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Abstract

Various aspects of syntax have recently been

characterized in subregular terms. However,

these characterizations operate over very dif-

ferent representations, including string encod-

ings of c-command relations as well as tiers

projected from derivation trees. We present

a way to unify these approaches via sensing

tree automata over Minimalist grammar de-

pendency trees. Sensing tree automata are de-

terministic top-down tree automata that may

inspect the labels of all daughter nodes be-

fore assigning them specific states. It is al-

ready known that these automata cannot cor-

rectly enforce all movement dependencies in

Minimalist grammars, but we show that this

result no longer holds if one takes into account

several well-established empirical restrictions

on movement. Sensing tree automata thus fur-

nish a strong yet uniform upper bound on the

complexity of syntactic dependencies.

1 Introduction

This paper proposes a novel, unified upper bound

on the subregular complexity of syntactic depen-

dencies. Since the merit of this result might be

opaque to a reader who is not intimately familiar

with the most recent developments in subregular

complexity, we start out with a very detailed back-

ground discussion.

The subregular program seeks to identify for-

mal machinery that provides a tighter characteri-

zation of natural language than the familiar classes

of the Chomsky hierarchy. Subregular phonology

took as its vantage point the well-known result that

phonology is regular (Johnson, 1972; Kaplan and

Kay, 1994) and then identified proper subclasses

that are still powerful enough for specific types

of phonological dependencies. Among these sub-

classes are SL, SP (Rogers et al., 2010), IBSP

(Graf, 2017, 2018a), TSL (Heinz et al., 2011; Mc-

Mullin, 2016), and several extensions of the latter

(Baek, 2018; Graf and Mayer, 2018). The highly

restrictive nature of these classes has allowed for

new learning algorithms (Heinz et al., 2012; Jar-

dine and McMullin, 2017) and also furnishes com-

putational explanations for typological gaps.

Syntax cannot be subregular in this strict sense

by virtue of being at least mildly context-sensitive

(Huybregts, 1984; Shieber, 1985; Michaelis and

Kracht, 1997; Kobele, 2006, a.o.). However, lin-

guists formulate syntactic dependencies over trees,

not strings. This shift in perspective has also taken

place within formal grammar, first with model-

theoretic syntax (Blackburn et al. 1993; Back-

ofen et al. 1995; Cornell and Rogers 1998; Rogers

1998, 2003, a.o.) and then the two-step approach

(see Morawietz 2003, Mönnich 2006, and ref-

erences therein). The two-step approach high-

lighted how the mildly context-sensitive nature of

syntax arises from the interaction of two finite-

state components: a regular tree language that en-

codes a kind of “deep structure” and a finite-state

tree transduction to the intended “surface struc-

ture”. This perspective has proven particularly

fruitful in Minimalist grammars (MGs; Stabler,

1997, 2011a), where derivation trees provide the

regular tree language and the transduction is a for-

mal analogue to Chomsky’s notion of movement

(Kobele et al., 2007; Graf, 2012b). With the regu-

lar nature of syntax properly identified, a subregu-

lar characterization of syntax is suddenly feasible.

Graf (2012a) provided the first subregular

(un)definability results for MG derivation tree lan-

guages, but these results were expanded on only

recently. Notably, all follow-up work strived to re-

main closer to the classes that enjoy prominence in

subregular phonology. This, however, also led to

a marked divergence in approaches. Graf (2018b)

operates directly over MG derivation trees. Fol-

lowing the tradition of model-theoretic syntax,

Graf equates the MG operations Merge and Move



with constraints on MG derivation tree languages

and shows that they belong to the tree analogue

of the subregular string class TSL. This view is

also adopted by Vu (2018) and Vu et al. (2019) in

the analysis of negative-polarity items and case li-

censing, respectively. Graf and Shafiei (2019) and

Shafiei and Graf (2019), on the other hand, pursue

a purely string-based perspective of syntactic de-

pendencies. For each node they identify its string

of c-commanders, the shape of which must fol-

low the constraints imposed by, say, Principle A

or NPI-licensing. When construed as such string

constraints, syntactic licensing conditions not only

turn out to be subregular, they also fit into classes

that have been proposed for subregular phonology.

The work so far thus has unearthed two distinct

subregularity results: MG operations are subreg-

ular over MG derivation trees, and licensing con-

ditions are subregular over a specific string repre-

sentation grounded in c-command (cf. Frank and

Vijay-Shanker, 2001).

Even though each perspective is worthwhile and

has proven very fruitful, their apparent incom-

mensurability raises the question how these two

notions of subregularity can be brought to bear

on each other. The central contribution of our

paper is a uniform upper bound on syntax that

encompasses both MG operations and licensing

conditions. This upper bound takes the form of

sensing tree automata (STAs) operating over de-

pendency tree representations of MG derivations

(these dependency trees are distinct from the MG

dependency trees of Boston et al. 2010). STAs

provide a minimal amount of look-ahead to de-

terministic top-down tree automata: the automa-

ton may inspect the labels of all daughter nodes

before assigning them specific states. Far more

than just a mathematical curiosity, limiting syntax

to STA-recognizable constraints over MG depen-

dency trees is very natural in several respects:

1. MG dependency trees are a natural encoding

of head-argument relations.

2. STAs explain why licensing conditions are

mediated by c-command instead of the many

alternative command relations one could

imagine (Barker and Pullum, 1990).

3. In order for movement to be regulated by

STAs, it must obey additional restrictions be-

yond those of the standard MG formalism.

These restrictions coincide with well-known

empirical phenomena such as the Specifier

Island Constraint and the Coordinate Struc-

ture Constraint.

4. As a single STA can handle movement and li-

censing conditions at the same time, it is un-

surprising that the two occasionally interact,

e.g. when movement induces a licensing con-

figuration or violates one.

5. Since STAs are deterministic top-down au-

tomata with a minimal amount of look-ahead,

they are a natural match for top-down pars-

ing, which has been argued to play a central

role in human sentence processing (Stabler,

2013; Kobele et al., 2013; Graf et al., 2017).

Hence our contribution does not merely unify

the two existing approaches to subregular syntax,

it also accounts for empirical aspects of syntax that

the latter leave unexplained. At the same time, we

do not intend for our perspective to supplant the

existing ones. Each one provides useful insights

and can now be safely pursued in the knowledge

that there is a principled formal connection to the

other approaches.

The paper is laid out as follows: Section 2 in-

troduces our mathematical notation for trees and

tree languages (§2.1), which form the basis for our

definition of STAs (§2.2). We then define MGs and

their dependency trees in §3. In order to simplify

some of the subsequent proofs, we do not follow

the standard definitions and instead adopt a for-

mat that is partly inspired by Kobele et al. (2007).

Sections 4 and 5 cover the two core results of this

paper: dependency trees of MGs with the Spec-

ifier Island Constraint are STA-recognizable, and

so are licensing conditions based on c-command.

The last section briefly sketches some extensions

of these results, including interactions of move-

ment and c-command (§6.1), subcommand (§6.2),

recognizability of MG derivation trees (§6.3), ad-

junct islands and the coordinate structure con-

straint (§6.4, §6.5), and connections to top-down

parsing (§6.6).

2 Preliminaries

2.1 Trees and Tree Languages

A ranked alphabet Σ is a finite set of symbols,

each one of which has a rank or arity assigned by

the function r : Σ → N. We write Σ(n) to de-

note {σ ∈ Σ | r(σ) = n}, and σ(n) indicates that



σ has rank n. Given a ranked alphabet Σ, the set

T (Σ) of Σ-trees contains all σ(0) and all terms

σ(n)(t1, . . . , tn) (n ≥ 0) such that t1, . . . , tn ∈
T (Σ).

Example 1. Given Σ :=
{

a(0), b(0), c(2), d(2)
}

,

T (Σ) is an infinite sets that contains, among oth-

ers, the term d(c(b, b), d(b, a)). This term corre-

sponds to the tree below:

d

c

b b

d

b a

If Σ consisted only of c(2) and d(2), then T (Σ)
would be empty. y

Given a term m(n)(s1, . . . , sn) where each si is

a subtree with root di, we call m the mother of

the daughters d1, . . . , dn (1 ≤ i ≤ n). If two

distinct nodes have the same mother, they are sib-

lings. We use the term proper dominance for the

transitive closure of the mother-of relation, and re-

flexive dominance for the reflexive, transitive clo-

sure. A node a is an ancestor of node n iff a prop-

erly dominates n.

Every node u in a Σ-tree has a unique address

g(u) as defined in Gorn (1967). The subtree of Σ-

tree t rooted in Gorn address g(u) is denoted by

t/g(u). Given two Σ-trees s and t and node u in

t, t[g(u)← s] is the result of replacing t/g(u) in t
by s. Throughout the paper, we write u instead of

g(u) so that t/u and t[u ← s] are shorthands for

t/g(u) and t[g(u)← s], respectively.

2.2 Sensing Tree Automata

A sensing tree automaton (STA; Martens et al.,

2008) is a deterministic top-down tree automaton

that may also take the labels of a node’s daugh-

ters into account before assigning states to them.

In other words, these automata have a finite look-

ahead of 1. This intuition is reflected in our defini-

tion of sensing rules below. Following the format

of Comon et al. (2008, p. 38) for top-down tree

automata, we deliberately define sensing rules in

a tree transducer format. This is a marked devia-

tion from Martens et al. (2008), but it should make

it easier for future work to extend our perspective

from constraints to transformations.

Let Σ be some ranked alphabet and Q a set of

symbols of rank 1 disjoint from Σ. Members of

Q are called states. In addition, X is a countably

infinite set of variable symbols (X ∩ Σ = X ∩

Q = ∅). For the rest of this section, we use ~σi as

a shorthand for σi(xi1 , . . . , xin), with σi ∈ Σ(n)

and xi1 , . . . , xin ∈ X .

Definition 1 (Sensing rule). A sensing rule

over alphabet Σ and state set Q is an ex-

pression of the form q(σ(n)( ~σ1, . . . , ~σn)) →
σ(n)(q1( ~σ1), . . . , qn( ~σn)) such that

σ, σ1, . . . , σn ∈ Σ and q, q1, . . . , qn ∈ Q. y

Note that for σ(0), sensing rules are of the form

q(σ(0))→ σ(0). Such sensing rules effectively re-

move states from leaf nodes, whereas sensing rules

for σ(≥1) remove the state of σ and instead add a

state on top of each daughter of σ.

Definition 2 (Sensing relation). Let t and t′ be in

T (Σ∪Q), and suppose δ is some sensing rule over

Σ and Q that has the form q(σ(n)( ~σ1, . . . , ~σn))→
σ(n)(q1( ~σ1), . . . , qn( ~σn)). Then the relation →δ

holds between t and t′ (t →δ t′) iff t con-

tains a subtree s := q(σ(n)(s1, . . . , sn)) such

that each si (1 ≤ i ≤ n) is a Σ-tree with root

σi, and t′ is the result of replacing s in t with

σ(n)(q1(s1), . . . , qn(sn)).

Given a set ∆ of sensing rules, we write t →∆

t′ iff t →δ t′ for some δ ∈ ∆. The reflexive,

transitive closure of→∆ is denoted by→∗
∆. y

Intuitively, t →∗
∆ t′ iff t′ can be obtained from t

by a sequence of sensing rules.

Definition 3 (Sensing tree automaton). A sens-

ing tree automaton (STA) over Σ is a 4-tuple

A := 〈Q,Σ, qI ,∆〉 such that Q is a finite set of

states disjoint from alphabet Σ, qI ∈ Q is the ini-

tial state, and ∆ is a finite set of sensing rules over

Σ and Q. The tree language recognized by A is

L(A) := {t ∈ T (Σ) | qI(t)→
∗
∆ t}. The class of

all tree languages that are recognized by at least

one STA is called STA. y

An STA thus recognizes a tree t iff there is a se-

quence of sensing rules that starts from the initial

state qI and passes states through t until they are

all removed again at the leaves of t. If the STA

ever gets stuck because there is no suitable sens-

ing rule, t is rejected.

Example 2. Suppose Σ :=
{

a(0), b(0), c(2), d(2)
}

,

and consider the STA with Q := {0, 1}, where 0
is the initial state. The automaton uses all sensing

rules of the following form:

• 1(σ( ~σ1, ~σ2))→ σ(1( ~σ1), 1( ~σ2)),
for σ ∈ {c, d} and σ1, σ2 ∈ {a, b, c, d},



• 0(σ( ~σ1, ~σ2))→ σ(0( ~σ1), 0( ~σ2)),
for σ ∈ {c, d} and σ1, σ2 ∈ {a, b, d},

• 0(σ( ~σ1, ~σ2))→ σ(q0( ~σ1), q1( ~σ2)),
for σ ∈ {c, d}, σ1, σ2 ∈ {a, b, c, d}, and

qi := 1 iff σ2−i := c (where i ∈ {0, 1}),

• q(b)→ b,
for q ∈ {0, 1},

• 1(a)→ a.

The STA only accepts those Σ-trees where each a
is c-commanded by some c (that is to say, c must

be the sibling of an ancestor of a). It thus emulates

a simplified version of Principle A. y

It will also be convenient in some proofs to em-

ploy a substitution-based characterization of the

tree languages that are recognized by STAs. The

characterization capitalizes on the fact that every

STA only has a look-ahead of 1. Consequently, the

state it assigns to a node n depends only on three

components: I) the label of n and its siblings, II)

the states assigned to n’s ancestors, and III) the

states assigned to the siblings of each ancestor. If

all of those are kept constant, n will always receive

the same state no matter what the rest of the tree

looks like.

Definition 4 (Spine closure). Given a node u of

some Σ-tree t, lsibt(u) is the string consisting of

the label of u’s left siblings (if they exist) followed

by the label of u. Analogously, rsibt(u) is the

string consisting of the label of u and the label

of its right siblings (if they exist). Also, ▽ and

⇓ are two distinguished symbols not in Σ.1 Let

u1, . . . , un be the shortest path of nodes extending

from the root of t to u. That is to say, each ui is

the mother of ui+1 (1 ≤ i < n), u1 is the root, and

un = u. By spinet(u) we denote the string re-

cursively defined by spinet(u1) = u1 ▽ u1 and

spinet(u1, . . . , un) = spinet(u1, . . . , un−1) ⇓
lsibt(un) ▽ rsibt(un) A regular tree language L
is spine-closed iff it holds for all trees s, t ∈ L and

nodes u and v belonging to s and t, respectively,

that spines(u) = spinet(v) implies s[u ← t/
v] ∈ L. y

Theorem 1 (Martens 2006). A regular tree lan-

guage L belongs to the class STA iff L is spine-

closed.

1Martens et al. (2008) use # instead of ⇓. We prefer the
latter as it emphasizes visually that this symbol marks the
start of a string at the next lower level in the tree.

Example 3. Consider the left tree l and right tree

r in Fig. 1. Let l0 and r0 be the left daugh-

ter of the root in l and r, respectively. Then

spinel(l0) = spiner(r0) = merge ▽ merge ⇓
merge ▽ merge merge. Hence a tree language

that contains both l and r is an STA language iff it

also contains r[r0← r/l0]. y

In linguistic terms, spine-closure tells us that

two subtrees s/u and t/v with identical root la-

bels can be freely exchanged whenever they have

the same ancestors and the same c-commanders.

This will be of great importance throughout this

paper.

3 Minimalist Grammars

Minimalist grammars (MGs; Stabler, 1997) are

a formalization of Minimalist syntax (Chomsky,

1995). Readers who are unfamiliar with the for-

malism should consult Stabler (2011a) for a more

accessible introduction.

Every MG consists of a finite set of feature an-

notated lexical items. Each lexical item is a pair

of a phonetic exponent and a finite, non-empty

string of features. There are four types of features,

whose job it is to trigger the structure-building

operations Merge and Move. Merge establishes

head-argument relations and is triggered when a

selector feature F+ on a head finds a matching

category feature F− on an argument. For exam-

ple, the noun guest carries a feature N−, for which

we also write guest :: N−. It can be merged with

the :: N+D− to yield a DP, thanks to the match-

ing category and selector features. Move displaces

a subtree from its current position to a higher po-

sition in the syntactic structure. Move takes place

when a licensor features f+ on a head that pro-

vides a landing site can be checked by a corre-

sponding licensee feature f− on a mover. The or-

der of features on a lexical item determines the or-

der in which the corresponding operations are trig-

gered. Hence the determiner which :: N+D−wh−

would first select a noun phrase, get merged with

a head looking for a DP, and then undergo wh-

movement.

The sequence of Merge and Move steps is com-

monly represented as a derivation tree, e.g. in

Fig. 2. However, we will use a dependency tree

representation instead. Our dependency trees are

merely a more compact encoding of MG deriva-

tion trees and have no connection to the MG de-

pendency trees of Boston et al. (2010). We will



merge

merge

a :: A− a :: A+A−

merge

a :: A− a :: A+A+A−

merge

merge

b :: B− b :: B+B−

merge

b :: B− b :: B+B+B−

Figure 1: MG derivation tree languages are not recognizable by STAs because they are not spine-closed.

directly define MGs as sets of well-formed depen-

dency trees, mirroring earlier definitions in terms

of derivation trees (primarily Kobele et al. 2007).

We pick a ranked alphabet Σ such that Σ(n) con-

tains all lexical items of MG G, and only those,

that carry exactly n selector features. For simplic-

ity, we use G to also refer to this alphabet. Not

every G-tree is a well-formed dependency tree,

though, due to the constraints of the MG feature

calculus. The calculus is illustrated in Fig. 2,

where each node in the dependency tree is anno-

tated with the feature configuration corresponding

to its subtree. We formalize this calculus via a re-

cursive function feat that computes these values

based on more primitive functions for the feature

checking steps that trigger Merge and Move.

Definition 5 (Dependency tree language). If G
is an MG with n distinct licensee features, then the

set dep(G) of well-formed dependency trees of G
is {t ∈ T (G) | feat(t) = 〈C−, ε1, . . . , εn〉}. y

The remainder of this section defines feat in

terms of feature checking operators M and ⊗ for

Move and Merge, respectively. All operations ma-

nipulate one or more sequences of feature strings.

The Shortest Move Constraint (SMC) will be used

to filter out illicit sequences.

Definition 6 (SMC). Let G be an MG and Lce its

set of n licensee features. Given a sequence s :=
s1, . . . , sm (m ≥ 0) of strings in Lce∗, SMC :
(Lce∗)∗ → (Lce∗)∗ is undefined for s if there are

si and sj (1 ≤ i 6= j ≤ m) that start with the

same licensee feature. Otherwise, SMC maps s to

s itself. y

The SMC ensures that Move is unambiguous in

the sense that there can never be more than one

active mover of a specific type (wh, topicalization,

and so on). It is an integral part of MGs, and

removing it would greatly alter their expressivity

(Salvati, 2011).

Next we add a helper function sort that orders

SMC-approved sequences based on the first li-

censee feature of each feature string.

Definition 7 (sort). Let G and Lce be as be-

fore. Now fix some bijection b between Lce and

{1, . . . , n}. Then sort maps s := s1, . . . , sm ∈
Lce∗ to the sequence s′1, . . . , s

′
n such that s′i := sj

if sj starts with f and b(f) = i; otherwise, s′i := ε
(1 ≤ i ≤ n, 1 ≤ j ≤ m). y

Now we can finally define M for Move, which

is also a crucial part of the Merge operator ⊗.

Throughout we use γ as a shorthand for any string

of features, and δ for a (possibly empty) string of

licensee features.

Definition 8 (Move). Suppose that expression e is

〈fγ, δ1, . . . , f
−δi, . . . , δn〉 for some licensee fea-

ture f− and 1 ≤ i ≤ n. Then

M(e) := M(〈γ, sort(SMC(δ1, . . . , δi, . . . , δn))〉)

if f is the licensor feature f+, and e otherwise. y

Definition 9 (Merge). Given two ex-

pressions e := 〈fγ, δ1, . . . , δm〉 and

e′ := 〈f ′δ, δm+1, . . . , δz〉, e⊗ e′ is

M(〈γ, sort(SMC(δ, δ1, . . . , δm, δm+1, . . . , δz))〉)

if f is some selector feature F+ and f ′ the match-

ing category feature F−. In all other cases, ⊗ is

undefined. y

Note how Merge is always followed by an applica-

tion of the Move operator, but this does not trigger

any feature checking unless γ starts with a licen-

sor feature. Merge steps are thus interleaved with

movement checks, not all of which may actually

result in movement.

The operators M and⊗ on their own do not nar-

row down the set of G-trees. They are invoked as

part of a recursive function feat over G-trees that

computes the feature values of subtrees, as already

expressed in Def. 5.

Definition 10 (feat). The partial function feat re-

cursively maps MG dependency trees to fea-

ture expressions. For lexical items, feat(σ ::
φ) := 〈φ, ε1, . . . , εn〉. If t := σ(σ1, . . . , σz),
then feat(t) := ((feat(σ) ⊗ feat(σz)) ⊗ · · · ) ⊗
feat(σ1). y



CP

C TP

Johni T′

T VP

ti V′

wonders CP

DPj

which guest

C′

C TP

tj T′

T VP

tj left

merge

ε :: T+C−
move

merge

ε :: V+nom+T−
merge

John :: D−nom−
merge

wonders :: C+D+V−
move

merge

ε :: T+wh+C−
move

merge

ε :: V+nom+T−
merge

merge

which :: N+D−nom−wh− guest :: N−

left :: D+V−

ε :: T+C−

ε :: V+nom+T−

wonders :: C+D+V−

John :: D−nom− ε :: T+wh+C−

ε :: V+nom+T−

left :: D+V−

which :: N+D−nom−wh−

guest :: N−

〈C−, ε, ε〉

〈T−, ε, ε〉

〈V−, nom−, ε〉

〈C−, ε, ε〉

〈T−, ε,wh−〉

〈V−, nom−wh−, ε〉

〈D−nom−wh−, ε, ε〉

〈N−, ε, ε〉

〈D−nom−, ε, ε〉

Figure 2: X′-bar tree, corresponding MG derivation tree, and (feat-annotated) MG dependency tree

Two important lemmata follow immediately

from the preceding definitions.

Lemma 1. Let G be an MG and s a G-tree. Then

it holds for every t ∈ dep(G) with node u that

t[u← s] ∈ dep(G) iff feat(s) = feat(t/u).

Lemma 2. Let G be an MG with n distinct li-

censee features and s a subtree of some t ∈
dep(G). Then feat(s) must be of the form

〈F−δ, δ1, . . . , δn〉 for some category feature F−.

Lemma 2 is apparent from the derivation tree ex-

ample in Fig. 2. It is a minor extension of the

well-known fact that a lexical item may occur in

a well-formed MG derivation iff its feature string

is of the form φFδ, where φ is either ε or a se-

lector feature followed by 0 or more selector and

licensor features, F is a category feature, and δ is

a (possibly empty) string of licensee features.

4 Merge and Move via STAs

With all the preliminaries in place, we can fi-

nally turn to the core results regarding the STA-

recognizability of MGs with respect to Merge and

Move. The next sections then extend this to licens-

ing conditions and some other special cases.

Graf (2012a) uses the argument from exam-

ple 3 in §2.2 to prove that MG derivation tree

languages are not STA languages. However, this

proof does not carry over to MG dependency trees.

Adopting the terminology of Graf (2012a), we use

MDEP[merge,move] for the full class of MG de-

pendency tree languages and MDEP[merge] for the

subclass of movement-free MGs (no lexical item

carries any licensee features).

Theorem 2. MDEP[merge] ( STA

This is just a corollary of a more fundamen-

tal property of MGs. For any arbitrary L ∈
MDEP[merge] and nodes u and v of s, t ∈ L,

spines(u) = spinet(v) necessarily entails that

feat(s/u) = feat(t/v), so that Theorem 2 im-

mediately follows from Lemma 1. We omit a full

proof here as Lemma 3 will cover a more complex

case that subsumes this one.

Even with the dependency tree format, though,

STAs are too weak for standard MGs with both

Merge and Move.

Theorem 3. MDEP[merge,move] and STA are in-

comparable.

Proof. Consider the dependency trees l and r in

Fig. 3. The respective instances of the :: N+D−

have different values under feat (〈D−, ε〉 and

〈D−,wh−〉, respectively). By Lemma 1, then,

their subtrees are not interchangeable even though

spinel(the :: N+D−) = spiner(the :: N+D−). ✷

The example in Fig. 3 is peculiar, though. The

left dependency tree encodes the derivation for

Who does a teacher of like the father of John,

which is severely degraded. It has been ar-

gued that such cases of left-branch subextraction

are generally forbidden. MGs can be equipped

with the Specifier Island Constraint (SpIC) to



ε :: T+wh+C−

does :: V+T−

like :: D+D+V−

a :: N+D−

teacher :: P+N−

of :: D+P−

who :: D−wh−

the :: N+D−

father :: P+N−

of :: D+P−

John :: D−

ε :: T+wh+C−

does :: V+T−

like :: D+D+V−

a :: N+D−

teacher :: P+N−

of :: D+P−

John :: D−

the :: N+D−

father :: P+N−

of :: D+P−

who :: D−wh−

Figure 3: Even though the boxed nodes have the same spine, their subtrees cannot be exchanged.

rule out movement from within a specifier. This

takes the form of an additional restriction on feat
that only allows complements to properly contain

unchecked licensee features. Since the comple-

ment of a head is its rightmost daughter in the de-

pendency tree (rather than the leftmost one), the

SpIC amounts to a restriction on all daughters ex-

cept the last one.

Definition 11 (SpIC). Suppose s1, . . . , sm are G-

trees and σ ∈ G(m). Then feat(σ(s1, . . . , sm)) is

undefined if there is an i < m and 1 ≤ j ≤ n such

that feat(si) is of the form 〈γ, δ1, . . . , δj , . . . , δn〉
and δj 6= ε.

Note that any licensee features on the head of a

specifier are part of γ, not δj , so specifiers can

still move without violating the SpIC. Only ex-

traction of a proper subtree from within a speci-

fier is not allowed. Also note that our version of

the SpIC only bans extraction from base specifiers,

but not from specifiers that are derived via move-

ment. This is why it can be easily stated over de-

pendency trees. Even so, this limited version of

the SpIC greatly limits the weak generative capac-

ity of MGs with the SMC, while still keeping them

mildly context-sensitive (Michaelis, 2004, 2009;

Kobele and Michaelis, 2011). For our purposes,

though, the major contribution of the SpIC is that

it also lowers the complexity of MG dependency

trees into STA.

Lemma 3. Given an MG G that obeys the SpIC,

pick arbitrary nodes u and v of s, t ∈ dep(G), re-

spectively. If spines(u) = spinet(v), then feat(s/
u) = feat(t/v).

Proof. Since s and t are well-formed, both

feat(s/u) and feat(t/v) must be defined. By

Lemma 2 we may assume w.l.o.g. that feat(s/
u) := 〈F−δ, δ1, . . . , δn〉 and feat(t/v) :=
〈F′−δ′, δ′1, . . . , δ

′
n〉. As u and v have identical

spines, u and v themselves must be identical.

Therefore both F− = F′− and δ = δ′ hold. Now

suppose that δi 6= δ′i for some 1 ≤ i ≤ n. Then

either s/u or t/v is missing a licensee feature f−

that is present in the other. Suppose it is s/u that

is missing a feature present in t/v. Note that this

immediately entails by the SpIC that t/v is a com-

plement, wherefore s/u is also a complement be-

cause u and v have identical spines. Since both s
and t are well-formed, whatever feature is missing

in s/u must occur somewhere else in s to match

some f+ in the spine of u. But by the SpIC, f−

cannot occur properly inside any specifier. We al-

ready know that s/u is a complement, so f− can

only occur on an ancestor of u or on one of its left

siblings. But then it would occur on a node in the

spine of u, which contradicts our initial assump-

tion that spines(u) = spinet(v). Hence δi = δ′i
after all, wherefore feat(s/u) = feat(t/v). ✷

Theorem 4. For every MG G that obeys the SpIC,

it holds that dep(G) ∈ STA.

Proof. Lemma 1 and 3 jointly imply that dep(G)
is spine-closed, which guarantees that it can be

recognized by an STA (Thm. 1). ✷

Intuitively, Theorem 4 holds because the SpIC

creates a unique “elsewhere case” for missing

movers. Suppose that an STA is at node n in a G-

tree t. Since it has processed t top-down, it knows

exactly which movers it has to look for by virtue of

the licensor features it has come across. With its

look-ahead of 1, the STA can scan the daughters

of n to see if any of them carry some of the de-

sired licensee features. Any licensee features that



are not among them must be embedded deeper in

the tree. Due to the SpIC, though, they can only

reside in the complement, i.e. the subtree rooted

in the rightmost daughter of n.

The SpIC is just one way of creating such an

elsewhere case. STA-recognizability would also

hold if movers could only escape from the left-

most argument, or if the label of the selecting

head decides which one of its arguments can be

extracted from. Extraction from arguments could

also be parameterized for each feature so that wh-

movers may only leave complements whereas top-

icalization is only allowed from the last but one

argument, if it exists. Or the STA could switch

between these four constraints depending on the

number of ancestors of the current node modulo

4. STA-recognizability holds as long as distribut-

ing the head’s δi across its arguments is fully de-

terministic based on the information available to a

sensing rule (current state, label of selecting head,

labels of selected heads). Hence the class of STA-

recognizable MG dependency tree languages is

larger than what is allowed by the SpiC.

This does not change the fact, though, that the

initial finding of Graf (2012a) regarding the in-

sufficiency of STAs is incomplete. In the case

of Merge, the insufficiency disappears with the

more compact representation format of MG de-

pendency trees. Alternatively, one could also

keep the derivation tree format while increasing

the STA look-ahead beyond just one level —

this is a point we will revisit soon in §6.2 and

§6.3, for very different reasons. With respect

to Move, the choice of representation format is

immaterial. Neither derivation trees nor depen-

dency trees make movement as defined in MGs

STA-recognizable. However, the SpIC does make

movement STA-recognizable because specifiers

do not need to be probed deeper than their head.

For MG dependency trees, this coincides with the

1-level look-ahead of STAs, whereas derivation

trees once again require a more generous look-

ahead window. The choice of representation thus

has an impact on the amount of required look-

ahead, but the essence of our STA-recognizability

result for MGs rests on the SpIC, not the tree for-

mat.

5 STAs and C-Command Conditions

The previous section has successfully established

that the central operations of MGs can be han-

dled by STAs, assuming that I) they are con-

strued as constraints on MG dependency trees,

and II) movement is subject to the SpIC. But the

structure-building operations Merge and Move are

just one part of syntax. Licensing conditions also

play a major role, in particular those rooted in c-

command. This section shows that these condi-

tions are also captured by STAs.

Licensing conditions based on c-command are

ubiquitous in the syntactic literature. They were

recently studied from a subregular perspective by

Graf and Shafiei (2019) and Shafiei and Graf

(2019). Both papers use similar ideas, but define

them very differently. We adopt the formalism of

Graf and Shafiei (2019) because it defines all es-

sential concepts directly in terms of dependency

trees.

Definition 12 (C-string). Let t be some MG de-

pendency tree. For every node n of t in config-

uration m(d1, . . . , di, n, di+1, . . . , dj) , its imme-

diate c[ommand]-string is ics(n) = d1 · · · di n.

The augmented c[ommand]-string acs(n) of n is

recursively defined as shown below, where ↑ is a

distinguished symbol:

acs(n) :=

{

ics(n) if n is the root of t

acs(m) ↑ ics(n) if m is n’s mother

y

Example 4. The c-string of the :: N+D− in Fig. 3

is ε :: T+wh+C− ↑ does :: V+T− ↑ like ::
D+D+V− ↑ a :: N+D− the :: N+D−

y

Licensing conditions are then formalized as

constraints on the shape of permissible c-strings.

This is comparable to restricting a tree via its path

language, except that paths are now replaced by

c-strings.

Definition 13 (C-string constraints). A c-string

constraint C is some string language L over Σ ∪
{↑}. A Σ-tree t is well-formed with respect to C
iff acs(n) ∈ L for every node n of t. y

Which subregular class provides the most appro-

priate fit for syntactic licensing conditions is still

a matter of debate. Graf and Shafiei (2019) pro-

pose IO-TSL as a generous upper bound. IO-TSL

is a subregular string language recently defined in

(Graf and Mayer, 2018) in their analysis of San-

skrit n-retroflxion. Shafiei and Graf (2019), on the

other hand, argue that at least island constraints are

best captured by IBSP, another class from subreg-

ular work on phonology (Graf, 2017, 2018a). Nei-

ther class is particularly well-understood at this



point. Intuitively, IO-TSL treats local dependen-

cies as primitive and reduces non-local constraints

to local ones over enriched representations. IBSP,

on the other hand, takes all constraints to be non-

local and then uses locality domain to prune down

their reach. Either way there is ample evidence

that all attested conditions that can be correctly

stated over c-strings are at most regular. That’s

all we need to show that they can be enforced by

an STA.

Before we proceed, the reader should take note

that c-strings as defined in Graf and Shafiei (2019)

do not quite capture the standard notion of c-

command over phrase structure trees. First of

all, movement is factored out, so that c-strings

only capture the c-command relations between the

base positions where arguments enter the deriva-

tion. Graf and Shafiei (2019) point out several

options for adding movement, but they do not ex-

plore them in depth. We will provide our own STA

account for movement interactions later on (§6.1).

Another, less important deviation from standard c-

command pertains to the status of heads and spec-

ifiers. If one interprets linear precedence in com-

mand strings as c-command, then specifiers do

not c-command their selecting head even though

they c-command the head’s object. At the same

time, the head c-commands the specifier. While

there seem to be no cases in the syntactic liter-

ature where this difference to c-command mat-

ters, it nonetheless highlights that c-strings only

approximate the standard notion of c-command.

This approximation of c-command is very con-

venient for our purposes, though. The construc-

tion of a node’s c-string closely mirrors the def-

inition of a node’s spine, so it is perhaps unsur-

prising that every regular c-string constraint can be

enforced by an STA. The construction of an STA

automaton for this purpose is remarkably straight-

forward.

First, we simplify c-string constraints by con-

sidering only constraints that generate prefix-

closed sets of c-strings. The lemma below estab-

lishes that this assumption is innocuous for deter-

mining tree well-formedness.

Lemma 4. Let L be some regular language of

well-formed c-strings, and let Lp be the largest

subset of L such that u /∈ Lp entails uv /∈ Lp

for all u ∈ (Σ∪ {↑})+ and v ∈ (Σ∪ {↑})∗. Then

a Σ-tree is well-formed with respect to L iff it is

well-formed with respect to Lp.

Proof. We only consider c-strings that do not start

or end with ↑ as these never occur in any trees to

begin with. Since Lp ⊆ L and, by Def. 13, a tree

is well-formed with respect to c-string set C iff all

its c-strings are members of C, two entailments

follow immediately: I) if t is well-formed with re-

spect to Lp, it is well-formed with respect to L,

and II) if t is ill-formed with respect to L, it is ill-

formed with respect to Lp.

Next, suppose t is well-formed with respect to

L. Since it contains no illicit c-string, t could

only be ill-formed with respect to Lp if it contains

some licit c-string uv such that u /∈ Lp, where-

fore uv /∈ Lp. But if uv is a c-string of t, then so

is every non-empty prefix of uv that does not end

in ↑. By our initial assumption, t is well-formed,

and hence every non-empty prefix of uv is a mem-

ber of L. It then must also be a member of Lp

because, by definition, Lp must be largest among

the prefix-closed subsets of L. It follows that t is

well-formed with respect to Lp, too.

Finally, consider the case where t is ill-formed

with respect to Lp. Then there is some c-string u
of t such that u /∈ Lp but every non-empty pre-

fix of u (that does not end in ↑) is a member of

Lp. In this case it must also hold that u /∈ L, for

otherwise Lp is either not largest or violates pre-

fix closure. Consequently, t is also ill-formed with

respect to L. ✷

Intuitively, Lemma 4 capitalizes on the fact that

whenever a tree contains at least one unlicensed

node, the status of other nodes no longer matters

because the tree is already ill-formed. Hence we

may freely assume that the c-string of node n is

illicit as soon as a prefix of that c-string is illicit,

even in cases where n itself would be licensed.

Now let D := 〈Σ ∪ {↑} , Q, qI , F, δ〉 be

the complete, deterministic finite-state string

automaton that recognizes Lp as defined in

Lemma 4. As D is deterministic, it has a

unique initial state qI . Its transition relation

δ : (Q × Σ) × Q is a function. We ex-

pand δ to strings such that δ(q, σ1σ2 · · ·σn) :=
δ(· · · δ(δ(q, σ1), σ2) · · · , σn). Since Lp is prefix-

closed, it also holds that Q = F ∪ {s}, where

s /∈ F is some sink state from which no other state

can be reached except s itself. Prefix closure also

entails that qI ∈ F , so that empty c-strings are

always allowed (since by definition c-strings are

never empty, this is innocuous).

We then construct the corresponding STA



AD := 〈Σ, Q, qI ,∆〉. For n ≥ 1, each sensing

rule in ∆ is of the form

q(σ(n)( ~σ1, ~σ2, . . . , ~σn))→

σ(δ(q, σ ↑)( ~σ1),

δ(q, σ ↑ σ1)( ~σ2),

. . . ,

δ(q, σ ↑ σ1σ2 · · ·σn−1)( ~σn)))

where q ∈ F and, as previously defined at the be-

ginning of §2.2, the use of ~σi with some symbol

σ
(n)
i is a shorthand for σi(xi1 , . . . , xin). For leaf

nodes, we require q(σ(0)) → σ(0) ∈ ∆ iff both

q ∈ F and δ(q, σ) ∈ F .

This construction effectively simulates runs of

the string automaton D over c-strings. The only

complication is that the process of assigning a

state to σi does not consider σi itself. But σi
does affect the states of its right siblings and all

its daughters. And if σi is a leaf, it indirectly de-

termines whether the state can be removed so that

the tree may be accepted.

Theorem 5. Let L be a regular language of well-

formed c-strings. Then there is some STA A such

that L(A) is the set of all Σ-trees that are well-

formed with respect to L.

Proof. Following Lemma 4, we replace L by Lp

and consider the complete, deterministic automa-

ton D that generates Lp. We construct A from D
in the manner described above. We then give a

proof by induction on the depth of Σ-trees.

Pick some Σ-tree t and suppose t ∈ Σ(0). The

only c-string of t is t. Then A recognizes t iff

qI ∈ F and δ(qI , t) ∈ F . The former holds by

definition, so t ∈ L(A) iff t ∈ L(D). This estab-

lishes the base case.

Next, consider any arbitrary configuration

q(σ(n)(σ1, . . . , σn)). By our induction assump-

tion, q = δ(qI , u) with acs(σ) = uσ. Sup-

pose acs(σi) /∈ Lp for some 1 ≤ i ≤ n. Then

δ(qI , acs(σi)) = δ(q, σ ↑ σ1 · · ·σi) /∈ F . If

i < n, A will assign some non-final state to σi+1.

If i = n and σi is not a leaf, A assigns the non-

final state to the leftmost daughter of σi. In both

cases, t now contains some node with a non-final

state. But there is no sensing rule with a non-

final state on its left-hand side, so that A cor-

rectly rejects t. If i = n and σi is a leaf, then

δ(δ(q, σ ↑ σ1 · · ·σi−1), σi) is not final and conse-

quently there is no suitable leaf rewrite rule. As

this covers all possible configurations for σi, we

conclude that A rejects every tree that is ill-formed

with respect to Lp.

In the other direction, suppose A rejects

t. Then there must be some configuration

σ(q1(σ1), . . . , qi(σi), . . . , qn(σn)) such that qi is

not a final state. But then acs(σi−1) /∈ Lp, as de-

sired. ✷

Theorem 5 establishes that the same subreg-

ular machinery of STAs can be used for both

the structure-building operations Merge and Move

and the c-command licensing conditions that

deeply permeate syntax. The STA perspective

also provides a new answer as to why c-command

should play such an important role in syntax.

How an STA treats a given node depends solely

on the spine of that node. The spine contains

the node itself, all its ancestors, and the sib-

lings of all the nodes in the spine. This imme-

diately precludes generalized notion of command

like the S-command relation of Barker and Pul-

lum (1990), which in modern terminology would

be CP-command: x CP-commands y iff x does not

reflexively dominate y (or the other way round)

and every CP that properly dominates x properly

dominates y. As x and y can be arbitrarily deep

within distinct subtrees while S-commanding each

other, this is not an STA-recognizable command

relation. C-command, on the other hand, stays

within the narrow confines of STAs.

Admittedly STAs could also selectively ignore

some c-commanders, operate with “inverse c-

command” where a complement c-commands into

its specifiers, or switch between different notions

of c-command based on some modulo counting

condition. So just as with the SpIC, the power

of STAs goes quite a bit beyond what is desir-

able for c-command. Still, it is striking that c-

command is a very natural relation from STA per-

spective, whereas more global notions of com-

mand are correctly ruled out. As long as one is

willing to accept dependency structures as a natu-

ral representation that arises from head-argument

relations, c-command is a natural companion of

STA-recognizability.

A lot of work remains to be done, though. As

just discussed, STAs allow for some very unnat-

ural command relations. Even more troubling is

that any arbitrary regular constraint over c-strings

can be enforced by an STA. Seeing how syntactic

constraints are very limited in the shape of depen-



dencies they enforce, STAs are overly powerful.

Hence STAs can only act as an upper bound.

At the same time, our current STA approach

is too limited. In cases where licensing condi-

tions interact with movement, the licensing ele-

ment might not be part of the c-string of a node.

Our STA construction, which is based purely on

c-strings, will necessarily fail in these cases. In

addition, some cases of licensing involve general-

ized notions of c-command that go beyond what

STAs can handle. We are confident, though, that

these issues can be addressed in future work. The

next section briefly sketches the solutions we have

in mind.

6 Expanding the Core Results

6.1 Interactions of Movement and Licensing

Linguists have identified many cases where move-

ment obfuscates licensing configurations by dis-

placing the licensed element. A simple example

would be [which book about himself]i does John

like ti, where the reflexive is not c-commanded

by its antecedent John in the corresponding phrase

structure tree. These cases are entirely unproblem-

atic for STAs since the MG dependency trees fully

factor out movement, so which book about him-

self remains in the object position where it is c-

commanded by the subject John. The problematic

cases are much rarer, to such a degree that con-

vincing examples are hard to come by: I) move-

ment of a licensed element bleeding licensing, and

II) movement of a licensing element feeding li-

censing.

The first case covers configurations where a li-

censed element — or a subtree containing it —

moves to a position above the element’s licensor

and where the subsequent change in c-command

relations does make licensing impossible (in con-

trast to the binding example above, where licens-

ing holds nonetheless). In MGs with the SpIC this

can be captured by an STA. The states of the STA

would be n-tuples similar to the output of the feat-
function we defined for MGs. The first compo-

nent records c-string states in the usual fashion,

whereas each other component i records the most

recent head h with an f+i -feature, plus the state that

was assigned to h. When an fi-mover m is found,

the information in the i-th component is used to

compute the state for m as if m were a left daugh-

ter of h. In this case, m is also excluded from the

state computation of its siblings in the dependency

tree. The details remain to be worked out, but

movement of a licensee should be easy enough to

handle because the STA can separately keep track

of the c-command configurations for each position

that is targeted by a mover.

The second option is more complicated. Here

some phrase must move into a higher position

from where it can c-command the element that

must be licensed. In combination with the SpIC,

this means that the licensing of a node can be con-

tingent on the nodes contained by its rightmost

sibling. An STA can still handle this, but it re-

quires a very different construction from the one

described in this paper. As in the bleeding case, a

state consists of multiple components, each one of

which corresponds to a movement feature. Com-

ponent i records all the types of licensing condi-

tions that still must be met for nodes that are c-

commanded from the most recent head with licen-

sor feature f+i . The states also keep track of the c-

command relations between the heads hosting the

relevant licensor features. When a mover with f−i
is encountered, the STA checks if the mover can

satisfy any of the licensing requirements in com-

ponent i. If so, those are removed from compo-

nent i and all other components whose heads are

c-commanded by the head for component i. At

the end, no state may contain any non-empty com-

ponents. This strategy reimplements licensing as

a mechanism where the STA accrues “licensing

debt” while moving through the tree. This debt has

to be paid off by movers at a later point. The strat-

egy works because the SpIC allows us to correctly

synchronize the licensing debt across the states of

all daughter nodes.

While each strategy is relatively simple on its

own, integrating them is more difficult. An ele-

ment may move to a higher position p from where

it is only licensed by another element that moves

to an even higher position. This requires keeping

track of potential licensing debts for p which are

then narrowed down to the actual licensing debt

once it is known what actually moves to p, and

then this debt must be paid off by whatever moves

to a position above p. Further complicating the

picture, some licensing requirements only need to

be satisfied once (e.g. Principle A in the exam-

ple above), whereas others hold throughout the

derivation and are enforced after each movement

step. The individual components of the automa-

ton states thus must be synchronized in just the



right way, which complicates the construction of

the STA even more.

6.2 Subcommand

It has been argued that some cases of long-

distance binding involve subcommand instead of

c-command (see Tang 1989 and Huang and Liu

2001, a.o.). A node x subcommands y iff x c-

commands y or x is a specifier of some z that c-

commands y. From the perspective of c-strings, x
c-commands y iff there is some z in the c-string

of y such that x = z or x is the left sibling of

a daughter of z. For instance, if Principle A in

English allowed for subcommand instead of just

c-command, then John’s picture pleases himself

would be well-formed as John is a specifier of the

subject DP and thus subcommands himself.

Subcommand is beyond the reach of STAs be-

cause it makes the status of a node n dependent on

the daughters of n’s left siblings. Similar to the

case of movement interactions, there are two pos-

sible replies to this. One could point out the rarity

of subcommand, and that in the few cases where

it arises, it serves as a means to furnish additional

antecedents for reflexives beyond those that are al-

ready provided via c-command. Hence subcom-

mand might be limited to the syntax-semantics in-

terface and may not directly factor into licensing.

Alternatively, one could simply increase the look-

ahead of STAs from 1 to 2 so that the daughters

of daughters are also taken into account. Sub-

command then is just a more demanding case of

c-command.

6.3 Extension to MG Derivation Trees

Once one equips STAs with a more powerful look-

ahead mechanism to handle subcommand, MG

derivation trees once again become a viable alter-

native to MG dependency trees. All the results in

this paper extend from dependency tree to deriva-

tion trees if one generalizes STAs to determinis-

tic top-down tree automata with finite look-ahead.

That is not surprising because dependency trees

can be converted to derivation trees by a linear tree

transduction. This shows that derivation trees are

the result of separating mothers and daughters in

a dependency tree by a finitely bounded amount

of material (Merge and Move nodes). Finite look-

ahead is a means to reconstruct the relations of the

dependency tree that have been obfuscated by this

additional material.

It remains to be seen which one of the two rep-

resentation formats ultimately provides for more

insightful characerizations. One issue that deriva-

tion trees might shed some light on is the mono-

tonic nature of c-command. With an STA over de-

pendency trees, the daughters could be evaluated

in any order to determine the states for a c-string

constraint. While our current model proceeds left-

to-right, we could have just as well gone right-to-

left, inside out, or switched between those options

based on the label of the mother. Yet only the first

option corresponds to c-command as we know it.

In a derivation tree, all information is conveyed

via dominance. A specifier is not a sibling of

the complement but rather resides in a structurally

higher position (cf. the positions of John and the

CP-complement in Fig. 2). Among all the com-

mand variants we just described, the empirically

attested one in the form of c-command is the only

one that is monotonic with respect to dominance.

6.4 Adjuncts

Another problem of dependency trees is the sta-

tus of adjuncts. In order to obtain the correct c-

command relations, an adjunct of node n would

have to be treated as a left sibling of all the speci-

fiers of n. But since adjunction is unbounded, this

would mean that a node can have arbitrarily many

daughters, whereas STAs are usually defined for

trees with a finitely bounded arity. Adjuncts in

derivation trees, on the other hand, do not create

such issues because each adjunct grows the tree

vertically rather than horizontally.

Either way, adjuncts must be subject to the same

restriction as specifiers to preserve recognizability

by STAs or a suitably generalized variant: even

though an adjunct may move on its own, nothing

may move out of an adjunct. This is of course

a well-established property of adjuncts, known as

the Adjunct Island Constraint. Once again, then,

our specific subregular perspective derives a well-

known limitation of movement.

The Adjunct Island Constraint has some prin-

cipled exceptions such as [which car]i did John

drive Mary crazy while trying to fix ti (Truswell,

2007). It remains to be seen how these exceptions

can be reconciled with our approach.

6.5 Across-the-Board Movement

Another well-known island constraint is the Coor-

dinate Structure Constraint (CSC), which forbids

extraction from a conjunct. The CSC itself is easy



enough to enforce with an STA. It is the excep-

tion to the CSC that is of interest here: extraction

from a conjunct is permitted if extraction takes

place from all conjuncts in the same coordination.

Hence which beer did Ed buy and Greg drink is

well-formed even though which beer did Ed buy

wine and Greg drink is illicit. This is known as

across-the-board movement (ATB).

Curiously, the ATB-exception is very natural

from the STA perspective. STAs fail if one can-

not clearly tell from the local configuration which

one of several subtrees a move feature should

be passed into. The SpIC and the Adjunct Is-

land Constraint address this by excluding speci-

fiers and adjuncts from this equation, leaving the

complement as the only subtree that might con-

tain additional movers. ATB-movement consti-

tutes the opposite solution where the feature is in-

stead passed into every subtree. This, too, is a

fully deterministic process and thus within the lim-

its of STAs. If even one conjunct did not need

to contain a mover, then STAs would be faced

with a non-deterministic choice that they cannot

handle. While this has to be explored in greater

detail based on a proper formalization of ATB-

movement (e.g. Torr and Stabler 2016), it is re-

markable that the abilities of STAs closely line up

with the attested movement configurations.

6.6 Connection to Parsing

The preceding discussion shows that STAs not

only furnish a tighter upper bound on syntactic

complexity, they also explain core aspects of syn-

tax: the importance of island constraints, the avail-

ability of ATB-movement, and the central role of

c-command, which merely co-opts mechanisms

that are independently needed for movement. But

this in turn raises the fundamental question why

STA-recognizability should be a relevant concept

in syntax. We conjecture that STAs exhibit two

properties that are attractive for parsing: top-down

recognition, and determinism.

The highly predictive nature of human sentence

processing suggests that some top-down strategy

is employed, either directly in the form of recur-

sive descent parser, or as a top-down filter of a left-

corner parser. Given a choice between bottom-up

or top-down recognition, the latter is a much more

natural match for such parsing algorithms. Pre-

compiling a top-down filter into the parse schema

of an MG parser like the one in Stabler (2011b)

or Stanojević and Stabler (2018) is not trivial, but

feasible. Determinism ensures that this precom-

pilation does not explode the parse space, which

would slow down the parser. Hence STAs are a

good match for current MG models of human sen-

tence processing (Kobele et al., 2013; Gerth, 2015;

Graf et al., 2017).

Of course a deterministic top-down automaton

would also exhibit these properties, but these au-

tomata cannot even handle Merge, let alone Move.

STAs are a minimal extension of deterministic top-

down automata while also furnishing plenty of

power for syntactic dependencies. They require

some restrictions on movement, but each one of

them also improves parsing performance by expo-

nentially reducing the search space (see the discus-

sion of the SpIC’s impact on parsing performance

in Stabler 2013).

If one assumes that the grammar is but a high-

level description of the parser, the restriction to

STAs may be an abstract counterpart to various

parser constraints that are meant to improve effi-

ciency. Subregular complexity in syntax may thus

be closely connected to parsing.

7 Conclusion

We have shown that all current results on the

subregular complexity of syntax are insightfully

subsumed by sensing tree automata operating

over MG dependency trees. The limits of

STA-recognizability line up closely with well-

established restrictions on movement and syntac-

tic licensing conditions. A lot of issues remain to

be formally worked out, but we are confident that

the perspective developed in this paper will greatly

expand our understanding of subregular syntax.
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Frank Morawietz. 2003. Two-Step Approaches to Nat-
ural Language Formalisms. Walter de Gruyter,
Berlin.

James Rogers. 1998. A Descriptive Approach to
Language-Theoretic Complexity. CSLI, Stanford.

James Rogers. 2003. Syntactic structures as multi-
dimensional trees. Research on Language and Com-
putation, 1(1):265–305.

James Rogers, Jeffrey Heinz, Gil Bailey, Matt Edlef-
sen, Molly Vischer, David Wellcome, and Sean
Wibel. 2010. On languages piecewise testable in the
strict sense. In Christan Ebert, Gerhard Jäger, and
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Miloš Stanojević and Edward Stabler. 2018. A
sound and complete left-corner parser for Minimal-
ist grammars. In Proceedings of the 8th Workshop
on Cognitive Aspects of Computational Language
Learning and Processing, pages 65–74.

Chih-Chen Jane Tang. 1989. Chinese reflexives. Natu-
ral Language and Linguistic Theory, 7:93–121.

John Torr and Edward P. Stabler. 2016. Coordination in
Minimalist grammars: Excorporation and across the
board (head) movement. In Proceedings of the 12th
International Workshop on Tree Adjoining Gram-
mars and Related Formalisms (TAG+12), pages 1–
17, Düsseldorf, Germany.

Robert Truswell. 2007. Extraction from adjuncts and
the structure of events. Lingua, 117:1355–1377.

Mai Ha Vu. 2018. Towards a formal description of
NPI-licensing patterns. In Proceedings of the Soci-
ety for Computation in Linguistics (SCiL) 2018, vol-
ume 1, pages 154–163. Article 17.

Mai Ha Vu, Nazila Shafiei, and Thomas Graf. 2019.
Case assignment in TSL syntax: A case study. In
Proceedings of the Society for Computation in Lin-
guistics (SCiL) 2019, pages 267–276.


