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ABSTRACT

Cellular motility is a key function guiding microbial adhesion to interfaces, which is the first step
in the formation of biofilms. The close association of biofilms and bioremediation has prompted
extensive research aimed at comprehending the physics of microbial locomotion near interfaces. We
study the dynamics and statistics of microorganisms in a ‘floating biofilm’, i.e., a confinement with
an air-liquid interface on one side and a liquid-liquid interface on the other. We use a very general
mathematical model, based on a multipole representation and probabilistic simulations, to ascertain
the spatial distribution of microorganisms in films of different viscosities. Our results reveal that
microorganisms can be distributed symmetrically or asymmetrically across the height of the film,
depending on their morphology and the ratio of the film’s viscosity to that of the fluid substrate.
Long-flagellated, elongated bacteria exhibit stable swimming parallel to the liquid-liquid interface
when the bacterial film is less viscous than the underlying fluid. Bacteria with shorter flagella on
the other hand, swim away from the liquid-liquid interface and accumulate at the free surface. We
also analyze microorganism dynamics in a flowing film and show how a microorganism’s ability to
resist ‘flow-induced-erosion’ from interfaces is affected by its elongation and mode of propulsion.
Our study generalizes past efforts on understanding microorganism dynamics under confinement by
interfaces and provides key insights on biofilm initiation at liquid-liquid interfaces.

1 Introduction

Hydrodynamics of swimming microorganisms−a branch of physical sciences with ever-expanding frontiers−has seen
intense research from a host of perspectives, an important one being the study of motility near rigid/fluid surfaces
[1, 2, 3]. The fluid flow around a microorganism swimming near a surface is fundamentally different than that in
an unbounded domain. This difference stems from the fluid dynamic constraints (boundary conditions) imposed by
ambient surfaces which result in a ‘hydrodynamic interaction’ of the microorganism with the surface. It can cause: (i)
a change in the organism’s swimming speed, or, (ii) a change in its swimming trajectory due to an induced rotation,
or, (iii) a drift toward the surface causing surface-accumulation. These physical effects have important consequences
on the near-surface functions of microorganisms, e.g., navigation through confinements, foraging, host invasion,
stress evasion, and nutrient-source-colonization [4, 5, 6]. Knowledge of microbial locomotion near surfaces can thus
drive discovery and inform developments in applications like mammalian fertilisation, control of infectious diseases,
membrane anti-fouling and bacterial bioremediation.

In light of these motivations, a large number of analytical, numerical and experimental studies have been conducted on
the motion of microorganisms near surfaces. These studies focus on the motion of micro-swimmers: (i) near a single
rigid surface [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]; (ii) near a single planar
liquid-liquid interface [29, 30, 31, 32, 33, 27]; (iii) near a single deforming liquid-liquid interface [34, 35, 36]; (iv)
under confinement by two rigid surfaces [37, 38, 39, 40, 41]; or, (v) under confinement by a rigid surface and a free
surface (also called in a film) [42, 43]. Together, these investigations have revealed a fascinating array of swimming
behavior displayed by micro-swimmers in the vicinity of surfaces. Motion near a single rigid/fluid surface has been
categorized as: (i) attraction to rigid walls [39, 10, 11, 14, 15, 25], (ii) attraction to non-deforming [15, 30, 31, 27] and
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deforming [34, 36] interfaces; (iii) swimming in circles with the directionality (clockwise vs. counter-clockwise when
seen from the ‘microorganism side’) being determined by the rigidity/fluidity of the nearby surface [21, 8, 32, 33, 27];
(iv) scattering away from a rigid wall[14, 28] or a free surface [15]; and, (v) swimming at a fixed distance from a nearby
rigid surface [16, 17, 18, 19, 11, 27], a plane, surfactant-laden free surface [32, 33, 27] or deforming free surface [35].
The swimming behavior within a fluid film is generally a combination of the above effects, depending on the swimmer’s
proximity to either confining surface, and is useful in predicting microorganism distribution in biofilms [42, 43].
In addition, an imposed external flow can yield rich swimming dynamics of confined microorganisms, depending
on the strength of the external flow and the swimmer-surface hydrodynamic interactions [44], e.g., (i) ‘trapping’ in
high-shear regions [45, 46], (ii) oscillating across the width of a parallel-plate channel [47, 48], and, (iii) detachment of
‘hydrodynamically attached’ swimmers from a wall due to high external shear [49, 50].

While hydrodynamics-mediated microbial distribution in biofilms resting on rigid substrates has received some attention
[42, 50, 43], there are relatively fewer works which focus on floating biofilms. A floating biofilm is a unique
configuration wherein microorganisms populate a fluid surface instead of a rigid one. It can be idealized as a suspension
of microorganisms in a confinement with an air-liquid interface on one side and a liquid-liquid interface on the other.
These systems, called “films of bacteria at interfaces" [51], are becoming exceedingly relevant in applications like
bioremediation of oil spills [52], emulsion stabilization [53, 54], pathogen control [55] and more fundamental processes
like transfer of organic matter between the surface, the bulk and the substratum in lakes and oceans [56, 6]. Motivated by
these applications, we wish to understand how hydrodynamics influences the distribution of microorganisms in floating
films. Specifically, under what scenarios does hydrodynamics cause the microorganisms to preferentially reside at/near
one of the two (air-liquid or liquid-liquid) confining interfaces? How is this preference affected if the film is flowing?
The answers to these questions will depend on the microorganism’s geometry (shape and propulsion mechanism) and
the physical properties of its surroundings (viscosities of its suspending and underlying fluids, external fluid-flow rates).
Our aim is to develop a mathematical model that allows quantification of microorganism distribution across the height
of the floating film, with consistent treatment of the flow-physics affecting microorganism dynamics. Towards this,
we formulate a problem based on far-field hydrodynamics, stochastic simulation of microorganism trajectories and
computation of their time-averaged spatial distributions. Section 2 introduces the mathematical model, followed by a
description of the solution methodology employed. In Section 3.1 we describe the procedure used to obtain the main
results in this manuscript, with Sections 3.2 and 3.3 discussing microbial dynamics in floating biofilms that are stagnant
and flowing, respectively. Finally, Section 4 summarizes the main results, suggests useful extensions of the present
work and concludes this study.

2 Mathematical Model

The Reynolds number corresponding to swimming microorganisms is small enough to neglect the effects of inertia on
fluid flow and on the motion of the microorganism. The fluid flow is thus governed by the continuity and the Stokes
flow equations. This allows us to use a multipole expansion representation for the swimmer, i.e., we model the swimmer
as a collection of Stokes flow singularities located at its centroid, and use them to evaluate any ensuing hydrodynamic
interactions. The geometry of our problem is explained in Fig. 1. A microorganism of characteristic size a is contained
in a fluid of viscosity µ1 (henceforth called fluid-1), which floats on another fluid of viscosity µ2 (fluid-2). Any point
of interest in the domain is identified by the coordinate x ≡ (x1, x2, x3). The height of the fluid-1 film is H . The
air-liquid (resp. liquid-liquid) interface at x3 = H (resp. x3 = 0) is referred to as A-L (resp. L-L). We assume both the
interfaces to be non-deforming. The microbe’s configuration is uniquely identified by its height above the L− L, z,
and its in-plane orientation, θ. We must note that the system described above is an idealization of a biofilm in that the
fluid-1 is treated as a Newtonian fluid, and biofilms are generally complex structures characterized by a non-Newtonian
environment. However, in this first exploration, we focus on films of bacteria in a Newtonian fluid, which is indeed an
appropriate assumption in some instances [6, 57]. We emphasize that complex interfacial and bulk fluid behavior can
be systematically incorporated into our mathematical model and comment further on this aspect in Section 4.

2.1 Stokeslet in a floating film

We begin by describing the flow produced by a ‘point force singularity’ f, also called a Stokeslet, acting at a position
x = y in fluid-1 in the floating film depicted in Fig. 1. Once the flow due to a Stokeslet is known, we can take
its appropriate derivatives to construct the flow stemming from more complex force distributions characteristic of a
swimming microorganism [14, 58]. The equations governing fluid flow in fluid-1 are:

∇ · u(1) = 0, (1a)

−∇P (1) + µ1∇2u(1) + fδ (x− y) = 0, (1b)
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Figure 1: A schematic of the problem being solved. Shown here is the microorganism located at x = y, along with its
‘images’ at y∗ (w.r.t. the liquid-liquid interface) and at y∗∗ (w.r.t. the air-liquid interface). A− L (resp. L− L) refers to
the air-liquid (resp. liquid-liquid) interface. Note that the e2 component of the swimmer’s orientation has been set to
zero without loss of generality. The vertical distribution of a suspension of non-interacting microorganisms depends on
the morphology of the microorganisms and the viscosity ratio, λ ≡ µ2/µ1, of the fluids involved.

while those in fluid-2 are:

∇ · u(2) = 0, (2a)

−∇P (2) + µ2∇2u(2) = 0, (2b)

where, P (i), u(i) and µi are the pressure, velocity and viscosity, respectively, in the i-th fluid. The fluid velocity fields
u(1) and u(2) must satisfy the continuity of velocity and shear stress at the liquid-liquid interface (L-L):

u(1) = u(2), at x3 = 0, (3a)
e3 · {∆T} · e1 = e3 · {∆T} · e2 = 0, at x3 = 0, (3b)

where, T(i) = −P (i)I + µi
(
∇u(i) +∇u(i),T

)
is the Newtonian stress tensor (I is the identity tensor); and ∆T =

T(1) − T(2). Note that because the interfaces are assumed to be non-deforming, the normal components (i.e., the
components along e3) of u(1) and u(2) must vanish at x3 = 0. In addition, the fluid velocity field u(1) must satisfy the
conditions of vanishing normal velocity and shear stress at the air-liquid interface (A-L):

e3 · u(1) = 0, at x3 = H, (4a)

e3 · T(1) · e1 = e3 · T(1) · e2 = 0, at x3 = H. (4b)

The solution to eqns. 1 to 4 can be obtained by a methodology called the ‘method of images’, the details of which are
given in the Appendix. If we treat the A-L and the L-L as plane mirrors, then we can identify ‘image points’ for the
Stokeslet located at x = y. For example, the points y∗ and y∗∗ in Fig. 1 denote the images of the point y with respect to
the L-L and the A-L, respectively. Furthermore, y∗ (resp. y∗∗) will also have an image with respect to the A-L (resp.
the L-L) and in this way one can identify an infinite number of image positions [59, 42]. The fluid flow due to the
confined Stokeslet is then represented by a superposition of the Stokeslet flow in an unbounded fluid, u

(1)
∞ (x), and the

‘film correction’, uH (x), due to systems of ‘image singularities’ located at the aforementioned image positions. Thus,
we have:

u(1) (x) = u(1)
∞ (x) + uH (x) , (5)
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with,
u(1)
∞ (x) = GOs (x− y) · f, (6)

where GOs (x− y) is called the Oseen tensor, and its tensorial expression is given in eqn. 27 in the Appendix. The
film correction uH (x) is composed of flows due to image singularities, i.e., higher order flow singularities derived
from the Stokeslet flow[60, 61, 62]. In this work, we only obtain an approximate expression for uH (x), as we do not
aim to ascertain the exact flow induced by the microorganism; rather, we are interested in studying the hydrodynamic
interaction of the microorganism with the two interfaces. This interaction depends only on uH (x = y), i.e., on the film
correction evaluated at the position of the microorganism. The major contribution to this flow comes from the first two
images: (i) the image at y∗, taken with respect to the liquid-liquid interface (eqns. 28 and 29), and, (ii) the image at
y∗∗, taken with respect to the air-liquid interface (eqns. 31 and 32). Any higher order ‘image of image’ will always be
further from the microorganism than the images at either y∗ or y∗∗, so the dominant contribution to the hydrodynamic
interactions will always stem from the two images shown in Fig. 1. This is especially true when considering thick fluid
films, i.e., when a/H << 1. Therefore, we approximate the film correction, uH (x), as that due to the first two images
of the Stokeslet:

uH (x) ≈
[
GLL1 (x,y,y∗;λ) + GAL1 (x,y,y∗∗)

]
· f , (7)

where the tensorial expressions for GLL1 and GAL1 are given by eqns. 29 and 32 in the Appendix.

2.2 Higher order multipoles from the Stokeslet

Once the image system for a Stokeslet in a floating film is known (eqns. 7, 30 and 32), we can take its appropriate
derivatives to construct the image systems for more complex force distributions. This is important because we are
modeling the microorganism−and its hydrodynamic interaction with the interfaces−as a distribution of forces that its
appendages exert on the fluid. These can be recovered by writing the multipole expansion form of the flow induced by
the microorganism’s motion [58]. For this, we assume the microorganism to be an axisymmetric prolate spheroid of
major axis length 2a and minor axis length 2b. At a given instant, it is located at x = y, and oriented along the direction
p. The multipole expansion of the flow due to the microorganism can be represented in terms of its contributions in an
unbounded fluid, which involve gradients of the Oseen tensor GOs (x− y), plus correction terms−encoded in a tensor,
say H−stemming from the planar interfaces:

u(1) (x) = uD (x) + uSD (x) + uQ (x) + uR (x) + . . . . (8)

The different terms in the right-hand side of eqn. 8 are given by:

uD

8πµ1
= κ (p · ∇0)

{(
GOs + H

)
· p
}
, (9a)

uSD

8πµ1
= −σ

2
∇2

0

{(
GOs + H

)
· p
}
, (9b)

uQ

8πµ1
= ν (pp : ∇0∇0)

{(
GOs + H

)
· p
}
, (9c)

uR

8πµ1
= τ (p · ∇0)∇0 ×

{(
GOs + H

)
· p
}
, (9d)

where,H is approximated as:

H (x,y,y∗,y∗∗;λ) ≈ GLL1 (x,y,y∗;λ) + GAL1 (x,y,y∗∗) . (10)

Note that all directional gradients in eqn. 9 have been taken with respect to p, which is a manifestation of the
microorganism’s axisymmetry [58]. The absence of any terms proportional to ‘

(
GOs + H

)
· p’ signifies that the

microorganism does not exert any net force or torque on the fluid. The terms in eqns. 9a to 9d are collectively
called the multipoles associated with the fluid flow generated by the microorganism. Specifically, they are termed
the force dipole, the source dipole, the force quadrupole and the rotlet dipole respectively. The coefficients κ, σ, ν, τ
are called the strengths of each of these singularities. Dimensional consistency requires their dimensions to be:
[κ] =[velocity×length2] and [σ, ν, τ ] =[velocity×length3]. Table 1 lists the signs of these coefficients for different
microorganisms. These are estimated based on the physical meaning of each multipole and its relationship with the
microorganism’s morphology, which we discuss next.

Each of the multipoles from eqn. 9 has a specific physical meaning. The force dipolar hydrodynamic interactions are
the leading order effect of microbial swimming. Being force-free, a microorganism exerts equal and opposite forces
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Table 1: The signs of the multipole strengths for different microorganisms, estimated based on their propulsion
mechanism and morphology. The table entries ‘N.A.’ correspond to multipole strengths whose signs can not be
ascertained based on our knowledge of their geometries.

Microorganism κ σ ν τ

E. coli >0 <0 >0 >0
C. reinhardtii <0 <0 N.A. ≈ 0

Volvox ≈ 0 >0 ≈ 0 ≈ 0

V. cholera >0 <0 <0 N.A.
P. aeruginosa >0 <0 >0 N.A.

on its surrounding fluid, which are represented by the force dipole. The sign of the dipole strength, κ, signifies two
fundamentally distinct locomotion strategies. Microorganisms with κ > 0 are called ‘pushers’ because they push
fluid outward along their bodies as they swim, e.g., E. coli and most flagellated bacteria. Exactly opposite to this,
microorganisms with κ < 0 are called ‘pullers’ as they pull fluid inward along their bodies as they swim, e.g., the
bi-flagellated alga C. reinhardtii, the uni-flagellated protozoan parasite L. mexicana. The pushing (resp. pulling) is
achieved by locomotory appendages at the rear (resp. front) of the cell body [1]. The dipole strength for pushers has
been the most well studied multipole for swimming microorganisms [39, 22]. Its value can be estimated from the thrust
force exerted by bacterial flagella, and it can range from 8 to 75 µm3/s based on various thrust force measurements
[63, 64, 39, 22]. This range of values can also be obtained by noting that the force dipole coefficient scales as κ ∼ a2Vs,
where a is the characteristic size of the microorganism (≈ 1 − 10 µm), and Vs is its swimming speed (≈ 10 − 100
µm/s).

The source dipole represents the finite size of a microorganism. Source dipolar hydrodynamic interactions provide a
finite size to the swimmer model by generating a separation of flow into regions inside and outside an impermeable
boundary called the ‘hydrodynamic radius’ of the swimmer [65]. The sign of the source dipole strength represents
ciliated swimmers if σ > 0, and non-ciliated/flagellated swimmers if σ < 0 [14, 42]. While the positive value of the
source dipole strength for ciliated swimmers has indeed been measured for colonial Volvox[66], the same cannot be said
for flagellated microorganisms. However, one can draw a comparison between a cell body ‘pushed’ by a flagellum
and a sphere moving under an external force to estimate the sign of the source dipole for flagellated microorganisms
[14, 42]. Therefore, since a sphere moving under an external force is represented by a Stokeslet and a negative source
dipole, a force-free flagellated swimmer can be assumed to correspond to a negative source dipolar coefficient. The
value of this coefficient can be estimated from the scaling σ ∼ −a3Vs.

The force quadrupole represents the first effects of asymmetric forcing by the microorganism, stemming from an
asymmetry in its shape. One of the primary sources of fore-aft asymmetry in a microorganism is the presence of a
cell body and a flagellum. Thus, the force quadrupolar singularity is often associated with the flows produced by
flagellated swimmers, e.g., sperm[9] and bacteria[14, 42, 50]. To the best of our knowledge, there have not been any
direct experimental measurements of force quadrupolar strengths of flagellated microorganisms. However, numerical
simulations are a useful tool for calculating the quadrupolar strengths for varying morphologies. Simulations of model
flagellated swimmers show that a longer flagellum and relatively smaller cell body correspond to a positive quadrupole
strength, ν > 0, while a large cell body attached to a shorter flagellum corresponds to a negative quadrupole strength,
ν < 0 [14]. We will see in Section 3.2.3 that the results of our multipole analysis−which considers ν > 0 (resp.
ν < 0) for long-flagellated (resp. short-flagellated) swimmers−are consistent with the recent simulations by Pimponi et
al.[31, 43], thus providing further evidence of this relationship between quadrupole strengths and swimmer morphology.
In this way, the sign of the force quadrupole indicates the region of the cell (body plus flagellum) where a greater part
of the propulsive thrust or swimming drag is concentrated. Based on some of the observed geometries of bacterial cells,
an example of a microorganism with ν > 0 could be P. aeruginosa (cell body length ≈ 1 µm; flagellar length ≈ 3.4
µm), while one with ν < 0 could be V. cholera (cell body length ≈ 3 µm; flagellar length ≈ 2 µm) [67, 11]. Just like
the source dipole for flagellated swimmers, the magnitude of the force quadrupole can be estimated from the scaling
ν ∼ a3Vs. This is because both the source dipole and the force quadrupole emerge from different variations of the
second moment of the stresses exerted by the microorganism on the surrounding fluid[65], thus they are expected to scale
similarly. Finally, the rotlet dipole represents the equal and opposite torques that a helically flagellated microorganism
exerts on the fluid [14, 42]. We note here that because we are eventually interested in swimmer distributions transverse
to the floating film, we do not discuss the hydrodynamic effects of the rotlet dipole (eqn. 9d) as it does not yield any
motion in the e3 direction [14, 15, 42].
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2.3 Calculation of the hydrodynamic interactions

The ‘H terms’ in eqn. 9, by definition, denote the hydrodynamic influence of the confinement (L-L and A-L) on the
swimmer-generated flow. This influence results in the swimmer’s translation and rotation. It is quantified by the Faxén
laws for a force-free and torque-free spheroidal particle:

uHI (y,p) = uH (x = y) +O
(
a2/H2

)
,

ΩHI (y,p) =

[
1

2
∇× uH (x) +

γ2 − 1

γ2 + 1
p×

(
EH (x) · p

)]∣∣∣∣
x=y

+O
(
a2/H2

)
,

(11)

where a/H is the characteristic microorganism size normalized by the height of the film, γ = a/b is the aspect ratio
of the microorganism and EH is the rate-of-strain tensor derived from the uH flow. It is very important to note that
in principle, the multipole expansion is a valid description of the flow in the far-field of a swimmer, but remarkably,
experiments (see ref. [39]) and numerical simulations (see ref. [14]) have shown that the multipole-expansion-based
analysis yields accurate results for swimmer-boundary separations as small as one body-length. Also, one could extend
the multipole expansion of eqn. 8 even further, but we restrict ourselves to 4 terms for simplicity, and also because these
terms capture the essential swimmer dynamics and have easily realizable physical significance. Finally, we note that the
only hydrodynamic interactions being considered in our work are that between the swimming microorganisms and the
two interfaces. We are neglecting all swimmer-swimmer interactions in our analysis, i.e., we are studying microbial
dynamics in the dilute regime.

Along with the hydrodynamics-induced drift and reorientation, a microorganism has its own active motility, can interact
sterically with either interface and has a tendency to reorient itself randomly due to structural imperfections. Therefore,
the motion of the microorganism is described by the following coupled, non-linear ordinary differential equations:

dy
dt

= Vsp + uHI (y, p) + Vst,

dp = {ΩHI (y, p)× p + ΩRD × p} dt,
(12)

where the ‘ΩRD’ term corresponds to diffusion induced reorientation of the swimmer with a rotational diffusivity
Dr. The expressions for the e3 component of uHI (y,p), and the e2 component of ΩHI (y,p) have been provided,
singularity-wise, in the Appendix (see eqns. 33 to 38). These are the only hydrodynamic components responsible for
altering the vertical distribution of the swimmers. Vst is the steric-interaction-induced velocity of the microorganism
which prevents it from penetrating into the interface; it is implemented as a hard-core repulsion. Finally, note that
swimmer elongation will result in steric torques upon contact with the interface, but we neglect them in this study as
their influence on the swimmers’ spatial distribution is not very significant.

We conclude this section with a physical discussion of the microorganism’s behavior within the floating film. The
hydrodynamic-interaction effects will be strongest at swimmer-interface separations corresponding to ∼1 swimmer
body-length [39, 22]; beyond these the swimmer motion will be dictated by self-propulsion and rotary diffusion
[40, 48, 3]. Thus, in the present configuration, a swimmer near the center of the film is expected to swim toward one of
the two interfaces, reach close enough to be affected by hydrodynamic interactions and then translate and/or rotate in a
fashion acutely dictated by the type of interface: A-L or L-L, and the morphology of the swimmer: the parameters γ and
κ, σ, ν. The near-interface hydrodynamic interactions can lead to various behaviors which we identify, one singularity
at a time, in the subsequent sections.

3 Results

3.1 Dimensionless parameters and simulation methodology

We render the equations dimensionless by scaling lengths with the film heightH and velocities with the swimming speed
Vs. The key dimensionless parameters in our study are the viscosity ratio, λ = µ2/µ1; the swimmer elongation γ; and
the dimensionless force dipole, κ′ = κ/(H2Vs); source dipole, σ′ = σ/(H3Vs); and force quadrupole, ν′ = ν/(H3Vs)
strengths. An inspection of the scaling for the dimensional multipole strengths {κ, σ, ν} (see Section 2.2) and the
non-dimesionalizing scheme employed by us suggests that the dimensionless source dipole and force quadupole should
be an order of magnitude less than the dimensionless force dipole; and this is how we select the parameter values κ′,
σ′ and ν′ in our simulations. We note that by definition, higher values of λ correspond to a less viscous fluid-film
floating on a more viscous underlying fluid. The symmetry about the azimuthal angle (φ) and along the e1 and e2

directions allows us to study the swimmer motion in terms of only two degrees of freedom: its separation from the
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L-L, z′ = z/H , and its orientation p = (cos θ, 0, sin θ). Therefore, the swimmers in our simulations are effectively
confined to the 2D e1 − e3 plane. We perform probabilistic simulations by integrating eqns. 12 using the explicit Euler
method, for Nb = 1000 swimmers whose initial positions (resp. orientations) are assigned from a uniformly random
distribution between [a/H, 1-a/H] (resp. [0, 2π]). The simulations are run until tend = 100H/Vs, after which we extract
the probability distribution of the time-averaged swimmer position and orientation, Ψ

(
z̄, θ̄
)
, where the over-bars denote

time-averages:

z̄ =
1

tend

tend∫
0

z (t′)

H
dt′, θ̄ =

1

tend

tend∫
0

θ (t′) dt′. (13)

The distribution function is normalized such that,

1

2π

1∫
0

2π∫
0

Ψ
(
z̄, θ̄
)
dθdz̄ = 1, (14)

i.e., Ψ
(
z̄i, θ̄j

)
dz̄dθ ×Nb/(2π) yields the number of swimmers within the bin

[
z̄i ± dz̄, θ̄j ± dθ̄

]
. Our main objective

is to ascertain the time-averaged spatial distribution of the swimmers, F (z̄), toward which we integrate Ψ
(
z̄, θ̄
)

over θ̄,
to obtain,

F (z̄) =
1

2π

2π∫
0

Ψ
(
z̄, θ̄
)
dθ̄. (15)

We also define the ‘fraction’ of swimmers at the L-L (resp. A-L) as F0 (resp. F1), given by,

F0 =

1.1ā∫
0

F (z̄) dz̄, (16a)

F1 =

1∫
1−1.1ā

F (z̄) dz̄, (16b)

where ā = a/H [50]. Once F0 and F1 are known, we can also define a ‘bulk fraction’, Fbulk = 1 − F0 − F1,
denoting the fraction of swimmers that do not accumulate at either interface and stay, on average, within the bulk fluid
film. The quantities mentioned above act as useful indicators of the spatial distribution of swimmers as mediated by
hydrodynamic interactions, self-propulsion and rotary diffusion.

3.2 Microorganisms in a stagnant, floating film

The major results to be reported in this section are: (i) swimmer distribution in the film, and, (ii) difference in swimmer
accumulation at the two interfaces; quantified by: (i) F(z̄), and, (ii) ∆F = F0 −F1, respectively. In our simulations
we take the films to be relatively thick as compared to the swimmer size, i.e., we have a/H = 1/50 << 1. As a result,
the viscosity ratio is expected to significantly alter the swimming behavior near the L-L, but not near the A-L. Thus for a
fixed swimmer geometry, variation in F(z̄) and ∆F with respect to the film viscosity (λ) can be explained on the basis
of hydrodynamic interactions near the liquid-liquid interface itself. The variation F(z̄) and ∆F as a function of the
swimmer elongation (γ) however, will require careful consideration of hydrodynamic interactions near both interfaces.

3.2.1 Force dipolar interactions

It is common knowledge that a force dipole is always attracted to nearby interfaces. Hydrodynamic interactions cause
pushers (resp. pullers) to orient parallel to (resp. perpendicular to, and ‘facing’ toward) a nearby interface and be
attracted to it [30]. This explains Fig. 2 wherein we have almost exclusive accumulation of swimmers at both the
interfaces. There is slightly more accumulation near z̄ ≈ 0 due to nominally stronger hydrodynamic interactions at the
liquid-liquid interface. This behavior depends very weakly on both λ and γ, with F0 = F1 +ε, ε ∼ O(0.01). However,
one does see that pullers (κ′ < 0) accumulate closer to both the interfaces than the pushers (κ′ > 0), for all viscosity
ratios, λ, and elongations, γ (see additional distributions in Fig. 15 in the Appendix). This is because hydrodynamics
causes pullers to orient themselves toward the nearest interface, perpendicular to it; contrary to pushers who orient
parallel to the interfaces. In this way the pullers’ motility acts in conjunction with their hydrodynamic attraction
to enhance their interface accumulation as compared to pushers. We emphasize here that the stronger attraction of
pullers toward a glass surface was recently observed in experiments of V. alginolyticus, albeit for swimming speeds
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larger than 20 µm/s [26]. In this study, we confirm this effect using just the leading order multipole representation of
microorganisms. Thus, dipolar hydrodynamic interactions prove very useful in explaining a salient feature of near
surface swimming.

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

Figure 2: Swimmer distribution in the film, F(z̄), for λ = 10 and γ = 8, for κ′ 6= 0, σ′ = ν′ = 0. The plots are slightly
stretched near z̄ = 0 and z̄ = 1, to clearly show the stronger accumulation of pullers as compared to pushers, near both
interfaces. There is not an appreciable difference between accumulation at the two interfaces, with ∆F ∼ O(0.01).
The maximum value of ∆F is ≈ 0.05, for pullers when the viscosity ratio, λ > 1. These small values of ∆F occur for
a wide range of swimmer elongation, γ, and the normalized film viscosity λ (see Figs. 15 in the Appendix). Diamonds
(resp. circles) denote maximum values of F for κ′ > 0 (resp. κ′ < 0). The value of the dimensionless rotational
diffusivity of the swimmers is Dr/ (Vs/H) = 0.2.

Unlike the distributions in Fig. 2, recent numerical simulations have suggested the existence of significant asymmetry
in bacterial distribution in both thick and thin fluid films resting on rigid substrates [43]. This provides us a motivation
to study the hydrodynamic interactions resulting from higher order multipoles like the effects of the source dipole and
the force quadrupole. We consider these one by one in the subsequent sections to identify key behaviors elicited by
each, and comment on their combined effects at the end.

3.2.2 Source dipolar interactions

The flow due to a source dipole is representative of a ‘neutral’ swimmer, i.e., one that is neither a pusher or a puller (as
its force dipolar contributions are negligible). The first important point to note about source dipolar interactions is the
existence of ‘central oscillations’ for elongated ciliated swimmers (σ′ > 0), as shown in Fig. 3(a-b). It is attributed
to the finite-size-effects of the source dipole, which provides a ‘hydrodynamic repulsion’ by turning the swimmer
away from any surfaces it is about to encounter. This has been extensively detailed in past studies by Mathijssen et
al. [65, 42, 68]. They demonstrated how this ‘hydrodynamic regularization’ effect causes an elongated source-dipole
swimmer to turn away from both a rigid wall and a free surface [42]. They also postulated the use of the source dipole
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Figure 3: (a-b) Swimmer distribution in the film, F(z̄), as a function of λ for γ = 8, for σ′ 6= 0, κ′ = ν′ = 0. (c)
Trajectories for a source dipole swimmer with σ′ = 0.002 and γ = 3. The value of the dimensionless rotational
diffusivity of the swimmers is Dr/ (Vs/H) = 0.2. The trajectories are shown for two different viscosity ratio
values, λ = 0.1, 10. The swimmer orientation p is shown via the arrows. The initial position of the swimmer is
(x′(0), z′(0)) = (0, 0.5), and the initial orientation is, θ(0) = π/4.

to avoid near-singular flows due to model swimmers near walls [68]. This behavior is also consistent with numerical
simulations of model squirmers by Ishimoto and Gaffney [15], wherein they demonstrated the tendency of source-dipole
swimmers/neutral squirmers to rotate and swim away from rigid walls as well as free-slip surfaces after reaching a
distance of closest approach (see also ref. [37]). The ‘fluidity’ of the interface at z′ = 0 does not significantly alter
this oscillatory behavior. An increase in the viscosity ratio λ increases−ever so slightly−the mean height around
which the swimmers oscillate [or, alternatively, the z̄ position corresponding to the peak in F(z̄)]. This can be seen
qualitatively in the sample trajectories of the source dipole swimmers in Fig. 3(c). We also note that the behavior of
elongated non-ciliated swimmers (γ > 1, σ′ < 0) is similar to that for the dipolar swimmers, i.e., there is almost equal
accumulation near both interfaces, irrespective of the viscosity ratio, λ.

A second important concept is the distinctly different spatial distribution for spherical swimmers, depending on the
sign of σ′, as seen in Figs. 4(a-b). Ciliated swimmers (σ′ > 0) accumulate near the A-L while non-ciliated swimmers
(σ′ < 0) accumulate near the L-L, irrespective of the viscosity ratio. We can get useful insights into this behavior
by referring to the deterministic z′(t)− θ(t) phase portraits of the swimmer dynamics, shown in Fig. 4(c-d). Let us
consider the fate of non-diffusing swimmers located initially at the film center, i.e., z′(0) = 0.5, and oriented toward
the L-L, i.e., θ (0) > π. Swimmers with a positive source dipolar coefficient (i.e., ciliated swimmers) heading toward
the liquid-liquid surface at an angle θ(0) = θi > π, are turned away from a minimum-approach height,

z′min ≈
{
σ′

4

(4λ+ 1)

(λ+ 1)

}1/3

. (17)

Eqn. 34 in the Appendix shows that z′min is the height at which the swimmer velocity dz′/dt vanishes, preventing it
from descending any further toward the L-L. The swimmer spends some time at this minimum approach height as it
reorients and eventually swims toward the free surface. Once near the free surface (A-L), the hydrodynamics-induced
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Figure 4: (a-b) Swimmer distribution in the film, F(z̄), as a function of λ for γ = 1, for σ′ 6= 0, κ′ = ν′ = 0. Panel
(a) marks a slight peak near z̄ ≈ z′min, for swimmers with σ′ > 0 (see eqn. 17), by the text ‘entrapment near L-L’.
This corresponds to the small fraction of swimmers that get perpetually trapped at that height. This peak reduces as λ
increases to an extent that it is barely visible for λ = 10 (see Fig. 17 in Appendix). One can also see how inclusion
of rotary diffusion in the dynamics of swimmers with σ′ < 0 (red, dash-dotted lines) causes accumulation only at the
L-L; while excluding rotary diffusion for these swimmers (black, dotted lines) causes accumulation at both at the L-L
and the A-L. (c-d) z′ − θ phase planes for spherical swimmers with non-zero source dipoles, demonstrating how and
why hydrodynamics in conjunction with rotary diffusion causes, (c) ‘top accumulation’ for σ′ > 0, and, (d) ‘bottom

accumulation’ for σ′ < 0. The contour represents the normalized angular velocity, θ̇/
√
θ̇2 + ż′

2
, of the swimmer,

where dots represent time derivatives. Note that for the ciliated swimmer (σ′ > 0), θ̇ = −ΩHIH/Vs ≈ 0 at the distance
of closest approach to the A-L (z′ = 1− (σ′/4)1/3 ≈ 0.92) and the L-L (z′ = z′min; eqn. 17). In all cases with rotary
diffusion, the swimmers’ rotational diffusivity is taken to be Dr = 0.2Vs/H .
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angular velocity of a spherical ciliated swimmer vanishes (see second line of eqn. 37) and it can no longer turn away
from the A-L. In addition, the vertical component of the swimmer velocity also vanishes at a separation of (σ′/4)

1/3

from the free surface (λ → 0 in eqn. 17; see Fig. 5). Thus, a spherical ciliated swimmer approaching the L-L at an
orientation θi > π is rotated away from it, swims toward the A-L, gets vertically trapped there and only swims along
the length of the film at a fixed orientation θf (see trajectories in Fig. 5). This final orientation of the swimmer is related
to the initial orientation, θi, as θf ≈ 2π − θi. Note that for γ > 1 the A-L can also cause hydrodynamics-induced
turning of a ciliated swimmer, leading to the oscillating trajectories discussed in Fig. 3 [42]. The time spent by spherical
swimmers at a separation of z′min from the L-L reduces with an increase in the viscosity ratio, λ, as seen qualitatively in
Fig. 5. This generalizes past predictions of “an extended residence of the swimmer in the vicinity of the free surface
during scattering, compared to a no-slip boundary" [15].
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Figure 5: Deterministic trajectories of spherical source dipole swimmers (σ′ > 0, κ′ = ν′ = 0) in a floating film with
different viscosity ratios λ. It is clear that the time spent by the swimmer close to the L-L decreases as the viscosity
ratio increases. After turning away from the L-L the swimmers accumulate at a final height z′final ≈ 1− (σ′/4)

1/3.
The swimmers’ initial position and orientation are z′(0) = 0.5 and θ(0) = 7π/4, respectively.

How does inclusion of rotary diffusion affect the above-mentioned deterministic dynamics of ciliated swimmers? It can
be seen that introduction of rotary diffusion maintains the tendency to predominantly accumulate near the A-L, except
for one important change: some swimmers get permanently ‘trapped’ at the minimum-approach height. This is marked
by the local maxima at z̄ = z′min in Figs. 4(a,b). The value of the distribution function at this separation, F (z̄ = z′min),
decreases with an increase in the viscosity ratio: from a modest value in Fig. 4(a) to being barely visible in Fig. 4(b)
(see also Fig. 17 in the Appendix). This local maximum exists solely because of rotary diffusion. In the deterministic
case, the swimmmers ‘turn away’ only when θ follows a monotonic reduction from θi to θf . Rotary diffusion causes θ
to change randomly when the swimmer is far from the L-L. This can lead to the swimmers’ vertical velocity (dz′/dt)
becoming zero before they are able to fully turn upward. The swimmers then stay trapped at z′min; although it must be
noted that this trapping is quite different than a fixed point in the z′ − θ phase space, because the swimmers are still
free to rotate.

The behavior of non-ciliated swimmers (σ′ < 0) is acutely affected by a combination of hydrodynamic interactions
and rotational diffusion. Hydrodynamic interactions alone would cause significant accumulation at both interfaces
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[thick, dotted line plot in Figs. 4(a,b)], depending on the initial swimmer orientations. Swimmers with θ(0) < π
accumulate at the A-L (z′ ≈ 1) without changing their angle of approach, while those with θ(0) > π accumulate at
the L-L (z′ ≈ 0) at an angle 3π/2, i.e., pointing toward the L-L. However, as seen in eqn. 37 in the Appendix, the
angular velocity

(
ΩSD
HI · e2

)
vanishes at the A-L for spherical swimmers. So the only source of reorientations at z′ ≈ 1

is rotational diffusion, i.e., the ‘ΩRD’ term in eqn. 12. This can cause the non-ciliated swimmers at the free surface
to eventually point downward, after which they get ‘pulled into’ the stable attractor in the z′ − θ phase plane [see
Fig. 4(d)], leading to accumulation at (z′ ≈ 0, θ = 3π/2). We thus conclude that to accurately estimate the motility of
spherical neutral swimmers near a free surface, it is crucial to consider the effects of rotary diffusion in conjunction
with hydrodynamic interactions, as the latter alone predict drastically different spatial distributions. In addition to the
aforementioned trends of oscillations and asymmetric distributions, we note the small accumulation observed at z̄ ≈ 0
in Figs. 4(a-b), for swimmers with σ′ > 0. This accumulation occurs only for those swimmers whose initial positions
lie within z′(0) < z′min ≈ 5a/H , as is clear from the phase plane in Fig. 4(c). Thus, swimmers within this region
cannot escape into the bulk fluid and end up ‘colliding’ with the liquid-liquid interface. The same effect also explains
the minor peaks around z̄ ≈ 0, 1 in Figs. 3(a-b).

3.2.3 Force quadrupolar interactions
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Figure 6: Swimmer distribution in the film, F(z̄), as a function of λ and γ, for ν′ 6= 0, κ′ = σ′ = 0. Diamonds (resp.
circles) denote maximum values of F for ν′ > 0 (resp. ν′ < 0). The value of the dimensionless rotational diffusivity of
the swimmers is Dr/ (Vs/H) = 0.2.
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Figure 7: z′(t)− θ(t) phase plane for force quadrupole swimmers with (a) ν′ < 0 corresponding to microorganisms
with relatively shorter flagella, and, (b) ν′ > 0 corresponding to microorganisms with longer flagella. The contour

represents the normalized translational velocity, ż′/
√
θ̇2 + ż′

2
, of the swimmer, where dots represent time derivatives.

In panel (b), the hexagrams at z′ ≈ 0.08, θ ≈ 3π/2 show the fixed points near the liquid-liquid interface. These
correspond to the stable swimming regime where the microorganism swims parallel to the interface. All other multipole
coefficients are set to zero and the viscosity ratio is λ = 10. The phase plane diagrams for λ→∞ are quite similar,
thus highlighting the similarities in swimming behavior between our reduced-order model and numerical simulations of
bacteria with cell body and flagella.

The force quadrupolar interactions reveal two fascinating effects which highlight the utility of employing singularity
models for microorganisms. The first effect is the preferential accumulation at the free surface for swimmers having
larger cell bodies and shorter flagella (i.e., ν′ < 0). This is most noticeable for elongated, short-flagellated swimmers in
less viscous films (see Fig. 6(d); recall that λ = µ2/µ1, and µ1 is the viscosity of the fluid in which the microorganism
swims; so less viscous floating films imply λ > 1). The asymmetry between accumulation at the free surface versus
accumulation at the liquid-liquid interface increases with an increase in both the swimmer elongation and the viscosity
ratio. The second important effect revealed by considering force quadrupolar hydrodynamic interactions is the existence
of a stable swimming regime near liquid-liquid interfaces with λ > 1, for elongated swimmers having long flagella (i.e.,
for ν′ > 0). By stable swimming, we mean a regime wherein the microorganism swims parallel to the liquid-liquid
interface at a fixed separation, solely due to hydrodynamic effects. It can be most easily seen in the phase-portraits
in Fig. 7(b). The identification of a stable swimming regime from the plots for F (z̄) requires some comment. The
spatial distribution plots in Figs. 6(a-c) show a maximum in F (z̄) at either z̄ ≈ 0.02 or at z̄ ≈ 0.98. These maxima
correspond to the microorganism being ≈ 1 body length away from either interface, owing to a balance between the
hydrodynamics- and motility-based attraction and steric repulsion. It is only for the plot corresponding to ν′ > 0 in
Fig. 6(d) (blue solid line) that we see a clear maxima at z̄ ≈ 0.08, a separation where the microorganism is not in
contact with the liquid-liquid interface and so steric repulsion is absent. Thus, the peak in concentration at z̄ ≈ 0.08 (for
ν′ > 0, γ = 8, λ = 10) corresponds to a regime of parallel swimming by long-flagellated microorganisms. Interestingly,
this peak corresponding to stable swimming occurs only for slender swimmers in films that are relatively less viscous
(λ > 1).

It is worth noting that numerical simulations of flagellated bacteria swimming in fluid films have also indicated that: (i)
bacteria with shorter flagella (ν′ < 0 in our model) almost exclusively accumulate at the free surface in thick films,
and, (ii) bacteria with longer flagella (ν′ > 0 in our model) either accumulate at the free surface, or swim stably at
a few body lengths from the wall (see Figs. 4A and 2 in ref. [43]). These exact behaviors are seen in Fig. 6(d) as
well, which is intriguing as we manage to replicate these trends while using a much simpler model for microorganism
locomotion. Moreover, our calculations explain that an asymmetry in the propulsive forces exerted by bacteria is the
reason for these varied swimming behaviors. We note here that even though Fig. 6(d) shows the spatial distribution for
viscosity ratio λ = 10, it is not very different from that for λ→∞. The differences in the accumulation characteristics
saturate drastically for λ > 10 and λ < 0.1, as will be seen shortly in Fig. 8. In addition to the similarities of stable near
surface swimming, we observe the absence of any stable swimming regime near the free surface, for any combination
of γ, ν′ (notice that all maxima in F(z̄) near the free surface occur at z̄ ≈ 0.98). Once again this is in agreement with
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simulations by Pimponi et al. for flagellated swimmers [31], and by Ishimoto and Gaffney for spheroidal squirmers [15].
Additionally, our model is able to accurately predict the stable-swimming-height, say h∗, for the elongated swimmer.
In our simulations, h∗ is the location of the maximum value of F(z̄), found at z̄ ≈ 4a/H = 0.08 in Fig. 6(d). This
value of h∗ corresponds to a few swimmer body lengths, and is quite close to that obtained from many other numerical
studies for flagellated bacteria swimming near rigid surfaces [11, 38, 43].

While our multipole model very well predicts several phenomena describing dynamics of bacteria near surfaces, there
also exist some differences between results of the multipole model and numerical simulations considering bacterial
geometries; which does necessitate studies of bacterial propulsion by accounting for details of their morphology
[11]. One major difference is the nature of bacterial orientation at the stable swimming swimming height h∗: our
approach predicts stable swimming of bacteria while they are oriented toward the liquid-liquid interface, but simulations
reveal that bacteria undergo stable near-surface motion while oriented away from the surface. A second important
difference between the multipole model and detailed simulations is that the latter reveal the existence of certain initial
position-orientation pairs (z′(0), θ(0)) which lead to bacteria with longer flagella ‘colliding’ with nearby rigid walls
instead of swimming parallel to them (see ref. [43]). We would also like to emphasize that simulations predict ‘loss’ of
stable swimming when the confinement is increased, i.e., film height is reduced, but our analysis becomes invalid for
this particular regime because higher order effects of ‘images of images’ become pronounced for thin films and the
expression for H used in eqn. 10 loses its applicability. Nevertheless, one can appreciate how multipole models−beyond
the force dipole approximation−capture the many dynamical features displayed by microorganisms swimming near
rigid and free surfaces.

Fig. 8 summarizes the distribution characteristics of force quadrupolar swimmers. In Fig. 8(a), for short-flagellated
bacteria (ν′ < 0), we see that there is monotonic reduction in ∆F with respect to an increase in both the viscosity
ratio and the swimmer elongation. In the extreme case of elongated bacteria (γ = 8) residing in films resting on highly
viscous substrates (λ = 10), the number density at the free surface can be ≈ 80% larger than that at the liquid-liquid
interface. Fig. 8(c), for long-flagellated bacteria (ν′ > 0), also shows that ∆F < 0 in much of the parameter space but
the asymmetry in surface accumulation does not vary substantially; instead there are two regimes of spatial distributions:
(i) nearly symmetric swimmer accumulation characterized by |∆F| ≈ 0.05, and, (ii) no accumulation at the liquid-
liquid interface (z̄ ≈ 0) due to stable swimming near it (z̄ ≈ 4a/H), and a more or less constant accumulation at the
free surface (z̄ ≈ 1) with F1 ≈ 0.2. The former regime is illustrated by the F(z̄) plots for ν′ > 0 in Figs. 6(a-c), while
the latter in Fig. 6(d). Fig. 8(c) demonstrates a fine interplay between the aspect ratio of the swimmer and the film’s
viscosity in ensuring stable swimming near the liquid-liquid interface, as shown by the evident demarcation between
data points with |∆F| ≈ 0.05 and those with |∆F| ≈ 0.20.

We end this section by discussing another application of the force quadrupolar hydrodynamic interactions: their ability
to predict the experimentally observed stable swimming regimes of microorganisms near surfactant-laden free surfaces
[32, 69]. While numerical simulations successfully predict the experimentally observed stable swimming of bacteria
and spermatozoa near solid walls [10, 11, 15], they fail to do so near free surfaces [15, 31, 43]. Experiments on
the other hand do reveal that both bacteria (ref. [32]) and spermatozoa (ref. [69]) exhibit stable swimming even in
the presence of a free surface. The discrepancy between numerics and experiments is attributed to the presence of
surfactant molecules−generated by the bacteria, or added artificially−on the air-water interface [15]. It is well known
that hydrodynamic interactions of swimmers with surfactant-laden interfaces are markedly different than those for
‘clean’ interfaces[32, 30]. In fact, a free surface covered with an incompressible surfactant having high interfacial
viscosity behaves just like a no-slip wall, as far as hydrodynamic interactions are considered[30, 70]. Thus, even though
we haven’t modeled surfactant-laden interfaces in our work, our solution in the limit λ→∞ does correspond to one
special case of a surfactant-laden free surface. Consequently, one can expect a fixed point near a surfactant-laden
free surface in the z′(t), θ(t) phase plane of swimmers with long flagella (ν′ > 0), quite unlike the corresponding
swimmer dynamics near a clean free surface; the latter being the focus of this work. In this way, a relatively simple
multipole expansion up to the quadrupolar term can explain the observations of stable swimming near surfactant-laden
free surfaces based on hydrodynamics alone.

3.3 Microorganisms in a flowing, floating film

Thus far, we discussed how hydrodynamics dictates the spatial distribution of model microorganisms within the stagnant
fluid film of Fig. 1, by separately considering the effects of the fundamental Stokes flow singularities. However, biofilms
also exist under flowing conditions and exposure to fluid flow has been proposed as a means to either prevent biofilm
formation, or erode biofilms whenever their effects are detrimental. We therefore move our attention to flowing (floating)
films in this sub-section, to round up a comprehensive analysis of microbial distribution in interfacial films. The key
modifications in the mathematical model from Section 2 are the addition of an external-flow-induced translational (u(1)

ext)
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Figure 8: Summary of boundary accumulation and bulk fraction, as a function of swimmer elongation (γ) and viscosity
ratio (λ), for force quadrupole swimmers, i.e., for ν′ 6= 0, κ′ = σ′ = 0. The horizontal axis is logarithmically spaced
(with base 2) until λ = 4, beyond which it is linear.

and rotational (Ωext) velocity to the governing equations for swimmer dynamics, i.e., eqns. 12 change to:

dy
dt

= Vsp + uHI (y, p) + u(1)
ext (y) + Vst,

dp = {ΩHI (y, p) + Ωext (y, p) + ΩRD} × p dt,
(18)

where u(1)
ext (y) is a prescribed velocity profile in fluid-1 [hence the super-script ‘(1)’], evaluated at the position of the

microorganism; and,

Ωext =
1

2
∇× u

(1)
ext(y) +

γ2 − 1

γ2 + 1

{
p×

(
E

(1)
ext(y) · p

)}
. (19)

Physically, the external flow ‘carries’ the swimmers along with it; and the velocity gradients in the external flow cause
the swimmers to reorient with a rate that balances their tendency to rotate with the local vorticity component (the
‘∇× uext’ term), and to align with the principal axes of the local extensional flow (the ‘Eext’ term).

We first summarize the influence of external flow on microswimmer motion in a fluid film flowing over a no-slip wall.
The external flow in this case is given by the coating-flow profile:

u(1)
ext (x3;λ→∞) = vmax

x3

H

(
2− x3

H

)
e1, (20)
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where vmax is the magnitude of fluid velocity at the free surface, and is used henceforth as a measure of the external
flow strength. The dynamics can be viewed under two distinct categories: without and with the consideration of
hydrodynamic interactions between swimmers and surfaces. The main result in the first category is that background
flow alone can result in different accumulation behaviors of microswimmers in thin films [50]. A strong external flow
results in swimmers being carried along the flow while ‘tumbling’ continuously in (near-wall) regions of high shear
[red trajectory is Fig. 9(a)]. But for weak external flows, the swimmers spend much more time at the free surface
while occasionally ‘dipping’ toward the rigid no-slip surface [50] [blue trajectory is Fig. 9(a)]. The major results in
the second category hint at a competition between reorientation by external flow−abbreviated herein by Ωmax−and
the attractive nature of the force dipolar hydrodynamic interactions−abbreviated by ΩHI−resulting in two kinds of
behaviors: (i) ΩHI � Ωmax: the external flow barely affects the swimmer distribution, which are akin to Fig. 2; (ii)
Ωmax > Ωcr.max > ΩHI : above a critical flow strength vcr.max ∼ Ωcr.maxH , dipolar swimmers can rotate to get “peeled
off" the rigid substrate with their subsequent behavior dictated by the strength of vmax. For moderate values of vmax
(e.g., vmax = 8Vs), the force dipolar swimmers detach and eventually swim to the A-L [see green trajectory in Fig.
9(b)]. Larger values of vmax (e.g., vmax = 20Vs) significantly delay this rise to the A-L with the swimmers spending
an extended amount of time in the high-shear near-wall regions of the flow. This can be seen in the very gradual upward
drift for the orange trajectory in the inset of Fig. 9(b). The swimmer trajectories corresponding to these behaviors are
shown in Fig. 9. Experimental evidence of fluid shear causing bacterial ‘escape’ from solid surfaces can be found in ref.
[49], while an in-depth discussion of the interplay between motility, external flow and hydrodynamic interactions can
be found in refs. [47, 48, 71, 50].

In our analysis, we present two important generalizations of the aforementioned results: (i) we discuss the significant
differences−both qualitative and quantitative−between flow-induced peeling of spherical pushers and pullers as
compared to elongated ones, and, (ii) we quantify the difference in surface accumulation, ∆F , of pushers and pullers
in a flowing, floating film as a function of external flow strength, vmax/Vs and viscosity ratio λ. To begin with, we
need to obtain an expression for the external fluid flow, and for simplicity we consider a unidirectional flow field. We
‘construct’ the following velocity profiles for fluid-1:

u
(1)
ext (x3;λ)

vmax
= −

[
x2
3

2H2 − x3

H −
l
λ (1 + l/2)

]
[

1
2 + l

λ (1 + l/2)
] e1, (21)

and, for fluid-2:

u
(2)
ext (x3;λ)

vmax
= −

[
x2
3

2H2 − x3

H − l (1 + l/2)
]

λ
[

1
2 + l

λ (1 + l/2)
] e1, (22)

where the super-scripts ‘(1)’ and ‘(2)’ correspond to the external fluid flow in fluids 1 and 2, respectively. l in eqns.
21 and 22 is a ‘decay parameter’ whose value is chosen as l = 5. This means that the velocity in fluid-2 vanishes
at x3 = −5H , i.e., at a distance from the L-L that is five times the thickness of the film. We will comment on the
dependence of our results on l at the end of this section. The expression for Ωext is then given by:

Ωext =
vmax

H

(
1− z

H

)
[1−G cos (2θ)][

1 + 2l
λ (1 + l/2)

] e2, (23)

where G = (γ2 − 1)/(γ2 + 1). The velocity profiles given in eqns. 21 and 22 are plotted in Fig. 10 for two values of
the viscosity ratio. Eqn. 21 reduces to its corresponding coating-flow expression, eqn. 20, upon taking the limit λ→∞,
as shown in Fig. 10. We now work with the dynamical equations 18 and have a new dimensionless parameter, vmax/Vs
quantifying the strength of the background flow relative to the swimmer speed in an unbounded, quiescent fluid. In
what follows, we only discuss the effects of external flow on the force dipole swimmers, i.e., on pullers (κ′ < 0) and
pushers (κ′ > 0). This allows us to use simple physical ideas to explain some of the observed behaviors.

3.3.1 Flow-induced peeling for elongated swimmers

Beyond a critical flow, say vcr.max, spherical dipolar swimmers located near a wall and oriented toward it are rotated
away from the wall and get detached to join the bulk flow [50]. In this section, we extend this analysis to the case of
spheroidal (elongated) dipolar swimmers and identify an important role of swimmer geometry in their tendency to
escape surfaces experiencing strong shear. For the same absolute value of dipole strength, a spherical puller oriented
toward the wall requires a larger external flow to be peeled off in comparison to a spherical pusher [see Fig. 11(a)]. The
equilibrium orientation for a puller trapped at the wall is θ = 3π/2, and so the external flow must work against the
hydrodynamic reorientation for a puller, and rotate it by a critical angle θpullc ≈ π/2 before its eventual escape. On the
other hand, the equilibrium orientation for a pusher trapped at the wall is θ = 0, π. Therefore, even the slightest of
external flows causes a pusher pointing toward the wall to rapidly reorient toward θ = π. Beyond this, a pusher must
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Figure 9: Swimmer trajectories in a film flowing over a rigid wall, with the external flow given by eqn. 20. (a)
Trajectories without inclusion of hydrodynamic interactions (H.I.s), and, (b) trajectories with inclusion of H.I.s for
‘pushers’ with κ′ = 6× 10−3. The starting positions and orientations are: (a) (x′(0), z′(0), θ(0)) = (0, 0.1, π + 0.1),
and, (b) (x′(0), z′(0), θ(0)) = (0, 0.1, π/4). In panel (a), it is important to note the enhanced time spent at the free
surface (resp. near bottom wall) for weaker (resp. stronger) flows. In panel (b) however, this trend is altered due to the
inclusion of H.I.s. The inset in panel (b) denotes how the swimmers can escape the rigid wall at z′ = 0 and be trapped
at the free surface at z′ = 1, under moderate external flow, vmax = 8Vs. The inset also shows how the escape to the
free surface is significantly delayed under strong flows vmax = 20Vs.

rotate by a critical angle θpushc before it overcomes the hydrodynamic attraction toward the wall and swims away. It can
be shown (see ref. [50]) that for spherical dipolar swimmers, θpushc < θpullc , and so spherical pushers pointing toward
the wall require slower external flows to be detached than pullers with the same absolute dipole strength [see Fig. 12(a)].
We have plotted this critical external flow, vcr.max, as a function of dipole strength in Fig. 11 along with the results of ref.
[50] for the sake of completeness.

The dynamics becomes considerably more complex for elongated pushers and pullers, due to the effects of the rate-
of-strain in the fluid, i.e., the ‘E(1)

ext term’ in eqns. 23. The critical flow (vcr.max) required to detach elongated pullers is
now lower than that required for elongated pushers. While the actual value of vcr.max stems from the numerical solution
of the non-linear dynamical equations 18, the reasoning behind this can be physically explained based on the nature
of the stable orientations of elongated pushers and pullers, and the strength of flow-induced-rotation at these stable
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Figure 10: The velocity profiles given by eqns. 21 and 22 for two different viscosity ratios, λ = 2, 10. The thick black
line is the coating flow profile, eqn. 20, obtained for a film flowing over a rigid wall. A reduction in the shear rate near
the L-L with a reduction in λ can be seen clearly.

orientations: Ωext will be strongest for θ = 3π/2 and weakest for θ = π. Therefore, even though a spheroidal pusher
with initial orientation θ(0) = 3π/2 will quickly reorient to θ = π, it will require a much stronger flow in the latter
orientation to overcome the hydrodynamic pull, uHI · e3, and a stronger hydrodynamic reorientation tendency owing
to elongation. A spheroidal puller on the other hand, faces stronger ‘overturning’ due to external flow when it is at
θ(0) = 3π/2, thus making its reorientation to θ = π relatively easier and requiring lower vcr.max than pushers (for same
value of |κ|, of course). These ideas are plotted in Fig. 11(a) and explained schematically in Fig. 12(b).

Fig. 11(b) shows the effect of the ‘fluidity’ of the interface, i.e., the viscosity ratio λ, on the value of vcr.max; wherein we
consider the background flow in fluid-1 to be given by eqn. 21. We consider only spherical, dipolar swimmers in the
analysis, so Ωext is a constant for swimmers near the wall and reduces with a reduction in the viscosity ratio (see eqn.
23, but with z ≈ 0, γ = 1). As expected, larger flows are needed for low values of λ because of the reduced flow-shear
and the concomitant flow-induced rotation (see right panel of Fig. 10). In fact, from the nature of u(1)

ext in eqn. 21 we
can understand that the plots for vcr.max/ (Λ0Vs) vs. κ, where Λ0 =

{
1 + (l2 + 2l)/λ

}
will all collapse onto the curve

corresponding to λ → ∞, γ = 1. One implication of the above discussion is that external flow might not act as an
effective means for the removal of biofilms from a liquid-liquid interface, as compared to its efficacy in biofilm erosion
off rigid surfaces. Finally we comment on the effect of the parameter l, which signifies a dimensionless ‘decay length’
for the flow field in fluid-2. As evident from eqn. 23, larger values of l result in lower external-flow-induced shear and
thus a reduced ability of the external flow to peel swimmers off the L-L, to an extent that for l > 10 the external shear
becomes so weak that the swimmer detachment from the L-L doesn’t occur even for the largest values of vmax/Vs
considered in this study.
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Figure 11: (a) The critical external flow required to detach swimmers off a wall, vcr.max/Vs, as a function of the swimmer
dipole strength, κ, and swimmer elongation γ. Note that vcr.max is higher for spherical pullers (γ = 1, κ < 0) than
for spherical pushers (γ = 1, κ > 0). vcr.max is lower for elongated pullers (γ > 1, κ < 0) than for elongated pushers
(γ > 1, κ > 0). The thick dash-dotted lines represent the analytical estimates for the spherical swimmer case, borrowed
from ref. [50] and the blue circles are the results of numerical calculations from ref. [50]. (b) The critical external flow,
vcr.max/Vs, required to detach spherical swimmers off the liquid-liquid interface as a function of the swimmer dipole
strength, κ, and the viscosity ratio, λ (which is proportional to the inverse of the film viscosity). In both the panels,
κ > 0 (resp. κ < 0) denotes pushers (resp. pullers). The swimmers are initially located near the wall at z′(0) = a/H
and oriented such that θ(0) = 3π/2.
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Figure 12: (a) Schematic depiction of why spherical pushers can escape from a wall at lower values of the critical
external flow, vcr.max. The dotted arrow represents the orientation at which the pusher/puller can swim away from the
wall and escape. The critical angle, θc, by which a spherical dipolar swimmer must turn (before it overcomes the
wall’s hydrodynamic attraction and swims away) is lower for pushers than for pullers. (b) Schematic depiction of why
elongated pullers can escape from a wall at lower values of the critical external flow, vcr.max. The angular velocity due to
the external flow, Ωext, is largest when the swimmer is oriented toward the wall, and the angular velocity due to the
hydrodynamic interactions, ΩHI , is same for any perturbations to the stable swimmer orientation, i.e., θ = 3π/2 (resp.
θ = π) for a puller (resp. pusher). In this way, pullers face a greater ‘overturning’ effect due to the external flow.

3.3.2 Spatial distribution of swimmers in a flowing, floating film

Now that we have ascertained the deterministic behavior of force dipolar swimmers in floating, flowing films, we move
toward quantifying the swimmer distributions stemming from the randomness in their swimming orientations. We are
majorly concerned with the difference in swimmer accumulation at the two interfaces: the quantity ∆F = F0 −F1

defined via eqns. 16. More specifically, we investigate how the hydrodynamic flow signature of a swimmer−which
could be a pusher or a puller−can affect its statistics in a flowing film. We employ the probabilistic simulation technique
described in the beginning of Section 3 but with the more general eqns. 18, including all physical effects that can
influence a microorganism’s trajectory.

Figs. 13(a) and (b) reveal a key difference in the film distribution of elongated pushers and pullers. For low shear at the
liquid-liquid interface (low values vmax/Vs and/or λ) there is a marginally greater accumulation at z′ ≈ 0 for pushers
(0 < ∆F < 0.03), while for pullers the surface accumulation becomes almost symmetric (|∆F| ∼ O(10−4 − 10−3)).
Thus for low shear, pushers show a modest preference toward the L-L, but pullers do not display a strong tendency
to accumulate at either interface. As the external flow increases, both pushers and pullers get peeled off the L-L and
accumulate more at the A-L, i.e., ∆F becomes negative. As the viscosity ratio λ increases, preferential free-surface
accumulation occurs for progressively decreasing values of vmax/Vs, owing to stronger shear at the liquid-liquid
interface for higher λ values [see eqn. 23, also Fig. 11(b)]. Another important difference between the behavior of
pushers and pullers is the extent to which they escape to the free surface, as seen by the ∆F values in Figs. 13(a) and
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Figure 13: Contours showing difference between swimmers ‘trapped’ at L-L and A-L for (a) elongated pushers, and, (b)
elongated pullers, with γ = 3. The other parameters are: |κ′| = 0.02, σ′ = ν′ = 0, Dr = 0.2Vs/H .

(b), respectively. Once swimmer escape from the liquid-liquid interface occurs, the value of ∆F is less negative for
pushers than for pullers. This is simply a reinterpretation of the higher values of vcr.max/Vs for elongated pushers [see
Fig. 11(a)]: all other parameters being fixed, external flow of a prescribed strength is always less likely to aid in the
escape of an elongated pusher than an elongated puller. A final interesting observation that we make, concerning Fig.
13(a), is the change in the sign of ∆F from negative to positive beyond a certain value of vmax/Vs, seen most clearly
for pushers, for λ = 50. This is a reflection of the ‘tumbling’ effect that strong external flow has on swimmers, as shown
in Fig. 9(b), which results in a high-shear-induced residence of swimmers near the liquid-liquid interface. Note that this
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Table 2: A summary of the important behaviors elicited by various far-field representations of a microorganism confined
in a floating fluid film. The pictorial/schematic representation of these results is shown in Fig. 14.

Multipole Sign Physical meaning Key Behavior

Force dipole (κ) >0 Propulsion generated behind the
cell body, a ‘pusher’

Accumulation at both A-L and L-L, but
less tightly than pullers

<0 Propulsion generated in front of the
cell body, a ‘puller’

Accumulation at both A-L and L-L, more
tightly than pushers

Source dipole (σ) >0 Finite sized ciliated microorganism
Preferential accumulation near A-L, ‘entrapment’
near L-L reduces with an increase in the
viscosity ratio

<0 Finite sized flagellated microorganism Accumulation at L-L (resp. L-L and A-L) when
considering (resp. neglecting) rotary diffusion

Force quadrupole (ν) >0 Relatively longer flagellum (compared
to cell body)

Stable swimming near the L-L when the viscosity
ratio, λ >1, and the elongation, γ >1; stable
swimming near surfactant-laden free surfaces

<0 Relatively shorter flagellum (compared
to cell body) Preferential accumulation at A-L

effect occurs more easily for elongated pushers than it does for elongated pullers. For elongated pullers, ∆F becomes
less negative for high values of vmax/Vs and λ, but it does not become positive like it does for elongated pushers.

4 Discussion and Conclusion

The objective of the current work was to investigate how motility and hydrodynamic interactions influence the spatial
distribution of microorganisms in floating fluid films. We approached this problem by utilizing a general multipole-
expansion-based singularity model for the swimming microorganisms and quantifying their hydrodynamic interactions
with the two interfaces via the ‘method of images’. We then performed probabilistic simulations−with the stochasticity
introduced by the swimmers’ rotational diffusion−to obtain statistically significant distributions of the mean swimmer
position across the fluid film. The influence of each multipole singularity was explored in isolation and a number of
interesting swimming behaviors were observed. An important aspect of our analysis was the generalization of past
studies on near-surface swimming. Our simple model yielded many swimming behaviors that were similar to those
seen in more complex numerical simulations and in experiments. This highlighted the value of performing a far-field,
multipole-expansion analysis of swimming motion. The main results of our work are highlighted in Table 2, and shown
pictorially in Fig. 14.

We emphasize here that the result about stable swimming near surfacant-laden free surfaces (for quadrupolar swimmers
with ν > 0) did not require an extra set of calculations, and that it can be based solely on our calculations for λ >> 1
in Section 3.2.3, and the well-known similarity between incompressible surfactant-laden interfaces and rigid surfaces
[30, 72, 70]. It is also important to note that even though we studied each singularity in isolation, the behaviors of
near-surface stable swimming and preferential accumulation at the free surface (described in Section 3.2.3) are robust
to the inclusion of all singularities considered, albeit for certain sets of relative strengths of the singularities. As
long as the force quadrupole strength is assumed to be significant, our model gives good qualitative, and somewhat
quantitative, agreement with many existing simulations of near-wall/near-free-surface swimming of helically flagellated
swimmers [11, 38, 31, 43]. To the best of our knowledge, existing numerical studies of microswimmer dynamics near
non-deforming, clean free surfaces have universally predicted the absence of a stable/parallel swimming regime [15, 31].
As a reconciliation with experimental observations, surfactant-induced hydrodynamic effects have been proposed (see
ref. [15]) as one explanation of the observed parallel swimming regime of flagellated bacteria near free surfaces [32, 27].
If the surfactant effects are modelled as that due to an incompressible surfactant having large interfacial viscosity, then
the force quadrupole model can indeed yield a stable swimming regime near surfactant-laden free surfaces.

While we performed studies near planar interfaces and compared them to numerical simulations under similar situations,
we can also point toward the generality of near-surface motion of bacteria around spherical obstacles. The most
important one being that ‘long-tailed bacteria’ get trapped in hydrodynamic bound states around neutrally buoyant,
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Figure 14: A schematic of the main results in our problem. A − L (resp. L − L) refers to the air-liquid (resp.
liquid-liquid) interface. The morphology of the short-flagellated swimmers resembles the bacterium V. cholera, while
that of the long-flagellated swimmers resembles the bacterium P. aeruginosa. These geometries were obtained from ref.
[67]. The swimming direction is denoted by the thick blue arrows. Notice that the short-flagellated swimmers (ν′ < 0)
accumulate almost exclusively at the A− L; while the long-flagellated swimmers (ν′ > 0) accumulate near the L− L
at a separation h∗. The difference between pushers (κ′ > 0) and pullers (κ′ < 0) can be understood by noting the
flagellar placement relative to the cell body and the direction of swimming, shown by the blue arrows. lpull < lpush
just denotes that pullers accumulate more tightly near any interface, as compared to pushers. For clarity of the figure,
pusher/puller accumulation is shown only near the L− L.

spherical particles; and ‘short-tailed bacteria’ get scattered upon encountering the same spherical particles [73]. If the
spherical particle is large enough in comparison to the swimmer, then, to a first approximation, the analysis of force
quadrupolar interactions in Section 3 is able to predict these behaviors as well. We can even go a step further and
hypothesize the behavior of flagellated swimmers near neutrally buoyant surfactan-laden drops. As an incompressible
surfactant’s ability to cause liquid-liquid interfaces to behave like rigid walls is independent of the viscosity ratio across
the interface, we can make a very general observation: as long as a drop is covered by an incompressible surfactant with
large enough interfacial viscosity, it will act as a passive hydrodynamic trap for bacteria with long polar flagella, i.e.,
they can swim along the drop’s surface for substantial times. This can prove to be a particularly useful observation as it
will provide an interesting incentive for the use of dispersant in the aftermath of oil-spills, with implications in bacterial
bioremediation of heavy oil drops.

The primary motivation of this manuscript was to study microorganism motion in biofilms floating over a base fluid.
The spatial distributions discussed in Figs. 2, 3, 4, 6 and 15 tell us how hydrodynamic interactions can affect bacterial
concentration in different regions of a film and thus either aid in, or desist from colony formation. However, quite
often biofilm formation is accompanied by the bacteria secreting surfactant and other polymeric substances which alter
physico-chemistry of their surroundings, most importantly the bulk and interfacial rheology of the fluids involved. In
this study, as a first step, we treated the fluids to be Newtonian and the interfaces to be clean but useful extensions can
be pursued within the current framework. For example, the effect of interface rheology and more complicated boundary
conditions can be probed via the Fourier-transform-based analysis detailed in refs. [74, 30, 75]. A useful study in
this regard could be drawing equivalence between surfactant-laden interfaces and clean interfaces via identification of
‘effective viscosity ratios’ of the latter, that would help predict swimmer behavior near complex boundaries [76]. The
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effects of the bulk fluid’s rheology−at least in the weakly non-Newtonian limit−can also be accounted for as explained
in refs. [77, 68]. A second level of functional detail that can be added to our analysis is the inclusion of active behavior
by microorganisms. E.g., many biofilms form over nutrient-emanating substrates and thus chemotaxis−directed motion
in search of nutrition[78, 79]−is expected to play an important role in biofilm incipience (see for example, refs. [80, 81]).
Chemotaxis could lead bacteria toward the liquid-liquid interface if fluid-2 were to be a nutrient source, or toward the
free surface in case of, say, aerotaxis (e.g., for B. subtilis) [82, 83]. Yet another form of directed motion, more relevant
for algal biofilms, could be positive (resp. negative) phototaxis toward (resp. away from) light sources [84, 85]. The
multipole representation would allow one to model a variety of microorganisms (by merely tweaking the multipole
strengths in eqns. 9; see Table 1) and the incorporation of active effects would be relatively straightforward in our
individual-based model [86]. It would then be an interesting endeavour to see how the more non-trivial hydrodynamic
interactions listed in this work interact and compete with bacterial chemotaxis or algal phototaxis to dictate colonization
of hot-spots in the numerous scenarios involving films of microorganisms at interfaces [51, 57].

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The authors thank the anonymous referees for their suggestions in improving the quality of this manuscript. This
research was made possible by grants from the Gulf of Mexico Research Initiative and the National Science Foundation
(Grant No. 1700961 and 1604423). This work used the Extreme Science and Engineering Discovery Environment
(XSEDE) [87], which is supported by National Science Foundation grant numbers ACI-1548562 through allocation
TG-CTS180066 and TG-CTS190041. Data are publicly available through the Gulf of Mexico Research Initiative
Information & Data Cooperative (GRIIDC) at https://data.gulfresearchinitiative.org (DOI: 10.7266/2A954ZGZ).

Appendix

Stokeslet in a floating film: details

A formal solution procedure for our model of swimmer dynamics in a floating film begins with the fundamental solution
to the Stokes equations (in fluid-1) perturbed by a point force (called a Stokeslet) at a prescribed position y:

∇ · u(1) = 0, (24a)

∇ · T(1) + fδ (x− y) = 0, (24b)

u(1) (|x| → ∞) = 0, (24c)

where, T(1) is the stress tensor in a Newtonian fluid, given by,

T(1) = −P (1)I + µ1

(
∇u(1) +∇u(1),T

)
, (25)

with P (1) being the fluid pressure, I the identity matrix, the super-script ‘T’ denoting transposition and µ1 is the fluid
viscosity. The linearity of the Stokes flow equations allow us to write the solution of eqn. 24 as:

u(1) (x) = GOs (x− y) · f, (26)

where GOs is the free-space Green’s function for the problem, the well-known Oseen tensor,

GOs (x− y) =
1

8πµ1

(
I

|x− y|
+

(x− y)(x− y)

|x− y|3

)
. (27)

Now, if instead of being in an unbounded homogeneous fluid-1, the point-force is exerted at a distance z from fluid-2,
then one must also solve for the Stoke flow equations in fluid-2 (without the forcing term), subject to the boundary
conditions of continuity of velocity and shear stress at the liquid-liquid interface (L-L), as given in eqns. 3. This problem
(eqns. 24(a,b), 25 and 3) was solved by Aderogba and Blake in ref. [62]. u(1) (x) can be represented as a superposition
of the original force singularity with a system of ‘image singularities’ placed at the ‘image point’ y∗ = y− 2(e3 · y)e3

(see Fig. 1). One can write
u(1) (x) = GOs (x− y) · f + GLL1 (x,y,y∗;λ) · f , (28)
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with,
GLL1 (x,y,y∗;λ) = −Nλ · GOs (x− y∗)

+
{

2Λ1z∇0 (e3·) + Λ1z
2M · ∇2

0

}
GOs (x− y∗) ,

(29)

where ∇0 ≡ ∂/∂y, Nλ ≡ diag. (Λ2,Λ2, 1), with Λ2 = (λ− 1)/(λ+ 1); Λ1 = λ/(λ+ 1); and, M ≡ diag. (1, 1,−1).
Similarly, the flow-field in fluid-2 can also be represented as contributions from singularities placed at y, as u(2) (x) =

GLL2 (x,y;λ) · f , with,

GLL2 (x,y;λ) =
2

1 + λ
R · GOs (x− y) +

2

1 + λ

{
z∇0 (e3·)−

z2

2
∇2

0

}
GOs (x− y) ,

(30)

where R ≡ diag. (1, 1, 0). Therefore, flow-fields given by u(1) (x) =
(
GOs + GLL1

)
· f and u(2) (x) = GLL2 · f will

satisfy the Stokes equations and the boundary conditions in eqns. 3.

One special case of the aforementioned discussion is when the point-force acts near an air-liquid interface (A-L).
Consider now the presence of an A-L at x3 = H , which requires u(1) (x) to satisfy the boundary conditions given in
eqns. 4, indicative of vanishing normal velocity and shear stresses. The solution to eqns. 24(a,b), 25 and 4 is obtained
easily by a slight adjustment and reinterpretation of eqns. 28 and 29. We just need to substitute λ = 0 in eqn. 29 and
note that now the image singularities must lie at y∗∗ = y + 2 {H − (e3 · y)} e3 (see Fig. 1). This yields

u(1) (x) = GOs (x− y) · f + GAL1 (x,y,y∗∗) · f , (31)
with,

GAL1 (x,y,y∗∗) = M · GOs (x− y∗∗) , (32)

The solutions discussed thus far−for a point force near a L-L or an A-L−are exact in terms of satisfying the governing
equations and the appropriate boundary conditions. However, errors are introduced when both these interfaces exist, the
configuration of interest in this work. The errors stem from the fact that the fluid velocity in eqn. 28 does not satisfy the
boundary conditions given in eqn. 4, and the fluid velocity in eqn. 31 does not satisfy the boundary conditions given
in eqn. 3. Therefore, an accurate calculation of u(1) (x) for a Stokeslet under confinement by two interfaces would
require us to obtain successive ‘images of images’ an infinite number of times [59, 42]. However, for the evaluation of
a microorganism’s hydrodynamically induced translational and rotational velocities, we can neglect the effect of the
higher order images as a first approximation, due to reasons mentioned in Section 2.1.

Hydrodynamically induced linear and angular velocities

The swimmer’s hydrodynamically induced translational velocities, for each of the singularities considered in this work,
are:

uDHI · e3

Vs
= − κ′ (3λ+ 2)

8 (λ+ 1) z′2
(
1− 3p2

3

)
+

κ′

4(z′ − 1)
2

(
1− 3p2

3

)
,

(33)

uSDHI · e3

Vs
= − σ′ (4λ+ 1)

4 (λ+ 1) z′3
p3 +

σ′

4(z′ − 1)
3 p3, (34)

and,

uQHI · e3

Vs
=

−ν′

4 (λ+ 1) z′3
{

(9λ+ 6) p3
2 + (−7λ− 4)

}
p3

+
ν′

2(z′ − 1)
3

(
3p3

2 − 2
)
p3;

(35)

while, the swimmer’s hydrodynamically induced rotational velocities are:
ΩD
HI · e2

Vs/H
=

3κ′

8z′3

{
1 +G

λ+ (λ+ 2) p2
3

2 (λ+ 1)

}
p1p3

− 3κ′

8(z′ − 1)
3

(
1 +Gp2

3

)
p1p3,

(36)
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ΩSD
HI · e2

Vs/H
= − 3σ′

8 (λ+ 1) z′4

{
λ+

G

2
(3λ+ 1)

(
1 + p2

3

)}
p1

+G
3σ′

16(z′ − 1)
4

(
1 + p2

3

)
p1,

(37)

and,

ΩQ
HI · e2

Vs/H
=

−3ν′

32 (λ+ 1) z′4
[
{12λ+ 10} p2

3 − 4λ− 2
]
p1

+
−3Gν′

32 (λ+ 1) z′4
[
3 {λ+ 2} p4

3 − 2p2
3 − {11λ+ 4}

]
p1

+
3ν′

16(z′ − 1)
4

[{
5p2

3 − 1
}

+G
{

3p4
3 − p2

3 − 2
}]
p1

(38)

The super-scripts ‘D’, ‘SD’ and ‘Q’ in the above equations refer to the force dipole, source dipole and the force
quadrupole, respectively. Note that uSDHI · e3 in eqn. 34 is proportional to p3, just like the swimmer’s self-propulsion in
the e3 direction, Vsp · e3. This allows a positive source dipolar swimmer’s vertical velocity

(
Vsp + uSDHI

)
· e3 to vanish

close to the L-L at a distance z′min (see eqn. 17), thus resulting in the ‘entrapment’ near the L-L as shown in Figs. 4 and
17. As a check for our derivations, we note that taking the limit λ→∞ in the expressions in eqns. 33 to 38 reduces
them to those derived in ref. [50] for the case of a liquid film (wall at z′ = 0, free surface at z′ = 1). For the force
quadrupolar expressions, uQHI and ΩQ

HI , one must multiply our derivations by −1/2, because of a different definition
of uQ (see eqn. 9c), which has also been used in ref. [14].

Accumulation characteristics: additional information

In Section 3.2.1 we had mentioned that pullers accumulate more tightly near both interfaces, irrespective of the values
of swimmer elongations, γ, and viscosity ratios, λ. This is shown in Fig. 15 for a further set of values. In addition, we
had mentioned that dipolar swimmers do not show a strong preference toward any one interface. Fig. 16 quantifies this
statement, showing that the difference in swimmer accumulation at the two interfaces, ∆F = F0 −F1 (see eqn. 16),
is very small for both pushers and pullers, over a range of values of γ and λ. Figs. 4(a-b) in Section 3.2.2 show the
spatial distribution of source dipolar swimmers. In particular, we saw the existence of local maxima near the L-L, at a
separation of z′min given by eqn. 17. This corresponds to the small fraction (< 10%) of swimmers that get trapped at
this height. Fig. 17 shows how the value of this maxima reduces as the viscosity ratio, λ, increases. A comparison with
the deterministic trajectories of Fig. 5 shows a correlation between a reduction in the swimmers’ retention time and a
reduction in the local maximum values of F (z̄), with an increase in the viscosity ratio.
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