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In this work, we theoretically investigate the swimming velocity of a Taylor swimming
sheet immersed in a linearly density stratified fluid. We use a regular perturbation expan-
sion approach to estimate the swimming velocity up to second order in wave amplitude.
We divide our analysis into two regimes of low (< O(1)) and finite Reynolds numbers.
We use our solution to understand the effect of stratification on the swimming behavior
of organisms. We find that stratification significantly influences motility characteristics of
the swimmer such as the swimming speed, hydrodynamic power expenditure, swimming
efficiency and the induced mixing, quantified by mixing efficiency and diapycnal eddy
diffusivity. We explore this dependence in detail for both low and finite Reynolds number
and elucidate the fundamental insights obtained. We expect our work to shed some
light on the importance of stratification in the locomotion of organisms living in density
stratified aquatic environments.
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1. Introduction

Density stratification in oceans and lakes occurs due to gradients in temperature
or salinity. This affects the swimming behaviour and the migration patterns of or-
ganisms living in these environments (Doostmohammadi et al. 2012; Ardekani et al.
2017). An example of this includes the accumulation of dinoflagellates at thermoclines
caused by restriction to propulsion due to steep thermal gradients (Heaney & Eppley
1981). Planktonic species of copepods have been observed to migrate towards higher
salinity gradients and eventually concentrate at haloclines (Heuch 1995). Temperature-
induced stratification has been shown to influence the distribution of the phytoplankton
community (Arrigo et al. 1999) and even enhance the period of phytoplankton blooms
(Mahadevan et al. 2012; Sherman et al. 1998).

The swimming of organisms in homogeneous fluids has been studied for over five
decades (see Lauga & Powers 2009; Brennen & Winet 1977; Lauga 2016; Elgeti et al. 2015)
and significant progress has been made. Theoretical work in this direction was started by
Taylor (1951) who derived an analytical expression for the swimming velocity of a thin
waving sheet immersed in a homogeneous fluid at low Reynolds numbers. Later, Reynolds
(1965) derived an expression for the sheet’s swimming velocity by including the effect
of inertia in his analysis. The formula was corrected by Tuck (1968), who showed that
contrary to the observations made by Reynolds, the sheet swimming velocity decreases
with inertia.

In the present work, we provide a theoretical analysis of the swimming velocity of a
Taylor sheet in a density stratified fluid. The theoretical approach used in this study
has been applied by researchers in a wide range of physical scenarios. This includes



2 Rajat Dandekar, Vaseem A. Shaik and Arezoo M. Ardekani

locomotion in complex fluids (Chaudhury 1979; Lauga 2007; Elfring & Goyal 2016), in
a gel (Leshansky 2009; Fu et al. 2010), in two-phase viscous fluids (Du et al. 2012), in a
liquid crystal (Krieger et al. 2015) and near solid boundaries (Reynolds 1965; Katz 1974).
Hydrodynamic interaction between multiple sheets is also studied using this methodology
(Elfring & Lauga 2009). Despite the numerous ecological implications of stratification,
there are limited theoretical studies which shed light on the swimming behaviour of
microorganisms in a density-stratified environment.

Ardekani & Stocker (2010) quantified the effect of stratification on the swimming of
organisms, by means of singularity solutions at low Reynolds numbers. They identified
the appropriate length scale to quantify the role of stratification and showed that
stratification has a significant influence on the hydrodynamics of aquatic organisms.
Point-force singularities, however, only give knowledge about the far-field flow generated
by the swimmer at low Reynolds and Péclet numbers.

Numerical models were further developed for a more accurate representation of swim-
ming organisms in density stratified fluids. Doostmohammadi et al. (2012) carried out a
detailed numerical analysis of the motion of a spherical squirmer swimming in a stratified
fluid at low Reynolds numbers. They observed that buoyancy forces induced by density
stratification have a significant impact on the flow field of the swimmers and their energy
expenditure. They found the propulsion speed of the swimmer to be dependent on the
direction of the thrust generation by the swimmer, which is generally not the case in
homogeneous fluids. Wang & Ardekani (2015) performed three dimensional fully resolved
simulations of a suspension of squirmers in a density stratified environment to study the
mixing induced by organisms in aquatic environments.

Swimmers create a local disruption in the surrounding fluid during their locomotion.
Biogenic mixing has been extensively studied in the literature (Katija 2012; Simoncelli
et al. 2017). There are arguments both in support of the importance of biogenic mixing
(Dewar et al. 2006) and against it (Visser 2007). The understanding of the influence of
stratification on the hydrodynamics of swimming is crucial to make reliable predictions
about biogenic mixing.

In this work, we analytically derive an expression for the swimming velocity in a density
stratified fluid. We model the swimmer as a 2D infinitely long sheet that propels by
passing waves of small amplitude along its surface. This model can be used to represent
tail of a human spermatozoa (Taylor 1951), flat ciliated Paramecium, Opalina (Blake
1971), or C.elegans (Sznitman et al. 2010). We analyze the effects of stratification on
the swimmer propulsion. We divide our analysis into two regimes of low (< O(1)) and
finite Reynolds numbers. This will help us understand how inertia affects the locomotion
in a stratified fluid. Furthermore, we make predictions about the hydrodynamic power,
swimming efficiency and the mixing induced by the swimmer in a stratified fluid.

2. Problem Formulation

Figure 1 shows a schematic of a swimmer immersed in a linearly density stratified fluid
in the undisturbed state. The ambient or the undisturbed density variations in the fluid
are given by,

PO = Poc — VY- (2.1)

Here, ps is the reference fluid density, v is the density gradient in the vertical direction.
We consider the swimmer to be neutrally buoyant with respect to the surrounding fluid.
The swimmer is thus stationary when it does not propagate waves along its surface. This
is a good assumption since marine organisms have been observed to regulate their density
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Figure 1: Swimming sheet immersed in a density stratified fluid with ambient density,
Po = Poo — 7YY Where gravity g points in the negative y-direction. The swimmer propels in
the y-direction by generating a traveling wave in negative y-direction with a speed o/k.
b, A are the wave amplitude and wavelength, respectively.

and remain neutrally buoyant in deep waters. For example, aquatic copepods, which are
the dominant members of the zooplankton biomass, change their lipid concentration
during winter to remain neutrally buoyant (Visser & Jénasdéttir 1999; Campbell &
Dower 2003). Several species of notothenoid fishes in the mid-water community have
been observed to be neutrally buoyant (Phleger 1998; Eastman 1985).

The swimmer propels by beating its flagella periodically, generating a travelling wave
along its surface. This mechanism creates a disturbance in the surrounding fluid. The
surface of the swimmer is assumed to deform according to this traveling wave z =
bsin(ky + ot), where b is the wave amplitude which is assumed to be small compared
to the wavelength 27” (Taylor 1951) and o is the angular frequency of the wave.

Governing Equations

We begin by writing the equations of motion for the fluid,
ou Ov

el T 2.2
e+ oy 0, (2.2)
ou ou ou\  Op %u  O%u
@4_“@_’_1)@ __@_ + 8721}_;'_& _ dl (24)
P\t "0z Ty ) T "oy PV TH\ a2 Tay2) Pt '

Equations (2.2), (2.3), (2.4) represent the continuity equation and the momentum conser-
vation equations in the z and y direction respectively. Here, u, v are the velocity fields in
the z and y direction respectively in the frame of reference translating with the swimming
velocity of the sheet given by V. Note that, in this frame of reference, the ambient density
of the fluid (po) will depend on time.
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When the changes in the concentration/temperature are linearly related to the changes
in the density, one can solve for the advection-diffusion equation for the density (equation
(2.5)), instead of such an equation for the temperature or concentration.

2 2
Op , Opu)  Opv) _ (O7p  Op
ot ox Oy oxr?  Oy?

= (2.5)
Here, c is the diffusivity coefficient. The density and pressure fields can be expressed as
a combination of disturbed and undisturbed fields, p = pg + p/, p=Dpo+ pl. Here, pl, p,
are the disturbed density and pressure fields generated because of the deformation of the
swimmer. We use the Bousinessq approximation to neglect the density variation in all
the terms of the equations governing flow (equations (2.2)-(2.4)) except the buoyancy
force term (Doostmohammadi et al. 2012; Ardekani et al. 2017). The contribution of the
undisturbed density to the buoyancy force term is balanced by the undisturbed pressure.
Hence, we obtain the equations governing the flow and density in terms of the disturbance
density and pressure as follows,

ou  Ov
. n = 0, (2.6)
ou ou ouy 8p/ v 0%u
poo(at‘f'uar"i‘vay)——ax‘i‘ﬂ(aﬁ‘i‘w)y (27)
@+ @—F @ __aipl_ ' + 6721}4_@ _ dl (28)
Pol\ar " or T8y ) T "oy I T\ G2 Ta2) TP ar '
9p’ d(p'u) | 9(p'v) N )
(at W) T or ey TN\ mr Ty ) 29)

Next, we non-dimensionalize the problem by using the following scales: length scale
le = %, velocity scale u. = 7, time scale t, = %, pressure scale p, = uo, density scale
pe = %. The term %—‘t/ shall be non-dimensionalized later and is retained in its dimensional
form for now. We use the same variables to denote the dimensionless variables. The
governing equations are thus written as follows,

ou Ov

o 2 = 2.1
o " oy 0, (2.10)

’

(6u ou 8u) Op 0%*u %
Re — | =

ot u8x+v3y T Ta T

5 T 5 T o (2.11)

v v ov\  Op o 0% 0% ps OV
ke <aﬁ“ax“ay) =y M)t emt ey Twewar 312
ap’ d(p'u) | 9(p'v) 0% 0%
Pe <( B V)+ Tl ay vl =52t Ak (2.13)

Here, Re = £%7 represents the Reynolds number, the ratio of the inertial to the viscous
forces, Pe = ;5 is the Péclet number, the ratio of the advective to the diffusive transport
rates of density, Ri = -1%5 is the viscous Richardson number, which is the ratio of the
buoyancy to the viscous forces. The magnitude of the Richardson number represents the
extent of stratification in the fluid.

The term %—‘t/ denotes the dimensional acceleration of the swimmer. We expect the
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swimming velocity to change with time, because of the time-varying fluid density en-
countered by the translating sheet which is caused by the stratification gradient. The
time-varying buoyancy force per unit volume experienced by the sheet (Fg) scales as,

FB ~ ?
If the density of the sheet is assumed to be p,, the acceleration of the swimmer due to
this buoyancy force will scale as,

av vg

Gk
If we now substitute this scale for the sheet’s acceleration in equation (2.12), we find that,
the unsteady force exerted on the fluid due to the translating swimming sheet scales as,

av
Poo OV _ P Rifay).
uok dt Pp
where, as denotes the non-dimensional acceleration of the sheet. As a result, for steady
motion of the sheet, the following condition must be satisfied,

P Ri(as) < 1 (2.14)
Pp
As we have assumed the swimmer to be neutrally buoyant with respect to the surrounding
fluid, we have,

as < 1.

. This implies that, the unsteady contribution due to the sheet’s translational velocity
can be neglected and the motion of the sheet can be considered as steady. If the density
of the swimmer remains constant with time, then the steady state assumption is only
valid if Ri < 1. We note that this assumption does not affect the calculation and analysis
presented here as OV/9t does not appear in the equation governing stream function. We
expect, however, that the neutrally buoyant assumption is necessary to yield a consistent
force balance condition.
We further simplify these expressions by representing the velocity fields in terms of the
stream function(v) as follows,
_ oy O

u = ay,v = o
Next, we eliminate the unknown pressure field by combining equations (2.11) and
(2.12) to obtain a single equation in terms of the stream function. We make another
simplification by introducing a variable transformation given by z = y 4+ ¢t (Reynolds
1965; Lauga 2007). This allows us to express the derivatives with respect to y and
t in terms of a single variable z. We note that, the wave appears to be steady in
this transformed frame of reference. This allows us to express the governing equations
with no dependence on the time variable. After performing these calculations, we finally
obtain the equations of motion for the disturbances generated by the swimmer as follows,

4 0p oM, D, o, _, d

5 WVt g r )t - (2.16)

0z

dp’ o, o D, N P %
Pe <( v or | 0x2 = 0227

fw) 0%



6 Rajat Dandekar, Vaseem A. Shaik and Arezoo M. Ardekani

Note that we have obtained a system of two differential equations in terms of two
unknowns, the density field and the stream function.

Boundary Conditions

We apply a no-slip and no-penetration boundary condition at the surface of the sheet
which can be written as follows,

7-’f|ac=bksin(z) = bkCOS(Z), U|x=bksin(z) =0, (217)

Far away from the sheet, the fluid velocity should be negative of the sheet’s swimming
velocity,

Ulgmoo =0, V]zmoo = =V. (2.18)

For the density field, we apply a no-flux boundary condition at the surface of the

swimmer. For stratification induced due to gradients in concentration, this implies that

the surface of the swimmer is impermeable; whereas it implies an adiabatic boundary
condition at the surface in case of thermal gradients. Hence we obtain,

VP Nympsin(z) =0, (2.19)

Here, n represents the normal vector at the surface of the swimmer.
The disturbance density should vanish far away from the swimmer, which implies,

P lomsoe = 0. (2.20)

3. Solution

In order to solve equations (2.15) and (2.16), we expand the stream function and the
density in the form of a regular perturbation series. We introduce the small parameter
€ = bk and express the variables in the following form,

= ey + by + O(), p = epr + py + O(). (3.1)
We express the swimming velocity of the sheet as,
V =eV) + 2V + 0(e%). (3.2)

Next, we substitute these expressions in the boundary conditions, governing equations
and solve at each order of e.

Boundary conditions for successive approzimations

We seek to transform the velocity boundary conditions at the surface to obtain
conditions at x = 0. Hence, we first expand the velocity boundary conditions at the
surface of the swimmer about = = 0 using Taylor series representation. We thus obtain,

o K . 0%
5, lr=esin(z) = 5_le=0 + esin(2) 5 om0 + oy
(3.3)
N W . 0%
e |z—esin(z) = o |e=0 + €sin(z) 52 le=0 + .-

Next, we substitute the perturbation expansion for the stream function in the above
expression and collect the terms at various powers of €. We obtain the following boundary
conditions at z = 0 at the first and second order,

o _, o

p— = — pu— 3.4
5z " as cos(z) at x =0, (3.4)
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2 2
% = —sin(z)a LI O at z = 0. (3.5)

, = —sin(z
Ox? 0z ( )89582
The no flux boundary condition for density can be written as,

V(PO + Pl) ° n|$:esin(z) =0, (36)

Using a similar procedure described for the velocity boundary conditions, we expand the
above equation about x = 0 to obtain,

’ ’ . 8 ’
V(o0 + ) Mlamsinie) = Voo +9)  mlaco + esin() 5= (Vo + 9) - m)lamo, (3.7)

The normal vector can also be represented by the Taylor series approximation to obtain,

€2cos?(z)

2
Next, we substitute the density perturbation expansion in equation (3.7) and use the

normal vector approximation to obtain the density boundary conditions at x = 0 at the
first and second order,

+0(e%), ny = ecos(z) + O(e?), (3.8)

Ny = —

% = —cos(z) atx =0, (3.9)

0p2 . 9%p1 dp1
— 7 = 3.10
o sin(z) 92 + cos(z) 9 at x = 0. ( )

Finally, the boundary condition for the vanishing disturbance density far away from the
swimmer simplifies to,

p1— 0, asz— oo, (3.11a)

p2 — 0, asxz— oo. (3.11d)

Next, we substitute the perturbation expansions of the velocity and the density fields in
the equations of motion (equations (2.15) and (2.16)), and obtain the governing equations
at various orders of e.

Solution at O(e)

The equations governing the stream function and the density disturbance at O(e) are
given by,

. 8p1 1o}
4, _ 2
\% 1/)1 RZ( al') Re(azv 1/)1), (312)
op1 o\ 9%p1 | O’m
Pe (( 9z ") - oz ) - ox? 022 (3:13)

These equations are subjected to the boundary conditions at the first order (equations
(3.4), (3.9) and (3.11a)). The first order velocity averaged over the vertical direction at
the sheet surface is zero (equation (3.4)). Thus, we expect the first order solution to be
periodic in the vertical direction. This allows us to express the stream function and the
density in the following form,

P = f(x)eiz, pL = g(x)eiz. (3.14)

Consequently, we note that, in equation (3.13), the mean value of all the terms involving
density (p1) or the stream function (¢ ) is zero. This implies that the first order swimming
velocity should be zero. Hence we get, V; = 0. We thus conclude that stratification
does not induce any velocity at the first order. Note that Taylor (1951) made a similar
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prediction for a sheet immersed in a homogeneous fluid.
Substituting these expressions in the governing equations at the first order and solving
for f(z),g(x) we get the first order fields as follows,

Y1 = R((51€™7 4 59€™2% 4 53e™3%)e'?), (3.15)
Pemy Pemo Pemo ) ;
— R mix moaXx ms3x 1z .
n <(5117m%+iPee +5217m§+iPee +5317m§+iPee )e”)
(3.16)

Here R denotes the real part; m;, ms and mg are the roots of the equation m8 +m?*(—3—
iPe —iRe) + m?(3 — PeRe + PeRi + i(2Pe + 2Re)) — (1 + iPe)(1 + iRe) = 0 having
a negative real part. Enforcing the boundary conditions at first order, we obtain the
following equations whose solution determines s1, sy and s3.

S1+s2+s3=1
s1tmq + SQmQ + S3MmM3z = 0 (317)
s1(m2 — 1)% 4 sy(m3 — 1)% + s;;(mg —1)>=Ri

Hence,
% 1 1 1 ) 1
0 mo ms mq 0 ms
5 = Ri (m5—1)" (m3— 1)? 5y = (mi—1)° Ri (m3—1)
D ) ) ; D (3.18)
mi mo 0
(m?-1)* (m3—1)* Ri
S3 = D
where,
1 1 1
D= mi mo ms

(mi—-1)% (m3—1)*> (m3—1)°

Solution at O(€?)

The equations governing the stream function and the density disturbance at O(€?) are
given by,

4 0p2 01 T2 o 2 9 oo
Vi = Ri(52) = Re (G0 - GRSV + 5 V). (319
Opz 0 0Py 0, Oy, O\  OPpa  0%pa
( Vet 5 Yo trgs ”az(”lax)‘ax)— gz o 320)

From the boundary conditions at the second order (equations (3.5), (3.10) and (3.11b)),
we find that second order vertical velocity and the density gradient, averaged in the
vertical direction at the surface of the sheet are non-zero. Hence, the velocity and density
fields must have a non-zero mean component to satisfy the boundary conditions. In order
to obtain these mean components, we define the vertical averaged density and stream
function in the domain as follows,

2m 2m
(o) = % ; Yo(x, 2)dz, (p2) = %/0 p2(z, z)dz. (3.21)
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We now average over the vertical direction on both sides of equations (3.19) and (3.20)
to obtain,

d* () R~d</72>

T = R ek (x), (3.22)
e (—V2 + ko () — d;ﬁ2>> = dd§2>. (3.23)

Here, iy (2) = (22 (2 V24) — 28 (220y)) and k(@) = (£ (—pn 20) + 2 (o 22)),
where (.) represents the average m the vertical direction. These can be easily obtained
from the first order velocity and density fields.

We define (12) = —Vax + 125, where 8;:)”;’5 is the vertically averaged y-direction velocity
field in the fluid domain measured in a stationary frame of reference. We substitute this
expression in equations (3.22) and (3.23) to obtain the following differential equation for
1o after some algebraic manipulations,

Ao . dipos . d
Vo 4 (RiP™E — (RiPe)ky(a) + Re-h(x). (321

We can now find the contribution of the mean velocity field at x = 0, which is given by,

d<¢2> d¢25
dzx dxr

We equate this contribution to the mean value of the second order boundary condition
at the sheet surface (equation (3.5)), to obtain,

d21/)1 _ d,l/]QS

(x=0)=-Vo+

(z =0), (3.25)

Vo = (sin(z) =0). (3.26)
Here, 11,125 are obtained by solving equations (3.15) and (3.24) respectively. We solve
equations, (3.24),(3.26), to obtain the velocity of the sheet which is given by,

(32 3 2 D ) o (0E =17, - S s
2= 5Im e — Re(m; +m;)) — mis;).
RiPe + (m; + ;)4 m; ! 7 P e
(3.27)
where, §5;, m; represent the complex conjugates of s;, m; respectively, I'm is the imaginary
part and 2 = —1.
The dimensional swimming velocity of the sheet is given by,

i=1 j=1

V, = (%)b%%. (3.28)

From the above expression, we observe that the velocity of a swimmer immersed in density
stratified fluid is proportional to the wave speed, square of the wave amplitude and the
wave number. By substituting Ri = 0 in equation (3.27), we obtain the expression for
the sheet’s swimming velocity in a homogeneous fluid as follows,

1 /1414 Re?
VS:(%)kaQ 3 %

We note that, this expression matches with the formula derived by Tuck (1968), thus
verifying the theoretical procedure used in our analysis.
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4. Results and Discussion

We divide our analysis into two regimes. We first discuss the low Reynolds regime,
where the inertial forces acting on the swimmer are negligible (Re < 1). In this case, the
swimmer is propelled only by the viscous forces acting on its surface. The second regime
is that of a swimmer having a finite Re. Here, inertial forces can no longer be neglected
and will contribute to the propulsion of the swimmer. Owing to the dearth of theoretical
studies conducted in both these regimes, we expect our results to provide a fundamental
understanding about the effect of stratification on the swimming of microorganisms.

Henceforth, we will be expressing the Péclet number in terms of the Prandtl number
(Pr = Pe/Re) which is defined as the ratio of the momentum diffusivity to the thermal
diffusivity. We use the same number for salt transport as well, even though such number
is Schmidt number when mass transfer occurs. Typical values of Prandtl number for
some practically relevant stratification conditions are Pr = 700 for salt stratification in
water and Pr = 7 for temperature stratified water. The magnitude of stratification is

often represented by the Brunt-Vaiisila frequency (N = ,/ ;’—g). The typical values of

N range from 10~* — 0.3 s! (Thorpe 2005). Using this estimate, in density stratified
water (poo ~1000 m™3, 1 ~10 kg m™ s71), we find that v ~ 105-10 kg m™. We can use
these parameter values to determine typical values of Re, Ri for various motile organisms
in stratified water with v = 1 kg m™. Examples include Escherichia coli, Salmonella
typhimurium (l. ~ 1 pm, u, ~ 20 — 30 pm s!) (Lauga & Powers 2009) Re ~ 107° —
1074, Ri ~ 1078, Copepods (. ~ 0.05 — 0.3 cm, u, ~ 0.1 — 0.5 cm s*) (Strickler 1975)
Re ~ 1072 — 103, Ri ~ 0.01 — 0.05, Euphausia pacifica(krills) (I. ~ 1 cm, u. ~ 5 mm s)
(Yen et al. 2003) Re ~ 175, Ri ~ 1 — 5.

Low Reynolds number regime (Re < 1)

(a) Effect of stratification on the swimming velocity

We first analyze the first order flow field generated by the propelling sheet in the
presence of stratification. We observe that stratification markedly changes the flow
pattern in comparison with the homogeneous fluid (figures 2 a,b). The flow field generated
by the sheet is vertically biased as the streamlines bend towards the denser portion of
the fluid. This observation can be understood by considering that, the motion of the
swimmer disturbs the density field in its proximity. This causes the isopycnals to deform
and assume a configuration which is no longer horizontal. Note that, the isopycnals
deform such that they are oriented in a direction normal to the surface of the swimmer,
so as to satisfy the no-flux boundary condition. Consequently, the isopycnals near the
lower (upper) end of the sheet’s crest deflect in the positive (negative) y-direction. This
is clearly shown in figure 2c which depicts the displaced isopycnals close to the sheet.
The tendency of the displaced density layers to return to their original position creates
additional vertical velocities in the fluid domain (shown by vertical arrows in figure 2¢), in
a direction which is opposite to the deformation of isopycnals. We note that, this velocity
acts in the negative y-direction near the lower end of the sheet’s crest (0 <y < %) and in
the positive y-direction near the upper end (§ < y < 7). One can add this stratification
induced velocity to the flow field in a homogeneous fluid to determine the flow field in a
stratified fluid. If we consider a streamline in a homogeneous fluid which is directed from
y =~ 0.5 to y = 2.5 as shown by the solid curve in figure 2d, the effect of stratification
induced velocity is to decrease the slope of this curve near y ~ 0.5 and to increase
this slope near y =~ 2.5, due to which the streamline in a stratified fluid appears to
be bent in the negative y-direction. This flow pattern has a significant influence on the
hydrodynamics of the sheet propulsion, which shall be discussed in later sections. The
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Figure 2: First order flow field (¢;) induced by the swimmer in (a) homogeneous fluid,
(b) stratified fluid (Pr = 7, Ri = 5), contours are the streamlines, colors show the value of
the stream function, (¢) Isopycnals (p = po+p ) for Re = 0.001, Pr = 7, Ri = 5, vertical
arrows represent the direction of isopycnal retreat and solid black lines in the figure
represents the swimming sheet and (d) Comparison of streamline of a stratified fluid
(dashed line) with a homogeneous fluid (solid line), black arrows represent the direction
of the first order velocity and blue arrows represent additional vertical velocities due to
isopycnal retreat.

effect of stratification on swimming can be characterized by Ri which depends on the
strength of the density stratification and Pr which depends on the diffusivity of the
stratifying agent. We now analyze the effect of both these parameters on the swimming
velocity.

Figure 3a shows the variation of the swimming velocity with Ri normalized with
respect to the velocity in a homogeneous fluid (Ri = 0, Re = 0). We observe that the
velocity decreases with stratification for all values of Pr. This implies that, an increase
in stratification hampers the vertical motion of swimmers. We now observe the effect of
diffusion on the swimming velocity (see figure 3b). For smaller levels of stratification,
we see that the velocity initially decreases with Pr, and then increases after reaching a
minimum (see figure 3b (Ri = 1.5)). Thus, for small Ri, diffusivity of the stratifying agent
plays a key role in determining the swimming behavior. For higher levels of stratification,
we find that the velocity monotonically decreases with Pr (see figure 3b (Ri = 5)).
Additionally, we observe that, for very high values of diffusion (Pr < 1), the swimmer
moves with the same velocity as that in a homogeneous fluid (see figure 3b). This is mainly
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because the density disturbance becomes negligible for very high values of diffusion. We
further find that, for small values of Ri and Pe, the velocity decreases linearly with
respect to these parameters. By using a numerical fit to the velocity profiles in figures
3a, 3b for small Ri and Pe, the mathematical form of the velocity variation is obtained
as follows,

V = Vg (1 — 0.46RiPe). (4.1)

The sheet swimming velocity can be decomposed into two contributions (refer to
equation (3.26)). The first term signifies the second order vertical velocity at the sheet
boundary because of the no slip condition at the sheet surface. In the case of a homo-
geneous fluid, this is the only contribution to the sheet propulsion. We can rewrite this
term as follows,

2

<sin(z)cilj2l (x=0)) = %(wl (0,7/2) — 1) (4.2)
Here, wy (0, 7/2) represents the value of first order vorticity in the fluid at the sheet crests.
We thus find that, this contribution to the swimming velocity is directly proportional to
the magnitude of the vorticity generated in the fluid at the sheet crests. Lauga & Powers
(2009) explained that the vortices are caused due to the opposite direction of longitudinal
displacement of the fluid particles close to the sheet’s crests. The second contribution
is caused by the mean second order velocity field which is induced in the fluid when
density stratification is taken into account (refer to equation (3.24)). For a stratified
fluid without inertia this contribution is completely governed by ko(x). Physically, this
quantity signifies average rate of mass transfer due to advection across the fluid volume.

Figure 4 shows the reconstruction of the velocity from both these contributions. We
observe that, the second order vertical velocity at the sheet boundary (represented
by propulsion component) is positive for all Ri, Pr, which causes the sheet to propel.
Furthermore, this propulsion component of the velocity decreases with Ri. We rationalize
this observation by considering that the propulsion component is generated due to the
vortices developed in the fluid at the sheet crests (refer to equation (4.2)). Figure 3c,d
shows the modification in the vorticity field when stratification is taken into account. We
find that, the vorticity peak is no longer aligned with the sheet crests in the presence of
stratification. Consequently, the magnitude of the vorticity at the sheet crests decreases,
which ultimately causes propulsion component to decrease with Ri.

From figure 4a, we also find that, the contribution of the mean second order velocity
field developed in the fluid due to stratification is negative. In order to understand this
observation, we first note that, as the swimmer translates in the positive y-direction, it
pulls the surrounding fluid with itself. If we now consider a fixed control volume inside the
fluid, we deduce that its mass is increasing with time, as the fluid is being replaced by a
heavier fluid. If we further assume that diffusion is not very large, then mass conservation
dictates that the rate of mass transfer due to advection across the control mass should be
negative. Consequently, we note, that the quantity that governs the mean second order
velocity field (refer ko(z) in equation (3.24)) is negative everywhere in the fluid domain.
This causes the contribution of the mean second velocity field to oppose the propulsion
of the swimmer. Furthermore, if the ambient density gradient is increased, the mass of
the control volume will increase at a faster rate, causing ko(z) to become more negative
in the fluid. Consequently, we find that increasing stratification leads to an increase in
the opposition caused by the mean second order velocity field (refer figure 4a). After
analyzing the variations of the both the velocity contributions, we infer that increasing
stratification restricts the vertical motion of swimmers. From figure 4b, we observe that,
for low stratification strengths, the propulsion component decreases with Pr, however
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Figure 3: Variation of the swimming velocity with (@) Richardson Number, (b) Prandtl
number, for Re = 0.001, normalized with respect to the velocity in a homogeneous
fluid in the Stokes regime and first order vorticity field, (¢) Ri = 0, (d) Ri = 5, for
Re = 0.001, Pr = 700.

the resistance to propulsion increases with Pr and then decreases, eventually supporting
the propulsion for high Pr. This trend is consequently reflected in the velocity of the
swimmer. (see figure 2d, Ri = 1.5). Interestingly, if the density gradient is small, for low
levels of diffusion, the swimmer can even propel faster than in a homogeneous fluid (see
figure 2d, Ri = 1.5, Pr = 1000).

To summarize, we find that higher stratification strengths mostly hamper the
swimming velocity of the sheet in a low Reynolds number regime. This result is expected
from an intuitive standpoint, because for the class of problems involving particles
settling in a density stratified Newtonian fluid, it is well known that an increased drag
force inhibits their vertical motion (Yick et al. 2009; Doostmohammadi et al. 2014;
Candelier et al. 2014). However, in the narrow regime of lower stratification strengths
and negligible diffusion, we find that stratification supports the swimming motion of the
sheet.

b) Effect of stratification on the power expenditure and swimming efficiency
In this section, we analyze the influence of stratification on the power expended by the
swimmer to achieve propulsion. This depends on the work done by the hydrodynamic
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Figure 4: Decomposition of the swimming velocity (a) Pr = 700 and (b) Ri = 1.5, for
Re = 0.001.

stresses acting on its surface. Ardekani & Stocker (2010) predicted that, point forces
acting on a stratified fluid generate a flow field around the swimmer which augments its
power expenditure. Later, Doostmohammadi et al. (2012) analyzed the power expended
by squirmers suspended in a density stratified fluid. By conducting a series of numerical
studies, they came to the same conclusion that stratification magnifies the energy required
for swimming.

The power expended by the swimmer is given by,

P:/ n-o-udS = (V-o) udV +2u E: EJV. (4.3)
S(t) V(t) V(t)

Here, o and E are the stress tensor and the rate of strain tensor respectively. S(t)
represents the surface of the swimmer and V' represents the fluid volume which is bounded
by the sheet surface and extends to infinity. The first term on the right indicates the
work done to move the isopycnals against gravity, while the second term indicates the
viscous energy dissipation in the fluid. The rate of strain tensor can be written as, E =
%(VquVuT), where u = (u1,v1) represents the first order velocity field. The divergence
of the stress tensor is,

V.o=-pg

We non-dimensionalize the above quantities and obtain the following expression for the
power dissipation at low Reynolds numbers as follows,

2 2 . 3U1 2 (9’01 2 1 8u1 8’01 2 3

P (e (Ritoron + 2 (Gt G2+ 552+ 522) ) + 01 av

(4.4)
Here, u; and vy are the first order velocity fields in the z and y directions, respectively. We
observe that, in addition to the viscous dissipation, stratification induces an additional
contribution from the buoyancy force generated by the first order disturbance density
field. We calculate the mean power over one time period and compare it with the power
expended by the swimmer in a homogeneous fluid by varying the stratification magnitude
(see figure 5a). We observe that stratification augments the power expenditure at all
values of Pr considered. We previously noted that the streamlines surrounding the
swimmer become more tilted in the presence of stratification (figure 2b). Similar to
the streamlines, we find that the velocity contours also become vertically skewed due
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700.

to stratification effects. The skewed velocity contours augment the velocity gradients
generated in the fluid domain. This enhances the shear stresses developed in the fluid
and consequently, the viscous dissipation in the fluid increases. Moreover, the swimmer
consumes more energy in mixing the fluid as well. As a result, we find that, swimming
becomes more energetically expensive in a density stratified fluid. This result matches
with the predictions made by Ardekani & Stocker (2010); Doostmohammadi et al.
(2012), even though the geometry of the swimmer is different in each case. We further
observe that, an increase in diffusion, decreases the power expenditure of the swimmer.
This can be understood by considering that stronger diffusion counteracts the effect
of buoyancy more effectively by restricting the tilting of the density contours. As a
result, the work done by buoyancy forces is mitigated which consequently decreases the
power expenditure. This analysis is shown in figures 5c,d which compare the isopyncal
deflections for Pr =7 and Pr = 700. In order to understand the deflection of isopycnals
for low values of diffusion, we note that, far away from the swimmer, the vertically
averaged mass flux developed in the fluid due to the the deformation of the swimmer is
positive for smaller values of diffusion. This implies that, as the swimmer propels, fluid
mass is migrating in the positive y-direction. To account for this mass transport, the
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isopycnals can no longer be horizontal and are bent upwards. However, for high values of
diffusion, we find that, there is no mass transport across the isopycnals and hence they
retain their undisturbed position.

We seek to analyze the effect of stratification on the hydrodynamic efficiency of
the swimmer. Efficiency depends on the fraction of the available power used for the
locomotion. Lighthill (1952) defined swimming efficiency as the ratio of external power
required to move the swimmer at a constant velocity to the power expended by the
swimmer. This definition is commonly used to represent the hydrodynamic efficiency of
undulating sheets. We use this definition to quantify the hydrodynamic efficiency in a
stratified fluid. Hence, we obtain,

V2

no (4.5)
Here, V is the swimming velocity and P is the mean power expended by the swimmer
over one time period. We compare this efficiency with that in the homogeneous fluid and
observe the variation with the stratification strength (see figure 5b). We observe that
increase in Ri decreases the efficiency of the swimmer. This is expected because with
increasing Ri, the power expenditure of the swimmer is increasing (see figure 5a), while
the swimming velocity is decreasing (see figure 3a). Hence, the swimmer is converting
less fraction of the available power into locomotion. For the values of Pr considered
for the efficiency analysis, we have seen that with increasing diffusion, the swimming
velocity increases, while the power expenditure of the sheet decreases. This causes the
swimming efficiency to increase with diffusion for a fixed Ri.

¢) Effect of stratification on mizing

Biogenic mixing has been studied via experimental and numerical studies (Katija &
Dabiri 2009; Katija 2012; Wang & Ardekani 2015). Mixing efficiency can be defined as
the fraction of the mechanical energy converted to change the potential energy of the
fluid by the mixing process. It is represented by the following formula,

_ APE Ri [, p'vdV
~ AKE  Rif,pvdV+2 [, E:EdV’

r (4.6)

Here, p/ and v denote the disturbance density field and the vertical velocity field,
respectively. The numerator denotes the potential energy change in the fluid induced
by the swimming organism, while the denominator indicates the total mechanical energy
of the fluid. From the above expression, it is evident that mixing efficiency depends on
the ratio of the change in the potential energy of the fluid to the viscous dissipation.
Figure 6 shows the variation of mixing efficiency with Ri. Wagner et al. (2014) showed
that the vertical mixing induced by an ensemble of microorganisms, represented by force
dipoles, at small Reynolds and Péclet numbers is very small (= 8%). Here we consider
the mixing induced by a Taylor swimming sheet. Interestingly, our results show that,
the mixing efficiencies can reach up to 40% for thermally stratified water. Although the
viscous dissipation increases with stratification as mentioned before, the bending of the
streamlines induce additional vertical velocities in the fluid domain (refer figure 2b). This
causes the mass flux to increase, which consequently increases the potential energy of
the fluid. As a result, we observe that the mixing efficiency increases with Ri. Wang &
Ardekani (2015) also observed that mixing efficiency increases with stratification strength
at low Reynolds numbers by performing fully resolved three-dimensional simulations on
a suspension on squirmers swimming in thermally stratified water (Pr = 7). In addition
to this, we observe that for lower values of diffusion (Pr = 700), which is the case of
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Figure 6: Variation of the mixing efficiency with Richardson Number, for Re = 0.001

salt stratified water, the mixing efficiency increases with stratification and then saturates
for higher values of R:. This indicates that the change in potential energy balances the
viscous dissipation for low diffusion and higher stratification strength. The maximum
mixing efficiency for a salt stratified water is about 15%. We find that the mixing efficiency
is highest when the diffusion of the stratifying agent is very high (Pr =~ 0). We, thus
infer that, at low Reynolds number, swimmer immersed in a thermally stratified water
will induce more mixing compared to salt stratified water.

Finite Inertia Analysis

Next, we discuss the effect of inertia in our analysis. We will analyze the effect of
stratification on the same parameters that were considered for the low Reynolds number
regime. Although, our procedure is applicable for any arbitrary value of Pr, we focus our
attention on the cases where diffusion is not significantly large (Pr > 1). These are the
problems which are typically encountered in practice as mentioned before (salt stratified
water (Pr = 700), temperature stratified water (Pr = 7)). Analysis of the influence
of stratification on swimming in high-diffusion scenarios, is given briefly in the Appendix.

a) Effect of stratification on the swimming velocity

Figure 7a shows the effect of stratification on the swimming velocity for Re = 5. We
observe that inclusion of inertia augments the swimmer’s velocity for low stratification
strength. For thermally induced stratification (Pr = 7), the maximum velocity increase
is almost five times that of the homogeneous case. Further increase in stratification
strength causes the velocity to decrease, ultimately leading to a direction reversal for a
sufficiently high Ri. Even higher values of Ri induce a nominal increase in the velocity
with the opposite swimming direction maintained. For low values of diffusion (Pr = 700),
the velocity of the swimmer is almost zero for most values of Ri considered. This implies
that strong salt stratification inhibits the vertical migration of the swimmer causing it to
remain essentially stationary. Variation with Pr also follows a similar trend, comprising
of a velocity peak followed by a motion reversal, eventually leading to saturation (see
figure 7b). Interestingly, higher stratification strengths tend to completely hamper the
velocity of the sheet. We thus conclude that, for moderately small values of Re, if the
diffusion of the stratifying agent is very low or the stratification strength of the fluid
is high, then the swimmer will not propel (see figures 7a,b). This observation is similar



18 Rajat Dandekar, Vaseem A. Shaik and Arezoo M. Ardekani

(a) 6 ‘
_____ Pr=7
. - \\. — —-Pr=70
4 4\‘ // \.\‘ Pr=700
I/ \
Iy \
& I \
=~ 9 ’Jl N
= ! \
-~ ! \,
| \
\ N
0 t/‘(, -
N ——
\ PN
N_ - S —
-2 ‘ ‘ ik ‘ ‘ ‘ ‘
0 1 2 3 4 5 0 200 400 600 800 1000
Ri Pr
c
( ) 2 \ ' ' ' ' @5 ' ' " ——Pr=7Ri=0.1
'LCOO —A—Pr=7,Ri=15
N 4 s —8—Pr=7Ri=5 i
d N | Al % 6 Pr=700,Ri=0.1
\ | N 3t N —#x—Pr=700,Ri=1.5 1
\ /}\\ \\ =700,Ri=5
B e — 2 i
BN Sl
-4 2
k 04
0.01 0.02 L
-6 1 1
—— Mean second order component 9 -
8 —&— Propulsion component -l I~ “_ 1
0 1 2 3 4 5 0 100 200 300 400 500

Ri Re
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to the preferential aggregation of marine organisms at the pycnoclines at steep density
gradients reported by Harder (1968).

Similar to the Stokes regime, we find that, the swimming velocity follows a trend similar
to the contribution of the mean second order velocity field developed in the fluid domain
(see figure 7c). We also observe that the propulsion component of the velocity is almost
independent of Ri. As discussed before, we know that the propulsion component of the
velocity is governed by the vorticity generated in the fluid. We note that, when inertial
effects are considered, the inertia induced vorticity near the sheet crests, dominates the
vorticity induced due to the density gradients. Consequently, we find that stratification
has a negligible influence on the propulsion component of the velocity. For a homogeneous
fluid, Tuck (1968) noted that, inclusion of inertia creates a second order mean convective
velocity which opposes propulsion. However, for a density stratified fluid, we find that the
second order velocity field supports propulsion for smaller Ri, and opposes propulsion
for higher density gradients (see figure 7c). We see that, for higher Ri, the resistance
to motion dominates over the propulsion component causing the swimmer to reverse its
direction of motion.

Next, we quantify the variation of the swimming velocity with Reynolds number
for the cases of both temperature and salt stratification (figure 7d). We find that, in
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contrast to a homogeneous fluid, the presence of stratification causes the swimming
velocity to become more sensitive to inertial effects. For thermally stratified water, the
swimming velocity is independent of Re for higher Reynolds numbers and only increases
with stratification. The saturation of swimming velocity at higher Re is also seen for
a homogeneous fluid. This is not the case for salt stratification, where we observe that
higher stratification strengths causes the swimming velocity to increase with Re, with
the swimmer reversing its direction of motion for all Reynolds numbers. As explained
before (figure 7c), this is mainly because of the dominance of the mean second order
velocity component which becomes negative for higher stratification strengths.

b) Effect of stratification on power expenditure and swimming efficiency
In the case of finite Re, we have,

Du

Dt’

Here, % represents the material derivative, u = (u, v) is the fluid velocity vector. Thus,
unlike the Stokes regime, the work done by the fluid inertia will add to the power
expended by the swimmer (see equation (4.3)). As in the case of Stokes regime, we
find that with increasing stratification, the viscous dissipation in the fluid increases
and the swimmer does more work in changing the potential energy of the fluid as
well. Consequently, we observe that the swimmer consumes more power with increasing
stratification (see figure 8a)). We thus infer that stratification augments the power
expenditure of the swimmers irrespective of the importance of inertia. Figure 8b shows
the effect of stratification on the swimming efficiency for finite fluid inertia. For all
values of Pr considered, the efficiency increases with Ri, reaches a peak value and
then drops down. For thermal stratification, the peak efficiency is 20 times that for
the homogeneous case. The trend of the swimming efficiency closely matches that for
the swimmer’s velocity (see figure 7a). This directly follows from the definition of
the swimming efficiency (see equation (4.5)). As discussed before, for lower values of
diffusion, stratification severely hampers the vertical migration of swimmers for finite
fluid inertia. Consequently, we find that, for high Pr, the efficiency is zero for most
values of stratification.

V.o= (Rip/)ey + Re (4.7

¢) Effect of stratification on mizing
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(b) Reynolds number, ¢) Spatial variation of vertical averaged viscous dissipation energy,

(Pr =17,Ri =15), E is the rate of strain tensor, d) Variation of diapycnal eddy diffusivity
with Reynolds number.

In this section, we quantify the mixing induced by a swimmer at finite Re. This analysis
is relevant for the zooplankton community in oceans, which have Re O(1 — 100).
We first focus on the mixing efficiency of the swimmer (refer to equation (4.6)). We
observe that, as in the case of Stokes regime, increase in stratification enhances mixing
efficiency of the swimmer (see figure 9a). However, the mixing efficiency follows a fast
decay with Re (see figure 9b). This observation can be rationalized by considering that
the viscous dissipation in the fluid increases rapidly with Re, dominating any variations
in the potential energy, and ultimately leading to the decay in the mixing efficiency. This
can be seen from figure 9c which shows the mean vertical viscous dissipation energy per
unit volume. This observation is consistent with our knowledge derived from application
of Helmoltz minimum energy dissipation theorem, that Stokes solution has the smallest
rate of viscous dissipation as compared to solutions obtained by considering finite inertia.
For high Reynolds numbers (Re > 200), the mixing induced by the sheet is negligible
for both salt and temperature stratifications. In addition to this, for salt stratification
(Pr = 700), the mixing is insignificant for low Re as well. This implies that, for a salt
stratified water, most of the power expended by the swimmer is dissipated as viscous
heat for all Reynolds numbers. However, for stratification induced by temperature

~
~
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gradients, we find that the swimmer converts a higher fraction of the power to change
the potential energy of the fluid at low Reynolds numbers, which consequently leads to
higher mixing efficiencies.

Another parameter which is often used to characterize mixing, is the diapycnal eddy
diffusivity (K,), which is a measure of the vertical mass flux in the fluid. The dimension-
less diapycnal eddy diffusivity is defined as (Osborn 1980),

Be o Re (o)) (18)

Here, p/ is the disturbed density field, v is the vertical velocity field, v is the kinematic
viscosity and ((-)) represents the average in the entire fluid domain. We calculated K,
for density stratified water and observed the variation with the Reynolds number (see
figure 9d). We observe that the vertical mass flux induced by the swimmer due to salt
stratification is negligible. For thermally stratified water (Pr = 700,v = 107%), we find

that for higher Reynolds numbers (Re > 50), K, > 10’77%2 which is the molecular
temperature diffusivity in water. This implies that, for higher Re, stratification has
potential to enhance mixing in the fluid. Additionally, we find that, K, increases with
Reynolds number. Similar trend was observed by (Wang & Ardekani 2015), by performing
simulations on a suspension of squirmers in a stratified fluid by considering a volume
fraction of 4%. They also noted that the vertical mass flux is independent of stratification
for F'r ~ 20, where Fr is the Froude number. Our results matches with this observation,
as it can be seen from figure 9d, that increasing stratification has a negligible influence
on the diapycnal eddy diffusivity at all Reynolds numbers.

5. Conclusion

We analytically obtained the swimming velocity for a self propelling sheet immersed
in a density stratified fluid. We performed a regular perturbation expansion approach
to obtain this velocity upto second order of the undulation amplitude (bk). We found
that, as in the case of a homogeneous fluid (Taylor 1951), the first order component
of the velocity is zero and the swimming velocity only depends on the square of the
wave amplitude and the wave number. We analyzed the influence of stratification on the
swimming behavior by considering cases of both small and finite Re.

For low Re, we found that, a large density stratification in the fluid mostly hampers
the vertical motion of the swimmers. This results in a swimming velocity which is less
than that in a homogeneous fluid. We interestingly found that, in cases where both
stratification strength and the diffusivity of the stratifying agent is low, the swimming
speed is magnified and stratification supports the propulsion of the swimmer. The results
in the Stokes regimes are relevant for small-scale organisms in stratified environments.
For example, motion of organisms such as bacteria (e.g., Escherichia coli, Salmonella
typhimurium), small plankton, larvae of marine organisms and smaller sized Copepods in
oceanic waters. For finite inertia, we found that the swimming velocity behavior is highly
sensitive to the stratification strength, diffusion in the fluid and the Reynolds number.
We found that, for higher stratification strengths or low values of diffusion, the motion
of the swimmer is highly restricted and it essentially remains stationary. We elucidate
the similarity between this observation and the experimentally observed phenomena of
preferential aggregation of swimmer at the pycnoclines for steep density gradients. The
observations in the regime of finite inertia, are particularly relevant for moderately sized
swimmers such as zooplankton e.g., Euphausia pacifica(krills) and larger sized Copepods,
for which the Reynolds number can be much greater than unity. The velocity behavior
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Figure 10: Effect of stratification on the swimming velocity at high values of diffusion for
Re =5.

in both the regimes of Reynolds number, is primarily governed by the mean second order
field developed in the fluid.

Stratification causes the streamlines to become vertically biased and tilt towards the
denser portion of the fluid. This results in enhanced shear stresses generated in the
fluid which consequently leads to an increased power expenditure by the swimmer.
Moreover, the skewed streamlines cause additional vertical velocities to be developed
in the fluid domain which increases the vertical mass flux. Consequently, the mixing
efficiency induced by the swimmer increases with stratification. We also found that dif-
fusion plays an important role in influencing the motility characteristics of the swimmer.
A more diffusive fluid, will prevent the tilting of the density contours in the presence
of stratification, which more effectively counteracts the buoyancy induced disturbances.
This results in a decreased power expenditure by the swimmer and consequently leads
to a higher swimming efficiency.

Increase in inertia causes a higher fraction of the power consumed by the swimmer to
be expended in the form of viscous dissipation in the fluid. This leads to a decreased
mixing efficiency and consequently we observe a fast decay of the mixing efficiency
with Reynolds number. However, the diapycnal eddy diffusivity which is measure of
the vertical mass flux, increases with inertia. Additionally, we found that, in both the
regimes of Reynolds number, a swimmer immersed in thermally stratified water leads
to higher mixing efficiency and diapycnal eddy diffusivity as compared to salt stratified
water, which has negligible mixing efficiency and diapycnal eddy diffusivity in the inertial
regime.
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Appendix A

Effect of stratification on the swimming velocity for high diffusion, finite inertia (Pr < 1)
Here, we analyze the case of swimmers immersed in a highly diffusive environment (see

figure 10). For Pr = 0.001, we see that the swimming velocity increases with stratification
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strength. However with further increase in Pr, the curve becomes more flatter, ultimately
with the trend reversing for Pr = 0.1.
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