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Abstract. The subregular approach has revealed that the phonologi-
cal surface patterns found in natural language are much simpler than
previously assumed. Most patterns belong to the subregular class of tier-
based strictly local languages (TSL), which characterizes them as the
combination of a strictly local dependency with a tier-projection mech-
anism that masks out irrelevant segments. Some non-TSL patterns have
been pointed out in the literature, though. We show that these outliers
can be captured by rendering the tier projection mechanism sensitive
to the surrounding structure. We focus on a specific instance of these
structure-sensitive TSL languages: input-local TSL (ITSL), in which the
tier projection may distinguish between identical segments that occur in
different local contexts in the input string. This generalization of TSL
establishes a tight link between tier-based language classes and ISL trans-
ductions, and is motivated by several natural language phenomena.
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1 Introduction

The subregular hypothesis ([16] and references therein) posits that every
language’s set of phonologically well-formed surface strings—its phonotactic
patterns—belongs to a proper subclass of the regular languages. The class of
tier-based strictly local languages (TSL) has been of particular interest in this
respect [17]. TSL is inspired by autosegmental phonology [12] and combines
two components: (I) an n-gram based mechanism to enforce local constraints
on adjacent segments, and (11) a tier projection mechanism that “masks out”
irrelevant parts of the string. Long-distance dependencies are thus reanalyzed as
local dependencies over strings with masked out segments.

While TSL covers a wide range of data, recent literature has reported several
instances of complex phenomena—from Samala sibilant harmony to unbounded
tone plateauing—that cannot be characterized in these terms [14,15,24, a.o.].
We argue that all these counterexamples can be accounted for by extending the
tier projection mechanism. We redefine TSL as a cascade of three string trans-
ductions, one of which is the tier projection mechanism. In standard TSL, the
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tier projection is an input strictly local function of locality 1 (1-ISL) in the sense
of Chandlee [5, Definition 4]. By allowing for more complex string transductions,
one obtains the much more powerful class of structure sensitive TSL (SS-TSL).
Within this wide range of options, we focus on the natural generalization from 1-
ISL to n-ISL. This means that projection of a segment s does not merely depend
on s alone but may also consider the locally bounded context wy -« ty, —v1 -+ - vy
in which s occurs. The resulting class of input tier-based strictly local (ITSL) lan-
guages greatly expands the empirical coverage of TSL while retaining essential
formal properties.

The paper is structured as follows. Section 2 introduces mathematical nota-
tion that is essential for studying subregular languages. The fundamental prop-
erties of strictly local (SL) and tier-based strictly local (TSL) languages are
presented in Sect. 3. There, we also introduce the first major innovation of this
paper, the generalization from standard TSL to SS-TSL. We then define ITSL,
the most natural subclass of SS-TSL. Section4 studies the formal properties of
ITSL, and relates it to the rest of the subregular hierarchy. We then expand
on this with results on the intersection closures of TSL and ITSL, respec-
tively (Sect.5). Finally, Sect.6 discusses the implications of these results for
learnability.

2 Preliminaries

This paper discusses TSL and our generalization of its projection function. As we
compare the resulting new languages to several subregular classes besides TSL, a
fair amount of mathematical machinery is required. We assume familiarity with
set notation on the reader’s part.

Given a finite alphabet X', X* is the set of all possible finite strings of sym-
bols drawn from Y. A language L is a subset of X*. The concatenation of two
languages L1Lo = {uv : w € Ly and v € Ly}. For every string w and every non-
empty string u, |w| denotes the length of the string, |wl|, denotes the number
of occurrences of u in w, and ¢ is the unique empty string. Left and right string
boundaries are marked by x, x ¢ X' respectively.

A string u is a k-factor of a string w iff 3z, y € X* such that w = zuy and
|u| = k. The function Fj, maps words to the set of k-factors within them:

Fr(w) :={u:u is a k-factor of w if lw| >k, else u = w}

For example, Fy(aab) = {aa,ab}. The domain of F}, is generalized to languages
L € ¥* in the usual way: (L) = U, Fr(w). We also consider the function
which counts k- factors up to some threshold ¢.

Fy i(w) := {(u,n) : u is a k-factor of w and n = min(|wl,,t)}

For example Fss(aaaaad) = {(aa,4),(ab,1)}, but F;s(aaaaadb) = {(aa,3),
(ab,1)}.

In order to simplify some proofs, we rely on first-order logic characterizations
of certain string languages and string-to-string mappings. We allow standard
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Boolean connectives (A, V, =, —), and first-order quantification (3, V) over
individuals. We let x < y denote precedence, x ~ y denote identity, and z,y
denote variables ranging over positions in a finite string w € X*. Note that < is
a strict total order.

The remaining logical connectives are obtained from the given ones in the
standard fashion, and brackets may be dropped where convenient. For example,
immediate precedence is defined as x <y < x <y A —3z[z < z Az < y]. We add
a dedicated predicate for each label o € X' we wish to use: o(z) holds iff z is
labelled o, where x is a position in w.

Classical results on definability of strings represented as finite first-order
structures are then used [26]. If X = {o1,...,0,}, then a string w € X* can be
represented as a structure M, in the signature(oy(-),...,0,(:), <). If ¢ is a logi-
cal formula without any free variables, we use L(p) = {w € X* | M,, satisfies ¢}
as the stringset extension of ¢ .

3 Structure-Sensitive TSL Languages

There is a rich literature exploring the subclasses that the regular languages
can be divided into [4,9,27,32, a.0.]. Among these subregular classes, tier-based
strictly local languages (TSL; [17]) have received particular attention due to their
ability to provide natural descriptions of phonological well-formedness conditions
(see also [13,19,29]). TSL extends the class of strictly local languages (SL) with
a tier projection mechanism that renders non-local dependencies in a string
local over tiers. The projection mechanism is very limited though, as it only
considers a segment’s label but not its structural context. This is too restrictive
for phonology, which is why we extend TSL to a class of languages sensitive
to structural information: TSL where tier projection can take local information
into account.

3.1 Strictly Local and Tier-Based Strictly Local Languages

SL is the class of languages that can be described in terms of a finite number of
forbidden substrings. Intuitively, SL languages describe patterns which depend
solely on the relation between a bounded number of consecutive symbols in a
string—there are no long-distance dependencies.

Definition 1 (SL). A language L is strictly k-local (SLy) iff there exists a
finite set S C Fy(x*~1X*x*=1) such that

L={we X : F(x"luxk1)ns =0}

We also call S a strictly k-local grammar, and we also use L(S) to indicate the
language generated by S. A language L is strictly local iff it is SLy for some
ke N.
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For example, (ab)™ is a strictly 2-local language over alphabet {a,b} because it
is generated by the grammar G := {xb, bb, aa, ax }.!

Even though this paper is concerned with extensions of SL, many of our
proofs make use of a particular characterization of SL in terms of k-local suffix
substitution closure [30].

Definition 2 (Suffix Substitution Closure). For any k > 1, a language L
satisfies k-local suffix substitution closure iff for all strings ui, vy, us,ve, for any
string x of length k—1 if both uy-z-vy € L and ug-x-vy € L, then uy-x-ve € L.

Theorem 1. A language is SLy iff it satisfies k-local suffix substitution closure.

The language L := a*ba*, for example, is not SL because for any k& we can pick
two strings a™ba* € L and a*ba™ € L and recombine them into a™ba*ba™ ¢ L.
However, this language is TSL.

TSL is an extension of SL where k-local constraints only apply to elements of
a tier T' C Y. An erasing function (also called projection function) is introduced
to delete all symbols that are not in T'. Given some o € X, the erasing function
Er: XY — XY U{e} maps o to itself if o € T and to mptystring otherwise.

o ifoeT
Er(o) =
7(@) {E otherwise

We extend Ep from symbols to strings in the usual pointwise fashion.

Definition 3 (TSL). A language L is tier-based strictly k-local (TSLy) iff
there exists a tier T C X and a finite set S C Fj,(x*1T*x*~1) such that

L={we X : F(x"1Er(w)x*1)nS =0}

We also call S the set of forbidden k-factors on tier T, and (S,T) is a TSLy
grammar.

As can be gleaned from Definition 3, a language L is TSL iff it is strictly k-local
on tier T for some T'C X and k € N. This will be important for many proofs.

For a concrete example, consider once more L := a*ba* such that aba, aabaa,
aaaba € L but abaabaa,ababaa ¢ L. This language is generated by the TSLy
grammar ({xx,bb},{b}) over X' = {a, b}, which bans every string whose tier is
empty (no b) or contains more than one b.

1 A comment regarding edge markers. For S to be k-local, it needs to contain only
factors of length k. Thus, strings are augmented with enough edge markers to ensure
that this requirement is satisfied. However, it is often convenient to shorten the k-
factors in the definition of strictly k-local grammars and write down only one instance
of each edge marker. with the implicit understanding that it must be augmented to
the correct amount. So X x a is truncated to xa. We adopt this simpler notation
throughout the paper, unless required to make a definition clearer.
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3.2 Insufficiency of TSL

While TSL enjoys wide empirical coverage in phonology, some non-TSL phenom-
ena have been pointed out in the literature [14,15,24]. As a concrete example,
consider the case of sibilant harmony in Samala, where an unbounded depen-
dency can override a local one (see [2] for the original data set and [24] for a
subregular analysis). Samala displays sibilant harmony such that [s] and [[] may
not co-occur anywhere within the same word (cf. Ex. (1a)). There is also a ban
against string-adjacent [st], [sn], [sl], which is resolved by dissimilation of [s] to
[[] (cf. Ex. (2a) and (2b)). However, dissimilation is blocked if the result would
violate sibilant harmony. Thus /sn/ surfaces as [/n] unless the word contains [s]
somewhere to the right, in which case it is realized as [s] (cf. Ex. (2a) and (3a)).

(1) a. /k-su-Jojin/ — [kfufojin]
(2) a. /s-ni?/ — [[ni?]

b. /s-ni?/ — *[sni?]
(3) a. /s-net-us/ — [snetus]

b. /s-net-us/ — *[[netus]

This pattern is not TSL. Pick some sufficiently large m and consider the
strings [sne(ne)™tus| and [ne(ne)™tus|, which are well-formed according to the
generalization above. In stark contrast, the minimally different [sne(ne)™tu] is
ill-formed. In order to regulate this dependency, we need a TSL grammar whose
tier contains at least [s] and [n]. But then the tiers of these three strings are of
the form snn™s, nn™s, and snn™, respectively. By suffix substitution closure, it
is impossible for an SL grammar to allow the former two while forbidding the
latter. But if the tier language is not SL, the original language is not TSL, either.
Note that projecting additional symbols does not change anything with respect
to suffix substitution closure, so the problem is independent of what subset of
27 one chooses as the tier alphabet.

The central shortcoming of TSL is that it only provides a choice between
projecting no instance of [n], which is obviously insufficient, and projecting
every instance of [n], which renders the dependency between sibilants non-local
over tiers. But suppose that one could instead modify the projection function
such that an [n] is projected iff it is immediately preceded by a sibilant. Then
[sne(ne)™tus] and [ne(ne)™tus] have the tiers sns and s, whereas [sne(ne)™tu]
has the tier sn. An SL3 grammar can easily distinguish between these, permit-
ting the former two but not the latter. Such a modified version of TSL will also
be able to block [snetu] while allowing for [senetu] as their respective tiers are
sn and s. Apart from this Samala example, reported non-TSL patterns that can
be accounted for by inspecting the local context of a segment before projecting
it include nasal harmony in Yaka [33], unbounded stress of Classical Arabic (see
[3] and references therein), Korean vowel harmony [14], and cases of unbounded
tone plateauing [20, a.o.].

More recently, other patterns have been reported for which it seems to be nec-
essary to extend TSL projections to consider more than just local contexts in the
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input string. Mayer and Major [23], based on a suggestion by Graf (p.c.), make
tier-projection sensitive to preceding segments on the tier in order to capture
backness harmony in Uyghur. Graf and Mayer [15] analyze Sanskrit retroflexion
in terms of an even more general class whose projection function considers the
local contexts in both the input string and the already constructed tier.

Crucially, all these extensions allow the erasing function Er to consider addi-
tional structural factors. We call all languages in which the projection function
has been extended along these lines structure-sensitive TSL. This is a very loosely
defined class, but as we explain next the idea can be made more precise by view-
ing TSL-like grammars as a cascade of three string transductions.

3.3 TSL as the Composition of Three Transductions

For every TSL grammar G := (S, T, one can construct a sequence of transduc-
tions that generates exactly the same string language:

1. The projection transduction ET rewrites every symbol s € T as s and deletes
every s' ¢ T.

2. The grammar transduction idg is the identity function over L(.5).

3. The filler transduction Fr is the inverse of Ep.

Their composition Epoidgo Fr is a partial, non-deterministic finite-state trans-
duction. The image of X* under this transduction is exactly L(G). All the recent
extensions of TSL keep idg the same, but they change the nature of E7 (and
hence Fr). Without further limitations on E7p, every recursively enumerable
string language can be generated this way. But from a linguistic perspective,
this is immaterial as only very limited kinds of SS-TSL have been proposed.
These classes generalize Ep to ISL or OSL functions as originally defined in [5].
We only consider the former here and leave the latter for future work.

3.4 Input-Sensitive TSL

Adding input-sensitivity to TSL only requires a minor change to the definition
of Er. In order to simplify the exposition later on, we take inspiration from [7]
and define ISL projections in terms of local contexts.

Definition 4 (Contexts). A k-context ¢ over alphabet X' is a triple {o,u,v)
such that 0 € X, u,v € X* and |u| + |v| < k. A k-context set is a finite set of
k-contexts.

Definition 5 (ISL Projection). Let C be a k-context set over X (where X is
an arbitrary alphabet also containing edge-markers). Then the input strictly k-
local (ISL-k) tier projection mc maps every s € X* to mio(xF~1, sx*=1), where
o (u, ov) is defined as follows, given o € ¥ U {e} and u,v € X*:

€ if cav = ¢,
ong(uo,v) if (o,u,v) € C,
o (uo,v)  otherwise.
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Note that an ISL-1 tier projection only determines projection of ¢ based on o
itself, just like Er does for TSL. This shows that ISL-k-tier projections are a
natural generalization of E even though they are no longer defined in terms of
some T' C Y. The definition of ITSL languages then closely mirrors the one for
TSL.

Definition 6 (ITSL). A language L is m-input local k-TSL (m-ITSLy) iff
there exists an m-context set C and a finite set S C Yk such that

L={we X : F(x"rc(w)x*1)ns =0}

A language is input-local TSL (ITSL) iff it is m-ITSLy, for some k,m > 0. We
call (S,C) an ITSL grammar.

Let us return to the interaction of local dissimilation and non-local harmony
in Samala. This process can be handled by an 2-ITSL3 grammar (S, C) with

— S :={s/,[s,snx} where x € {¥ — s},

— C contains all of the following contexts, and only those:
o (5,22)
e (S,g,¢)
e (n,s,¢)

Since this phenomenon could not be handled with TSL, ITSL properly extends
TSL.

Theorem 2. TSL C ITSL
For the sake of rigor, we also provide a formal proof.

Proof. TSL C ITSL is trivial. Now consider the language L = a{a,b}*b U
b{a,b}*a over alphabet X = {a,b}. It is generated by the 2-ITSLs grammar
(S,C) with S = {aa,bb,xx} and C := {(o, x,¢),(0,e,x) | c € X}. But L is
not TSL. Pick some arbitrary TSLj grammar (S, T) and strings s := a™b" € L,
t:=b"a® € L, and u := a™b"a® ¢ L (m,n,0 > k). These three strings witness
that no matter how one chooses T' C Y, the resulting tier language is not closed
under suffix substitution closure. Thus, L is not k-TSL for any k.

ITSL is clearly more powerful than TSL, but the question is how much addi-
tional power the move to ISL projections grants us. We do not want ITSL to
be too powerful as it should still provide a tight characterization of the limits
of natural language phonology. The next section shows that I'TSL is still a very
conservative extension of TSL that is subsumed by the star-free languages and
largely incomparable to any other subregular classes.
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4 Formal Analysis

It is known that TSL is a proper subclass of the star-free languages (SF) and
is incomparable to the classes locally testable (LT), locally threshold-testable
(LTT), strictly piecewise (SP), and piecewise testable (PT) [17]. In addition,
TSL is not closed under intersection, union, complement, concatenation, or rela-
beling (this is common knowledge but has not been explicitly pointed out in the
literature before). The same holds for ITSL. This is not too surprising as ITSL
is a fairly minimal extension of T'SL, and many of the proofs in this section are
natural modifications of the corresponding proofs for TSL.

4.1 Relations to Other Subregular Classes

First we have to provide basic definitions for subregular classes we wish to com-
pare to I'TSL.

Definition 7 (Locally t-Threshold k-Testable). A language L is locally t-
threshold k-testable iff 3t,k € N such that Yw,v € X*, if Fj(w) = Fj(v)
then w € L & v € L.

Intuitively locally threshold testable (LTT) languages are those whose strings
contain a restricted number of occurrences of any k-factor in a string. Practically,
LTT languages can count, but only up to some fixed threshold ¢ since there is a
fixed finite bound on the number of positions a given grammar can distinguish.
Properly included in LTT, the locally testable (LT) languages are locally threshold
testable with t = 1.

We show that LT and ITSL are incomparable. Since TSL and LTT are known
to be incomparable [17], the incomparability of LTT is an immediate corollary.

Theorem 3. ITSL is incomparable to LT and LTT.

Proof. That ITSL is no subset of LT or LTT follows from the fact that ITSL
subsumes TSL, which is incomparable to both.

We now show that LT ¢ ITSL. Let L be the largest language over X =
{a,b,c} such that a string contains the substring aa only if it also contains the
substring bb. This language is LT but cannot be generated by any m-ITSLyg
grammar G, irrespective of the choice of k and m.

Suppose G generates at least strings of the form c¢*aac*bbc* € L and ¢*bbc* €
L, but not c*aac* ¢ L. Then G must project both aa and bb, wherefore c*aac*
and ¢*bbc* each license projection of aa and bb, respectively (projection of one
of a or b cannot depend on the other because the number of ¢s between the two
is unbounded). But then strings of the form (c*aac*)*bb(c*aac*)t € L yield a
tier language (aa)Tbb(aa)™. By suffix substitution closure, G also accepts any
tier of the form (aa)™. Therefore, L(G) > (c*aac*)™ ¢ L.

Next consider the strictly piecewise (SP) and piecewise testable (PT) lan-
guages [10,28,31]. These are already known to be incomparable with SL, TSL,
and LTT. For any given string w, let P<j(w) be a function that maps w to the
set of subsequences up to length & in w.
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Definition 8 (Piecewise k-Testable). A language L is piecewise k-testable iff
dk € N such that Vw,v € X*, if P<y(w) = P<g(v) then w € L & v € L. A
language is piecewise testable if it is piecewise k-testable for some k.

Properly included in PT, SP languages mirror the definition of SL languages
by replacing Fy(w) with Py (w) in Definition 1. In short, piecewise languages are
sensible to relationships between segments based on precedence (over arbitrary
distances) rather than adjacency (immediate precedence).

Theorem 4 ITSL is incomparable to SP and PT.

Proof ITSL ¢ SP, PT follows from the fact that ITSL includes TSL, which is
incomparable to both. In the other direction, consider the SP language L that
consists of all strings over X = {a, b, ¢, d, e} that do not contain the subsequences
ac or bd. This language is not ITSL. In order to correctly ban both ac and
bd, at least one instance of a, b, ¢, and d must be projected in each string.
Consequently, for each symbol there must be some fixed context that triggers
its projection. Assume w.l.o.g. that one of these contexts is (b,u,v). Consider
the strings s := a(e™ubv)™ € L, t := (eMubv)™c € L, and u := a(e™ubv)"c ¢ L,
for sufficiently large m and n. The respective tiers are s’ := ab™, t’ := b"c, and
v’ := ab™c. By suffix substitution closure, no SL language can contain s’ and '
to the exclusion of w’, wherefore L is SP (and PT) but not ITSL.

The last subregular class relevant to our discussion is SF. Multiple charac-
terizations are known, but we will use the one in terms of first-order logic as it
greatly simplifies the proof that I'TSL is subsumed by SF.

Definition 9 (Star-Free). Star-free (SF) languages are those that can be
described by first order logic with precedence.

Theorem 5. ITSL C SF.

Proof. Subsumption follows from the fact that every ITSL language can be
defined in first-order logic with precedence. Proper subsumption then is a corol-
lary of LT, PT C SF together with Theorems3 and 4.

We briefly sketch the first-order definition of ITSL. First, the successor rela-
tion < is defined from precedence in the usual manner. Then, for every context
€= {0,U1 *** U, Umt1 * - - Up) one defines a predicate C(x) as

3y1,~.,ym+n[0(r)A N viyiri ANym<az Az Qymi A N\ viayie AN Ui(yi)]
1<i<m m+1<i<n 1<i<n

The context predicates form the basis for the ITSL tier predicate

T(z) & \/ C(x)

C' is a context predicate

which in turns allows us to relativize precedence to symbols on the tier:
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zary S T@)ANTY) AN KyA-Fz[T(z) ANz <zAz <Y

The set of forbidden k-factors then is just a conjunction of negative literals with
<7 as the basic relation.

4.2 Closure Properties

The previous section established that ITSL is a natural generalization of TSL
in the sense that it displays the same (proper) subsumption and incomparabil-
ity relations with respect to other classes. We now show that this parallelism
between TSL and ITSL also carries over to the standard closure properties. Just
like TSL, ITSL is not closed under intersection, union, complement, concatena-
tion, or relabeling.

We start with non-closure under intersection.

Lemma 1. ITSL is not closed under intersection.

Proof. Consider again the SP language L that consists of all strings over
{a,b,c,d, e} that do not contain the subsequences ac or bd. As shown in The-
orem4, this language is not ITSL. But L is the intersection of two TSL (and
hence ITSL) languages L1 and Lo s.t. T3 = {a,c}, S1 = {ac} and Th = {b,d},
Sy = {bd}. Thus closure under intersection does not hold.

Lemma 2. ITSL is not closed under concatenation.

Proof. Let L be the union of ab{a,b,c}* a and ba {a,b,c}" b. This language is
ITSL. The context set is C := {{o, x,¢),(0,¢,x), {0, x0’,€) | 0,0’ € a,b,c},
and the only allowed k-factors are xabax and xbabx. Now consider the string
s1 := abcFbckb, which is not in the concatenation closure of L. Nor is its iteration
s7". But the concatenation closure of L does contain sy := s{*abs(", as this is
an instance of ab{a, b, c}" a concatenated with ba {a,b,c}" b. Every k-context of
s is also a k-context of so. Hence every m-factor of si* is also an m-factor of
sa. Therefore it is impossible for any k-ITSL,, grammar G to contain sy to the
exclusion of s;. It follows that the concatenation closure of L is not k-ITSL for
any k.

Lemma 3. ITSL is not closed under union.

Proof. Let C := {{a,e,e),(b,e,e)} and consider the SLy languages a™b™ and
btat. Let Ly, and Ly, be the respective images of these languages under 7T51
given alphabet {a,b,c}. That is to say, La := (c*a)™(c*b)Tc* and Ly, :=
(c*b)T(c*a)Tc*. By definition, L4, and Ly, are ITSL languages, but their union
L is not. Note that s; := (cfa)™cF ¢ L, whereas sy := s7*(c*b¥)™c* € L and
s3 1= (cFbF)msT ek € L. Every k-context of s; also occurs in sp and s3. This
implies that no matter what k-context set one picks, all the m-factors of the tier
of s1 are also m-factors of the tiers of sy or s3. As with concatenation closure,
this makes it impossible to ban s; while allowing for ss and ss.
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The same string embedding strategy can also be used for relative complement.
Lemma 4. ITSL is not closed under relative complement.

Proof. For simplicity, we only prove non-closure under complement relative to
X* (this suffices because X* is ITSL). Let C be as before, and consider the SLq
language atb. The image under 7' is the ITSL language L := (c*a)*c*bc*.
Consider the string s; := (cfa)™c*bc* € L. The complement L of L does not
contain s, but it contains its mirror immage s_; := c¥bck(ack)™ and the con-
catenation of s with itself: s1; := (cFa)™cFbc?(cFa)™cFbck € L. But as before,
every conceivable k-context of s; is also a k-context of and s_; and s1;. Any
illicit m-factor in the tier of s; will also occur in the tier of s_; or si;. Again
once cannot rule out s; without also ruling out s_; or s1;, which proves that L
is not ITSL.

For non-closure under relabeling, a much simpler strategy suffices. Simply
consider the SL (and thus ITSL) language L., = (ab)™. A relabeling that
replaces b by a maps Lgp t0 Laq = (aa)™, which isn’t even star-free.

Theorem 6. ITSL is not closed under intersection, union, relative complement,
concatenation, and relabelings.

While these closure properties may seem unappealing from a mathematical per-
spective, they mirror exactly the closure properties of TSL. This confirms our
original claim that ITSL is a natural generalization of TSL. In addition, the lack
of most of the canonical closure properties is welcome from a linguistic perspec-
tive because natural languages do not seem to display these closure properties
either. That said, closure under intersection is a linguistically important prop-
erty, which is why we explore it in depth in the next section.

5 Intersection Closure of TSL and ITSL

Lack of closure under intersection is problematic as it entails that the com-
plexity of phonological dependencies is no longer constant under factorization.
Depending on whether one treats a constraint as a single phenomenon or the
interaction of multiple phenomena, the upper bound for phonological complex-
ity will shift. Neither TSL nor ITSL are closed under intersection, yet they both
are reasonable formal approximations of phonological dependencies. In order to
understand what (I) TSL claims about individual phenomena imply about the
complexity of phonology as a whole, we need a good formal understanding of
the intersection closure of TSL (Sect. 5.1) and ITSL (Sect.5.2).

5.1 Intersection Closure of TSL Languages

The intersection of two TSL languages can be regarded as a language that is
produced by a single TSL grammar that projects multiple tiers. For this reason,
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PT sp
ITSL
Regular — SF MITSL < > TSL
MTSL SI, FIN
LT IT

Fig. 1. Proper inclusion relationships of subregular classes. Subsumption goes left-to-
right. We establish MTSL, ITSL, and MITSL.

we refer to the intersection closure of TSL as multi-TSL (MTSL). We write
n-MTSLj to indicate a grammar where n is the number of tiers and k is the
locality of the tier-constraints. Note that we frequently omit k£ and n to reduce
clutter.

Definition 10. An n-tier strictly k-local (n-MTSLy) language L is the inter-
section of n distinct k-TSL languages (k,n € N).

MTSL is a proper superclass of TSL, which is witnessed by the language
we used to prove non-closure under intersection for I'TSL. This also shows that
MTSL is not subsumed by ITSL. The opposite does not hold either.

Lemma 5. [TSL ¢ MTSL.

Proof. Assume X = {a,b}, and consider the language Lp;, = a{a,b}*d U
b{a,b}*a. This language is ITSL. Suppose Lp; were the intersection of n dis-
tinct TSL languages Lq,..., L,. Since a{a,b}*a ¢ L, there would have to be
at least one L; projecting every a on the tier, and banning aa. But then this
language also incorrectly rules out aatb. Thus, L ¢ n-MTSL for any number of
intersecting TSL languages.

Theorem 7. MTSL and ITSL are incomparable.

Regarding the place of MTSL with respect to the other subregular classes,
we can reuse most of the previous results. That MTSL ¢ LTT, PT is entailed
by TSL ¢ LTT, PT. To see why LTT ¢ MTSL, consider X' = {a,b,c} and a
sentential logic formula ¢ : aa — bb s.t. L = {w € X* | w F ¢}. Following
the same reasoning as in the proof for Theorem 3, it is easy to see that this
language is 2-LT (thus, LTT) but not MTSL,,. For PT ¢ MTSL, we take the
same example and assume that the predicates in ¢ are based on precedence
instead of immediate precedence. Again following the reasoning in Theorem 3,
this language is PT, but not n-MTSL for any n. Finally, MTSL C SF follows
trivially from the fact that every TSL language is SF [17] and that SF languages
are closed under finite intersection.

Theorem 8. MTSL is incomparable to LT and PT, and MTSL C SF.
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5.2 Intersection Closure of ITSL Languages
The definition of MTSL extends in the expected manner to ITSL.

Definition 11 (MITSL). A multiple m-input local TSL ((m,n)-MITSLy) lan-
guage is the intersection of n distinct m-I1TSLy, languages (k,m,n € N).

Since ITSL is not closed under intersection, we have ITSL C MITSL, which
in turn implies MTSL C MITSL because MTSL and ITSL are incomparable.
Just like TSL, MTSL, and ITSL, MITSL is incomparable to LTT and PT. That
MITSL ¢ LTT, PT follows from their incomparability to TSL, ITSL and MTSL,
which MITSL properly subsumes. For the other direction, we can simply refer
to the counter-examples used in Theorem 7, which are not MITSL irrespective
of the number of tiers projected by the grammar.

Theorem 9. MITSL is incomparable to LTT and PT.

The incomparability to LTT and PT also entails MITSL C SF (MITSL C
SF follows from the FO definability of ITSL and the closure of SF under inter-
section).

Lemma 6. ITSL C MITSL C SF.

This shows that MTSL, ITSL, and MITSL are all natural generalizations of TSL
that preserve the relation to other language classes. This extends even to their
closure properties: TSL and ITSL have exactly the same closure properties with
respect to intersection, union, complement, concatenation, and relabeling, and
the multi-tier variants only gain closure under intersection (the proofs for ITSL
carry over with simple modifications). In addition, TSL is the natural special
case of MITSL with only one tier and ISL; tier projection.

From a linguistic perspective, this means that even though TSL is inadequate
in multiple respects, the insights it yields are preserved with only minor modifi-
cations. TSL is not sufficiently expressive for all phonotactic dependencies, but
the move from TSL to ITSL is conceptually natural and does not affect common
closure properties. TSL complexity results also do not carry over from individual
processes to the whole system, but the extension of TSL to MTSL via multiple
tiers is linguistically appealing and once again does not affect closure properties
or the relation to other language classes. Quite simply, T'SL is but one particular
point in a whole region of TSL-like classes, all of which behave very similar with
respect to closure properties and their relative place in the subregular hierarchy.

6 Learnability Considerations

In this paper we have explored the effects of generalizing the tier projection func-
tion for TSL languages to allow for structure-sensitivity. As long as one limits
structure-sensitivity to locally bounded contexts, the shift is very natural and
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mathematically well-behaved. In particular, ITSL allows for additional expres-
sivity while still excluding many unnatural patterns from the classes LT, LTT,
SP, PT, and SF (Fig.1 on page 12).

But generative capacity is not the only linguistically relevant property of
language classes. Learnability is also crucial and has profound implications for
natural language acquisition [18]. The extensions we have proposed in this paper
do not alter the learnability of TSL in the limit from positive text. While the
whole class of T'SL is not learnable in this paradigm because it properly subsumes
the class FIN of all finite languages, TSLy, for k£ > 0 is finite and thus learnable
[11]. This finiteness also holds for our extensions of TSL as long as all parameters
are bounded.

Theorem 10. Given fized k, m, and n, (n,m)-MITSLy, languages are learnable
in the limit from positive text.

This still leaves open, though, whether these languages are efficiently learn-
able. We expect this to be the case given the existence of efficient learners for
ISL and TSL [6,21,22]. Moreover, [25] propose an efficient algorithm for MTSLs
building on the notion of a 2-path exploited by [21]. In a similar fashion, it should
be possible to infer local contexts in the projection of tier-segments.

Conjecture 1. (n,m)-MITSL, languages are efficiently learnable from a polyno-
mial sample size in polynomial time.

The phonotactic phenomena studied so far suggest tight bounds on m, n, k
as relevant to the class of human languages [1,15]. Typological explorations thus
offer important insights into human learning abilities [8,30].

7 Conclusions

TSL languages have been proposed as a good computational hypothesis for the
complexity of phonotactic patterns. However, their tier projection function is too
limited because it is context agnostic. A wide range of empirical phenomena can
be captured if one equips TSL with an input-strictly local projection mechanism
in the sense of Chandlee [5]. The resulting new class of ITSL has the same closure
properties as TSL and extends generative capacity only by a small amount. In
particular, ITSL occupies a similar position to TSL in the subregular hierarchy.

This paper has explored but one point in a whole region of TSL-like language
classes. For instance, we completely omitted OTSL [23] and IOTSL [15]. We also
limited ourselves to comparisons to well-established classes such as LTT, ignoring
more recently defined classes [13,34]. One major reason for this limit in scope
is the lack of fertile characterizations of TSL and ITSL languages. Whereas
suffix substitution closure makes it very easy to show that a string language
is not strictly local, TSL and ITSL introduce the additional parameter of tiers
and contexts that are hard to quantify over in practice. We were able to use
string embeddings to create subsumption relations between the contexts and k-
factors of specific strings, but this technique is not nearly as versatile as suffix
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substitution closure. The lack of an equally elegant characterization of TSL and
its variants is a serious impediment to a full exploration of the TSL region.

Acknowledgments. This material is based upon work supported by the National
Science Foundation under Grant No. BCS-1845344.

References

1. Aksenova, A., Deshmukh, S.: Formal restrictions on multiple tiers. Proc. Soc. Com-
put. Linguist. (SCiL) 20(18), 64-73 (2018)

2. Applegate, R.: Ineseno chumash grammar. Ph.D. thesis, UC Berkeley (1972)

3. Baek, H.: Computational representation of unbounded stress patterns: tiers with
structural features. In: Proceedings of the 53rd Meeting of the Chicago Linguistic
Society (CLS53) (2017)

4. Brzozowski, J.A., Knast, R.: The dot-depth hierarchy of star-free languages is
infinite. J. Comput. Syst. Sci. 16(1), 37-55 (1978)

5. Chandlee, J.: Strictly local phonological processes. Ph.D. thesis, University of
Delaware (2014)

6. Chandlee, J., Eyraud, R., Heinz, J.: Learning strictly local subsequential functions.
Trans. ACL 2, 491-503 (2014)

7. Chandlee, J., Heinz, J.: Strict locality and phonological maps. Linguist. Inq. 49,
23-60 (2018)

8. De Santo, A.: Commentary: developmental constraints on learning artificial gram-
mars with fixed, flexible, and free word order. Front. Psychol. 9, 276 (2018)

9. FEilenberg, S.: Automata, Languages, and Machines. Academic Press, Inc., Cam-
bridge (1974)

10. Fu, J., Heinz, J., Tanner, H.G.: An algebraic characterization of strictly piecewise
languages. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp.
252-263. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20877-
526

11. Gold, E.M.: Language identification in the limit. Inf. Control 10(5), 447-474
(1967)

12. Goldsmith, J.: Autosegmental phonology. Ph.D. thesis, MIT, Cambridge (1976)

13. Graf, T.: The power of locality domains in phonology. Phonology 34(2), pp. 385—
405 (2017). https://doi.org/10.1017/S0952675717000197

14. Graf, T.: Locality domains and phonological c-command over strings. In: 2017
Proceedings of NELS (2018). http://ling.auf.net/lingbuzz/004080

15. Graf, T., Mayer, C.: Sanskrit n-retroflexion is input-output tier-based strictly local.
In: 2018 Proceedings of SIGMORPHON (2018)

16. Heinz, J.: The computational nature of phonological generalizations. In: Hyman,
L., Plank, F. (eds.) Phonological Typology, chap. 5, pp. 126-195. Phonetics and
Phonology, Mouton De Gruyter (2018)

17. Heinz, J., Rawal, C., Tanner, H.: Tier-based strictly local constraints for phonology.
In: Proceedings of the ACL 49th: Human Language Technologies: Short Papers -
vol. 2, pp. 58-64 (2011). http://dl.acm.org/citation.cfm?id=2002736.2002750

18. Heinz, J., Riggle, J.: Learnability. In: van Oostendorp, M., Ewen, C., Hume, B.,
Rice, K. (eds.) Blackwell Companion to Phonology. Wiley-Blackwell, Hoboken
(2011)


https://doi.org/10.1007/978-3-642-20877-5_26
https://doi.org/10.1007/978-3-642-20877-5_26
https://doi.org/10.1017/S0952675717000197
http://ling.auf.net/lingbuzz/004080
http://dl.acm.org/citation.cfm?id=2002736.2002750

50

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

29.

30.

31.

32.

33.

34.

A. De Santo and T. Graf

Jager, G., Rogers, J.: Formal language theory: refining the chomsky hierarchy.
Philos. Trans. R. Soc. B: Biol. Sci. 367(1598), 1956-1970 (2012)

Jardine, A.: Computationally, tone is different. Phonology (2016). http://udel.edu/
~ajardine/files/jardinemscomputationallytoneisdifferent.pdf

Jardine, A., Heinz, J.: Learning tier-based strictly 2-local languages. Trans. ACL
4, 87-98 (2016). https://aclweb.org/anthology/Q/Q16/Q16-1007.pdf

Jardine, A., McMullin, K.: Efficient learning of tier-based strictly k-local languages.
In: Drewes, F., Martin-Vide, C., Truthe, B. (eds.) LATA 2017. LNCS, vol. 10168,
pp. 64-76. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53733-7_4
Mayer, C., Major, T.: A challenge for tier-based strict locality from Uyghur back-
ness harmony. In: Foret, A., Kobele, G., Pogodalla, S. (eds.) FG 2018. LNCS, vol.
10950, pp. 62—83. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-
57784-4.4

McMullin, K.: Tier-based locality in long-distance phonotactics?: learnability and
typology. Ph.D. thesis, University of British Columbia, February (2016). https://
doi.org/10.14288/1.0228114

McMullin, K., Aksénova, A., De Santo, A. (2019): Learning phonotactic restrictions
on multiple tiers. Proc. SCiL 2(1), pp. 377-378 (2019). https://doi.org/10.7275/
s8ym-bx57

McNaughton, R., Papert, S.: Counter-Free Automata. MIT Press, Cambridge
(1971)

Pin, J.E.: Varieties of Formal Languages. Plenum Publishing Co., New York (1986)
Rogers, J., et al.: On languages piecewise testable in the strict sense. In: Ebert,
C., Jager, G., Michaelis, J. (eds.) MOL 2007/2009. LNCS (LNAI), vol. 6149, pp.
255-265. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14322-
9.19

Rogers, J., Heinz, J., Fero, M., Hurst, J., Lambert, D., Wibel, S.: Cognitive and sub-
regular complexity. In: Morrill, G., Nederhof, M.-J. (eds.) FG 2012-2013. LNCS,
vol. 8036, pp. 90-108. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39998-5_6

Rogers, J., Pullum, G.K.: Aural pattern recognition experiments and the subreg-
ular hierarchy. J. Logic Lang. Inf. 20(3), 329-342 (2011)

Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) GI-Fachtagung 1975.
LNCS, vol. 33, pp. 214-222. Springer, Heidelberg (1975). https://doi.org/10.1007/
3-540-07407-4-23

Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A.
(eds.) Handbook of Formal Languages, pp. 389-455. Springer, Heidelberg (1997).
https://doi.org/10.1007/978-3-642-59126-6_7

Walker, R.: Yaka nasal harmony: spreading or segmental correspondence? Annu.
Meet. Berkeley Linguist. Soc. 26(1), 321-332 (2000). https://doi.org/10.3765/bls.
v26i1.1164

Yli-Jyré, A.: Contributions to the theory of finite-state based linguistic grammars.
Ph.D. thesis, University of Helsinki (2005). http://www.ling.helsinki.fi/~aylijyra/
dissertation/contribu.pdf


http://udel.edu/~ajardine/files/jardinemscomputationallytoneisdifferent.pdf
http://udel.edu/~ajardine/files/jardinemscomputationallytoneisdifferent.pdf
https://aclweb.org/anthology/Q/Q16/Q16-1007.pdf
https://doi.org/10.1007/978-3-319-53733-7_4
https://doi.org/10.1007/978-3-662-57784-4_4
https://doi.org/10.1007/978-3-662-57784-4_4
https://doi.org/10.14288/1.0228114
https://doi.org/10.14288/1.0228114
https://doi.org/10.7275/s8ym-bx57
https://doi.org/10.7275/s8ym-bx57
https://doi.org/10.1007/978-3-642-14322-9_19
https://doi.org/10.1007/978-3-642-14322-9_19
https://doi.org/10.1007/978-3-642-39998-5_6
https://doi.org/10.1007/978-3-642-39998-5_6
https://doi.org/10.1007/3-540-07407-4_23
https://doi.org/10.1007/3-540-07407-4_23
https://doi.org/10.1007/978-3-642-59126-6_7
https://doi.org/10.3765/bls.v26i1.1164
https://doi.org/10.3765/bls.v26i1.1164
http://www.ling.helsinki.fi/~aylijyra/dissertation/contribu.pdf
http://www.ling.helsinki.fi/~aylijyra/dissertation/contribu.pdf

