subsequently limited to the spe-

cial case of ISL relabelings, which are the formal

core of feature recoverability.

Definition 1 (ISL tree transducer). For any k ≥
1, an ISL-k tree transducer from Σ-trees to Ω-

trees is a finite set τ of ISL-k rewrite rules hs, a, ti,
where

• s is a Σ-tree of depth i < k,

• a is a node (i.e. a Gorn address) of s with

d ≥ 0 daughters,

• and t is an (Ω, d)-context. y

Definition 2 (Synchronous ISL transduction).

The transduction realized by an ISL-k transducer

in synchronous mode is defined in a recursive

fashion. First, a node b in tree u can be targeted

by an ISL-k context hs, a, ti iff there is some

p 2 N
∗ such that

node match b = pa, and

label match for all nodes g of s, `s(g) = `u(pg),

full-width match for all nodes gi of s with g 2
N
∗ and i 2 N , if pgj is a node of u (j > i),

then gj is a node of s.

Now suppose furthermore that n in u has d ≥ 0
daughters. Given an ISL-k tree transducer τ , we

use ←−τ (u, b) to denote the set of all trees t[!1 ←
←−τ (u, b1), . . . ,!d ← ←−τ (u, bd)] such that there is

a rewrite rule hs, a, ti in τ that targets node b in

u. If this set is empty, ←−τ (u, b) is undefined. For

any Σ-tree t, we may simply write ←−τ (t) instead

of ←−τ (t, "). For any tree language L, the trans-

duction computed by τ in synchronous mode is
←−τ (L) := {hi, oi | i 2 L, o 2 ←−τ (i)}. A transduc-

tion is synchronous input strictly k-local (sISL-k)

iff it can be computed by some ISL-k transducer in

synchronous mode. It is synchronous input strictly

local (sISL) iff it is sISL-k for some k ≥ 1. y

The definition of asynchronous input strictly k-

local (aISL-k) transductions is exactly the same,

except that ←−τ is replaced by
(
τ such that

(
τ (u, b)

denotes the set t[!1 (
(
τ (u, b1), . . . ,!d (

(
τ (u, bd)]. ISL is used as a shorthand for sISL or

aISL, ignoring transduction mode.

The definition of ISL transductions differs from

that of other tree transductions in that the input

tree is not altered incrementally to yield the output
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tree. Instead, each node in the input contributes

a context to the output, or rather, a range of pos-

sible contexts in the case of a non-deterministic

transduction. The transduction then stitches these

contexts together in order to arrive at a single

tree structure. This stitching is accomplished by

the recursive step of mapping τ(u, b) to t[!1 ←
τ(u, b1), . . . ,!d ← τ(u, bd)]. Each τ(u, bi) (1 ≤
i ≤ d) corresponds to a context produced from the

i-th daughter of the node b in u, and these con-

texts are inserted into the appropriate ports of the

context t produced from n. If n is a leaf node, its

output structure is a tree instead of a context. This

ensures that the recursion step terminates eventu-

ally.

Example. Figure 4 specifies a fragment of an ISL-

3 transducer for translating multiplication trees to

addition trees (assuming no numbers larger than

3). For simplicity, the ISL rewrite rules are writ-

ten in a context-free format with a box around

the node to be rewritten. An underscore is used

to match any arbitrary node label. On the right,

a particular input-output mapping is shown with

the transducer running in asynchronous mode. In

synchronous mode, all !i in the output of rule G

would have to be replaced by the same tree. y

It is easy to see that every ISL-k string trans-

duction is an ISL-k tree transduction over unary

branching trees. This shows that ISL-k tree trans-

ducers are a natural generalization of ISL for

strings. However, the current definition goes far

beyond ISL string mappings in that it allows for

non-determinism and copying.

Definition 3 (Transducer subtypes). An ISL-k
tree transducer τ is

deterministic iff it holds for every Σ-tree u that

no node of u can be targeted by more than

one context of τ ,

linear/non-deleting iff all contexts hs, a, ti of τ
are such that if the node at address a in s has

d ≥ 1 daughters, then t contains every port

!i at most once/at least once (1 ≤ i ≤ d),

structure preserving iff all rewrite rules hs, a, ti
of τ are such that t is of the form

!(!1, . . . ,!d) (! 2 Ω).

A deterministic, structure preserving ISL-k
transducer is called an ISL-k relabeling. y

A structure preserving ISL transducer never

changes the structure of the input tree. Structure

preservation thus entails linearity, which is why

the latter is not mentioned in the definition of rela-

belings. Linearity in turn removes the distinction

between synchronous and asynchronous mode as

no !i ever has more than one occurrence. Only

this very limited type of ISL transducers is rele-

vant for feature recoverability.

3.3 ISL Feature Recoverability

We are finally in a position to define the notion of

ISL recoverability that was informally discussed

in §2.4. In order to clearly separate features from

other parts of the alphabet, we have to track them

in a separate component. MGs make this split

fully explicit, with a lexical item’s phonetic expo-

nent a member of Σ and their feature annotation

a string over an entirely separate set of features.

Other formalisms such as TAG or GPSG can also

be recast along these lines.

Definition 4. Let F be a set of features. An F -

annotated Σ-tree is a tree whose labels are drawn

from Σ× F ∗. y

Definition 5. Let F be a set of features and e a

function that maps each hσ, fi 2 Σ × F ∗ to σ.

Then F is ISL-k recoverable with respect to lan-

guage L of F -annotated Σ-trees iff there is an ISL-

k transducer τ such that τ(e(t)) = t for all t 2 L.y

Note that feature recoverability can vary de-

pending on the particulars of the tree languages. A

feature that may not be recoverable with respect to

L may be recoverable with respect to L0. Consider

once more the grammar in §2.1. If foo always had

to carry O−, and bar always had to carry E−, then

those category features would be recoverable even

though they still encode an even/odd alternation.

In this hypothetical scenario, the alternation is tied

to overt exponents, reducing modulo counting to a

strictly 2-local alternation of lexical items. In the

other direction, even the simplest (non-trivial) cat-

egory system cannot be recovered from a language

where all lexical items are unpronounced. And as

a reviewer correctly points out, if one puts no re-

strictions on the use of empty heads, features can

be encoded in terms of specific structural config-

urations with empty heads. Feature recoverabil-

ity thus is a fluid notion that depends equally on

the nature of Σ, the syntactic assumptions about

structure and phonetic exponents, and the overall

complexity of the tree language.
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Figure 4: A non-deterministic ISL-3 tree transducer (left) for converting a tree with addition and multiplication

to addition only (right). The workspace depicts I) how each node is rewritten as one or more contexts, and II) all

possible options for combining these contexts into a particular output tree via substitution steps that are based on

the structure of the input tree. Dashed arrows are annotated with the corresponding rewrite rules. The transducer

is assumed to operate in asynchronous mode. The output displays one out of 23 = 8 options that differ in when

and where rewrite rules C and F are used. In synchronous mode, there would be only two distinct outputs.

4 Conclusion

ISL tree transductions — or more precisely, ISL

tree relabelings — offer a reasonable approxima-

tion of the limits of category systems in natural

languages. I conjecture that all natural languages

are such that the category of a lexical item can be

inferred from its local context in a tree without any

feature annotations. In combination with standard

assumptions about linguistic structure, feature re-

coverability is a powerful restriction that elimi-

nates many of the undesirable cases of feature cod-

ing identified in Graf (2017). It also makes strong

empirical predictions that merit further investiga-

tion by linguists.

Many questions had to remain open. On

the formal side, this includes abstract character-

izations as well as core properties of ISL tree

transductions, e.g. (non-)closure under intersec-

tion, union, and composition. The relations to

other transduction classes are largely unknown.

I conjecture that (deterministic) synchronous/

asynchronous ISL transductions are subsumed by

(deterministic) bottom-up/top-down transductions

with finite look-ahead. Linear ISL transductions

should be subsumed by both. The movement fea-

tures of MGs will require a more powerful kind

of transduction, possibly based on the string class

TSL (Heinz et al., 2011). There also seems to

be a deep connection between feature recoverabil-

ity and the notion of inessential features (Kracht,

1997; Tiede, 2008).

From a linguistic perspective, one pressing

question is to what extent feature recoverability

depends on whether syntax uses fully inflected

lexical forms or underspecified roots. If fully in-

flected lexical items do not reduce the complex-

ity of the ISL transduction, or allows for unnat-

ural constraints that would not be possible other-

wise, that would be a powerful argument that syn-

tax indeed has no need for anything beyond simple

roots.
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