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Abstract. In the present work, the Cahn-Hilliard Phase-Field model
of incompressible two-phase flows is considered. Conditions needed for
consistency of reduction, consistency of mass and momentum transport,
and consistency of mass conservation are proposed. The mass flux in the
Navier-Stokes equations is defined such that it satisfies the proposed con-
sistency conditions. The analysis in both continuous and discrete levels
shows that violation of the consistency conditions result in unphysical
solutions and the inconsistent errors are proportional to the density con-
trast of the fluids. After considering the conservative form of the inertial
term, a consistent and conservative scheme for momentum transport is
developed. The balanced-force algorithm for the sharp interface model is
extended to the surface force derived from the Cahn-Hilliard model. The
proposed scheme is formally 2nd-order accurate in both time and space,
satisfies the consistency conditions, conserves mass globally and momen-
tum essentially, and is balanced-force, in the discrete level. Its conver-
gence to the sharp interface solution is systematically discussed in cases
including large density and viscosity ratios, surface tension, and gravity.
Various two-phase flow problems with large density ratios are performed
to validate and verify the proposed scheme and excellent agreements with
published numerical and/or experimental results are achieved. The pro-
posed scheme is a practical and accurate tool to study two-phase flows,
especially for those including large density ratios.

Keywords: Consistent scheme - Essentially conservative scheme - Balanced-
Force scheme - Phase-Field - Two-phase flow - Large density ratio.

1 Introduction

Two-phase flow problems are ubiquitous, and have attracted much attention
because of their complicated physical nature and wide-spread applications. In
most scenarios of interest, the interface thickness is so small that the sharp in-
terface model [36] is accurate, where the fluid motion inside the individual phase
is governed by the Navier-Stokes equations and different phases are connected
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by the boundary conditions at the interfaces. However, in numerical practice,
explicitly imposing the boundary conditions at the interfaces, whose locations
are unknown, is not a trivial task. The so-called “one-fluid formulation” [64,50]
has gained great attention, where a single set of transport equations with vari-
able density and viscosity is solved in the entire domain. The boundary con-
ditions at the interfaces are implicitly imposed by using, e.g., the continuous
surface force (CSF) [9] or the ghost fluid method (GFM) [23,35]. The location
of the interface is tracked by using the Front-Tracking method [65], Level-Set
[48,62], Conservative Level-Set [46,47,13], Volume-of-Fluid (VOF) [26,57] or the
“THINC” method [67]. To overcome the numerical difficulty of approximating
a discontinuous function, the interface has to be explicitly reconstructed, which
can be very complicated, or artificial smoothing has to be performed close to the
interface.

The Phase-Field model, or known as the diffuse interface model [4], is an-
other widely used method for two-phase flow modeling, where the thickness of
the interface is small but finite. This thickness is maintained by the intrinsic
thermodynamical compression and diffusion of the Phase-Field model. Among
different Phase-Field models, the Cahn-Hilliard Phase-Field model [11], which is
the focus of the present study, is getting more popular for two-phase flow prob-
lems. The Cahn-Hilliard Phase-Field model has several advantages. It is globally
mass conservative and is able to handle topological change without additional
effort. It doesn’t require any explicit interface reconstruction. The surface force
calculation of the Phase-Field model doesn’t require evaluation of geometrical
quantities, e.g., the normal vector or curvature of the interface. In addition, it is
very easy to include multiple physical effects by modifying its energy functional.

The Cahn-Hilliard model together with the Navier-Stokes equations was first
used to model the matched density problems and this model is also called the
Model H [27]. The numerical scheme for the Model H was developed by several
researchers [30,5], and its asymptotic and convergence behavior was systemati-
cally analyzed and numerically validated by Jacqmin [30] and more recently by
Magaletti et al. [42]. To model problems with small density ratios, the Boussi-
nesq approximation can be used, e.g., [68]. For large-density-ratio problems, the
so-called modified Model H is commonly used, where the constant density in the
Navier-Stokes equations is replaced by the variable one. Kim [34] used the modi-
fied Model H and considered the rising bubble case with the density ratio of 1000,
and Ding et al. [17] further discussed its capability of dealing with large density
ratios. However, all the large-density-ratio comparisons in both of these studies
are qualitative. A time-stepping scheme was developed by Dong and Shen [22]
to improve the efficiency of solving the modified Model H for large-density-ratio
problems. The quantitative comparisons of the Phase-Field solution to the sharp
interface solution was provided in [22] and good agreement was obtained. Both
the Model H and the modified Model H have been widely used to study various
multiphase problems, e.g., jet pinching-off and drop formation [68], two-phase
complex fluids [70], two-phase Newtonian and viscoelastic fluids [71], Nematic
Liquid Crystals [78], two-phase ferrofluid flows [45], and moving contact lines
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[31,51,76,60]. However, it has been noticed that the modified Model H is unable
to recover the energy law. Multiple models and their corresponding numerical
schemes have been developed to remedy this problem. One way to do that, pro-
posed by Guermond and Quartapelle [25], is to replace the time derivative in
the momentum conservation equation by an equivalent term derived from the
mass conservation equation [25,58]. Liu et al. [41] included the kinetic energy of
the fluids into the energy functional of the Phase-Field model and developed a
decoupled energy stable schemes to solve the model derived from the new energy
functional. Another model is developed by Abels et al. [1], where an additional
convection term is included in the momentum conservation equation. Shen and
Yang [59] developed a decoupled energy stable scheme for this model. The mod-
els, proposed by Guermond and Quartapelle [25], Liu et al. [41] and Abels et al.
[1], guarantee that the total energy of the two-phase system, without external
energy source, does not increase with time, which is thermodynamically correct.
The model proposed by Abels et al. [1] was extended by Bai et al. [7] to study
the deformation and breakup of ferrodroplet, and by Dong [19,20,21] and Yang
and Dong [69] to N-phase flows.

In spite of many successful applications of the Model H and the modified
Model H and ongoing efforts to improve the Phase-Field model for large-density-
ratio problems, some important questions remained unanswered. Consistency
and conservation of mass and momentum transport are specially important for
large-density-ratio problems that need to be addressed. Consistent and conser-
vative schemes have been developed by Rudman [55], Bussmann et al. [10],
Chenadec and Pitsch [12], and Owkes and Desjardins [49] for the Volume-of-
Fluid method, and by Raessi and Ritsch [52] for the Level-Set method. On the
other hand, almost all numerical schemes for the Phase-Field model are based
on the non-conservative form of the inertial term and are not discretely con-
servative. The significance of the consistency of mass and momentum transport
has not yet been addressed for the Phase-Field model and none of the exist-
ing numerical schemes achieve consistency in the discrete level. In the present
work, we perform both continuous and discrete analyses to show that the con-
sistency of reduction, the consistency of mass and momentum transport and the
consistency of mass conservation are of great importance to obtain physical solu-
tions of large-density-ratio problems. The detailed definition of the consistency
is given in the following section. Our numerical implementations validate our
analysis. Following our analysis of consistency and considering the conservative
form of the inertial term, the scheme we develop guarantees the consistency and
conservation of momentum transport in the discrete level. Another important
question is whether the numerical solution of the Phase-Field model converges to
the sharp interface solution and how fast it converges, but this is rarely discussed
for large-density-ratio problems. Except the work of [1], there is no asymptotic
analysis showing that the exact solution of the Phase-Field models converges
to the sharp interface solution in large-density-ratio problems, as the interface
thickness decreases. Since the actual thickness of interface is so small that it is
computationally unaffordable to resolve it, the interface thickness is nonphysi-
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cally exaggerated almost in all numerical studies. Because of that, the asymptotic
error of the Phase-Field model could be large, even if the model is asymptoti-
cally converging. Thus, it is not enough to tell whether the Phase-Field model,
in numerical practice, is accurately approximating the sharp interface one by
only proving its asymptotic convergence in the continuous level. It is also im-
portant to understand the convergence behavior of the numerical solution of the
Phase-Field model to the sharp interface solution when both truncation error
and asymptotic error appear. Quantitative numerical evidence of convergence of
this kind is rarely provided in the literature, except in the works of Aland and
Voigt [2] and of Huang et al. [28]. However, the numerical schemes in [2,28] are
not consistent or conservative. Both of them only considered the case, where the
interface thickness reduces as fast as the grid size, so it is difficult to conclude
whether this is an optimal setup. We further extend the work of Aland and Voigt
[2] by using the proposed consistent, essentially conservative, and balanced-force
scheme, by considering different correlations between the interface thickness and
the grid size, and by exploring the effect of the mobility of the Phase-Field model.

The outlines of this article is as follows. In Section 2, we summarize the gov-
erning equations, propose three consistency conditions, discuss the effect of the
consistency conditions, and analyze how to achieve consistency in both continu-
ous and discrete levels. In Section 3, detailed spatial and temporal discretization
of the governing equations are described, followed by discussions about their ac-
curacy, consistency, conservation and energy dissipation of the scheme. In Section
4, multiple cases are performed to validate and verify the proposed scheme. In
Section 5, we conclude the present work by summarizing the property of the
scheme and the numerical results, and by discussing the potential implementa-
tions of our analysis and scheme, and the future works.

2 Governing equations and analysis of consistency

The Phase-Field model for the incompressible two-phase flow, consisting of the
Cahn-Hilliard equations and the Navier-Stokes equations, are considered. The
coupling between the Cahn-Hilliard equations and the Navier-Stokes equations
are through the constitutive equations for material properties and through the
consistent mass flux. Three consistency conditions are proposed, which are im-
portant for a two-phase model to achieve physical results.

Cahn-Hilliard equations are given as

%f+v (ugp) = V - (MVE) + Sy, (1)
£ = \(F'(¢) - V?9), (2)
F(9) = —5(1— 6)2(1+ )7, 3)
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where ¢ is the Phase-Field function ranging from -1 to 1, u is the velocity, M
is the mobility, £ is the chemical potential, Sy is the Phase-Field source term, A
is the mixing energy density, F'(¢) is the potential function in the bulk phase, n
is the interface thickness in the Phase-Field model, and o is the surface tension
between the two fluids. Eq.(1) is the Phase-Field equation described by the
Cahn-Hilliard dynamics. At the location where ¢ is equal to 1, it is occupied by
Fluid 1 whose density and viscosity are p; and uq, respectively, and when ¢ is
equal to -1, it represents Fluid 2 with density ps and viscosity uo. Eq.(2) defines
the analytical chemical potential £. F(¢) in Eq.(3) is a double-well potential
function which separates different phases, and F'(¢) in Eq.(2) is the derivative
of F(¢) with respect to ¢. Eq.(4) connects the surface tension o to the Phase-
Field parameters n and A. Since all the two-phase flow cases we considered in the
present work include immiscible fluids and have no phase change, the source term
Sg should be identically zero. We will skip this term in the following analysis.
Fluid properties can be calculated as

(4)

p(¢):P1;P2+p1;p2¢7 (5)
M(¢):M1;M2+M1;M2¢7 (6)

where p(¢) and u(¢@) are the density and viscosity of the mixture of Fluids 1 and
2.
Navier-Stokes equations are written as

Ip

EJrV.m:Sm, (7)
V-u=0, (8)
3(aptu) +V-(m®u)=-Vp+V-[uVu+ (Vu)?)] + pg + Ve +Su,  (9)

where m is the mass flux, 5, is the mass source, ® represents tensor product,
p is the pressure, g is the gravitational acceleration, and S, is the momentum
source, or other external force. Eq.(7) represents mass conservation, Eq.(8) states
incompressibility or volume conservation, and Eq.(9) is the momentum conser-
vation equation. We have already assumed that both fluids are Newtonian and
incompressible. The surface force £V¢, which is derived from the Cahn-Hilliard
equations, models the surface tension effect at the interface. With appropriate
initial and boundary conditions, Eq.(1)-Eq.(9) can be numerically solved.
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2.1 Consistency in the continuous level

We are going to consider three consistency conditions for a two-phase flow model.
Violation of any of them may lead to unphysical solution even in the continuous
level. It should be noted that we have not yet explicitly given the definition of
the mass flux m in Eq.(7) and Eq.(9). We are going to discuss the influence of
the definition of the mass flux m on flow physics, and to determine a consistent
mass flux, based on the consistency conditions of the Cahn-Hilliard Phase-Field
model in the continuous level.
The consistency conditions are

— Consistency of reduction: The two-phase flow model Eq.(9) should be able
to recover the single-phase one, i.e., m = pu and V - (u(Vu)T) = 0, when
either p; = p2 and p1 = pe or ¢ = 1(—1).

— Consistency of mass and momentum transport: The momentum flux in the
momentum conservation equation, Eq.(9), should consistently be computed
from the mass flux obtained from the mass conservation equation, Eq.(7).

— Consistency of mass conservation: The mass conservation equation, Eq.(7),
should be consistent with the mass transport equation defined from the
Phase-Field equation, Eq.(1), and Eq.(5). The mass flux m in the mass
conservation equation, Eq.(7), should lead to a zero mass source, i.e., S,, = 0.

The consistency of reduction guarantees that the single-phase dynamics can
be physically reproduced by the two-phase model, when there exits a single
phase. This is important for two-phase flow problems because away from the
interface, the domain is occupied by only one of the fluids and the dynamics is
governed by the single-phase model. It should be noted that either p; = p2 and
1 = po or ¢ = 1(—1) leads to constant density and viscosity.

The consistency of mass and momentum transport guarantees the physical
coupling between the mass conservation equation Eq.(7) and the momentum
conservation equation Eq.(9). The amount of the momentum flux should be
correlated to the amount of the mass flux, and this has been guaranteed in the
continuous level, by writing the inertia term in the form V - (m ® u).

The consistency of mass conservation guarantees that the mass transport
V -m follows the actual mass evolution, implicitly defined by Eq.(1) and Eq.(5).
In practice, the mass conservation equation, Eq.(7), is not directly solved. The
density is updated from the density equation Eq.(5) after updating the Phase-
Field function ¢ from the Phase-Field equation Eq.(1). If we simply define m =
pu, Eq.(9) recovers the unmodified Navier-Stokes equations. Although such a
definition of m satisfies the consistency of reduction and the consistency of mass
and momentum transport, it fails to satisfy the consistency of mass conservation,
and can lead to unphysical results as shown later in this section.

When p is constant, V - (u(Vu)?) is zero by considering the divergence-free
condition of the velocity Eq.(8) and the identity

V- (@p(Va)h) = pV(V - u). (10)
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The consistency of reduction of the viscous term is guaranteed by Eq.(10) in the
continuous level. In the remaining of this section, we will focus on defining a
consistent mass flux m and discuss its significance on capturing flow physics.
Hereafter, when we mention the mass conservation equation Eq.(7), we refer
to the one that is already consistent with Eq.(1) and Eq.(5), and the mass source
S in Eq.(7) is uniquely defined after the mass flux m is specified. We denote
the inconsistent mass flux as
m’¢ = pu, (11)

and use m©“ to represent the consistent mass flux in the continuous level.

We first consider the general case of m. We can rewrite the mass conserva-
tion equation Eq.(7), the left-hand side of the momentum conservation equation
Eq.(9), and the dot product between the left-hand side of Eq.(9) and the velocity
u as

dp
d(pu) _, Ou
5 +V-(m®u)—(pa+m-Vu)+uSm, (13)
d(pu) _, O0u-u u-u
| 5 +V~(m®u)]-u—(pat 5 +m-V 5 ) +u-uS, (14)
0, u-u u-u u-u
5 (P—5) + V- (M=) + =S

Eq.(12) shows that the source term in the mass conservation equation depends
on the definition of the mass flux, Eq.(13) represents the momentum transport,
and Eq.(14) indicates the transport of the kinetic energy. Consider a simple
case where all the fluid particles inside the domain of interest are moving with
a constant velocity and no body force is present, i.e., the right-hand side of
Eq.(9) is zero. The velocity and kinetic energy should remain uniform. When
we input a constant velocity into Eq.(13) and Eq.(14), a non-zero mass source
term S,, results in non-zero momentum and kinetic energy sources, i.e., wS,,
and u - uS,,. These sources interfer with the transport of the momentum and
kinetic energy, and finally generate unphysical results. Since the left-hand side
of Eq.(13) is in the conservative form, the conservation of momentum transport
is achievable, although unphysical results may be obtained. However, when we
rewrite the kinetic energy transport into a conservative form, a non-conservative
term *5%S,, appears with a non-zero S,,, leading to failure of conservation of
kinetic energy even in the continuous level no matter whether the fluids are
inviscid or not. If we take m = m’“, from Eq.(1) and Eq.(5), we can derive the
corresponding mass source S = £12£2V.(MV¢), which is in general non-zero.
In other words, unphysical results can be obtained by choosing the inconsistent
mass flux, because of violating the consistency of mass conservation.

Based on the analysis above, in order to obtain a physical solution, it is
crucial to define a consistent mass flux m®“ that satisfies the consistency of
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mass conservation, by requiring S¢¢ = 0. From Eq.(1), Eq.(5) and Eq.(7), we
have

cc dp p1L—p20¢ _ p1—p2
V- -m*~" = pri 5 o~ 9 [V (up) — V- (MVE)]. (15)
If we directly take m©¢ = BZP2 (up— MVE), we failed to satisfy the consistency
of reduction, such that m©C is always zero, instead of pu, when both fluids have
matched densities, i.e., p1 = ps = p. To remedy this, a divergence-free term
has to be added in order to maintain Eq.(15), and to ensure the consistency of
reduction. As the velocity is divergence-free Eq.(8), a convenient choice of the
added term is 2122y, as V- (2522u) = 2227 .y = 0. We can define the
consistent mass flux in the continuous level as

mCC:pl;rpqurpl;pQ(uqﬁ—MVf). (16)
When ¢ = 1(—1), the chemical potential £, from Eq.(2) and Eq.(3), is zero, and
m©C = pu, where p is pi(p2), from Eq.(16). Finally, Eq(16) satisfies all the
consistency conditions, and from the analysis above, we can obtain, by using the
consistent mass flux m““, the physically correct momentum and kinetic energy
transport and, simultaneously, their conservation in the continuous level.
We can relate m©“ with m’® by using Eq.(5), i.e.,

m¢® = m’C — ’”;JMvg. (17)

It is obvious that, different from m’¢, where only the mass transported by the

flow is considered, the consistent mass flux m®“ of the Phase-Field model have
an additional term representing the mass diffusion between different phases,
which is allowable in the Cahn-Hilliard dynamics, and this term becomes more
significant when the density contrast of the two fluids increases.

When we input m©“ into Eq.(13), we can obtain

8(5:) 88—1; +u-Vu) + (- %MV{) Vu.  (18)
In the modified Model H [34,17,22], the first term on the right-hand side of
Eq.(18) is remained while the second term is neglected. This leads to the failure
of conserving momentum even in the continuous level. We notice that the right-
hand side of Eq.(18) is the same as the model proposed by Abels et al. [1],
implying that the Phase-Field model considered in the present work with m =
m®C should share the following properties of the model in [1]. The total energy of
this two-phase Phase-Field model does not increase with time. This Phase-Field
model is frame indifferent, and it converges to the sharp interface model as the
interface thickness 1 goes to zero. Some recent progress has included the second
term on the right-hand side of Eq.(18) [7,19,20,21,69]. However, those schemes
are focusing on the non-conservative form, i.e., using the right-hand side instead
of the left-hand side of Eq.(18) when computing the momentum equation, which

p

+ V- (m“ ®u)=p(
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does not conserve the momentum transport in the discrete level. Even though
the consistency in the continuous level is achieved, it can be violated in the
discrete level, which will be discussed in Section 2.2.

Before we move to Section 2.2, we further consider the influence of neglecting
the second term on the right-hand side of Eq.(18) on kinetic energy transport
u 0, u-u u-u u-u
(g Tm'" V) u=Z(p=5=) + V- (m'C =) - ==
Eq.(19) is the same as the right-hand side of Eq.(14) when m = m!¢ and
S = SICin Eq.(12), except that the sign of the last term is opposite. Neglecting
the second term on the right-hand side of Eq.(18) does not conserve kinetic
energy in the continuous level.

SIC (19)

2.2 Consistency in the discrete level

In this section, implementation of the three consistency conditions, proposed in
Section 2.1, in the discrete level will be discussed. We first introduce the notation
and the grid arrangement. Any operator with ~ denotes the discrete operator,
e.g., V is the discrete gradient operator. Any variable with ~, e.g., f, denotes
a numerical approximation from nodal values f. We use, e.g., f(l) and f(Q) to
distinguish different numerical schemes used to obtain f if necessary. At this
stage, details of numerical schemes are not important for the following analysis.
The definitions of the numerical schemes used in the present work are in Section
3.1. The grid that are considered in the present work is the collocated grid
arrangement where the discrete Phase-Field function ¢, cell-center velocity u,
and pressure p are all stored at the center of the computational cells. In addition,
the cell-face velocity, which is the velocity component normal to the cell faces,
is also computed and saved. The two-dimensional schematic of the collocated
grid arrangement is shown in Fig. 1 and its extension to three dimension is
straightforward.

We require the cell-face velocity to satisfy the discrete divergence-free condi-
tion, i.e.,

V-u=0. (20)

Since the discrete divergence-free condition Eq.(20) is held, the consistency of
reduction of the viscous term requires that Eq (10) is satisfied in the discrete
level, when g is constant, e.g.,

V- (a(Va) )iy = {uld™(V - w)ig, [0 (V- w)iy ), (21)

where 97 is a numerical operator approximating the partial derivative with re-
spect to the ¢ axis. Eq.(21) is the discrete counterpart of Eq.(10). It is not trivial
to satisfy Eq.(21), which requires delicate design of the numerical scheme. An-
other way to achieve the consistency of reduction is to use the identity in the
continuous level, i.e.,

V- (Vo)) =Vu- (VO)T +uV(V-u) = Vu- (V). (22)
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Fig. 1: Two-dimensional schematic of the collocated grid arrangement.

Instead of approximating V - (u(Vu)T), Vu - (Vu)T is discretized [56]. Al-
though V- (Vu)7T satisfies the consistency of reduction, it is written in a non-
conservative form and in general fails to achieve the conservation of momentum
in the discrete level.

In order to achieve not only the consistency of reduction but also the con-
servation of the viscous term in the discrete level, we stick to the conservative
form V - (u(Vu)T). A numerical scheme for V - (u(Vu)?) is developed, which
is conservative and satisfies Eq.(21) for all the interior and boundary cells. De-
tails of the scheme and the proof are in Section 3.1. We continue this section by
focusing on achieving the discrete consistency of the mass flux m.

Three discrete mass fluxes are going to be discussed. The first one is the
discrete inconsistent mass flux

m’c = ju. (23)

The second one is the direct discretization of Eq.(16) the consistent mass flux
in the continuous level

- + - b1 =

mcc:p12p2u+p12p2(u¢—MV§). (24)
The last one is called the consistent mass flux in the discrete level P, which
achieves the consistency of mass conservation, i.e., the consistency between the
semi-discrete mass conservation equation with S,, =0

9 & -~ pc

— 4+ V-m~" =0, 25
T (25)
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and the one implicitly defined by the density equation Eq.(5) and the semi-
discrete Phase-Field equation

6¢ = 7 = o7 ¢k

T (uh) = V- (MVE), (26)
where £* is the numerical chemical potential. Sometimes, a numerical chemical
potential is defined to make the computation simpler and more efficient, so
we keep this possibility and use the notation &* to distinguish the numerical
chemical potential from the analytical one Eq.(2). From Eq.(5) and the discrete
divergence-free condition Eq.(20), we can obtain

mPC — Pt ;qu P ;P2 (ud — MVES). (27)
In order to achieve the consistency of reduction, £&* should be zero when ¢ =
1(—1). It should be noted that all the numerical schemes used in Eq.(27) are
identical to those used in Eq.(26). However, different numerical schemes can be
used in Eq.(24) and Eq.(26). In addition, Eq.(24) uses the analytical chemical
potential Eq.(2) instead of the numerical one. As we will show in the following,
Eq.(24) fails to achieve consistency in the discrete level, although its continuous
counterpart achieves consistency in the continuous level.

In order to illustrate how to achieve the consistency conditions in the dis-
crete level, a simple one-dimensional advection case is analyzed. In this case, an
interface is moving along the x direction. Following the analysis in the contin-
uous level given in Section 2.1, all the forces are neglected. The physical and
the only admissible solution that satisfies the divergence-free condition is that
u = ug, where ug is a constant. As we will show, without delicate consideration
of consistency in the discrete level, the numerical solution fails to reproduce the
physical one even in such a simple problem.

Without loss of generality, we consider the time discretization scheme for any
variable f as

. ntl  f
or ~ g A | f, (28)
ot ot At

where y; is a scheme dependent constant, e.g., 7 = 1 for the Euler scheme, f isa

linear combination of f7, f*~1, f=2 etc., e.g., f = f™ for the Euler scheme, and

At is the time step size. It should be noted that the time discretization scheme

should satisfy v, f = f when f is an arbitrary constant. Similarly, we will use

%El) and f () to distinguish different time discretization scheme if necessary. We

further simplify the problem such that all the cell-center and cell-face velocities

in previous time steps are equal to the exact value ug.

The fully discretized Phase-Field and momentum conservation equations for
cell i are
,yt(1)¢;1+1 . qggl) e ¢§1+)1/2 — ¢§1)1/2 B (Mvw,(l)g*)i+1/2 _ (‘Zwvw,(l)g*)iil/2

At Az Az ’
(29)
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R A Y, S =Y Sl S VR (30)
At 0 Ax .

The right-hand side of Eq.(30) is zero because of the force-free condition. We
can obtain the solutions of the Phase-Field function and cell-center velocity at
the new time step from Eq.(5), Eq.(29) and Eq.(30) as

- 7(1) 7(1) = * V& *
n+l _ ¢§1) At ¢i+1/2 B ¢171/2 _ (MV ’(1)5 )i+1/2 - (MV ’(1)5 )i71/2

¢2 W_W [UO Az Az ]a
(31)
- 7(1) 7(1)
ntl _ P11 P2 + P1 — Pz{ﬁ _ ﬁ[u ¢i+1/2 o ¢i—1/2 (32)
P T 2 m ol Az
Tt Vi
_ (va’(l)f*)iﬂ/z - (va’(l)ﬁ*)i—uz]
Az ’
u?“ = 5:_1 Ug, (33)
Pi
where
«_P1LEtp2  p1L—p2 QB At M e — T 34
Pi = 9 + 2 %52) - F Az . ( )

Obviously, if pf = pI'"™, the exact solution u]'

depends on the discrete mass flux m®.

*1 = ug is obtained. However, p?

We consider the discrete inconsistent mass flux m/* = Py Eq.(23),
the discrete consistent mass flux in the continuous level mCE?* = %uo +
”12;”2(1;0(;3(3) — MV*®)¢) Eq.(24), and the consistent mass flux in the discrete
level nPC® = %uo + %(uoé(l) — MV»e*) Bq.(27). The superscripts
represent different numerical schemes. For example, &(1) represents the linear
interpolation while quS(z) represents the quadratic interpolation. The difference

between the corresponding p; and ,0?“ are

*IC _ ntl _ P1— P2 (52(-2) . (52('1)

pi pz
2 P 4
~(2) ~(2) 7(1) 7(1)
_uOAt (pi+1/2 “Picie p(¢i+1/2) - p(¢¢71/2))
Ax (2) (1)
Vt Tt

p1— p2 At (MV=DE) 410 — (MVBDE),
2 %Fl) Az ’

(35)
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Pi 2) (1
2 P 4

7(3) 7(3) 7(1) 7(1)

P p2 Uoﬂt(¢i+1/2 — b 10 B biliye ¢¢—1/2)
2 Az ,7152) %51)

pr—pa At (MV=OE)ipy s — (MV™BIE) 1)

2 Az %(2)

_ (Mﬁx’(l)f*)iﬂﬂ - (Mﬁx’(l)g*)iflﬂ]

1
i

+

*DC _ n+1 _ P1 — P2 ((%2) éz('l))

Pi Pi 2 T a
2 5P 4

7(1) 7(1)
B PR S W Y ST B RV
2 TP 4 A
(MV=E) iy jp — (MVPDE);_y )y
_ - ). (37)

From Eq.(35)-Eq.(37), none of the discrete mass fluxes unconditionally satisfy
the consistency conditions in the discrete level. The inconsistency can be catego-
rized into four parts. The first part comes from using different time discretization
scheme in the Phase-Field and momentum equations. This is the first term in
the right-hand side of Eq.(35)-Eq.(37). If the same time discretization scheme

is used, i.e. %(1) = fyt(Q) and () = () this inconsistency can be resolved. Un-

der this circumstance, the second term on the right-hand side of Eq.(37) also

becomes zero because the factor (% — %) equals to zero. The second part
7 gl

is introduced by the mismatch of the numerical schemes used to discretize the
Phase-Field equation and the mass flux in space. The second term on the right-
hand side of Eq.(35) and Eq.(36) belongs to this category. It is easy to resolve
this inconsistency in Eq.(36) by requiring »® = ¢ and VB = v However,
it becomes more complicated in Eq.(35) when a nonlinear scheme is used, since
p?) is not necessarily equal to p(q;@)) in general. In other words, zj;(z) = &(1)
doesn’t guarantee to resolve the inconsistency in Eq.(35). The only guaranteed
way is to compute p by p(qg(l)). The third part results from using the analytical
chemical potential Eq.(2) instead of the numerical one. The third term on the
right-hand side of Eq.(36) is the case. Even if we remove the first and the sec-
ond source of inconsistency, this term still remains because £ — £* is in general
non-zero. The last part is due to violating the consistency of mass conservation,
which is the last term in Eq.(35).

Our analysis shows that the physical solution of such a simple case is only
obtained when using the consistent mass flux in the discrete level m”¢ and
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using the same time discretization scheme for the Phase-Field and momentum
conservation equations. Another observation is that all the inconsistent errors
are proportional to the density difference between the two fluids, i.e., p; — po,
implying that these errors could be more significant as the density ratio of the
fluids increases.

The consistency in the discrete level is more involved because, unlike in the
continuous level, the consistency of mass and momentum transport is not nec-
essarily guaranteed. We have shown that, although m© satisfies all the consis-
tency conditions in the continuous level, careless discretization of m©“ can vio-
late the consistency of mass and momentum transport, and consequently leads to
inconsistency in the discrete level. Here, we summarize the key points to achieve
consistency in the discrete level.

Remarks: To achieve consistency in the discrete level

1. Determine the consistent mass flux in the continuous level m€©, which sat-
isfies the consistency conditions proposed in Section 2.1.
2. To achieve the consistency of mass and momentum transport in the discrete
level,
— the time discretization scheme of the momentum conservation equation
should be identical to the one of the Phase-Field equation, and
— the numerical scheme used to discretize m©© should be identical to those
used to solve the Phase-Field equation.
3. To achieve the consistency of mass conservation in the discrete level,
— the numerical chemical potential, if there is any, should replace the an-
alytical one in m©.
4. To achieve the consistency of reduction in the discrete level,
— the numerical chemical potential, if there is any, should be zero when
¢ =1(-1), and
— the discretization of V - (u(Vu)T) should be zero when p is constant.

3 Discretization

3.1 Spatial Discretization

In this section, all the discrete operators are to be defined in detail. For simplicity,
we provide the definitions in two dimensions, while their extension to three
dimensional problems is straightforward. We use (z;,y;) to denote the cell center,
and (2;41/2,y;) and (x;,y;41/2) to denote the cell face. A scalar function defined
at the cell center (z;,y;) is denoted by f; ;. A vector function f is defined at the
cell face, when its z-component f* is defined at (x;11/2,¥;), i.e., fﬂ/z’j, while
its y component f¥ is defined at (x;,y,41/2), i-e., ;{j+1/2. We use Az and Ay
to denote the cell size, or grid size, along the = and y axis, respectively.

Close to the domain boundary, we assign the ghost points outside the com-
putational domain so that we don’t need to modify the discrete operators. The
ghost-point values are determined, based on the boundary conditions. For the
periodic boundary condition, we assign the ghost-point values by copying their
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corresponding ones inside the computational domain. For the other boundary
conditions, we use the linear extrapolation or the 2nd-order central difference,
unless otherwise specified.

The discrete operators defined below are formally 2nd-order accurate, either
discretely conservative or balanced-force, and easy to be implemented. Most
of them have compact stencil. We would like to emphasis that the proposed
method can be used for higher order schemes as long as they are consistent and
conservative in the discrete level.

Lagrangian interpolation The Lagrangian interpolation is denoted as

1579 = (fipgs Fimpt1,gs oo fitai)s (38)

where f is a scalar function defined at (Jci,erk,yj)zig. Eq(38) denotes the
Lagrangian interpolation along the x axis at point (x;,y,;) with a p-left-bias
and g-right-bias stencil. We denote the frequently-used linear interpolation with
p=gq= % at point (z;,y;) as

[Fl7; = [ﬂi}l/z’l/? = (fi1/2.5 fir1/2,5)- (39)

The interpolation along the other axis can be defined in the same manner.

Discrete divergence operator The discrete divergence operator is defined as

~ ~ ffiJrl 2 ‘f~2,i+1/2,j - f{cl;l 2 ‘f~2,i71/27j
V- (£ fo)l = 2 e =

Y r Yy r
n fl,z‘,j+1/2f2,i,j+1/2 - fl,i,j—l/2f2:i,j—1/2
Ay ’

(40)

where f; is a vector function defined at the cell face while f5 is a scalar func-
tion defined at the cell center. In this case, we directly use the nodal values of
f; while numerical evaluation has to be performed to specify fg from its nodal
values fy. Here we use the 5th-order WENO scheme [32], which is very robust
and provides accurate results. It should be noted that the discrete divergence
operator should be formally 2nd-order accurate even when a high-order numer-
ical scheme is implemented to evaluate fg. However, the error would be smaller
when a high-order scheme is used [40]. To achieve higher order of accuracy, a
more sophisticated interpolation has to be performed on fiiil/zj and fi/,i,jil/Z’
and readers can refer to [40,44,15].

Discrete gradient operator Two discrete gradient operators are defined, one
is at the cell face

o . it — fli
2V filivaye, = f2,i+1/2,jM7

N (41)
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and the other is at the cell center

(VA2 = ([F2V7 filicayo,, [F2 V7 filietj2.0), (42)

where f; and f; are both scaler functions defined at the cell center. ]EQ’ZLFI /2,5
has to be numerically evaluated from the nodal values of fs. Unless otherwise
specified, we use linear interpolation, i.e., fNQ,i_;,_l/QJ = [ﬁ]f-i-l/lj' The discrete
gradient operator along the other axis can be similarly defined. These discrete
gradient operators are formally 2nd-order accurate due to the linear interpolation
and the 2nd-order central difference in Eq.(41) and Eq.(42).

Discrete Laplace operator The discrete Laplace operator successively uses
the discrete divergence operator Eq.(40) and the discrete gradient operator
Eq.(41), which results in

L 1, fri+1,j — fi
A R

iy fii —Aﬁl,z'—l,j)
frig+1 — fia

39y, 399, 43
Dot 3)

z S = Jiig—1
_f2,i,j71/2A—y)’

1 -
+Zy (f2,i,j+1/2

where both f; and fy are scalar functions defined at the cell center. Unless
otherwise specified, fg is evaluated by the linear interpolation and this discrete
operator should be formally 2nd-order accurate. Special attention should be paid
to the Dirichlet boundary condition, where an O(1) error will appear when linear
extrapolation is used to specify the ghost-point values outside the domain. This
can be easily shown by Taylor expansion. To resolve this error while maintain-
ing a compact stencil, a parabolic extrapolation, whose stencil consists of the
boundary and the two cells nearest to the boundary, is used to specify the ghost
point value.

Discrete Divergence-Gradient-Transpose operator We name the operator
V - (f2(V£1)T), which appears in the viscous term in the momentum equation
Eq.(9) with fo = p and f; = u, the Divergence-Gradient-Transpose operator.
This discrete operator is related to the consistency of reduction of the viscous
term, as mentioned in Section 2.2.
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We use the same discrete divergence Eq.(40) and gradient Eq.(41) operators,
and obtain the discrete Divergence-Gradient-Transpose operator

Ax

7 Mg = i1y
_fQ,i—1/2,j Al' )

- 1

v (f2(@f1)T)]f,j = E(fQ,iJrl/Q,j

1 - f1y,i+1/2,j+1/2 - fi{i—l/?,j-ﬁ-l/Q
+Zy(f2,i,j+1/2 s (44)

Yy £y

1 fl,i+1/2,j71/2 _f1,z'71/2,j71/2
—fai-1/2 Ar ),

where f; is a vector function defined at the cell face, f is a scalar function

defined at the cell center, and fo, unless otherwise specified, is evaluated by the

linear interpolation. Eq.(44) is formally 2nd-order accurate. [V - (fg(@f'l)T)}fJ
can be similarly defined. Using an appropriate definition of f1, BEq.(44) satisfies
the discrete chain rule as in Eq.(21). Terms f{, ; and f%i+1/2 412 in Eq.(44)

are computed by

i Trlx 1 T T
fl,i,j = [fi ]7] = 5(f1,i+1/2,j + fl,i—l/z,j)a (45)
and 1
fﬁi+1/27j+1/2 = [fﬁiz—s-l/Q,j-&-l/Z = Q(fiﬁj-i-l/? + ff,i+1,j+1/2)' (46)
When f, doesn’t change around (z;,y;), from Eq.(44), Eq.(45) and Eq.(46), we
can obtain

9 (TR, = o gy Loz oo
+fﬁi+1,j+1/2 - fﬁi+1,j—1/2

Ay
CTicayey — sy

Ax
_fi/,ifl,j+1/2 - fﬁifl,jfl/2)
Ay

W g1y — W filio1

2Ax
= [[0"P(V - £1)] 5,

=f

where §9:CP is the central difference operator along the ¢ axis. Eq.(47) shows
the discrete chain rule, i.e., the discrete counterpart of Eq.(10) and works for all
the interior cells.

Special care has to be paid to the cells close to the boundary so that the
discrete chain rule in Eq.(21) is maintained. Consider the boundary cell where
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ffi_3/2 j and ffi_l it1/2 in Eq.(44) are outside of the domain and are replaced
by the ghost-point values ffﬂ;g /2,5 and fly,i—l,j L1/20 These ghost-point values
are defined carefully to achieve the discrete chain rule at the boundary cells. By
defining

fize?)/z,j = [fill]fis}fj = 3f1$,1‘71/2,j - 3ff,i+1/2,j + fii+3/2,j> (48)

and L
fﬁz‘—l,jﬂ/Q = [ﬁl]f—_llgiyz = inl,i,jil/Q - fﬁi-&-l,jil/Q’ (49)
we use Eq.(48) and Eq.(49) to replace f; 5, ; and fly’i_l)jil/2 in Eq.(44) while

the other terms in Eq.(44) are computed following Eq.(45) and Eq.(46). After
doing that, we can obtain

V- (f2(VE)T)E, = f2ﬁ([@'f1]i+1,j — [V -fi]i;) = L[0"FP(V-£1)]i;. (50)

where 94-FD represents the forward differencing along the ¢ axis and f5 is con-
stant around (;,y;). The same result can be obtained at the other side of the
boundary except that 9% FD ig replaced by 9%BD  where 895D is the backward
differencing along the g axis. Extension to other axis and to three dimension is
straightforward and not repeated here.

3.2 Balanced-Force algorithm

When there is no flow, i.e., u = 0, the momentum equation Eq.(9) reduces to
1 1 1
0=—-Vp+g+-EVh+ Sy, (51)
P P P

which represents the force balance between the pressure, gravity, surface ten-
sion, and other external forces. The residual from the discrete force imbalance
nonphysically drives the flow to move, and generates the so-called spurious cur-
rent. The balanced-force algorithm is developed by [24] for both the continuous
surface force [9] and the ghost fluid method [23]. Here we follow this idea and
apply it to the surface force from the Phase-Field model.

The x-component of Eq.(51) is first discretized at (w;41/2,¥;) as

1 o 1
G o= g%+ = EVTPliv1y2 + ——Suiv1/2.5 52
si+1/2,] i [EVEPlita/2.5 Prriay /2 (52)
and
Gf+1/2,j = _Tz’-l-l/;j [Vl’p]iﬂ/z,j + G?,i+1/2,ja (53)

where, unless otherwise specified, p is evaluated by the linear interpolation. It
should be noted that the discrete gradient operators for p and ¢ are defined
identically as Eq.(41). The y-component is similarly discretized at (z;,y;41/2)-

The cell-center G at (z;,y;) is linearly interpolated from Gf+1/27j and Gi'!,j+1/27
ie.,

Gl = {[G712,. G712, }- (54)



Title Suppressed Due to Excessive Length 19

3.3 Temporal Discretization

In this section, the temporal discretization for the Cahn-Hilliard equations Eq.(1)-
Eq.(4) and the Navier-Stokes equations Eq.(8)-Eq.(9) are described. Suppose the
Phase-Field function ¢, the cell-center velocity u, and the pressure p, which are
defined at the cell center (z;,y;), and the cell-face velocity u, which is defined
at the cell face (z;41/2,¥;) and (x4, y;41/2), in time levels n and all the previous
time level, i.e., (n — 1), (n — 2),..., are known. We define f*"*! as an explicit
evaluation of f"*! from previous time level of f, where f is the variable of
interest.

Cahn-Hilliard equations We follow the temporal discretization scheme in [22]
to split the original 4th-order Phase-Field equation Eq.(1) into two 2nd-order
Helmholtz equations that can be solved sequentially. The first step is to solve
the auxiliary variable ¥* from

@ . (@1/}*) _ (Ol + 72)1/)* _ ﬁ [% _ @ . (u*,n+1q~5*,n+1) + S;L-‘rljl (55)

S -

+V - (VF(§771) = 5V - (Vi

3

with boundary condition

= * = *, 1 S *, 1 S = n
L R RACEOICR CEs N CD
which is equivalent to n - V&* = 0 at boundary with ¢* defined in Eq.(61). This
boundary condition ensures global conservation of the Phase-Field function ¢ in
the discrete level. The second step is to solve the Phase-Field function at new
time step ¢t from

Vo (Vo) +agnth = g, (57)
with boundary condition
= lo T T wm
n- Vet = o) 005(95)[5 cos (5(;5 b (58)

This boundary condition is from [31] and includes the steady contact angle 6.
The effectiveness of this contact angle boundary condition is validated by the
case named equilibrium drop in the Appendix. We refer interested readers to
[31,51,73], for understanding this kind of contact angle boundary condition, to
[18,21,6] for more detailed numerical implementations and validations, and to
[16,38] for other possible options of imposing the contact angle boundary con-
dition. Unless otherwise specified, the boundary conditions Eq.(56) and Eq.(58)
are used with 6, = 90° when we solve the Phase-Field equation. The o and S in
Eq.(55)-Eq.(58) are defined as

S 4 4
= 1 e 1

AMAt ﬁ]’ (59)
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S 4’}/15
— > .
2 =V AMAt (60)

This scheme leads to a numerical chemical potential defined as

e R NN G}

§ = AF(¢"") = V- (Vo) +

Navier-Stokes equations We construct a projection scheme to decouple the
pressure and velocity. After solving ¢"*!, we can obtain the density p"*! and
viscosity "1 of the fluid mixture from Eq.(5) and Eq.(6), respectively. The
first two step is to evaluate u* and u** at the cell center (z;,y;) from

n+l..% _ = - - ~ ~
WL PR LV e @) = GV (V) (62)

_1_6 . (ﬂn+1(@ﬁ*,n+1)T)’
and . .
nu — )
At
u** is linearly interpolated from the cell center (z;,y;) to the cell face (z;41/2,¥;)

and (2;,y;+1/2). We obtain u* at the cell face, as proposed by Rhie and Chow[53]
from

e (63

u — putt
At
Here, we do the linear interpolation on p instead of (1/p) and this works for the
following equations including p in this section. The cell face u* is corrected by
the pressure correction p’ from

1 -
= G Ve G (64)

n+1 _ 'Ytu*

At

Y

1 =
= _,5”+1 Vp/7 (65>

such that the cell face u™*! is discrete divergence-free, i.e.,
V-u"tl =0, (66)

at the cell center (x;,y,). By combining Eq.(65) and Eq.(66), we can obtain the
discrete Laplace equation for the pressure correction p’ at the cell center (x;, y;)

as
- 1

Z—;@-u*:V~(ﬁn+1@p'). (67)
After solving Eq.(67), we can obtain the cell face u"*! from Eq.(65) and the
pressure p" ! at the cell center (z;,y;) from
Pt =pt 4y (68)
Finally, the velocity u™*! at the cell center (z;,y;) is obtained from
At — oyt

At =G (69)
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3.4 Accuracy, consistency, conservation and energy dissipation

As stated in Section 3.1, the formal order of accuracy of each discrete operator
is 2nd-order. We focus on estimating the formal temporal order of accuracy,
followed by the discussions of consistency, conservation, and energy dissipation
in the discrete level, in this section.

The fully-discretized Phase-Field and momentum conservation equations are
recovered from the equations in Section 3.3 as

g™ — o

V@) < MY (V) + ST (10)

n+1un+1 _ Ph ~ ~ ~
5y +V- (Iil ® ﬁ*,n+1) _ pn+1Gn+1 4+V- (ﬂnJrlvu*) (71)

_’_@ . (ﬂn—kl(@ﬁ*,n-&-l)T).

VP

To discuss the formal order of accuracy, we have assumed that the solutions are
smooth enough in time such that their Taylor expansions in time exist. There are
two sources of temporal error. The first one comes from the time discretization
scheme that approximates the time derivative, i.e., 0f /0t where f is either ¢ or
pu. Unless otherwise specified, we choose the 2nd-order backward differencing
with v = 1.5 and f =2f" —0.5f""1. Formally 2nd-order accuracy is obtained
if the other terms are evaluated at the time level (n + 1). However, this makes
the nonlinear two-phase model fully coupled, and is difficult and costly to solve.
Decoupling is designed to remedy the problems, i.e., the original 4th-order Cahn-
Hilliard equation is decoupled with two 2nd-order Helmholtz equations, and the
pressure and velocity are decoupled by the projection scheme. However, the
decoupling introduces the second source of temporal error, i.e., the splitting
error, which is going to be discussed.

We use, unless otherwise specified, the 2nd-order Adams-Bashforth scheme,
ie., fortl = 2f" — fm=1 5o that (¢*"*! — ¢"*1) ~ O(At?) and (u*"H+! —
u™t1) ~ O(A#?) are true. From Eq.(2) and Eq.(61), we can obtain (£* —£"F1) ~
O(At?). From Eq.(68) we have p’ ~ O(At), resulting in, at the cell face, (u* —
u"t) ~ O(A#?) from Eq.(65). By combining Eq.(63), Eq.(69), and p’ ~ O(At),
we have (u* — u™™!) ~ O(At?) at the cell center. Finally, all the terms in
Eq.(70) and Eq.(71) that are not evaluated at (n + 1) time level are different
from their corresponding ones evaluating at (n + 1) time level by O(A#?). This
suggests formally 2nd-order accuracy for the splitting procedure. Combined with
the 2nd-order backward differencing for time discretization, the overall temporal
accuracy is 2nd-order.

The consistency in the discrete level can be achieved by following the remarks
in Section 2.2. We have implemented the same time discretization scheme to the
Phase-Field and momentum conservation equations, and we specify m, unless
otherwise specified, as m”%, which is discretized identically to the correspond-
ing terms in the fully-discretized Phase-Field equation Eq.(70) and uses the
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numerical chemical potential £* Eq.(61). Since u*"*! is a linear combination of
u” and u”~!, which are discretely divergence-free, u*"*! satisfies the discrete
divergence-free condition, as well. When ¢",¢""1 = 1(—1), ¢*"H = 1(-1),
and from Eq.(70) and Eq.(61), it can be shown that ¢"*! = 1(—1), resulting
in £ = 0. As shown in Section 3.1, by using the discrete Divergence-Gradient-
Transpose operator, V-(fi "+1(Vu*’”+1) ) is zero when p"**! is constant, because
of V-u*"t1 = 0. Finally, the consistency of reduction is satisfied in the discrete
level. In summary, the proposed scheme achieves all the consistency conditions
in the discrete level.

The conservations of mass and momentum in the discrete level require that
all the terms in the Phase-Field equation Eq.(1) and the momentum conser-
vation equation Eq.(9) are written in their conservative forms and are dis-
cretized such that a single-valued numerical flux is defined at each cell face.
The same amount of numerical flux moving out from one cell will go to its
neighbor. Specifically, if we consider a periodic boundary condition and ignore
the source term Sy in Eq. (70), multiply Eq. (70) in cell (7, ) with its volume
[AV0l]; ;, and then do the summation over all the cells, after some algebraic ma-
nipulations, it can be shown that the terms }°, ; [V - (u*mtgont )], S[AVol);

and Z”[M@ (VEN))ii[AVal); j in Eq. (70) are both zero, based on the def-
initions of the numerical operators in Section 3.1. As a result, we can obtain

Z,J[W} ,][AVoz] ,]=z”[ 9], AVl = 0,1, Y, 61T [AVoll,

> PrlAVoll;; = - = Z” ;[AVol]; j, which implies global conserva-
tion of the Phase- Fleld function. Further considering Eq. (5), we can obtain
doii p”Jrl [AVoll;j =32, ; P} ;[AVol]; j, which implies global mass conservation.

In other words, the global conservations of the Phase-Field function and of the
mass are equivalent. The same procedure can be performed on Eq. (71) and again
we can obtain that ) -, ;[V-(m@u*" )], ;[AVl]; 5, >3, S[V- (T Vu)]; [AVol]; ;
and Z”[ (p "+1(Vu*7"+1) )i,j[AVol]; ; are all zero, no matter whether the
density and viscosity are constants or not. Consequently, the momentum trans-

port is conserved in the discrete level, i.e., 32, [p" T u"™]; ;[AVol]; ; =
n+1

> J[p u’; ;[AVol); ; if w + V- (m®@a*"*t!) = 0. The only trouble-

some term remaining is G”*1, which is balanced-force while non-conservative
in general. The term }_, ; [p"T1GnH1; ;[AVol]; ; is not necessarily zero, even
when the surface force and other external momentum sources are ignored. How-
ever, it should be noted that, away from the interface, the surface force becomes
zero, the density is constant, and p"t1Gn+! recovers the 2nd-order central dif-

~n+41 7L +1
. . P
ference for the pressure gradient, i.e., [p" T 1G@n+1]; ; = Pz Picueg with
) ) 2¥] Ax;
1 R
p‘?jl 12 = —#——— which is discretely conservative. As a result, the momen-

tum [pu], ; is locally conserved in the discrete level in most of the domain ex-
cept for the location close to the interface, implying that global conservation,
Le., >, o Tt [AVl ;= 32, j[p"a’; j[AVoel]; j, can not be guaran-
teed. However, our numerlcal experiments in Section 4.1 show that such a non-
conservative error is very small even including variable density and surface force.
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Another property of the scheme worth discussing is its property of secondary
conservation, e.g., kinetic energy conservation, and we restrict our discussion to
inviscid cases without surface tension and other momentum sources. We first
begin our discussion in the semi-discrete level in the sense that the variables
are discrete in space while continuous in time. It can be shown that with the
discrete operators defined in Section 3.1 and with the linear mterpolatlon to
evaluateuan (M ® 1), the identity, u- V(m®@a) = V- (miu-u)+iu- uVv-

m, holds, where [u-uj;;1/2; and [a-ul; j11/2 are equal to uy; - uz+1j and

) . - . e d(pu) __ d(piu-u) dp
u; ;- u”+1 , respectively. Using the identities u - =5~ = ——2— + u ugy?

and —|—V m = 0, ie., Bq. (25), we can obtain u - [2 pu)+V (meua) =

8(Pz“ “) +V- (mzu u). This is the semi-discrete counterpart of Eq. (14), where
Sm = 0. The zero S,, results from achieving consistency in the discrete level
of the present scheme. In other words, the discritization of the inertia term in
Eq.(71) doesn’t introduce any non-conservation error on the kinetic energy in
the semi-discrete level if a linear scheme for u is used. However, even when we
ignore the surface force and other momentum sources in G, we are unable to

show that the identity, pu-G = —pu~[%@p] —V-(up), holds, where (up) means
a certain numerical operator applied to u and p. Numerical experiments have
been performed in [44], where a single-phase collocated scheme was analyzed

and tested, and the authors discovered that the term —u - [Vp] dissipates the
kinetic energy. In a two-phase flow problem, the prefactor p is not constant any
more, which makes the analysis more involved. However, since the prefactor p

is always positive, it should not change the dissipative property of —u - [@p],

and it is reasonable to infer that —pu - [l@p} also dissipates the kinetic energy.
Our numerical experiments in Section 4.1 confirmed this point. It is challenging
to achieve kinetic energy conservation in the discrete level, especially in multi-
phase flow problems. First, all the time and space discretization schemes should

be central type so that no numerical dissipation is added. Second, the time
_9(pu) _ 9(pzum) 9p
ot ot at

for variable density, which is non-trivial. Third, the inertia term V - (m ® u)
may have to be evaluated implicitly, which increases the computational cost. In
our case, our scheme in general does not guarantee kinetic energy conservation
in the inviscid limit and in the absence of surface force or external momentum
sources. In the following numerical implementations, we mainly use the 2nd-order
backward difference scheme for time discretization and the WENO scheme for
the inertia term, and these two schemes are numerically dissipative. Besides,
numerical dissipation is also introduced by the pressure gradient term , based
on the numerical tests performed in [44]. We, thus, expect the kinetic energy
> g 2ul j -, j[AVol]; ; to be numerically dissipated. When the surface forces
are present, in addition to the kinetic energy, the free energy of the Phase-Field
function has to be incorporated. In the continuous level, the work done by the
surface force transfers the free energy to the kinetic energy and as a result, an
important property of a Phase-Field model is obtained that the total energy,

discretization scheme should hold the identity u + u uzl
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including the kinetic energy and the free energy, does not increase with time,
even for the inviscid limit [1]. The analysis of the total energy dissipation in the
discrete level is non-trivial and we discuss this point using numerical experiments
in Section 4.1.

4 Numerical results and discussions

4.1 Validation tests

Five cases are presented to validate the proposed scheme. The first one is the
manufactured solution, where the artificially constructed solution is infinitely
differentiable. This case is performed to validate that the scheme is formally 2nd-
order accurate in both space and time. The second one is the large-density-ratio
advection problem, where the significance of achieving consistency in the discrete
level is shown. The third one is the horizontal shear layer, where the properties
of the scheme on mass and momentum conservations and energy dissipation
are validated. The fourth one is the steady drop case, where the performance of
the Balanced-Force algorithm is tested by measuring the strength of the spurious
current. The fifth case is the rising bubble with large density and viscosity ratios,
where the convergence behavior of the Phase-Field model to the sharp interface
model is carefully and systematically discussed. Two more cases, which are the
reversed single vortex problem [54] and the Zalesak’s disk problem [74], are
supplemented in the Appendix to validate the Cahn-Hilliard Phase-Field model
as an interface capturing method.

In this section, we consider the Lo error of f to be the root mean square of the
pointwise (f — frer) and the Lo, error of f to be the maximum of the pointwise
| f— frerl, where f is the quantity of interest and f,.s denotes the reference value
of f, unless otherwise specified. We denote the cell size or, equivalently, grid size
by h and have Az = Ay = h.

Manufactured solution We assume that the exact solution of the governing
equations has the form

¢p = cos(z) cos(y) sin(t), (72)
up = sin(z) cos(y) cos(t), (73)
v = — cos(x) sin(y) cos(t), (74)
pE = cos(z) cos(y) sin(t). (75)

The assumed exact solution is infinitely differentiable with respect to space and
time, so it is suitable for the validation of formal order of accuracy. In addi-
tion, ug and vp satisfy the divergence-free condition. Based on the solution,
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we can derive the source term in both the Phase-Field equation Eq.(1) and the
momentum equation Eq.(9), i.e.,

_ 0¢g

Sy = 5 + V- (updp) — V- (MVEg), (76)
SUZW+V'(H1E®UE)+VPE (77)

—V - [ue(Vug + (Vug)")] — ppg — 6V,

where {g, pr, and pg are computed from Eq.(2), Eq.(5), and Eq.(6), respectively,
with ¢ in Eq.(72). We compute mpg from Eq.(16), the consistent mass flux in
the continuous level m®“, with ug, ¢z, and £g.

The parameters in this test are p; = 3, po = 1, u; = 0.02, uo = 0.01,
g=1{1,-2}, A =10"3, M = 1073, and n = 0.1. The computational domain is
[—m, 7] X [=m,7]. The free-slip boundary condition is applied to all the bound-
aries, which is consistent with the exact solution. We use the consistent mass
flux in the discrete level mP“ Eq.(27). The initial condition is given based on
the exact solution by setting ¢ = 0. All the tests are stopped at ¢t = 1.

We first test the formal order of accuracy in space by fixing the time step size
to be At = 1073, and by refining the cell size h from 27/8 to 2w /128 along each
axis. The Lo and L, errors of ¢, u, v, and p, and their order of convergence are
listed in Table 1. The exact solution is used as the reference when we compute
the Lo and Ly, errors. We observe 2nd-order convergence for both the Lo and Lo
errors as expected. In addition, the discrete divergence of velocity V -u and the
discrete Divergence-Gradient-Transpose of velocity V - (@ﬁ)T are listed in Table
2. The discrete divergence-free condition is satisfied to machine precision and
because of this, V - (@ﬁ)T reaches the machine zero, as expected. This ensures
the consistency of reduction of the viscous term in the discrete level.

We next test the temporal convergence by reducing the time step size as fast
as the cell size, i.e., At = h/(27), and by again refining the cell size from 27/8 to
27/128 along each axis. The results are listed in Table 3. Since we have validated
the 2nd-order accuracy in space, and we have set At ~ h, the overall 2nd-order
convergence observed in Table 3 implies 2nd-order convergence of the temporal
error, which matches our error estimate in Section 3.4.

We have repeated the above procedures but computing mg from the incon-
sistent mass flux m’®, Eq.(11). Accordingly, the source term Sy is derived from
Eq.(77), and the discrete inconsistent mass flux m’¢, Eq.(23), is used with
evaluated by the linear interpolation. We again observe 2nd-order convergence
(not shown here). This ensures that all the differences of the results shown in
the Large-Density-Ratio advection Section 4.1 are from whether the scheme is
consistent.

Large-Density-Ratio advection We first numerically reproduce the analysis
in Section 2.2 of one-dimensional advection, which is under the force-free condi-
tion. Based on this condition, the governing equations to be solved are simplified,
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Table 1: Results of manufactured solution with grid refinement and At = 1073

Grid

[

u

v

4

L,

Ly order| Ly

Lo order| L,  Lporder| Lo, Lo order| L,

L, order| Ly

L, order

Ly

L, order

Lo

L, order

=N

3

R

64

3.73E-02

9.89E-03

2.50E-03

.28E-04

1.58E-04

1.92

1.98

1.99

2.00

6.33E-02

[2.05E-02

5.37E-03

1.37E-03

3.44E-04

1.63 [2.50E-02 2.04

1.93 [6.07E-03 2.01

197 [L.50E-03 2.01

1.99 [B.75E-04 2.00

9.34E-05

5.87E-02

1.99E-02

5.52E-03

1.39E-03

3.46E-04

1.56 [2.65E-02

1.85 [6.67E-03

1.99 |L.67E-03

2.01 H.16E-04

1.04E-04

1.99 [6.51E-02

2.00 [2.23E-02

2.00 (6.22E-03

2.00 |1.60E-03

.05E-04

1.54

1.84

1.95

1.99

7.52E-02

4.33E-02

1.10E-02

[2.59E-03

6.24E-04

0.80

1.97

2.09

2.05

1.59E-01

7.36E-02

1.86E-02

¥.41E-03

1.07E-03

1.11

1.99

2.08

2.04

Table 2: Results of V-u and V - (Vi))” in manufactured solution

oaid Vou [7- (Vﬁ)T]x [v (Vﬁ)T]y

L, Leo L, Leo L, Leo

8 |4.25E-17|1.67E-16|8.61E-17|2.22E-16 | 1.07E-16 | 3.89E-16

16 [7.56E-17|5.55E-16|3.48E-16|1.41E-15|3.23E-16|1.72E-15

32 | 1.28E-16|5.00E-16|1.21E-15|5.88E-15| 1.20E-15 | 5.22E-15

64 [2.59E-16|1.11E-15|4.52E-15|2.49E-14 |4.52E-15 | 2.45E-14

128 | 5.12E-16|2.22E-15 | 1.85E-14 | 1.51E-13 [ 1.82E-14 | 1.26E-13

and will be explained in detail in the upcoming paragraph. Next, we consider
the two-dimensional advection, where the force-free condition is removed. Thus,
the governing equations without any simplifications are solved, and the surface
tension is included. We only consider the consistent mass flux in the discrete
level mP¢ Eq.(27) and the discrete inconsistent mass flux m’¢ Eq.(23) in the
following discussions. Whenever m’® is computed, the linear interpolation is
performed to evaluate 5. We consider the density ratio to be 1, 102, 10°, and
10°.

Following the analysis in Section 2.2, we consider a pure advection case where
all the forces on the right-hand side of Eq.(9) are set to zero. The physical
solution is that the velocity maintains its initial value ug all the time. However,
our analysis shows that, numerically, only the consistent mass flux in the discrete
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Table 3: Results of manufactured solution with grid refinement and At = h/(27)

¢ u v p
Grid
L, Lyorder| Le L order] L,  Lporder| Lo L order] L,  Lporder| Lo, Ly order|] L,  Lyorder| Ly, L order

8 W.90E-02 1.99 [8.29E-02 1.71 [2.44E-02 2.29 [6.90E-02 1.64 [2.62E-02 2.04 [6.56E-02 1.51 |[l.17E-01 1.34 [.15E-01 2.05
16 [1.23E-02 2.03 [P.54E-02 198 WK.98E-03 2.01 P.22E-02 1.92 [6.36E-03 2.0l [.30E-02 1.81 W.65E-02 1.87 [7.59E-02 1.95
32 3.03E-03 2.02 [6.42E-03 2.01 |1.24E-03 1.98 [5.87E-03 1.99 |[L.58E-03 199 [6.55E-03 1.94 [1.27E-02 2.09 |1.96E-02 2.08
64 [1.49E-04 201 |l.59E-03 2.01 [3.13E-04 1.98 [1.47E-03 2.0l [PB.97E-04 199 |l.70E-03 1.98 P.98E-03 2.07 HW.64E-03 2.05
128 [1.86E-04 3.96E-04 7.92E-05 3.65E-04 9.99E-05 4.32E-04 7.11E-04 1.12E-03

level mP¢ leads to the physical solution. The computational domain is [0, 1] with
a periodic boundary condition. A one-dimensional drop is initially located at the
center of the domain with diameter D = 0.5. Fluid 1, which is inside the drop, is
denser than Fluid 2, which is outside the drop. Both the cell-center and cell-face
velocities are initially equal to wg, where ug is unity. The cell-face velocity is
given to be ug instead of being computed during the computation, and we only
analyze the error of the cell-center velocity, i.e., (u—ug). By doing so, the actual
equations needed to be solved numerically are Eq.(55) and Eq.(57) for ¢, and
Eq.(62) with zero right-hand side for u, and we let u* in Eq.(62) to be u™*!.
The other parameters are n = 1/32, M = 10~7 and CFL = ugAt/h = 0.2. The
computations are stopped at t = 2, when the drop returns to its initial location
for the second time. The number of cells is in the range 64 to 512. We measure
the Lo and L, errors of u with ug as the reference.

The Ly and L, errors of the cell-center velocity obtained from m”¢ labeled
as “C”, and m’, labeled as “I”, are shown in Fig. 2. The number following “C”
or “I” represents the density ratio. The cases of C-1 and I-1 are identical, and
their errors are zero so they cannot be seen in the log-log plot.

As expected, the cases using m”¢ reproduce the physical results accurately.

Both the L, and Lo, errors are below 107% no matter what the cell size and
density ratio are. The errors do not reach the machine zero because of the round-
off error of the computer, which will be further explained in the two-dimensional
advection problem. In spite of the simplicity of the problem and the idealized
numerical implementation, large error is introduced by the inconsistent mass
transport when m’¢ is used. In addition, the error increases as the density ratio
increases. Although the error is reduced as a result of the grid refinement, it is
still larger than 102 for the finest grid. It should be noted that there are about
256 cells across the drop in the finest grid, which is seldom achievable in practical
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Fig. 2: Results of one-dimensional advection of a drop. a) The Ly error, and b)

the L, error of u.

computations of bubbly flows. These numerical tests not only match the analysis
in Section 2.2, but also emphasis the significance of achieving consistency in the
discrete level to obtain physical solution in practical computations.

Since only the simplified equations are solved and the cell-face velocity is
given in the one-dimensional advection case, the error of the cell-center veloc-
ity has no chance to contaminate the cell-face velocity to consequently create
unphysical interface distortion and pressure fluctuations. To validate this state-
ment, we perform the two-dimensional advection problem, where the govern-
ing equations without any simplifications are solved numerically, following the
scheme in Section 3. We consider a circular drop of diameter D = 0.2 initially
at the center of the domain [1 x 1], advected by a homogeneous two-dimensional
flow, i.e., u = up and v = vg. The doubly periodic boundary condition is ap-
plied. Both of the fluids are inviscid and the surface tension o between them
is either 1072 or 1. The physical solution is that the velocity field maintains
its initial configuration independent of density ratio and surface tension, pres-
sure maintains its reference value, which is zero, everywhere if surface tension
is neglected, while it has a jump across the interface in presence of surface ten-
sion. The shape of the drop should remain circular without any deformation.
The domain is discretized by 128 x 128 cells. The other parameters are n = 3h,
M =10",uy =1, v = 1, COFL = ugAt/h = 0.1. All the computations are
stopped at t = 1, when the drop returns to its initial location for the first time,
or before the computation becomes unstable.

Fig. 3 shows the initial drop shape and the streamline. The solution at t =1
should be identical to the initial configuration. Fig. 4 shows the cases without
surface tension at t = 1 by using either m”¢ or m/®“. We can obtain stable
solution for density ratio 10° when using m”¢, and the physical solution is well
reproduced. The streamlines are parallel to each other along the 45° line. The
shape of the interface remains a circle and the location of it lays on its initial one.
However, 103 is the highest density ratio to have stable results when using m’¢.

Even in that case, although the solution is stable, it is incorrect. The streamlines

10°
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Fig. 3: Initial configuration of two-dimensional advection of a circular drop. Solid
black line: Interface at t = 0; Blue arrow line: Streamlines at ¢ = 0.
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Fig. 4: Results of two-dimensional advection of a circular drop without surface
tension. Solid black line: Interface at ¢ = 0; Red dash line: Interface at t = 1;
Blue arrow line: Streamlines at ¢ = 1. a) m = m”¢, and b) m = m/°.
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Fig. 5: Results of two-dimensional advection of a circular drop with surface ten-
sion. Solid black line: Interface at ¢ = 0; Red dash line: Interface at ¢t = 1; Blue
arrow line: Streamlines at t = 1. a) m = m?¢  and b) m = m’“.

are oscillatory and the shape of the interface is highly deformed by the perturbed
velocity, which is unphysical. Fig. 5 shows the results including surface tension.
Again, we obtain physical results for density ratio 10° by using m”®. Unphysical
velocity perturbation and interface deformation is again observed in the case
of density ratio 10% using m’®. Because of the surface tension, the interface
deformation is restricted and it looks like an ellipse.

We measure the Ly and L, errors of u and v, whose reference values are
ug, and v, respectively, to quantify the importance of achieving consistency
in the discrete level. In addition, for the cases without surface tension, the Lo
and Lo, errors of p are measured with its reference value being zero. We define
Ap = [,pd2] [,0.5(1 + ¢)df2 and (Ap)max = Pmax — Pmin to quantify the
pressure jump when there is a surface tension. The label with * represents the
result before the computation becomes unstable. Table 4 lists the results without
surface tension. We observe that the errors from the cases using m”¢ are very
small, while it seems proportional to the density ratio. This can be understood by
considering that the round-off error introduces an additional inconsistent error.
Following the analysis in sections 2.1 and 2.2, we can estimate that its magnitude
is on the order of (p1 — p2)/2 times the round-off error. When the density ratio
is large, the factor (p; — p2)/2 is close to be proportional to the density ratio.
We can see that the errors obtained in Table 4 behave similar to our estimation.
The errors from the cases using m!¢ are very large, compared to those obtained
from mP¢. The pressure error grows dramatically as the density ratio increases
and finally triggers numerical instability. The largest pressure is in front of the
interface, where the inconsistent error is most significant. This large pressure
value hinders the movement of the interface and results in unphysical interface
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Table 4: Results of two-dimensional advection of a circular drop without surface
tension

Density ratio 1 3 6 9
Variable
Scheme C I C I C I* C I*

L, 7.91E-13 7.91E-13 | 4.84E-11 3.76E-01 2.47E-08 | 1.51E-01 | 1.18E-05 | 2.34E-01
u

Lo 1.21E-11 1.21E-11 | 1.13E-10 | 1.77E+00 8.36E-08 | 4.77E-01 | 4.92E-05 | 4.80E-01

L, 7.91E-13 7.91E-13 | 4.84E-11 3.76E-01 2.47E-08 | 1.51E-01 | 1.18E-05 | 2.34E-01
v

L 1.21E-11 1.21E-11 | 1.12E-10 | 1.77E+00 8.28E-08 | 4.77E-01 | 4.94E-05 | 4.80E-01

Ly 1.60E-12 1.60E-12 | 7.73E-12 | 6.24E+00 1.37E-08 | 7.54E+02 | 1.64E-05 | 7.54E+05
P

S 1.0SE-11 1.05E-11 | 3.32E-11 1.31E+02 4.60E-08 | 8.86E+03 | 5.13E-05 | 8.86E+06

deformation such that the interface is compressed along its advection direction.
Table 5 lists the results including surface tension. The errors of different density
ratios for the cases using m”¢ slightly change, while they are larger than their
correspondence without surface tension. These errors are majorly introduced by
the numerical imbalance of the surface tension and the pressure, i.e., the spurious
current, instead of the round-off error. The spurious current will be discussed in
the steady drop Section 4.1. Both Ap and (Ap)max have the values close to the
pressure jump from the Young—Laplace equation, i.e., 20/D = 10 in this case.
The errors for the cases using m’®, on the other hand, is majorly introduced by
inconsistency instead of numerical imbalance, and they behave similarly to their
corresponding ones without surface tension.

Horizontal shear layer The horizontal shear layer in [8,28] and its variations
of including variable density, variable viscosity, and surface force are performed
to validate the conservations of mass and momentum, and energy dissipation,
discussed in Section 3.4. A doubly periodic domain is considered with an initially
horizontal shear layer defined as

tanh(%55), y < o
Ulp=p = £ _ 78
=g {tanh(y"};ly),y > Yo (78)
and a vertical perturbation reads
V=0 = O sin(kx). (79)

The initial Phase-Field function ¢|;—o is the same as u|;—¢ Eq. (78), implying
that Fluid 1 is initially at the center of the domain with unperturbed velocity
1, Fluid 2 has -1 velocity next to Fluid 1, and 7 is 6; /v/2.
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Table 5: Results of two-dimensional advection of a circular drop with surface

tension
Density ratio 3
Variable
Scheme C I C I Cc I* C I*

L, 1.55E-03 1.55E-03 1.08E-03 3.99E-01 1.55E-03 1.50E-01 1.49E-03 2.32E-01

u
Lo 2.00E-02 2.00E-02 1.31E-02 | 3.52E+00 | 2.00E-02 4.68E-01 2.17E-02 4.71E-01
L, 1.55E-03 1.55E-03 1.08E-03 3.99E-01 1.55E-03 1.50E-01 1.49E-03 2.32E-01

v
Lo 2.00E-02 2.00E-02 1.31E-02 | 3.52E+00 | 2.00E-02 4.68E-01 2.17E-02 4.71E-01
Ap 9.13E+00 9.13E+00 9.14E+00 |-1.64E+01 | 9.13E+00 | 2.50E+02 9.25E+00 2 47E+05

Ap
(AP) max 1.03E+01 1.03E+01 1.08E+01 7.27E+01 | 1.03E+01 1.46E+04 1.15E+01 1.46E+07

Table 6: Material properties in different cases of the horizontal shear layer prob-
lem

CaseID| py P2 # U2 g
Case 1 1 1 0 0 10712
Case 2 10 1 0 0 10712
Case 3 1 1 001 0001 1072
Case 4 10 1 001 0001 1072
Case 5 1 1 0 0 0.1
Case 6 10 1 0 0 0.1

The domain has a size of [1x 1] and is discretized by 128 cells in each direction.
The parameters in the initial conditions Eqs. (78, 79) are the same as those in
[8,28], such that ¢; is 1/30, d2 equals to 0.05 and k takes the value of 27, and yo,
y1 and yo are 0.5, 0.25 and 0.75, respectively. Six cases are presented and Table
6 lists the material properties of each case.

The first two cases are inviscid and without a surface force. The third and
fourth cases are viscous while without a surface force. The last two cases are
inviscid but include a surface force. The cases with odd IDs have matched
density while the other cases have a density ratio 10. Whenever viscous ef-
fects are included, the viscosity ratio is 10. Based on the discussions in Section
3.4, mass is globally conserved in the discrete level, i.e., >3, ; p; ;(t)[AVol]; ; =
Zi’ j Pij (t = 0)[AVol]; ; no matter whether viscous or surface forces are present.
With matched density, while without a surface force, e.g., Cases 1 and 3, mo-
mentum is globally conserved in the discrete level, i.e., >, ;[pu; ;(1)[AVol]; ; =
> lpalij(t = 0)[AVol]; ;. However, this is not necessarily true for the rest of
the cases. Kinetic energy, in the continuous level, is conserved in Cases 1 and 2.
However, because of numerical dissipation, kinetic energy in the discrete level,
Ex(t) =2, $[u-ul; ;(t)[AVol]; ;, should be decreased, i.e., Ex(t) < Ex(t =
0). In the presence of a surface force, e.g., Cases 5 and 6, there is energy transfer
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between kinetic energy and free energy and the total energy, which is the sum of
the kinetic energy and the free energy, does not increase in the continuous level
even when the flow is inviscid [1]. The discrete form of energy should be able to
reproduce this property, i.e., Ex(t) + Er(t) < Ex(t = 0) + Ep(t = 0), where
Er(t) is defined as

Er(t) = Zi,j A {F((bm) + % ((¢'i+1,ij_¢i,j )2 + (¢i,j+A1;¢>z',j )2)} (t)[AVOl}m‘.

As shown in Fig. 6, we first consider, the results of cases 1-4, where there is
no surface force and the free energy is zero. Fig. 6 a) shows the change of mass in
the domain. The cases 1-4 conserve mass in the discrete level, no matter whether
viscous effects are considered. Fig. 6 c¢) and d) show the change of momentum in
x and y directions, respectively. For matched density cases, i.e., cases 1 and 3,
the momentum is conserved in the discrete level, while cases 2 and 4 with density
ratio 10 are not conserved. Comparing to the initial value of the momentum in
cases 2 and 4, which are 3.9 in the x direction and 0 in the y direction, the change
of momentum in these two cases are on the order of 1073 in the z and 10~ '°
in the y directions, which are extremely small. Fig. 6 b) shows the time history
of the change of kinetic energy. Cases 1 and 2 don’t include physical viscosity,
and as a result the kinetic energies in these two cases are almost unchanged,
compared to those in cases 3 and 4, where physical viscosity is included. The
inset plot shows that the kinetic energies in cases 1 and 2 decay although these
two cases are inviscid. To further confirm that the decay of kinetic energy is
caused by numerical dissipation, we include finer-grid solutions of cases 2 and
4. Numerical dissipation should be reduced after grid refinement while physical
dissipation should not be changed. As we use half the grid size, the change of
kinetic energy in case 2 (inviscid case) is reduced from 0.1166% to 0.0223%.
Opposite to that, there is no observable difference in case 4 (viscous case) after
refining the grid, indicating that the kinetic energy is dissipated dominantly by
physical viscosity in this case.

We next consider cases 1,2,5, and 6, where cases 5 and 6 include a surface
force and cases 1 and 2 are without a surface force. Mass is again conserved
in the discrete level, as shown in Fig. 7, a), even when the surface force is
included. Fig. 7 ¢) and d) show the change of momentum. Case 6, where the
densities are not matched and there is a surface force, has the most noticeable
momentum reduction in the x direction. However, when compared to its initial
momentum value in the x direction 3.9, the reduction is only 0.0058%, which
is still insignificant. Since there is a surface force in this case, the free energy
appears and Fig. 7 b) shows the time histories of kinetic energy, free energy and
total energy of case 5. We observe that the decrease of kinetic energy corresponds
to the increase of free energy. However, the total energy, which is the sum of
them, decays, and this can be observed more clearly in the inset plot. The same
behavior is obtained in case 6 (not shown). It should be noted that, although
cases 5 and 6 are inviscid, the total energy decay doesn’t result from numerical
dissipation but is actually the property of the Phase-Field model [1]. To confirm
this, results for the finer grid is included, which is almost on top of that of the
default grid.
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Fig.6: Results of horizontal shear layer in Cases 1-4. a) Change of mass,

b) change of kinetic energy, ¢) change of momentum-x, and d) change of
momentum-y with respect to time.

The results shown in this section validate our analysis and discussion about
mass and momentum conservations and energy dissipation in Section 3.4. The
mass is globally conserved in the discrete level and this is independent of the
presence of viscosity or surface forces. The momentum is globally conserved in
the discrete level in the case with matched density and without surface forces. Al-
though global conservation of momentum in the discrete level is not guaranteed
in general because of the term p"+t1Gn+1 in Eq. (71), our numerical experiments
show that the contribution of the non-conservative term is small and because of
that, we claim that the proposed scheme is essentially conservative. The energy
transfer between kinetic energy and free energy is well captured by the scheme
and the total energy is dissipated either by the intrinsic physical dissipation of
the Phase-Field model, or by numerical dissipation, which is usually very small
compared to the physical one.

Steady drop A circular drop is initially at the center of the domain, and the
velocity is zero everywhere. The physical solution is that the pressure gradient
exactly balances the surface tension at the interface so the velocity remains zero
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Fig. 7: Results of horizontal shear layer in Cases 1,2,5,6. a) Change of mass, b)
energy, ¢) change of momentum-x, and d) change of momentum-y with respect
to time.

forever and the interface neither moves or deforms. However, the exact balance
in the physical configuration is numerically unachievable and this numerical
imbalance drives the flow to move, generating the spurious current, which is
unphysical. We will test the performance of the Balanced-Force algorithm in
Section 3.2 and quantify the strength of the spurious current.

The domain size is [1 x 1] and is discretized by cells in the size range 1/16
to 1/128 along each axis. The diameter of the drop is D = 0.4. The free-slip
boundary condition is applied to all the boundaries. The velocity and pressure
are set to be initially zero. The time step size At is 1072 and all the simulations
are stopped at t = 10. We consider, in this case, = 79(h/ho)?? and M =
Mo(n/n0)3/2, where both 7y and hg are 1/32, and My is 10~7. The detailed
discussion about the effects of 7 and M on the convergence behavior is provided
in Section 4.1. The fluid inside the drop is referred to as Fluid 1 with density p;
and viscosity p1, while the one outside the drop is named Fluid 2 with density
p2 and viscosity ps. We consider the effects of density ratio, viscosity ratio and
surface tension, and their convergence behavior under grid refinement. Six cases
are considered, whose material properties are listed in Table 7. Case 0 is a
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Table 7: Material properties in different cases of steady drop

Case ID P1 P2 H1 Ha o
Case 0 1000 1000 0 0 10712
Case 1 1000 1000 0 0 1
Case 2 1000 1000 0.1 0.1 1
Case 3 1000 1 0.1 0.1 1
Case 4 1000 1000 0.1 0.0001 1
Case 5 1000 1000 0.1 0.1 10

numerical check, such that we obtain zero when the input is zero. By comparing
cases 3,4,5 to case 2 respectively, we quantify the effects of density ratio, viscosity
ratio, and surface tension. By comparing case 1 to case 2 we quantify the effect
of viscosity. We use the magnitude of the velocity, i.e., V = vu2 + v2, as the
local strength of the spurious current and then we compute the Lo and L, of
V' with reference value zero, for all the cases. For clear presentation, the results
of case 0 are not shown. Both the Ly and Lo, of V in case 0 are on the order of
10~ for all the cell sizes considered.

The results of case 1 to 5 are shown in Fig.8. We can see that the spurious
current decreases in all the cases as a result of grid refinement, with the conver-
gent rate in between 1st and 2nd order. Case 5, which has the largest surface
tension, produces the largest spurious current, while converges slower at the rate
very close to 1st order. Case 1, which is the inviscid case, has the second largest
spurious current, while converges faster at the rate close to 2nd order. This im-
plies that the physical viscosity helps to suppress the spurious current. The large
viscosity ratio (Case 4) slightly increases the strength of the spurious current,
while the effect of large density ratio (Case 3) is very small. Interestingly, we
obtain the smallest spurious current in Case 3, which includes a large density
ratio. In general, our tests show that the strengths of the spurious current in
cases 1 to 5 are on the same order of magnitude.

Rising bubble: convergence tests We consider the convergence behavior of
the present scheme in a realistic two-phase flow problem, which includes large
density and viscosity ratios, surface tension, and gravity. Since the Phase-Field
model approximates the sharp interface model asymptotically with O(n), due to
grid refinement and by fixing 7, the numerical solution converges to the exact
solution with interface thickness O(n), but not to the sharp interface solution. In
order to converge to the sharp interface solution, which is desired, the parameter
1 must reduce with grid size. In practice, the convergence rate of the numerical
solution from the Phase-Field model to the sharp interface solution with grid
refinement is important. Such a discussion in the Phase-Field community fo-
cuses only on the matched density case, and we have not yet seen any careful
and systematic discussions on the problem of large density and viscosity ratios,
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although it is a common situation in two-phase flows. This section focuses on
addressing this gap in the literature.

We consider the rising bubble case. The domain is [1 x 2] and is discretized
by the cell sizes ranging from 1/16 to 1/256. The no-slip boundary condition
is applied at the top and bottom walls while the free slip boundary condition
is assigned at the left and right walls. A bubble of diameter 0.5 is initially at
(0.5,0.5) and the velocity is zero. The density and viscosity of Fluid 1 inside
the bubble are 1 and 0.1, respectively, while they are 1000 and 10 for Fluid 2
outside the bubble. These lead to a density ratio 1000 and viscosity ratio 100.
The surface tension is 1.96 and gravitational acceleration is g = {0, —0.98}. The
time step size is At = 0.128h and all the computations are stopped at ¢t = 1. We
use three benchmark quantities: the circularity ., the center of mass y. and the
rising velocity v, to quantify our results, and their definitions are as follows:

Pa _ 21/f¢>077d.9

wc = ?b - Ta (80)
c — 1 )
Jo 52402
_ fnv%d()
Ve = Tg, (82)
Jo 2%d

where P, is the perimeter of the circle whose area is identical to the bubble,
and P, is the perimeter of the bubble. The circularity . quantifies the shape of
the bubble. It is 1 when the bubble is a circle, and less than 1 when the bubble
deforms. The center of mass y. and rising velocity v, quantify the dynamics of
the bubble. The sharp interface solution under the same set-up are available in
[29], where either the Level-Set or Arbitrary-Lagrange-Euler method is used and
excellent agreement is reached in the time zone considered. The same benchmark
quantities are defined for the sharp interface method and they are considered as

102
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the reference. If the benchmark quantities at time ¢ are not directly available,
the cubic spline interpolation is used to specify them.

We relate 7 to the cell size h as n = ng(h/hg)X" and relate the mobility M to
n as M = My(n/no)X™, where g = hg = 1/32 and My = 10~7. The exponent
Xn should be less than or equal to 1 so that at least there are the same number
of grid points across the interface during grid refinement. The exponent X,
should be larger than or equal to 1 but smaller than 2, based on the analysis
from Jacqmin [30]. We first consider the effect of x,, on the convergence rate by
fixing xasr = 1 and by choosing x, to be 0, 1/3, 1/2, 2/3, and 1. The results are
shown in Fig.9-Fig.13. When x, = 0, the interface thickness 7 doesn’t change
during grid refinement, we can see that the numerical solutions quickly converge
to the exact solution of the Phase-Field model with parameters n = 7y and
M = M. Since the interface thickness 7 is not reduced, the numerical solutions
are unable to converge to the sharp interface solution. When y, is larger than
zero, we can see that all the numerical solutions converge to the sharp interface
solution during grid refinement. However, the convergence rate is different for
different x,,. For example, the discrepancy between the numerical solution of
Xy = 1/3 and the sharp interface solution is very obvious even with the finest
grid (h = 1/256), while the numerical solution of x, = 1 with the grid size
(h = 1/128) is almost on top of the sharp interface solution. To quantify the
convergence rate, we measure the Lo error of the benchmark quantities, which
are listed in Table 8. For the case where x, = 0, since the numerical solution
does not converge to the sharp interface solution, it does not make sense to use
that as the reference to compute the Ly error. As convergence can be observed,
we use the finest-grid solution as the reference instead for this case. For the other
cases where x, > 0, we use the sharp interface solution in [29] as the reference
solution when computing the Lo error. However, it should be noted that the
reference solution is still a numerical approximation of the exact sharp interface
solution. The computed Ly error includes the error of our Phase-Field solution
and the error of the reference solution. The error of the reference solution is
negligible, compared to the error of our Phase-Field solution, when the grid is
coarse. However, it becomes more significant as our Phase-Field solution gets
closer to the exact sharp interface solution during grid refinement, and, as a
result, interferes the evaluation of the convergence rate. Consequently, we skip
the finest-grid results when evaluating the convergence rate. We observe that the
convergence rate is better than 2nd-order when 7 is fixed and is close to 0.6, 0.9,
1.2 and 1.5 when x,, is 1/3, 1/2, 2/3, and 1, respectively. Next we consider the
case where x, = 2/3 and xa = 3/2, which leads to M ~ h. The results are given
in Fig. 14 and the convergence rates are listed in Table 8, as well. We observe
the convergence to the sharp interface solution in Fig. 14 and both the errors
and the convergence rates have little change, compared to the corresponding one
with xas = 1. This implies that the effect of x; on the numerical solution is
small.

For all the cases that have been discussed, no matter how we choose x;,, the
magnitude of 7 is still on the same order of the grid size h, and our numerical
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Table 8: Results of rising bubble: convergence tests

oigl m=%am=1 | m=3m=1 | m=3m=1 | H=twm=1 n=ham=3 X =L =1
L, Order Ly Order L, Order L, Order L, Order L, Order
i 16 |3.09E-03  2.36 L.I7E-02  0.61 1.34E-02 081 1.52E-02 1.00 1.52E-02 1.00 | 1.93E-02 1.34
32 | 6.02E-04 2.06 7.65E-03 0.61 7.65E-03 0.92 7.65E-03 1.25 7.65E-03 1.25 7.65E-03 1.97
64 | 1.45E-04 2,54 |5.02E-03  0.62 |[4.04E-03 089 |3.22E-03 1.11 3.22E-03 1.11 1.95E-03 1.73
128 | 2.49E-05 3.28E-03 2.19E-03 1.49E-03 1.49E-03 5.87E-04
L, Order L, Order L, Order L, Order L, Order L, Order
16 |3.20E-03  3.27 1.53E-02  0.75 1.77E-02  0.96 | 2.07E-02 1.19 2.07E-02 1.19 | 2.84E-02 1.64
Ye | 32 | 3.30E-04 250 | 9.09E-03  0.63 |9.09E-03  0.93 |9.09E-03 1.23 9.09E-03 1.23 | 9.09E-03 1.82
64 | 5.86E-05 226 |5.86E-03  0.58 [4.77E-03  0.85 |3.88E-03 1.12 3.88E-03 1.12 | 2.58E-03 1.61
128 | 1.22E-05 3.92E-03 2.64E-03 1.78E-03 1.79E-03 8.47E-04
L, Order L, Order L, Order L, Order L, Order L, Order
16 | 6.77E-03 3.07 3.14E-02 0.71 3.59E-02 091 4.15E-02 1.11 4.15E-02 1.11 5.62E-02 1.55
v | 32 | 8.05E-04  1.77 1.91E-02  0.58 1.91E-02  0.83 1.91E-02 1.07 1.91E-02 1.07 1.91E-02 1.52
64 | 2.37E-04 243 1.29E-02 0.48 1.08E-02 0.67 9.12E-03 0.84 9.12E-03 0.84 6.67E-03 1.11
128 | 4.39E-05 9.23E-03 6.78E-03 5.09E-03 5.09E-03 3.08E-03

practice shows this is a good choice for . However, the magnitude of the mobility
depends on M, while there is no clear guideline to specify that. To figure out
the effect of My, we perform a series numerical experiments by fixing x, = 1,
Xa = 1, h = 1/128 and choosing My from 10~* to 10~?. The results are shown in
Fig. 15. We observe that there is little difference between the cases with different
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Fig. 10: Results of the rising bubble with x,, = 1/3 and xas = 1. a) The shape
of the bubble at ¢ = 1, b) the circularity 1. vs. t, ¢) the center of mass y. vs. t,
and d) the rising velocity v, vs. t.

My, and all the cases in Fig. 15 are almost on top of the sharp interface solution.
This implies that the numerical solution is strongly tolerant to the magnitude
of M. This also explain why the effect of x»s on the numerical solution is small.

4.2 Verifications and applications

Three two-phase flow cases are presented to verify the proposed scheme and to
show its capability and possible applications. The first one is the Rayleigh-Taylor
instability, which includes complicated interface evolution. We first verify our
results by comparing them to both the sharp interface and Phase-Field solutions
of density ratio 3, i.e., the Atwood number At = (pp, —p1)/(pr + pi) = 0.5, where
pr is the density of the heavier fluid and p; is that of the lighter one. Next we
show the cases with density ratio 30, 1000, and 3000. Finally, we present the
long-time dynamics of the case with At = 0.5. The second one is the dam break
case, which includes a large density ratio. We verify our scheme by comparing
our result to the experimental data from the water-air interface, and next we
show the result of density ratio 100,000. At the end of this case, we present
the long-time dynamics of the water-air interface. The final one is the rising
bubble with moving contact lines, which includes both large density ratio and
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Fig. 11: Results of the rising bubble with x,, = 1/2 and xas = 1. a) The shape

of the bubble at ¢t = 1, b) the circularity 1. vs. t, ¢) the center of mass y. vs. t,

and d) the rising velocity v, vs. t.

the effect of steady contact angle. Unless otherwise specified, we use n = 0.01
and (AM) = 1077 in all the cases in this section.

Rayleigh-Taylor instability The Rayleigh-Taylor instability is considered as
a benchmark problem for two-phase flows. A heavier fluid (Fluid 1) is initially on
the top of a lighter one (Fluid 2). These two fluids are separated by a horizontal
interface. The interface is unconditionally unstable after it is perturbed. During
the penetration of the fluids, complex interface dynamics is observed due to
the appearance of small-scale flow patterns. The domain considered is [1 x 4]
with the free-slip boundary condition at the top and bottom of the domain
while the periodic boundary condition is imposed at the two lateral boundaries.
The domain is discretized by 128 x 512 cells, and the time step size At is
5 x 10~*/+/At. The material properties are p; = 3, po = 1, gy = p = 0.001,
o =102 and AM = 10~'°. The gravitational acceleration g points downwards
and its magnitude is unity, i.e., g = {0, —1}. The initial horizontal perturbation
is modeled by a sinusoidal wave at y = 2, whose amplitude is 0.1 and wavelength
is 27, and the initial velocity is zero.

We compare our result to those by Ding et al. [17], Guermond and Quar-
tapelle [25], and Tryggvason [63] for verification. The viscosities of the fluids are
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Fig. 12: Results of the rising bubble with x, = 2/3 and xas = 1. a) The shape
of the bubble at ¢ = 1, b) the circularity 1. vs. t, ¢) the center of mass y. vs. t,
and d) the rising velocity v, vs. t.

identical to those in [17,25], while the flow considered in [63] is inviscid. Quan-
titative comparison can be achieved by measuring the transient locations of the
interface at the center and at the lateral edge of the domain, as shown in Fig. 16.
Our result is almost on top of the published one. The snapshots of the interface
at different times are compared against those in [17] in Fig. 17. Both the interface
structure and its temporal evolution agree very well with those in [17]. In addi-
tion, larger density ratios, i.e., 30,1000, and 3000, are explored, whose results are
shown in Fig. 18. As density ratio increases, the interface moves faster while its
evolution is simpler. In addition, the results of density ratio 1000 and 3000 are
almost identical since the Atwood numbers in these two cases are very close to
unity. The long-time dynamics of the Rayleigh-Taylor instability with At = 0.5
(density ratio 3) is shown in Fig. 19, where very complicated interface evolution
can be observed. The mainstream in the middle of the domain is moving down-
ward, transporting the heavier fluid from top to bottom. When the heavier fluid
reaches the bottom wall, it spreads towards the lateral walls and then moves
upward along them. The flow in the middle and in the side of the domain are in
the opposite direction and it further triggers instability, and the expansion and
contraction of the middle fluid column can be observed. As the instability grows,
it interacts with other flow structures or generates small droplets and filaments,
resulting in a sophisticated interface pattern. Despite the complicated interface
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Fig. 13: Results of the rising bubble with x,, = 1 and xas = 1. a) The shape of
the bubble at ¢ = 1, b) the circularity 1. vs. ¢, c) the center of mass y. vs. t,
and d) the rising velocity v, vs. t.

evolution, the numerical solution maintains symmetry. Since the viscous effects,
in this case, is small, the problem reaches equilibrium after a very long time
which is outside our simulation time.

Dam break We perform the Dam break case to verify our scheme for a large-
density-ratio problem, by comparing our numerical result to the experimental
measurements by Martin and Moyce [43].

In the experiment, a water column, which is initially stationary, collapses due
to gravity, after the holding is removed. Martin and Moyce [43] measured the
locations of the front and the height of the water column at different instants,
and scaled them with the initial width of the water column a. The scaled lo-
cations of the front and the height are denoted by Z and H, respectively. The
computational domain is [4a x 2a] and is discretized by 256 x 128 cells. No-
slip/penetration boundary condition is applied at all the boundaries. A square
of water column initially is in [0, a] x [0,a] of the domain, with a = 2.25 inch,
i.e., 5.715cm, and is surrounded by air.

The material properties of water and air are:

— Air: pair = 1.204 kg/m?®, pi45 = 1.78 x 10~°kg/(m - s)
— Water: pyater = 998.207kg/m?, tiypater = 1.002 x 1073 kg/(m - s)
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— Surface tension: o = 7.28 x 1072 kg/s?
— Gravitational acceleration: g, = 0m/s?, g, = —9.8 m/s?.

In this case, the water is labeled as Fluid 1 and the air is labeled as Fluid 2.
The density ratio is about 830 while the viscosity ratio is about 56. We non-
dimensionalize the equations by using the density scale pg;-, the length scale a,
and the time scale y/a/|g,|. We follow the same calibration in [43] that Z = 1.44
when T'= 0.8 and H = 1 when T = 0, where T is the non-dimensionalized time.
Quantitative comparisons of our numerical results to the experimental results
in [43] are shown in Fig. 20. Both the evolutions of the front and the height of
the interface obtained from our scheme agree with the measurements very well
at all times. In addition, the case of density ratio 100,000 is performed for the
same set up to test the capability of the represent scheme dealing with extremely
large density ratios. The evolution of the front and the height from this case are
also plotted in Fig. 20, from where we can see that the interface moves a little
faster than the one for the water-air case. The snapshots of the interfaces for
both cases are shown in Fig. 21. The long-time dynamics of the water-air case is
included in Fig. 22 and we can observe the complicated interface evolution. The
water is pushed to rise on the vertical wall at the right of the domain. Because
of gravity, the rising motion on the wall is slowed down and the water on the
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Fig. 15: Results of the rising bubble with different Mj. a) The shape of the bubble
at t = 1, b) the circularity . vs. ¢, ¢) the center of mass y. vs. t, and d) the
rising velocity v, vs. t.

vertical wall tends to move backward. However, the water at the bottom is still
moving from left to right because of inertia, and as a result, a bump of water
appears on the vertical wall. This bump grows, and finally collapse with the
water at the bottom. After that, a hydraulic jump is generated, moving from
right to left, along with small filaments and droplets. This hydraulic jump hits
the left vertical wall and then the water is pushed to move again to the right.

Rising bubble with moving contact lines This final case includes a large
density ratio, gravity, surface tension force, and moving contact lines, which is
challenging in two-phase flows. An air bubble is released inside a closed water
tank. Because of the buoyancy effect, the bubble moves upward and at the same
time it deforms. A contact line between the water, air, and the top wall appears
after the bubble touches the top wall. The contact line slides along the top wall
with the oscillation of the bubble. As a result, the bubble may touch the lateral
walls.

The material properties of water and air are identical to those in the Dam
break case. We refer to air as Fluid 1 and water as Fluid 2. We non-dimensionalize
the equations with the density scale pg;-, length scale 0.0lm, and the gravita-
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Fig. 16: Locations of the interface of the Rayleigh-Taylor instability with density
ratio 3.

tional scale 1m/s?. The bubble is initially at (0,0.5) with radius 0.25 and the ve-
locity is zero. The computational domain is [—0.5,0.5] x [0, 1.5] and is discretized
using 100 x 150 cells. The no-slip/penetration boundary condition is applied at all
the domain boundaries. Different steady contact angles are assigned at the right,
left, and top walls. We name the cases by “R#L#T#”, where“R”,“L”, and “T”
represent the right, left and top wall of the domain and the numbers following
them denote the steady contact angles (in degree) at those walls, respectively.
We consider 4 cases which are R90L90T90, R30L150T90, R150L120T90 and
R30L60T120. The time step size is 2.5 x 1075.

The selected snapshots of the 4 cases are shown in Fig. 23-Fig. 26. Little
difference is observed in the 4 cases before the bubble touches the top wall.
This is reasonable since the contact angle should not interfere with the dynam-
ics far away from the wall. It can be observed that the bubble begins to rise
because of the buoyancy effect and deforms by horizontally spreading and ver-
tically shrinking. A large curvature at the left and right of the bubble appears
due to the deformation of the bubble. The surface energy is strong due to large
curvatures. To prevent further increase in the surface energy, the bubble expands
vertically while shrinks horizontally. In addition, a surface wave along the inter-
face is formed. When the bubble touches the top wall, some amount of water
is trapped by the bubble and the top wall. Multiple contact lines between the
water, air and top wall begin to move from the center to the lateral walls, due
to the inertia of the bubble.
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Fig. 17: Snapshots of the interface of the Rayleigh-Taylor instability with density
ratio 3. From left to right, tv/ At = 0,1,1.25,1.5,1.75,2,2.25,2.5. a) is from Ding,

et al. [17], and b) is from the present scheme.

R90L90T90, R30L150T90, and R150L120T90 share the same dynamics be-
fore the contact lines reach the lateral walls. In R90L9IOT90 Fig. 23, the bubble
touches both of the lateral walls because of the symmetric set up. A new sur-
face wave propagates and reflects between the centerline of the domain and the
lateral walls. However, the amplitude is attenuated by the viscous effect and the
interface gradually becomes horizontal. Our result of R90L90TI0 is comparable
to those in [22,28], where only the 90° contact angle was considered and the same
behavior was reported. Different from R90LIOT90, the bubbles in R30L150T90
Fig. 24 and R150L120T90 Fig. 25 only touch the lateral wall that has a smaller
steady contact angle. The bubble in R30L150T90 touches the right wall while
the one in R150L120T90 touches the left wall. This is reasonable since, with
a smaller steady contact angle, the attraction between the wall and the air is
stronger. Because of the effect of steady contact angle, the bubbles have different
equilibrate shapes and locations.

Again, different dynamics is observed when we change the steady contact
angle of the top wall from 90° to 120°, which corresponds to R150L120T90 case
in Fig. 25. The bubble is unable to reach either of the lateral walls in this case
so the steady contact angles of the lateral walls are not important. After the
bubble reaches the top wall, it begins to spread and then shrink along the top
wall until its energy is attenuated by the viscous effects.
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5 Conclusions and future works

In the present work, the Cahn-Hilliard Phase-Field model for the incompress-
ible two-phase flow is considered. Three consistency conditions, which are the
consistency of reduction, consistency of mass and momentum transport and
consistency of mass conservation, are proposed. The consistency of reduction
guarantees that the single-phase dynamics can be physically reproduced by the
two-phase model. The consistency of mass and momentum transport guarantees
the physical coupling between the mass and momentum transport. The con-
sistency of mass conservation guarantees that the mass flux follows the mass
conservation equation, which is implicitly defined by the Phase-Field equations
and the density equation. The Navier-Stokes equations are modified by replac-
ing the mass flux m = pu in the inertial term V - (m ® u) of the momen-
tum conservation equation by the consistent mass flux in the continuous level
m = %u + 2522 (up — MVE), which is derived based on the consistency
conditions. Our analysis shows that, in the continuous level, only when the con-
sistent mass flux is used the physical momentum and kinetic energy transport
can be reproduced and their conservation can be satisfied.

Achieving consistency in the discrete level is more involved and is not guar-
anteed by just using the consistent mass flux in the continuous level, without
carefully considering the numerical details. Our analysis illustrates that the same
time discretization schemes for the Phase-Field and the momentum conservation
equations should be used, and the numerical schemes to compute the consistent
mass flux in the continuous level should be identical to the corresponding ones
used in the Phase-Field equation. In addition, the analytical chemical potential
£ in the consistent mass flux should be replaced by the numerical one £* if there
is any. Violations of any of the above mentioned requirements introduce the in-
consistent error proportional to #5722, Thus, satisfying consistency conditions
becomes more significant for large-density-ratio cases, which are very common in
two-phase flows. The consistency of reduction further requires that the numeri-
cal chemical potential £* = 0 when ¢ = 1(—1) and that the discretized V- (Vu)”
to be zero.

The two-phase model, consisting of the Cahn-Hilliard equations and the
Navier-Stokes equations, are discretized on the collocated grid, and a consistent,
essentially conservative and balanced-force numerical scheme is developed. The
consistency in the discrete level is achieved by following our analysis. The Cahn-
Hilliard equations are solved with the help of a numerical chemical potential
&*, which satisfies the consistency of reduction from our analysis. A projection
scheme is constructed to decouple the Navier-Stokes equations, whose formal or-
der of accuracy is 2nd order. The Cahn-Hilliard equations, and the inertial term
and the viscous term in the Navier-Stokes equations are all in their conservative
forms. The corresponding discrete operators are designed to be discretely con-
servative. Specifically, the convective-type operator is discretized by the WENO
scheme[32], while the diffusive-type operator is discretized by the central differ-
ence scheme. Consequently, the momentum transport is not only consistent with
the mass transport, but also conserved in the discrete level by using the proposed
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scheme. We proposed a numerical scheme for the term V- (u(Vu)T) such that it
discretely reproduce the identity V - (Vu)T = V(V - u), which guarantees both
consistency and conservation in the discrete level. However, the pressure gradient
and the surface force derived from the Phase-Field model are discretized by a
balanced-force algorithm[24], which is non-conservative in general. It should be
noted that, away from the interface, the surface force disappears, the density is
constant, and the balanced-force algorithm reduces to the 2nd-order central dif-
ference for the pressure gradient, which is discretely conservative. We conclude
that the Phase-Field function ¢ is conserved in the discrete level, implying the
global mass conservation in the discrete level, while the momentum is conserved
locally in the discrete level in most of the domain except for the location close to
the interface. In addition, the total energy dissipation of the Phase-Field model
in the continuous level can be reproduced by the proposed scheme in the discrete
level.

Various numerical tests have been performed. The manufactured solution val-
idates the formally 2nd-order accurate of the scheme in both space and time. The
large-density-advection case illustrates the significance of achieving consistency
in the discrete level. The interface suffers from unphysical deformation, the pres-
sure fluctuates with large amplitude and the error of the velocity is huge, which
eventually triggers numerical instability, if the inconsistent scheme is used. These
unphysical effects will be magnified if the problem has larger density ratios. On
the contrary, the consistent scheme reproduces the physical solution accurately
even for extremely large density ratios, e.g., 10°, while the inconsistent scheme
can only handle density ratio 103, and its result is totally incorrect. The hori-
zontal shear layer cases are performed to validate the property of the scheme on
mass and momentum conservations and energy dissipation in the discrete level.
From our results, the mass is globally conserved in the discrete level and this is
independent of the appearance of viscosity or surface forces. The momentum is
globally conserved in the discrete level in the case with matched density and with-
out a surface force. Our numerical experiments show that the non-conservation
is tiny even when there are a surface force and a density contrast. The energy
transfer between kinetic energy and free energy is well captured by the scheme
and the total energy is dissipated. The steady drop cases are considered to eval-
uate the performance of implementing the balanced-force algorithm[24] to the
surface force derived from the Phase-Field model. Our results show that the
strengths of the spurious current are small and insensitive to density ratio, vis-
cosity ratio and surface tension, and it converges at the rate between 1st and 2nd
order during grid refinement. Careful and systematic convergence tests are per-
formed based on the rising bubble case including large density ratio (1000), large
viscosity ratio (100), surface tension and gravity forces, which has not yet been
done in the community of using the Phase-Field model for two-phase flows. We
consider the parameters n = no(h/hg)X" and M = My(n/ne)X™, where 1 con-
trols the interface thickness, M is the mobility and h is the grid size. We observe
that our numerical results converge to the sharp interface solution with the rate
about 0.6, 0.9, 1.2 and 1.5 when x, =1/3,1/2,2/3 and 1, receptively. Our tests
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also recommend the magnitude of n to be on the order of the grid size h, while
it shows that the numerical results are insensitive to the magnitude of M. For
verification, the Rayleigh-Taylor instability and dam break are performed and
our results match the published numerical results and/or experimental data. We
also explore the cases with density ratio 3000 in the Rayleigh-Taylor instability
and with density ratio 100,000 in the dam break, which shows the robustness of
the present scheme to deal with practical two-phase problems with large den-
sity ratio. The long-time dynamics of these two cases is also reported, where
complicated interface evolution is observed. The final case considered is the ris-
ing bubble with moving contact lines, which includes a large density ratio and
the effect of contact angle. Our results show that the set up of contact angle
highly influences the dynamics of the bubble after the contact lines are formed.
The equilibrium shape and location of the bubble can be very different under
different set of contact angles.

Despite the popularity and wide-spread applications of the Cahn-Hilliard
Phase-Field model, it should be noted that the intrinsic dynamics of the Cahn-
Hilliard Phase-Field model is not exactly the same as the sharp interface one
because of the unphysical exaggeration of the interface thickness in practice,
and this has been realized, analyzed, and/or discussed in, e.g., [72,37,77] and
the references therein. Fortunately, this difference will finally disappear as the
interface thickness decreases towards zero, and the Cahn-Hilliard Phase-Field
model converges to the sharp interface model. This has been analyzed in [72],
shown through asymptotic analysis [1], [42], and quantitatively validated by our
numerical practices in Section 4.1 and in the Appendix. However, a smaller
interface thickness requires more computational resource so that the interface
region is well-resolved. One attractive future direction is to extend the present
scheme under an adaptive grid refinement and time stepping so that the prob-
lems including a wide range of scales can be accurately and effectively computed.
Another interesting future direction is to apply the analysis and scheme in the
present work to other Phase-Field models that are plausible for two-phase flow
modeling. Some recent studies focus on improving the Cahn-Hilliard Phase-Field
model, for example, Li et al.[39] added a profile correction flux into the Cahn-
Hilliard Phase-Field model and Zhang and Ye [77] proposed a flux-corrected
Phase-Field model, where the tangential diffusive flux is the same as the original
Cahn-Hilliard Phase-Field model while the normal one is replaced by the profile
correction flux in [39]. It should be noted that, although we focus on the Cahn-
Hilliard Phase-Field model in the present work, our analysis doesn’t require
an explicit definition of the chemical potential £. In other words, our analysis
works for any Phase-Field model in the conservative form. As a result, our anal-
ysis and proposed scheme are ready to incorporate to those improvements on
the Cahn-Hilliard Phase-Field model, by simply modifying the definition of the
chemical potential £ and keeping everything the same. Another popular Phase-
Field model is the Allen-Cahn Phase-Field model [3], which is non-conservative
in its original form. Consequently, the model doesn’t conserve mass globally and
as a result, it is not suitable for two-phase flow modeling. However, some modifi-
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cations has been proposed to fix the conservation issue and the modified models
are called conservative Allen-Cahn model. One way to do that is to rewrite the
non-conservative form of the Allen-Cahn Phase-Field model to a conservative
form, e.g., in [14]. Because of the conservative form, it can be considered loosely
as a Cahn-Hilliard model with a different definition of the chemical potential &,
and our analysis in the present work is again valid in this case. Another way is
to add a Lagrange multiplier, e.g., in [33], and a similar idea was applied to the
Cahn-Hilliard model in [66]. In this case, although the analysis in the present
work can not be directly applied, the three consistency conditions proposed in
the present work should again be satisfied when these models are coupled to
fluid flows. Among various Phase-Field models, which one performs the best for
two-phase flow modeling is still an open question, and the answer to this ques-
tion is outside the scope of the present work. Some comparisons were performed
recently by Lee and Kim [37], Zhang and Ye [77] and Soligo et al. [61]. How-
ever, the comparisons in [37], [77] didn’t couple the Phase-Field models with
fluid flows. In [61], although the Phase-Field models are coupled with a flow
solver, the consistency was not considered and the main focus was on matched-
density cases. A valuable future work could focus on quantitative comparisons
of various Phase-Field models for two-phase flows with significant contrasts of
material properties while satisfying the consistency conditions in both continu-
ous and discrete level. We believe these comparisons would be essential to clarify
the pros and cons of different Phase-Field models and to shed light on how to
appropriately select these models for two-phase flows.

In addition to the Phase-Field model, our analysis of consistency in both
continuous and discrete level, and the proposed scheme in the present work can
be potentially applied to the problems including different physical phenomena,
e.g., the complex fluid [70] and the ferro-hydrodynamic [7], and to the sharp
interface model, e.g., the algebraic Volume-of-Fluid method [75].

We conclude that the Phase-Field model considered and the numerical scheme
developed are practical and accurate to study two-phase flows, especially for
those including large density ratios.
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Appendix

Three additional cases, which are the reversed single vortex problem [54], the
Zalesak’s disk problem [74] and the equilibrium drop [18], are included for com-
pleteness.
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In the first two cases, the exact values of the velocity field are known. As a
result, the Phase-Field equation is decoupled from the flow solver, and thus the
consistency conditions, conservation of momentum transport and force balance
are not relevant. These two cases evaluate the performance of the Cahn-Hilliard
Phase-Field model as an interface capturing method.

The third case is performed to validate the effectiveness of the contact angle
boundary condition Eq. (58). An initially semicircular drop moves towards its
equilibrium state, having the assigned steady contact angle 6, at the wall. Since
the contact angle modeling is not the major concern in the present work, we again
refer interested readers to [31,51,73], for understanding this kind of contact angle
boundary condition, to [18,21,6] for more detailed numerical implementations
and validations, and to [16,38] for other possible options of imposing the contact
angle boundary condition.

Reversed single vortex

Following the case set up in [54], we have a domain of size [1 x 1] and there is
a circle initially at (x,,v.) = (0.5,0.75) with a radius » = 0.15. The velocity is
defined from the stream function

1 ., .9 s

s = —sin (mz) sin®(my) cos( T ),
where T' = 2 as that in [54]. The circle stretches by the flow and reaches its
maximum deformation at t = % The flow begins to reverse after that and the
circle should return to its initial location and shape at ¢t = T. The cell size
of each direction is successively decreased from h = 1/25 to h = 1/200, and
CFL = |tu|maz At/h = 0.1. n and M are defined identically as those in Section
4.1 with x, and x s equal to 1. To evaluate the performance of the Phase-Field
model, an error is defined such that

Er=r— \/(xs - mr)2 + (ys - yr)27 (84)

where (z4,ys) are the points at the zero contour of the Phase-Field function,
i.e., ¢(xs,ys) = 0, obtained by the ’contour’ comment in MATLAB. A Ly error
is defined as the root mean square of Er defined in Eq.(84).

Fig. 27 shows the results of the reversed single vortex problem at ¢ = 0,
t = % and t = T. It can be clearly observed that the quality of the numerical
solution is improved and the solution converges to the exact solution, i.e., the
zero contour of the Phase-Field function at ¢ = T is on top of that at ¢ = 0,
for cases with finer grid size. Table 9 shows the Ly error of the problem and the
convergence rate is around 1.5, which is consistent with those in the convergence

tests Section 4.1.

(83)

Zalesak’s disk

Following the case set up in [74], we have a domain of size [1 x 1] and there is
a notched circle initially at (z,,y,.) = (0.5,0.75) with a radius » = 0.15. The
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Table 9: Ly error of the reversed single vortex problem

Grid (h) L, Order
1/25 0.013187 1.536231
1/50 0.004547 1.556466
1/100 0.001546 1.728181
1/200 0.000467

Table 10: Lo error of the Zalesak’s disk problem

Grid (h) L, Order
1/25 0.081624 1.367347
1/50 0.031638 1.872479
1/100 0.00864 2.861625
1/200 0.001189

width of the notch and the distance from the top of the notch to the center of
the circle are both 0.05. The velocity of rigid body rotation is defined from the

stream function )

s = 590[(55 —20)> + (¥ — v0)?, (85)

where ) = 1, and xp = yo = 0.5 as those in [54]. The notched circle is going
to rotate around (zg,yo) without changing its shape. At t = 27, the notched
circle should return to its initial location without any deformation. The cell size
h of each direction is successively decreased from h = 1/25 to h = 1/200, and
CFL = 9At/h = 0.1. n and M are defined identically as those in Section 4.1
with x, and xas equal to 1. To evaluate the performance of the Phase-Field
model, an error is defined such that

Br = \Jler(sit = 2m) — 2y (s: = 0) + [y (st = 2m) —yr(sit = O, (86)

where z7(s;t) and y;(s;t) are cubic spline interpolants at time ¢ from points
(xs,ys) at the zero contour of the Phase-Field function, i.e., ¢(zs,ys) = 0, ob-
tained by the ’contour’ comment in MATLAB, and s is the parameter of the
cubic splines ranging from 0 to 1. When evaluating Eq. (86), s is discretized by
1000 points equally. A Lo error is defined as the root mean square of Er defined
in Eq.(86) and evaluated at the discrete points of s.

Fig. 28 shows the results of the Zalesak’s disk problem at t =0,t=2,t =4
and t = 27. The convergence of the numerical solution to the exact solution can
be obviously observed. The shape of the notched circle is maintained better with
finer cells, and the zero contour of the Phase-Field function at ¢ = 27 is on top
of that at t = 0, after reducing the cell size. Table 10 shows the Lo error of the
problem and the convergence rate is fast, attributing to the lack of deformation
of the notched circle.

Equilibrium drop

Following the case set up in [18], we have a domain [—3,3] X [0,2] and there
is a semicircular drop initially at (z,,y,.) = (0,0) with a radius r = 1. The
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velocity components are all zero at the beginning. The left and right boundaries
of the domain are periodic, while the top and the bottom are considered as walls.
The no-slip and no-penetration boundary condition for velocity is applied at the
walls and a 90° contact angle is imposed at the top wall. Different steady contact
angles 0,, between the drop and the bottom wall, which are 45°,60°,90°, 120°
and 135°, are imposed through the contact angle boundary condition Eq. (58),
although initially the contact angle between them is 90°. The drop will spread
or contract along the bottom wall because of the mismatch between the initial
90° contact angle and the imposed contact angle, and finally the drop should
reach the equilibrium state, where the mismatch disappears.

Since the purpose of this case is to validate Eq. (58), we consider that the
two fluids have the same density 1 and viscosity 1. When the drop is at its
equilibrium state with a contact angle 6, the height of the drop Hy; and the
spreading length Ly, i.e., the length of the drop touching the bottom wall, have
exact solutions [18]

Hy = Ry[l — cos(6,)], (87)

Ld = 2Rd sin(@s), (88)

where

B /2
Ra= T\/Qs — sin(6s) cos(s) (89)

It should be noted that 6, in Eqs.(87, 88, 89) is measured by radian. The surface
tension between the fluids is 100, n is 0.02, and M is determined from the
Peclet number 1.061 x 102 as that defined in [18]. The domain is discretized
by 385 x 128 cells and the time step is At = 5 x 107°. The computations are
stopped at t = 1, which is long enough for the drop to reach its equilibrium state
under different contact angels considered. The numerical height and length of
the drop is measured based on the zero contour of the Phase-Field function,
which is considered as the location of the interface.

Fig. 29 shows the initial and the equilibrium shapes of the drop under differ-
ent contact angles 6. Fig. 30 compares the height and the half spreading length
of the drop, obtained from the numerical result, to the exact solution Egs. (87
and 88), and excellent agreements are achieved.
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Fig.18: Snapshots of the interface of the Rayleigh-Taylor instability with
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0,0.25,0.5,0.75,1,1.25, 1.5, 1.75, 2.
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ratio 3. From left to right, top to bottom, tv/ At is from 2.25 to 8 with 0.25
increment (results of tv/ At from 0 to 2 are in Fig. 18 a) ).
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Fig.27: Results of the reversed single vortex problem. The cell size h of each
direction are a) 1/25, b) 1/50, ¢) 1/100, and d) 1/200. Black thick line: at

t = 0; blue dashed line: at t = %; dash-dotted line: at t = T.
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Fig. 28: Results of the Zalesak’s disk problem. The cell sizeh of each direction are
a) 1/25,b) 1/50, ¢) 1/100, and d) 1/200. Black thick line: at ¢t = 0; blue dashed
line: at t = 2; red-dotted line: at t = 4; yellow dash-dotted line: at t = 2.
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Fig. 30: Results of the height and length of the drop. a) Height of the drop, b)
half length of the drop.
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