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Abstract: Chiral condensed matter systems, such as liquid crystals and magnets, exhibit a host of 

spatially localized topological structures that emerge from the medium’s tendency to twist and its 

competition with confinement and field coupling effects. We show that the strength of 

perpendicular surface boundary conditions can be used to control the structure and topology of 

solitonic and other localized field configurations. By combining numerical modeling and three-

dimensional imaging of the director field, we reveal structural stability diagrams and inter-

transformation of twisted walls and fingers, torons and skyrmions and their crystalline 

organizations upon changing boundary conditions. Our findings provide a recipe for controllably 

realizing skyrmions, torons and hybrid solitonic structures possessing features of both of them, 

which will aid in fundamental explorations and technological uses of such topological solitons. 

Moreover, with limited examples, we discuss how similar principles can be systematically used to 

tune stability of twisted walls versus cholesteric fingers and hopfions versus skyrmions, torons and 

twistions. 
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I. INTRODUCTION 

As originally introduced, Skyrme’s topological solitons [1–4] describe sub-atomic particles with 

different baryon numbers in nuclear physics. However, similar topologically-protected solitonic 

structures also occur in many other branches of science, ranging from optics to cosmology [5–7]. 

In condensed matter, low-dimensional analogues of Skyrme’s solitons (often called “baby 

skyrmions”) recently attract a great deal of interest in chiral liquid crystals (LCs) and magnets, 

with the latter promising racetrack memory and various spintronics applications, which recently 

fueled an explosive growth of their studies [8–12]. External fields and thin-film confinement are 

widely used to control stability of such topologically nontrivial configurations in both condensed 

matter systems. In addition to the two-dimensional (2D) baby skyrmions, which are most widely 

known [8–16], studies of chiral LC systems revealed various torons, toron-skyrmion hybrids, 

hopfions, heliknotons, twistions and so on [13,17–23]. Similar configurations were also found in 

magnetic systems, though sometimes they were given different names. For example, localized 

structures of elementary torons initially observed in LCs were also found in chiral magnets, 

although there they were called both “torons” [24] and “monopole-antimonopole pairs” [25]. 

When later discovered in magnetic systems, the toron-skyrmion hybrids were referred to as 

“bobbers” [26], whereas twistions have been found only in LCs so far [19,20]. Surface boundary 

conditions were also a useful means of stabilizing structures like hopfions in both LCs and in 

noncentrosymmetric magnets, though they were demonstrated in both experiments and theoretical 

modeling in LCs [20,21] but only in numerical modeling in magnets so far [25,27,28]. Despite the 

well-documented importance of surface boundary conditions [13], their role in stabilizing different 

one-, two, and three-dimensional solitonic LC structures has not been systematically explored so 

far. 
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In this article, we demonstrate that surface anchoring boundary conditions in LCs allow for pre-

defining stability of torons, baby skyrmions, or the topologically trivial unwound state. We 

numerically establish structural stability diagrams, which we validate by means of three-

dimensional imaging of director fields and independent characterization of the strength of 

perpendicular surface boundary conditions. We show that, in addition to chiral interactions, 

confinement and surface interactions help overcoming the constraints of Derrick-Hobart 

theorem [29] by enhancing stability of solitonic configurations. Since many techniques for 

controlling the surface anchoring have been developed by the LC display industry and since the 

toron and baby skyrmion structures can be readily realized under conditions matching those used 

in displays, we foresee that the topological solitons can gain not only fundamental physics 

importance, but also can find applications in new modes of displays and electro-optic devices. 

Moreover, we discuss how the surface anchoring-based means of controlling solitonic structures 

can be extended to other one- and three-dimensional topological solitons and related structures. 

 

II. NUMERICAL METHODS 

A. Free Energy Functional 

To model the LC molecular alignment field 𝒏(𝒓) of solitonic configurations, both Frank-

Oseen and Landau-de Gennes free energy functionals were used for energy minimization. Frank-

Oseen free energy was used for vector fields and orientable director fields (director fields that can 

be dressed smoothly with vectors without introducing extra fictitious singularities) [30]. All 

solitonic structures discussed in this work can be modeled by minimizing the Frank-Oseen free 
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energy, except for the cholesteric finger of the third type (CF-3), where Landau-de Gennes 

modeling is used to properly model singular half-integer defect lines within their structures.  

In Frank-Oseen free energy functional, the bulk energetic cost of deformations in a chiral 

nematic LC reads [20,31] 
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where 𝑝  is the helicoidal pitch and 𝐾II , 𝐾33 , 𝐾//  and 𝐾3J  are the Frank elastic constants 

describing the energetic costs of splay, twist, bend and saddle-splay deformations, respectively. 

When the surface anchoring energy is considered finite and taken into account, Eq. (1) is 

supplemented by the Rapini–Papoular surface anchoring potential [31] 
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Where 𝑊 is the surface anchoring strength and 𝒏T is the easy axis orientation (here chosen to be 

along 𝑧̂). The effective strength of surface anchoring relative to bulk elasticity can be further 

derived by combining Eqs. (1) and (2), and adopting dimensionless units 
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where  𝑟̃ = 𝑟/𝑝, ∇[= 𝑝∇ and 𝐾[II , 𝐾[33 , 𝐾[//  and 𝐾[3J  are reduced elastic constants scaled by the 

average elastic constant 𝐾 ≡ (𝐾II + 𝐾33 + 𝐾//)/3. Equation (3) can be further simplified by 

adopting the one-constant approximation by setting 𝐾II = 𝐾33 = 𝐾// = 𝐾3J = 𝐾  
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In this work, the Frank-Oseen free energy minimization is done for material parameters of 

commonly used commercially available nematics (Table 1) and those under one-constant 

approximation. We also consider the saddle-splay elastic energy and discuss its effect on the 

stability of solitons. The surface term in Eq. (3) shows the effective surface anchoring strength is 

𝑊𝑝/𝐾, the inverse of the extrapolation length 𝜉(≡ 𝐾/𝑊) normalized by 𝑝 [31]. 

 

To account for disorder and half-integer singular defects in LC director fields with head-tail 

symmetry, a tensorial theory with a second-rank 𝑄-tensor 𝑄rs as the order parameter is required. 

In Landau-de Gennes modeling, 𝑄rs is a traceless and symmetric tensor defined as [32,33] 

𝑄rs =
𝑆
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where 𝑆 ∈ [− I
3
, 1] is the uniaxial scalar order parameter quantifying the molecular orientation 

fluctuations, 𝑛r′𝑠 are the 𝑥, 𝑦, 𝑧 components of director 𝒏, and 𝛿rs is the Kronecker delta. The bulk 

free energy is given by [32,33] 
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where 𝐴, 𝐵, and 𝐶 are material parameters with 𝐴 depending linearly on temperature 𝑇, while 𝐵 

and 𝐶 are effectively temperature-independent material constants. Repeated indices in Eq. (6) are 

implicitly summed over. The first integral is the thermotropic free energy and determines the 

equilibrium scalar order parameter in the bulk 𝑆P� =
I
3
�j�
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is the elastic free energy under one-constant approximation of the long-range director distortions 

of a chiral LC. 𝐿 is the elastic constant under one-constant approximation, which can be related to 

the Frank elastic constant as 𝐿 = 2𝐾/9𝑆P�3  and 𝑞T = 2𝜋 𝑝� . The relative magnitude of 

thermotropic and elastic energy terms introduces a characteristic length scale for the variation of 

the scalar order parameter, referred to as the nematic correlation length 

𝜉� = �
𝐿

𝐴 + 𝐵𝑆P� +
9
2𝐶𝑆P�

3
,			(7) 

which is approximately the size of defects. 

 

The surface energy of uniform anchoring in Landau-de Gennes free energy can be written as [33] 

𝐹K'LM}~� =
𝑊
2 Q𝑑

3𝒓\𝑄rs − 𝑄rsT _
3 				(8) 

where 𝑊 is the surface anchoring strength and 𝑄rsT  is the order parameter tensor preferred by the 

surface. Homeotropic (perpendicular) anchoring boundary conditions, which are utilized in our 

experiments, at the confining surfaces are modeled by setting 𝑄rsT =
���
3
\3𝑒r𝑒s − 𝛿rs_, where 𝒆 is 

the surface normal. As with the case in Frank-Oseen free energy, a scaling transformation by 𝑝 

allows the effective anchoring strength to be derived as 𝑊𝑝/𝐿.  

 

B. Energy Minimization 

For solitons to be observed in LCs, they need to be metastable or stable and correspond to local or 

global minima of the total free energy, including both the bulk and surface terms. Energy 

minimization is performed by a variational-method-based relaxation routine which includes the 

boundaries [17,20,21,27]. To minimize the free energy, the field configuration 𝒏(𝒓) (or 𝑄(𝒓)) is 
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updated at each iteration based on an update formula derived from the Euler-Lagrange equation of 

the system. For example, in Frank-Oseen free energy minimization 

𝑛rkP¢ = 𝑛rY(~ −
MSTS
2

[𝐹XYXN(]¥¦				(9) 

where the subscript 𝑖 denotes spatial coordinates, [𝐹XYXN(]¥¦ denotes the functional derivative of the 

total free energy functional with respect to 𝑛r . The functional derivatives for bulk nodes and 

boundary nodes are  
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where 𝒆 is the unit surface normal on the boundary and 𝑓 is the free energy density in the bulk. 

MSTS is the maximum stable time step in the minimization routine, determined by material 

parameters and the spacing of the computational grid [17]. The unit modulus of 𝒏(𝒓) is assured 

by normalization after each iteration. The steady-state stopping condition is indicated by the 

change in the spatially averaged functional derivatives over iterations. When this change 

approaches zero, the system is implied to be in an energy minimum. The Landau-de Gennes free 

energy is minimized based on the same approach. Six independent components of 𝑄 tensor are 

adopted for improved numerical stability and the traceless condition of 𝑄 is then ensured after each 

iteration [33]. 

The Frank elastic constants adopted in the energy minimization are based on those 

independently measured for the nematic hosts (Table 1) [20,21,34]. The 3D spatial discretization 

of the computational volume is performed on large 3D square-periodic grids with 32 grid points 

per one pitch 𝑝 distance equivalent. In Landau-de Gennes modeling, the material parameters are 

𝐿 = 4 × 10jII  N, 𝐴 = −0.172 × 10³  Jm-3, 𝐵 = −2.12 × 10³  Jm-3, and 𝐶 = 1.73 × 10³  Jm-3, 
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corresponding to 𝜉� = 6.63 nm and 𝑆P� = 0.533 [33]. The grid length is 10 nm. In both Frank-

Oseen and Landau-de Gennes modeling, the spatial derivatives are calculated by finite difference 

methods with second-order accuracies, allowing the minimization of discretization-related 

artifacts. Periodic boundary conditions are imposed in lateral directions for simulating both 

individual solitons and soliton crystals. The lateral dimensions were assured to be sufficiently large 

for computer-simulating individual solitons such that distortions fully relax to the far-field 

background on the periphery. 

 

III. MATERIALS AND METHODS 

A. Materials and sample preparation 

LC samples were prepared between two glass substrates, treated with 2 wt% aqueous solution of 

N,N-dimethyl-N-octadecyl-3-aminopropyltrimethoxysilyl chloride to set homeotropic boundary 

conditions on the surfaces with an estimated anchoring strength 𝑊 ≈ 10jJ Jm-2 [35]. To explore 

the relative importance of surface anchoring effects, the substrates were assembled into thin wedge 

cells with no spacers on one side (forming an optical contact to ensure vanishing thickness) and 2 

μm spherical spacers on the other side. A chiral nematic LC was filled into the cells. The chiral 

nematic LCs were prepared by mixing a chiral dopant α, α, α, α-tetraaryl-1,3-dioxolane-4,5-

dimethanol (TADDOL, Sigma-Aldrich) with a commercially available nematic mixture E7 

(Slichem, China) at 2% weight fraction. The resulting chiral LC has a cholesteric pitch 𝑝 ≈ 1 µm 

as measured in a Grandjean–Cano wedge cell [36]. Ferromagnetic LCs are prepared by the same 

procedures, but additionally utilize small volume fractions of barium hexaferrite nanoplates, which 

are dispersed in the LC mixtures [21]. Solitonic structures form spontaneously in the cell upon 

heating to the isotropic phase and quenching back to the nematic phase.  
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Table 1.  

Nematic host 
material 

K11 
(pN) 

K22 
(pN) 

K33 
(pN) 

K (pN) Δ𝑛 

5CB 6.4 3 10 6.47 0.18 

E7 10.8 6.8 17.5 11.7 0.23 

ZLI-3412 14.1 6.7 15.5 12.1 0.078 

ZLI-2806 14.9 7.9 15.4 12.4 0.08 

AMLC-0010 17.2 7.51 17.9 14.2 0.04 
 
Material parameters of nematic LCs. 
 
 

B. 3D nonlinear optical imaging  

The nonlinear optical imaging of 𝒏(𝒓) of solitonic field configurations was performed using a 

three-photon excitation fluorescence polarizing microscopy (3PEF-PM) set-up built around an IX-

81 Olympus inverted microscope [37,38]. E7 LC molecules were excited via three-photon 

absorption by using a Ti-Sapphire oscillator (Chameleon Ultra II; Coherent) operating at 870 nm 

with 140-fs pulses at a repetition rate of 80 MHz [34]. The fluorescence signal was epi-detected 

by using a 417/60-nm bandpass filter and a photomultiplier tube (H5784-20, purchased from 

Hamamatsu). An oil-immersion 100X objective with NA = 1.4 was used. The circular polarization 

state of the excitation beam was achieved using a polarizer and a rotatable quarter-wave retardation 

plate. No polarizers were utilized within the detection channel. The 3PEF-PM involves a third-

order nonlinear process and its intensity scales as cos³ 𝛽, where 𝛽 is the angle between the dipole 

moment of the fluorescent molecule, orienting along 𝒏(𝒓), and the polarization direction of the 

excitation beam [20,34]. The 3D 3PEF-PM images for different polarizations of the excitation 
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light were obtained by scanning the excitation beam through the sample volume and recording the 

fluorescence intensity as a function of 3D scanning coordinates. The images were then post-

processed by background subtraction and contrast enhancement. Imaging artifacts in birefringent 

materials such as beam focusing and polarization changes are minimized due to the small thickness 

of the imaged sample (~1 µm), corresponding to a Mauguin parameter ;¸¥
3¹

≈ 0.1 ≪ 1 (Table 1), 

where Δ𝑛 is the birefringence of the LC and 𝜆 is the wavelength of the excitation light, whereas 

the sample thickness still allows for enough axial resolution to resolve the 3D field 

configurations [37]. Computer simulations of the 3PEF-PM images were based on the ∝ cos³ 𝛽 

dependence of the fluorescence image intensity on the molecular director orientation relative to 

the polarization direction of the excitation light, quantified by the angle 𝛽.  

 

IV. Results 

IV.1. Topology of torons and skyrmions 

We focus on fully non-singular solitonic field configurations of skyrmions and also the 

solitons accompanied by singular point defects (called “Bloch points” in magnetic structures of 

chiral bobbers [26] and torons [24,25]). For unit vector fields, 2D baby skyrmions (skyrmions or 

2D skyrmions hereafter) are the topological solitons labeled by elements of the second homotopy 

group, 𝜋3(𝕊3) = ℤ (𝜋3(𝕊3/ℤ3) = ℤ for nonpolar director fields). The topological degree of a 

baby skyrmion is the skyrmion number that counts the integer number of times the field 

configuration wraps around its target space 𝕊3 , 𝑁K) =
I
J: ∫𝑑𝑥𝑑𝑦	𝒏 ⋅ (𝜕Á𝒏 ⋅ 𝜕Â𝒏) . Figure 1(a) 

shows full skyrmions that cover 𝕊3 exactly once. An elementary toron is such a baby skyrmion 

capped by two point defects at its ends, with their existence mandated by the transformation of 

topology from a skyrmion into the uniform trivial state near the confining substrates [Figs. 1(b) 
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and 1(c)] (note that much more complex types of torons also exist [13,17,20], but they are outside 

of the scope of this work). Technically, elementary torons can be also referred to as skyrmions, 

though these are the fragments of skyrmions terminating on singular point defects characterized 

by the same homotopy group, 𝜋3(𝕊3) = ℤ. Such fragments of skyrmions are common in both LCs 

and magnets, where termination of 2D skyrmions on point defects can be (but is not necessarily) 

related to confinement [13,17,18,20,24–26,39]. The 𝜋3(𝕊3) = ℤ point defects effectively embed 

the 𝜋3(𝕊3) = ℤ skyrmions in a localized region of 3D space, but their topology is that of 2D 

topological solitons terminated on 3D point defects (Fig. 1(c)), different from 3D topological 

solitons like the 𝜋/(𝕊3) = ℤ (or 𝜋/(𝕊3/ℤ3) = ℤ for nonpolar director fields) hopfions recently 

studied in condensed matter systems [20–22,27,28] and the 𝜋/(𝕊/) = ℤ 3D skyrmions in nuclear 

and high energy physics [1–4].  

In LCs, the order-parameter space (target space) of the nonpolar director field 𝒏(𝒓) with 

head-tail symmetry is 𝕊3/ℤ3  (or, equivalently, ℝ𝑃3 ), making LC skyrmions elements of 

𝜋3(𝕊3/ℤ3) = ℤ . However, LC directors can be smoothly decorated with vectors when the 

directors are orientable, with the orientability determined by the topology of the configuration 

space and defects in the field [40]. Experimentally, this vectorizing process physically can 

correspond to dispersing polar nanoparticles, e.g. ferromagnetic nanoplates, in the LC host [Fig. 

2(a)] within a preparation procedure that assures their polar ordering and selection of one of the 

two anti-parallel directions of the nonpolar director field [21]. Considering this, the orientable 

director fields are treated as unit vector fields in this work.  

 

IV.2. Anchoring-controlled stability of torons and skyrmions: numerical analysis 
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In strongly confined chiral LCs with homeotropic boundary conditions at a sample 

thickness 𝑑~𝑝, elementary torons are commonly observed particle-like solitons [Fig. 2(b)] [17,18]. 

Their energy-minimizing field configurations contain two point defects close to the top and bottom 

substrates [Fig. 2 (c)-(e)]. 2D skyrmions with translationally invariant 𝜋3(𝕊3) (𝜋3(𝕊3/ℤ3)) field 

topology along the symmetry axis were also observed when the surface anchoring is softened [13] 

or when the size of the overall structure is reduced [41], though possible inter-transformations 

between elementary torons and skyrmions as a result of confinement and boundary conditions have 

not been systematically considered. We investigate numerically the dependence of structural 

stability of solitonic structures on thickness to pitch ratio (𝑑/𝑝) and effective anchoring strength 

characterized by a dimensionless quantity 𝑊𝑝/𝐾 = (𝜉/𝑝)jI  based on various material 

parameters, including those under one-constant approximation and those of commonly used 

nematic LCs [Fig. 3 (a)-(d) and Table 1]. The initial state of energy minimization is a toron, which 

mimics the experimental condition that such twisted localized configurations form in the bulk upon 

quenching of LCs from isotropic to nematic phase. As shown in Fig. 3(a)-(d), torons are stable 

with respect to translationally invariant skyrmions or other states when the surface anchoring is 

sufficiently strong and the thickness sufficiently thick. At a smaller thickness, torons stability is 

lost with respect to the uniformly unwound state, with the boundary between torons and uniform 

states also dependent on the anchoring strength. 2D skyrmions are stable for weak anchoring. The 

transition between torons and skyrmions happens for 10 ≲ W𝑝/𝐾 ≲ 30, depending on material 

parameters and also on sample thickness. Practically, the transformation of torons to skyrmions 

can occur at cell thickness of tens of micrometers for soft boundary conditions and only for sub-

micrometer-tick cells in case of strong boundary conditions. Stable energy-minimizing field 

configurations of 2D arrays of torons and skyrmions are also stabilized, as shown in Figs. 3 (e)-
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(l), sharing the same stability conditions as their individual localized counterparts. The energies of 

the solitonic states are compared to that of the uniform state, where a yellow (cyan) background in 

Figs. 3(a)-(d) indicates the solitons have lower (higher) energies than the uniform unwound state. 

At a larger thickness and weaker surface anchoring strength, the translationally invariant 

configuration (TIC) [42] is another topologically trivial background state that competes with the 

uniform state and can be of lower energy. Regions with the uniform state or TIC being the lower 

energy state are labeled with filled or unfilled squares, respectively. TIC can also host solitons 

such as skyrmions or torons [43], though a detailed study of such structural configurations is 

beyond the scope of this paper. Figures 3(a)-(d) show that a solitonic 2D skyrmion or toron is the 

lowest energy state within certain parameter regions, out of the non-exhaustive competing states 

considered in this work. An exhaustive ground-state stability diagram analysis could encompass 

all trivial and topological states, including the modulated TIC [42], various cholesteric finger 

textures [42], complex torons and hopfions [20], etc., but this is also beyond the scope of our 

present work.  

The stability of torons, skyrmions and the uniform state can be understood by their 

structures and the frustration between different terms in free energy. For example, the double twist 

skyrmionic structure within torons lowers the system’s energy associated with twist deformations 

as compared to the uniform unwound state. However, the hyperbolic point defects within torons 

involve large elastic distortions and even localized regions of opposite-handedness twist to that of 

the molecular chirality of the bulk LC [19], making them energetically costly. In the strong 

anchoring regime, the existence of singular defects is a result of the presence of strong boundary 

conditions at the substrates, which compels the field configuration to transform from a 2D 

skyrmion in the horizontal midplane and within the sample bulk to the uniform state near the two 
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confining substrates. This transformation is accomplished by a singular defect, which also shows 

a complete coverage of the order-parameter space and a nontrivial 𝜋3(𝕊3) (𝜋3(𝕊3/ℤ3	)) field 

topology on the enclosing surface [Fig. 1(c)].  This structure is a vivid demonstration that 

topologically distinct structures of the skyrmion tube within the LC bulk and the uniform state at 

the cell substrates can be inter-transformed only with the help of the other topologically nontrivial 

configurations, which in this case are point defects. In the weak anchoring regime, the system 

lowers energy by pushing the point defects away from the bulk, and eventually beyond the 

substrates, making them virtual. A toron thus becomes a 2D skyrmion, with its field structure 

translationally invariant along its symmetry axis along 𝑧̂ . A sequence of snapshot of this 

transformation under weak anchoring are shown in Fig. 4. Note that surface defects called “boojum” 

can form as an intermediate state or at suitable bulk and surface energy interplay conditions [44,45], 

as shown in Fig. 4(b). In the strong anchoring regime and with small sample thickness, the surface 

energy dominates and aligns the field along the easy axis, resulting the structures to unwind and 

relax to the uniform state. This also can be understood because twisted structures with twist rate 

given by the equilibrium pitch cannot be embedded at low energetic costs within a sample with 

strong boundary conditions when the pitch is significantly larger than cell thickness.  

The elastic constant anisotropy has a noticeable effect on the stability of different solitons, 

albeit the dependence of stability on thickness and effective anchoring follow the same general 

trend (Fig. 3). In particular, the transition between the uniform state and the toron happens at 

different thicknesses for material parameters of 5CB, E7, and a one-constant approximated system 

(Fig. 3). The thicknesses at which the uniform state loses stability to TIC (𝑑/𝑝 = 1.45 for 5CB, 

𝑑/𝑝 = 1.2 for E7, and 𝑑/𝑝 = 0.5 for a one-constant-approximated LC system), are also markedly 

different. This is due to splay and bend deformations in a one-constant approximated LC system 
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being less penalized as compared to the cases of E7 and 5CB (Table 1) with the twist elastic 

constant significantly lower than the bend and splay constants. Thus, 𝒏(𝒓) is more likely to adopt 

splay and bend deformations within the one-constant-approximation at a smaller thickness in a 

confined geometry, favorable for the stability of torons and TIC. The inclusion of the saddle-splay 

elastic energy in the free energy functional has little effect on stability in the case of E7 when 

taking 𝐾3J = 𝐾33 [Fig. 3(d)]. As a total divergence, the saddle-splay energy can be considered as 

a surface elasticity and renormalizes the surface anchoring strength within the finite-anchoring-

strength modeling considered here [46], though the saddle-splay term also contributes to the 

energetics of point defects within torons. 

 

IV.3. Anchoring-controlled stability of torons and skyrmions: experiments 

To observe experimentally the structural transition between torons, 2D skyrmions, and the 

uniform state, a confined chiral LC is prepared such that the anchoring strength is at the border of 

weak and strong anchoring regimes. Note that the magnitude of the average elastic constant 𝐾 

determines the effective anchoring strength with fixed 𝑊 and 𝑝. Listed in Table 1 are the elastic 

constants of a few commercially available nematics, where 𝐾 can differ by up to a factor of 2. The 

anchoring threshold between strong and weak confinement regimes for E7 is 𝑊𝑝/𝐾 ≈ 20 [Fig. 

3(c)], and 𝐾 ≈ 10 pN (Table 1) and 𝑊~10jJ Jm-2 for strong homeotropic conditions set in the 

experiment. This corresponds to the characteristic pitch 𝑝 ≈ 1 µm at which toron-skyrmion inter-

transformations and coexistence are expected to take place. Therefore, a chiral LC based on E7 

with 𝑝 ≈ 1 µm was filled into a wedge cell, where the thickness varies linearly from zero to 2 µm. 

In the cell region where 𝑑 ≈ 1 µm, torons, 2D skyrmions and even hybrid structures of torons and 

skyrmions were observed (Figs. 5-7). The distribution of torons and skyrmions were correlated 
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with the cell thickness. In regions with 𝑑 ≳ 1 µm, torons prevail and 2D translationally invariant 

skyrmions were rarely observed. Cholesteric fingers start to grow as 𝑑 further increases to be 

substantially larger than 1 µm. As 𝑑 decreases, torons disappear and 2D skyrmions emerge instead. 

This is consistent with the thickness dependence of structural stability between torons and 2D 

skyrmions near the anchoring threshold for the same material shown in Fig. 3(c). At even smaller 

thickness, 𝒏(𝒓) becomes completely unwound and homeotropic. This is because of the initial state 

forming after thermal quenching being thickness-dependent, favoring the unwound state at smaller 

thicknesses, as discussed above. 

The polarizing optical micrographs and 3D nonlinear optical images reveal the detailed 

structural difference between torons, 2D skyrmions and hybrid structures (Figs. 5-7). Torons 

contain the two point defects near the substrates (Fig. 6), which are revealed by the 3D nonlinear 

optical imaging (Fig. 6(d),(e)), whereas a 2D skyrmion is translationally invariant throughout the 

sample thickness (Fig. 5). The polarizing optical micrographs also show distinct patterns that allow 

for distinguishing between a toron and a 2D skyrmion when co-existing under the same sample 

conditions on the basis of the accumulated phase retardation resulting from their respective 3D 

director distortions.  In experiments, local variation in the coated alignment layer can cause the 

anchoring strength to be asymmetric on the two substrates, along with thermal fluctuations, 

resulting in only one of the point defects escaping. This gives origins to the toron/skyrmion hybrid 

structure shown in Fig. 7. Such toron/skyrmion hybrid structures are also observed in solid-state 

chiral magnets where they are referred to as “bobbers”, stabilized by an applied magnetic field in 

the conical state [26]. Importantly, the relative stability of torons, skyrmions and their hybrids 

corelates with the numerical stability diagrams for different studied materials (Fig. 3). While the 

experiments discussed above focused on relatively thin cells and rather strong perpendicular 
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anchoring of 𝑊~10jJ Jm-2, much softer perpendicular boundary conditions are often also used in 

experiments with 𝑊~10jÉ − 10j³  Jm-2, often allowing for the realization of translationally 

invariant 2D skyrmion and skyrmion bag structures in cells of larger thickness [13,47,48], 

consistent with the structural stability diagrams presented in Fig. 3. 

 

IV.4. From two- to one-dimensional topological solitons: twisted walls versus fingers 

The existence of singular defects capping the ends of a 2D topological soliton (the baby 

skyrmion) within the elementary toron is a result of stitching together distinct topological states of 

skyrmion and the uniform state. Equally, this also is the result of geometrical frustration between 

bulk (favoring the twisted skyrmion) and surface (favoring uniform state) free energy terms when 

a lower-dimensional 2D soliton is embedded in a higher-dimensional 3D space with strong 

boundary conditions. In particular, when a 2D skyrmion is embedded in the 3D space, strong 

perpendicular boundary conditions require uniform states at the surfaces. Therefore, the skyrmion 

terminates at singular defects which serve the purpose of mediating the transformation between 

topologically distinct bulk and surface states, forming a toron. The point defects are classified by 

the same 𝜋3(𝕊3) (𝜋3(𝕊3/ℤ3))	topology as the 2D skyrmion, even though the singular points are 

very different objects from the baby skyrmions. Could a similar situation arise for co-existence of 

solitonic and singular topological structures in other dimensions, say for the 1D topological 

solitons, which require only ℝI	to exist, confined/embedded in ℝ3	or	even	in	ℝ/? 

In condensed matter systems like LCs and magnets, the solitonic wall structures are rather 

common [31,41,49,50]. Moreover, twisted walls in these condensed matter systems can be 

stabilized by the medium’s chirality, similar to that of twisted skyrmions studied above [41]. To 

embed the solitonic twisted walls in the uniform far-field background for unit vector fields, only 
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an integer numbers of 2p-twist of this unit vector field can be smoothly embedded, which is 

characterized by the 𝜋I(𝕊I) = ℤ homotopy group. The situation is different in nonpolar LCs, 

where integer numbers of p-twist can be embedded in the nonpolar far-field background of the LC 

director [Fig. 8(a)]. Within the solitonic LC twisted wall, the nonpolar directors 𝒏(𝒓)	 are 

effectively confined in a 2D plane [Fig. 8(b)] and the order-parameter space is 𝕊I/ℤ3 , or, 

equivalently, the real projective line ℝ𝑃I. Topologically, ℝ𝑃I (or 𝕊I/ℤ3) is homeomorphic to a 

circle, the 1D sphere 𝕊I [Fig. 8(c)], and therefore the first homotopy group of ℝ𝑃I is effectively 

the first homotopy group of 𝕊I, 𝜋I(𝕊I) = ℤ. A 𝜋 rotation in the elementary solitonic LC twisted 

wall covers the 𝕊I/ℤ3	order parameter space exactly once, being embedded in the uniform far-

field director background, differently from a vectorized director field (Fig. 8(d)). While the 

structure of such solitonic twisted wall implies translational invariance in the plane of the wall, 

how could it be embedded in a finite-size sample in ℝ3 or in ℝ/ when the boundary conditions 

within the LC sample impose a uniform configuration at confining surfaces? Below we show how 

this difference between the topologically distinct twisted wall state in the LC bulk and the uniform 

state at LC surfaces leads to the emergence of singular twisted lines and formation of the so-called 

cholesteric finger structure.  

An LC cholesteric finger of the third kind, the CF-3 [13,42,51], can be considered as a 

twisted wall, a 1D 𝜋I(𝕊I) topological soliton in ℝI, terminating at two 𝜋I(𝕊I) half-integer defects 

near the substrates with strong perpendicular-anchoring boundary conditions. Figure 8(e) shows 

the computer-simulated cross-section of a CF-3 normal to the direction of translational invariance, 

based on energy-minimization of the Landau-de Gennes free energy. The two localized regions 

with reduced scalar order parameter within the finger’s cross-section correspond to two singular 

defect cores of twist disclinations near the substrates. Note that unlike the twisted wall [Fig. 8(d)], 
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the director field of the two twist disclinations and the entire CF-3 is non-orientable and vectorizing 

it creates extra discontinuities in the form of additional wall-like defects. The 𝜋I(𝕊I) defects 

extend along the translationally invariant direction and form defect lines. The nonpolar director 

field along a loop around the half-integer defect lines form Möbius strips tangent to the director, 

forbidding a smooth vectorization of the field [Fig. 8(f)]. Under weak anchoring conditions, the 

defect lines escape beyond the surfaces, rendering the field configuration topologically invariant 

across the thickness, analogous to the case of toron/skyrmion transformation. The structural 

stability between CF-3, twisted wall, and the uniform state depending on the sample thickness and 

the effective anchoring strength is shown in Fig. 8(g). As with torons, CF-3s are stable at large 

enough thickness and anchoring strength, though the thickness required for stable CF-3s is about 

half of that required for stable torons, according to our modeling under one-constant approximation. 

In the weak anchoring regime, deviation of director orientation away from the anchoring direction 

at surfaces is allowed and twisted walls become the structurally stable configuration. The 

numerically derived stability of CF-3 and twisted wall is consistent with experimental observations, 

where CF-3s are observed in common LC nematics (Table 1) with 𝑝~10 µm and  𝑊~10jJ Jm-

2 [13,42,51], corresponding to strong effective anchoring in Fig. 8(g), while 1D twisted walls are 

ubiquitously observed when 𝑝 ≲ 1µm [41]. Both twisted walls and cholesteric fingers can co-exist 

at intermediate ranges of pitch and thickness within 1-10 µm. The twisted walls looped into circles 

can form skyrmions and skyrmion bags [47] (Fig. 9), whereas closed loops of CF-3s can inter-

transform into torons. Because the exact stability requirements for all these structures are slightly 

different, anchoring, LC material parameters, confinement, temperature, fields, various dopants 

and other means can be used to drive inter-transformations between these spatially localized 

director configurations. On the other hand, our numerical analysis-based findings also imply that, 
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depending on strong or soft surface anchoring boundary conditions, one can stabilize twisted walls 

and skyrmion bags (Fig. 9) or, instead, CF-3s and their closed loops in cells of thickness ranging 

from hundreds of nanometers to tens of micrometers, consistent with experiments [47]. While 

above we considered mainly just the concept of embedding the twisted walls within 2D cross-

sections of translationally invariant CF-3 finer structures, which in real experimental samples often 

span the entire lateral extent of the LC cells, these fingers can also terminate within the sample 

with the uniform unwound far-field background, which corresponds to embedding such twisted 

solitonic walls in ℝ/.  

 

V. Discussion 

V.1. Implications to other condensed matter systems and other solitonic structures 

Beyond the elementary torons and skyrmions discussed in this work, various other solitonic 

structures can be stabilized in confined chiral LCs. Some of these structures are accompanied by 

point defects, such as twistions, multiple-𝜋-twist torons [19,20], and cholesteric fingers of the third 

and fourth types containing singular line defects [42], while others are smooth field configurations, 

such as hopfions [20–22], heliknotons [23], cholesteric fingers of first and second kinds (referred 

to as CF-1s and CF-2s) [20,52]. Strong boundary conditions not only prompt existence of 

energetically costly singular defects while embedding topological solitons within samples that 

have topologically trivial structure, but are also often necessary in stabilizing solitons with 

localized regions of high elastic energy cost near the substrates. For example, surface confinement 

was found to be relevant in stabilizing hopfions in both LCs and solid-state chiral magnets, where 

the boundary condition is fixed by the interfacial perpendicular magnetic anisotropy in the latter 

case [27]. By engineering the surface interactions, analogues of toron/skyrmion transformation for 
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hopfions and other solitons could also be observed and have been recently considered in magnetic 

systems [25,27], enriching the variety of stable topological solitons in chiral materials. Our 

findings demonstrate that additional studies of more complete structural diagrams will need to be 

in future performed to involve an exhaustive zoo of possible field configurations (say, by 

comparing stability between skyrmions, torons, fingers, and hopfions, under different surface 

confinement conditions), though this is beyond the scope of our present work. The important 

insight from our study for the field of LC solitons, however, is that surface anchoring is an effective 

knob for tuning stability of all these different solitonic and related structures. 

 The phenomenological models of chiral LCs (under one-constant approximation) shares a 

close resemblance with chiral magnets. The bulk energy in Frank-Oseen functional in Eq. (1) 

reduces to the phenomenological micromagnetic Hamiltonian of chiral ferromagnets under one-

elastic-constant approximation [47]. Coupling terms in ferromagnets, such as Zeeman coupling 

and magnetocrystalline anisotropy, which are critical in soliton stability [53,54], also find 

analogues in LCs. For example, the quadratic dielectric and diamagnetic coupling in LCs is 

equivalent to the uniaxial magnetocrystalline anisotropy in magnets, with the positive (negative) 

dielectric anisotropy of the LC molecules corresponding to an easy axis (plane) anisotropy. In 

ferromagnetic LCs, the magnetic moments of ferromagnetic nanoparticles couple linearly to an 

externally applied magnetic field, resulting in a Zeeman-like coupling term. In magnets, surface 

energy terms at interfaces where the inversion symmetry is broken can be significant [55,56], 

much like the surface anchoring energy in LCs. This resemblance allows the prediction of solitons 

stabilized in LCs to also be stabilized in magnetic systems, including skyrmions [9,10], 

torons [24,25], skyrmion/toron hybrids [26], hopfions [25,27,28], etc. On the other hand, the 

elastic constant anisotropy (absent in magnetic systems) in realistic LC materials provides an extra 
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means of controlling energy frustration and stability of solitons (Fig. 3). Our results show (Fig. 3) 

that for material parameters of 5CB and E7, skyrmions and torons can be of lower energy than the 

background uniform state in extended parameter regions. This is consistent with experimental 

observations where skyrmions or torons form spontaneously after thermal quenching or 

electrically promoted hydrodynamic instability [18]. For a one-constant approximated LC system, 

the parameter regions with skyrmion or toron being the lower energy state in a uniform background 

are much smaller or do not exist (Fig. 3), due to the relatively low energetic cost of forming TIC 

[Fig. 3(a)]. This suggests that the elastic constant anisotropy has to be taken into account for a 

realistic modeling of topological soliton stability in LCs. Listed in Table 1 are the elastic constants 

of a few common, commercially available nematics, for which the parameter ranges of stability 

vary significantly due to different elastic constant anisotropies and values of elastic constants 

relative to typical surface anchoring coefficients (Fig. 3). LCs with exceptionally large elastic 

anisotropy include twist-bend nematics [57], splay-bend nematics [58] and lyotropic 

chromonics [59], where the ratio between different elastic constants can be disparate by orders of 

magnitude. In future studies, it will be of interest to explore how such elastic ultra-anisotropies 

can stabilize or de-stabilize formation of various topological solitons. 

While free energy functionals take different forms in different physical systems, ranging 

from LCs to magnets and high energy models [1,11,14,31,32,53], the Derrick-Hobart theorem is a 

powerful tool of inferring stability of localized solitons in 2D and higher dimensions based on the 

energy of the spatially rescaled field configurations in a given field theory [29]. According to the 

theorem, a free energy with only quadratic spatial derivatives cannot host stable solitons in 2D and 

3D [60–62]. Common approaches to evade the Derrick-Hobart theorem and establish soliton 

stability include incorporating in the free energy higher-order [1] or linear [61,62] spatial 
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derivative terms. In chiral LCs, the molecular chirality introduces a linear chiral term, which sets 

an intrinsic length scale 𝑝 and tends to stabilize the hosted topological solitons, which is directly 

analogous to the Dzyaloshinskii–Moriya interaction in chiral magnets [11,63,64]. In addition to 

chirality, elastic constant anisotropy and confinement, the surface anchoring also provides 

alternative routes for establishing soliton stability in LCs, effectively making the conclusions of 

the Derrick-Hobart theorem non-detrimental for the stability of high-dimensional solitons in these 

systems because the theorem applies only to unconfined physical systems. These findings may 

provide inspirations for approaches to stabilize high-dimensional topological solitons in other 

physical systems, as already seen for the case of chiral magnets [27]. 

 

V.2. Vector versus tensor modeling: from topological solitons to merons and blue phases 

In this work, both Frank-Oseen and Landau de-Gennes energy minimization are performed 

complimentarily. The simpler Frank-Oseen free energy modeling is adequate in the uniaxial 

nematic regime with orientable field configurations, while the Landau de-Gennes modeling 

encompasses the full degree of freedom of the order and orientation of a nematic LC and is able 

to model non-orientable line fields. The elastic constants in Frank-Oseen free energy directly relate 

to the experimentally measurable moduli of different elastic modes in a nematic LC, while, in 

Landau-de Gennes, expansion up to third order of the 𝑄-tensor order parameter in the elastic 

energy is necessary to adequately lift the degeneracy between the elastic constants [65]. To 

compare between simulation results from Frank-Oseen and Landau-de Gennes modeling, the 

elastic constant anisotropy must also be taken into account, in addition to other fundamental 

differences. For example, Landau-de Gennes free energy models LCs at a temperature near the 

nematic-isotropic transition, while the Frank-Oseen free energy models a uniaxial nematic at a 
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constant order. By combining the vectorial and tensorial modeling approaches, we have gained 

insights into the conditions of transformations between purely nonsingular topological solitons and 

such structures terminating on singular defects due to confinement, though tensorial modeling that 

accounts for elastic anisotropy will be needed to comprehensively compare stability of all different 

possible structures for the large parameter spaces of LC materials.  

 Beyond the various structures discussed above, LC blue phases can emerge as 

thermodynamically stable states under suitable conditions and typically in a narrow temperature 

range near the chiral nematic-isotropic transition. The blue phases consist of fractional skyrmion 

(meron) tubes and singular defect lines typically arranged into crystalline lattices with different 

symmetries [66]. In confined geometries, 2D lattices of merons (or half-skyrmions) could also 

emerge in a chiral LC thin film under certain temperature and anchoring conditions [67,68]. LC 

blue phases have attracted much interest in studying self-assembly of fractional skyrmion tubes 

and defect lines, and also in applications including fast-switching display modes and other electro-

optic and photonic applications [69,70]. On the other hand, a lattice assembled by full skyrmions 

is fully nonsingular, and could compete in free energy with meron lattices, where a delicate balance 

between energetic costs of disorder in defects and elastic deformations could be tipped by various 

system parameters. A systematic study of such comparison between meron and skyrmion lattices 

in 2D and 3D, considering different temperature, anchoring, elasticity, and externally applied 

fields, etc., is important and could facilitate the discovery of new topologically nontrivial 

thermodynamically stable phases. However, while numerical studies of blue phases and various 

fractional skyrmion lattices have been performed previously, to the best of our knowledge, they 

did not fully account for elastic constant anisotropy through including higher-order gradient terms 

in the tensorial modeling, which would be required to properly compare the stability of such 
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fractional skyrmion phases and lattices of topological solitons such as full skyrmions and hopfions, 

under a variety of experimental conditions. Our findings point out the need of such future 

investigations. 

Although the reasoning above calls for more complex 𝑄-tensor based modeling with high-

order gradient terms, much simpler types of modeling also have their own important merits as they 

can translate insights between different branches of condensed matter and beyond. For example, 

our recent work on skyrmion bags involved effectively 2D vectorial modeling that could be 

directly connected and compared to such modeling done for magnetic systems [47]. Under what 

conditions can one justify doing 2D versus 3D modeling? Solitons in this work are modeled by 3D 

energy minimization. However, under certain conditions, the field configurations of solitons are 

translationally invariant or have small conformational variations across the thickness, and 

therefore can be modeled by 2D simulations. The relevant parameters are the thickness and the 

extrapolation length (𝑑/𝑝 and 𝜉/𝑝). As shown in Fig. 3(a)-(d), torons, whose field topology varies 

across the thickness, only emerge as 𝑑/𝑝 is large and 𝜉/𝑝 is small, namely when the thickness is 

large to allow distortion along 𝑧̂	and the effective anchoring strength is strong to confine the 

topology-transforming defects. In the weak anchoring regime, solitons such as elementary 

skyrmions or high-charge skyrmion bags have translationally invariant structure and indeed can 

be effectively modeled by 2D simulations [Fig. 9(a),(b)]. In 2D simulations, invariance is assumed 

across the thickness and the surface anchoring term −I
3
𝑊(𝒏 − 𝒏T)3 translates to an effective bulk 

anisotropy term −Λ(𝒏 − 𝒏T)3  with coefficient Λ ≡ 𝑊/𝑑 . One can then directly compare the 

predictions of 2D and 3D modeling under such conditions. Figures 9 (c),(d) show the stable field 

configurations of solitons in 3D, and their horizontal midplane cross-sections. The midplane cross-

sections of field configurations modeled with the 3D energy minimization approach are in an 
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excellent agreement with pure 2D simulations, while variation in field configurations along 𝑧̂, 

visualized by preimages, are visible due to the finite thickness. The variation becomes smaller and 

eventually vanishes as 𝑑/𝑝 approaches 0, rendering a true 2D system, which is a regime when the 

2D modeling is fully adequate (though it can provide great insights even somewhat away from this 

regime) [47]. While 3D tensorial modeling with higher-order terms is important for a 

comprehensive analysis of stability of the large zoo of solitonic and singular defect structures that 

can occur, the 2D simplified modeling is, in turn, important for technology-transferring insights 

from the studies of LC solitons to understanding related phenomena in other physical systems [47]. 

 

V.3. From fundamental research to applications of topological solitons 

The study of LC solitons is of fundamental interest for demonstrating various field theories and 

the mathematical knot theory, as well as inspirational in understanding solitons in other physical 

systems. It is also beneficial in understanding the stability/metastability of thermodynamically 

stable topological phases in condensed matter systems, such as the LC blue phase [66] and 

skyrmion A-phase in ferromagnets [9,10], and may inspire discovery of other such phases 

comprising solitons and fractional skyrmions. The experimental observations and analyses of LC 

solitons benefit from their outstanding accessibility, where laser manipulation and 3D optical 

imaging techniques can be utilized to decipher their complex structures [37], while 3D real-space 

imaging in many other physical systems have so far remained challenging. In addition, LC solitons 

are adaptive and reconfigurable particles, providing a platform for fundamental research involving 

systems of many particles, such as crystal assembly [18,23], active matter [48], artificial spin 

ice [16], etc.  
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The energetic landscape of a frustrated system is complex and multistable in nature. As a 

result, the conditions for (meta)stability overlap and different solitons could coexist under the same 

condition in a confined chiral LC [13,19,20,22]. The energetic difference between coexisting 

solitons can be thousands of 𝑘Ï𝑇 or higher, while energetic barriers prohibit transition between 

the multi- and meta-stable solitonic states. These barriers can be topological in nature, where costly 

singular defect states are mandatory to mediate the transition between topologically distinct 

solitonic states [22], or they can simply be due to the nonexistence of connecting energetic 

pathways that involve no topology transformations. Some of these barriers are explained by the 

concept of contact topology [71]. Surface anchoring and confinement, as demonstrated in this 

work, can be an effective means of controlling soliton stability. Along with externally applied 

electric and magnetic fields, which are able to substantially disturb the system’s energetic 

landscape and switch between LC solitonic states [22], the stability of solitons can be controlled 

and switched by a versatile set of control knobs. Since the hosting LCs are optically birefringent 

and so are the LC solitons, this may enable potential applications in the forms of soliton-based LC 

display modes and electro-optic devices. In particular, multi-stability could be potentially a useful 

feature allowing one to develop bi-stable and multi-stable displays with new functionalities and 

with energy efficiency better than that of current displays. The topological and particle-like nature 

and the inter-soliton interaction allow LC solitons to assemble into 1D, 2D and 3D periodic 

superstructures with electrically tunable spatial periodicities [23,72,73], potentially leading to 

applications of adaptive and reconfigurable soliton-based diffraction optics. Other applications of 

LC solitons include optical memory devices, optical logic devices, microfluidic devices, etc. Since 

the anchoring-based means of controlling these structures are based on means of controllable 
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surface treatments based on the developments of the multi-billion display industry, these means of 

controlling solitons are already highly technological, and, thus, also of high applied interest.  

 

VI. Conclusions 

To conclude, we have demonstrated the effect of surface anchoring on the structural stability of 

LC torons, 2D skyrmions, fingers, and twisted walls based on numerical energy minimization of 

Frank-Oseen and Landau-de Gennes free energy functionals. Our numerical results are supported 

by experimental observations, based on 3D nonlinear optical imaging of director fields that reveal 

unambiguously the respective solitonic structures. We found the structural stability of these 

solitons depend critically on the sample thickness and the effective anchoring strength. The 

stability of solitons also substantially depends on the elastic constant anisotropy, making the one-

constant approximation of elastic constants unsuitable for quantitative analyses. Strong boundary 

conditions materialized by surface alignment layers mandate a change in topology across the 

thickness, transforming topological solitons in lower dimensions (twisted walls and 2D skyrmions) 

to solitons dressed by defects (CF-3s and torons). A wealth of 2D or 3D particle-like solitons can 

thus be stabilized by engineering the surface anchoring conditions. Moreover, since the effective 

anchoring strength depends on 𝑝, which is the characteristic length scale of a solitonic structure, 

we found the stability of solitons and other field configurations at different length scales can be 

very different. New types of solitonic structures may be discovered simply by changing the length 

scale and perturbing the frustration between the bulk and surface energy. The effect of surface 

energy is not limited to confined LC systems. In other condensed matter systems, for example, the 

solid-state magnets, surface effects such as the interfacial Dzyaloshinskii–Moriya interaction and 

the interfacial anisotropy can emerge at the heterojunction between different materials [55,56], 
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which help stabilize various kinds of 2D and 3D solitons [12,27]. In addition to applied fields, 

which are readily applied in LC displays, confinement and anchoring offer extra control knobs for 

soliton stability, bringing about potential soliton-based information displays and other 

technologies. Based on a general framework for ordered materials with interplaying bulk and 

interfacial effects, our findings could be generalized to the stability of solitons in other material 

systems.  
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Figures: 

 
FIG. 1. Skyrmions. (a) Skyrmions in ℝ3  (bottom) can be mapped bijectively from field 
configurations in 𝕊3 (top) through stereographic projections (𝒫). The Neel-type (bottom-left) and 
Bloch-type (bottom-right) skyrmions are related by a rotation (ℛ) of vectors. The vector 
orientations are shown as arrows colored according to their orientations on target 𝕊3, as shown in 
the inset. (b),(c) A translationally invariant skyrmion along its symmetry axis and a skyrmion 
terminating at point defects due to boundary conditions, respectively. The detailed field 
configurations on spheres around the point defects are shown. 
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FIG. 2. LC torons. (a) The director 𝒏(𝒓) along the average orientation of anisotropic mesogens in 
nematic LCs can be vectorized by the dispersion of ferromagnetic particles with magnetization 
vectors aligning with 𝒏(𝒓). The orientation of vectorized 𝒏(𝒓) is visualized by a 3D arrow. (b) 
Polarizing optical micrograph of a LC toron. (c) The field configuration of a toron in the vertical 
mid-plane cross-section with the field shown as arrows colored according to the inset in Fig. 1(a). 
The point defects are marked by red circles. (d) The preimages of a toron of orientations in target 
𝕊3 shown as cones. A preimage is the region in ℝ/	that maps to a certain orientation on target 
space 𝕊3. (e) Detailed structures of preimages around the top and bottom point defects of the toron 
in (d). 
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FIG. 3. Structural stability between 2D skyrmion, toron, and uniform state. (a),(b),(c),(d) Structural 
stability diagrams of different material parameters dependent on the LC film thickness and surface 
anchoring. Blue, red, and black squares indicate stable 2D skyrmion, toron, and uniform state. 
(e),(f),(g) Mid-plane cross-sections of a unit cell of a stable toron lattice in a plane perpendicular 
(e) and horizontal (f,g) to the far field. The point defects are marked by red circles. (h) Preimages 
of points on 𝕊3 of an individual toron in the lattice indicated by cones in the top-right inset. (i),(j),(k) 
Mid-plane cross-sections of a unit cell of a stable skyrmion lattice in a plane perpendicular (i) and 
horizontal (j,k) to the far field. The point defects are marked by red circles. (l) Preimages of points 
on 𝕊3 of an individual skyrmion in the lattice indicated by cones in the top-right inset. 
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FIG. 4. Escape of point defects under weak anchoring conditions. (a) to (d) Snapshots of the point 
defects of a toron escaping beyond the surfaces and the toron transforming into a skyrmion when 
the anchoring condition is softened. Midplane cross-sections in a plane perpendicular (parallel) to 
the far field are shown in the top (middle) panels. The bottom panels show preimages of each 
structure of points on 𝕊3 indicated by cones in the top-right inset. 
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FIG. 5. 2D skyrmion. (a),(b) Experimental polarizing optical micrographs of a 2D skyrmion 
obtained without (a) and with (b) a 530-nm phase retardation plate with its slow axis labeled by 
the yellow double arrow. (c) Mid-plane cross-sections of a numerically simulated stable skyrmion 
in a plane perpendicular (top) and parallel (bottom) to the far field. (d) Numerically simulated 
3PEF-PM images obtained with circular polarization of a skyrmion in (c) in the mid-planes 
perpendicular (top) and parallel (bottom) to the far field. (e) Experimental 3PEF-PM images 
obtained with circular polarization of a skyrmion in (a) and (b) in the mid-planes perpendicular 
(top) and parallel (bottom) to the far field. 
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FIG. 6. Toron. (a),(b) Experimental polarizing optical micrographs of a toron obtained without (a) 
and with (b) a 530-nm phase retardation plate with its slow axis labeled by the yellow double arrow. 
(c) Mid-plane cross-sections of a numerically simulated stable toron in a plane perpendicular (top) 
and parallel (bottom) to the far field. (d) Numerically simulated 3PEF-PM images obtained with 
circular polarization of a toron in (c) in the mid-planes perpendicular (top) and parallel (bottom) 
to the far field. (e) Experimental 3PEF-PM images obtained with circular polarization of a toron 
in (a) and (b) in the mid-planes perpendicular (top) and parallel (bottom) to the far field. 
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FIG. 7. Skyrmion/toron hybrid. (a),(b) Experimental polarizing optical micrographs of a 
skyrmion/toron hybrid structure obtained without (a) and with (b) a 530-nm phase retardation plate 
with its slow axis labeled by the yellow double arrow. (c) Mid-plane cross-sections of a 
numerically simulated stable skyrmion/toron hybrid in a plane perpendicular (top) and parallel 
(bottom) to the far field. (d) Numerically simulated 3PEF-PM images obtained with circular 
polarization of a skyrmion/toron hybrid in (c) in the mid-planes perpendicular (top) and parallel 
(bottom) to the far field. (e) Experimental 3PEF-PM images obtained with circular polarization of 
a skyrmion/toron hybrid in (a) and (b) in the mid-planes perpendicular (top) and parallel (bottom) 
to the far field. 
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FIG. 8. Twisted wall and CF-3. (a) A LC twisted wall. (b) Schematic of a twisted wall of directors 
with head-tail symmetry going through a full 𝜋 rotation. (c) The director of the twisted wall in (b) 
winds around its order-parameter space 𝕊I/ℤ3 exactly once and 𝕊I/ℤ3 ≅ 𝕊I. (d) The twisted wall 
in (a) with the field vectorized and visualized by arrows. (e) A translationally invariant CF-3 along 
the direction perpendicular to the cross-section with strong boundary conditions. The two half 
integer defect lines near the substrates are visualized by reduction of 𝑆 at the defect cores. (f) 
Detailed field configurations visualized along circular loops of radius of 20 nm around the cores 
of the top and bottom singular disclinations. (g) Structural stability diagram of twisted wall, CF-3, 
and uniform state dependent on the LC film thickness and anchoring. 
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FIG. 9. 2D and 3D simulations of soliton structures. (a),(b) 2D simulations of an elementary 
skyrmion and a high charge skyrmion bag (|𝑁K)| = 2) visualized by colors based on the orientation 
of the vectorized field [Fig. 1(a), inset]. (c),(d) 3D simulations of an elementary skyrmion and a 
high charge skyrmion bag, respectively, shown by preimages of points on 𝕊3 indicated by cones 
in the top-right inset and the mid-plane cross-sections. (e),(f) The mid-plane cross-sections in (c) 
and (d) of an elementary skyrmion and a skyrmion bag, respectively.  
 
 
  



 39 

References 

[1] T. H. R. Skyrme, Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 262, 237 (1961). 
[2] E. Witten, Nucl. Phys. B 223, 422 (1983). 
[3] N. Manton and P. Sutcliffe, Topological Solitons (Cambridge University Press, 2004). 
[4] R. A. Battye and P. M. Sutcliffe, Phys. Rev. Lett. 81, 4798 (1998). 
[5] I. Chuang, R. Durrer, N. Turok, and B. Yurke, Science 251, 1336 (1991). 
[6] M. J. Ablowitz, Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons 

(Cambridge University Press, 2011). 
[7] S. Tsesses, E. Ostrovsky, K. Cohen, B. Gjonaj, N. H. Lindner, and G. Bartal, Science 361, 

993 (2018). 
[8] U. K. Rößler, A. N. Bogdanov, and C. Pfleiderer, Nature 442, 797 (2006). 
[9] S. Muhlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and 

P. Boni, Science 323, 915 (2009). 
[10] X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N. Nagaosa, and Y. 

Tokura, Nature 465, 901 (2010). 
[11] N. Nagaosa and Y. Tokura, Nat. Nanotechnol. 8, 899 (2013). 
[12] A. Fert, V. Cros, and J. Sampaio, Nat. Nanotechnol. 8, 152 (2013). 
[13] P. J. Ackerman, R. P. Trivedi, B. Senyuk, J. van de Lagemaat, and I. I. Smalyukh, Phys. 

Rev. E 90, 012505 (2014). 
[14] A. O. Leonov, I. E. Dragunov, U. K. Rößler, and A. N. Bogdanov, Phys. Rev. E 90, 

042502 (2014). 
[15] A. Duzgun, J. V. Selinger, and A. Saxena, Phys. Rev. E 97, 062706 (2018). 
[16] A. Duzgun and C. Nisoli, arXiv:1908.03246 (2019). 
[17] I. I. Smalyukh, Y. Lansac, N. A. Clark, and R. P. Trivedi, Nat. Mater. 9, 139 (2010). 
[18] P. J. Ackerman, J. van de Lagemaat, and I. I. Smalyukh, Nat. Commun. 6, 6012 (2015). 
[19] P. J. Ackerman and I. I. Smalyukh, Phys. Rev. E 93, 1 (2016). 
[20] P. J. Ackerman and I. I. Smalyukh, Phys. Rev. X 7, 011006 (2017). 
[21] P. J. Ackerman and I. I. Smalyukh, Nat. Mater. 16, 426 (2017). 
[22] J.-S. B. Tai, P. J. Ackerman, and I. I. Smalyukh, Proc. Natl. Acad. Sci. 115, 921 (2018). 
[23] J.-S. B. Tai and I. I. Smalyukh, Science 365, 1449 (2019). 
[24] A. O. Leonov and K. Inoue, Phys. Rev. B 98, 054404 (2018). 
[25] Y. Liu, R. K. Lake, and J. Zang, Phys. Rev. B 98, 174437 (2018). 
[26] F. Zheng, F. N. Rybakov, A. B. Borisov, D. Song, S. Wang, Z. Li, H. Du, N. S. Kiselev, J. 

Caron, A. Kovács, M. Tian, Y. Zhang, S. Blügel, and R. E. Dunin-Borkowski, Nat. 
Nanotechnol. 13, 451 (2018). 

[27] J.-S. B. Tai and I. I. Smalyukh, Phys. Rev. Lett. 121, 187201 (2018). 
[28] P. Sutcliffe, J. Phys. A Math. Theor. 51, 375401 (2018).x 
[29] G. H. Derrick, J. Math. Phys. 5, 1252 (1964). 
[30] J. M. Ball and A. Zarnescu, Arch. Ration. Mech. Anal. 202, 493 (2011). 
[31] P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge 

University Press, 2000). 
[32] P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press, 1993). 
[33] M. Ravnik and S. Žumer, Liq. Cryst. 36, 1201 (2009). 
[34] A. Martinez, M. Ravnik, B. Lucero, R. Visvanathan, S. Žumer, and I. I. Smalyukh, Nat. 

Mater. 13, 258 (2014). 



 40 

[35] M. Škarabot, E. Osmanagič, and I. Muševič, Liq. Cryst. 33, 581 (2006). 
[36] P. R. Gerber, Zeitschrift Für Naturforsch. A 35, (1980). 
[37] R. P. Trivedi, T. Lee, K. A. Bertness, and I. I. Smalyukh, Opt. Express 18, 27658 (2010). 
[38] T. Lee, R. P. Trivedi, and I. I. Smalyukh, Opt. Lett. 35, 3447 (2010). 
[39] P. Milde, D. Kohler, J. Seidel, L. M. Eng, A. Bauer, A. Chacon, J. Kindervater, S. 

Muhlbauer, C. Pfleiderer, S. Buhrandt, C. Schutte, and A. Rosch, Science 340, 1076 
(2013). 

[40] Y. Bouligand, B. Derrida, V. Poenaru, Y. Pomeau, and G. Toulouse, J. Phys. 39, 863 
(1978). 

[41] J.-S. B. Tai and I. I. Smalyukh, Opt. Lett. 43, 5158 (2018). 
[42] P. Oswald, J. Baudry, and S. Pirkl, Phys. Rep. 337, 67 (2000). 
[43] H. R. O. Sohn, S. M. Vlasov, V. M. Uzdin, A. O. Leonov, and I. I. Smalyukh, Phys. Rev. 

B 100, 104401 (2019). 
[44] B. Senyuk, Q. Liu, S. He, R. D. Kamien, R. B. Kusner, T. C. Lubensky, and I. I. 

Smalyukh, Nature 493, 200 (2013). 
[45] Q. Liu, B. Senyuk, M. Tasinkevych, and I. I. Smalyukh, Proc. Natl. Acad. Sci. 110, 9231 

(2013). 
[46] J. V. Selinger, Liq. Cryst. Rev. 6, 129 (2018). 
[47] D. Foster, C. Kind, P. J. Ackerman, J.-S. B. Tai, M. R. Dennis, and I. I. Smalyukh, Nat. 

Phys. 15, 655 (2019). 
[48] H. R. O. Sohn, C. D. Liu, and I. I. Smalyukh, Nat. Commun. 10, 4744 (2019). 
[49] M. Kleman, Points, Lines and Walls: In Liquid Crystals, Magnetic Systems and Various 

Ordered Media (John Wiley & Sons Inc, 1982). 
[50] S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320, 190 (2008). 
[51] I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. 

Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, Phys. Rev. E 72, 21 (2005). 
[52] H. R. O. Sohn, P. J. Ackerman, T. J. Boyle, G. H. Sheetah, B. Fornberg, and I. I. 

Smalyukh, Phys. Rev. E 97, 052701 (2018). 
[53] A. Bogdanov and A. Hubert, J. Magn. Magn. Mater. 138, 255 (1994). 
[54] M. N. Wilson, A. B. Butenko, A. N. Bogdanov, and T. L. Monchesky, Phys. Rev. B 89, 

094411 (2014). 
[55] B. Dieny and M. Chshiev, Rev. Mod. Phys. 89, 025008 (2017). 
[56] F. Hellman, A. Hoffmann, Y. Tserkovnyak, G. S. D. Beach, E. E. Fullerton, C. Leighton, 

A. H. MacDonald, D. C. Ralph, D. A. Arena, H. A. Dürr, P. Fischer, J. Grollier, J. P. 
Heremans, T. Jungwirth, A. V Kimel, B. Koopmans, I. N. Krivorotov, S. J. May, A. K. 
Petford-Long, J. M. Rondinelli, N. Samarth, I. K. Schuller, A. N. Slavin, M. D. Stiles, O. 
Tchernyshyov, A. Thiaville, and B. L. Zink, Rev. Mod. Phys. 89, 1 (2017). 

[57] G. Babakhanova, Z. Parsouzi, S. Paladugu, H. Wang, Y. A. Nastishin, S. V. Shiyanovskii, 
S. Sprunt, and O. D. Lavrentovich, Phys. Rev. E 96, 062704 (2017). 

[58] A. Mertelj, L. Cmok, N. Sebastián, R. J. Mandle, R. R. Parker, A. C. Whitwood, J. W. 
Goodby, and M. Čopič, Phys. Rev. X 8, 041025 (2018). 

[59] S. Zhou, K. Neupane, Y. A. Nastishin, A. R. Baldwin, S. V. Shiyanovskii, O. D. 
Lavrentovich, and S. Sprunt, Soft Matter 10, 6571 (2014). 

[60] R. Shankar, J. Phys. 38, 1405 (1977). 
[61] A. Bogdanov, JETP Lett. 62, 247 (1995). 



 41 

[62] A. O. Leonov, T. L. Monchesky, N. Romming, A. Kubetzka, A. N. Bogdanov, and R. 
Wiesendanger, New J. Phys. 18, 065003 (2016). 

[63] I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958). 
[64] T. Moriya, Phys. Rev. 120, 91 (1960). 
[65] K. Schiele and S. Trimper, Phys. Status Solidi 118, 267 (1983). 
[66] D. C. Wright and N. D. Mermin, Rev. Mod. Phys. 61, 385 (1989). 
[67] J. I. Fukuda and S. Žumer, Nat. Commun. 2, (2011). 
[68] A. Nych, J. I. Fukuda, U. Ognysta, S. Zumer, and I. Muševic, Nat. Phys. 13, 1215 (2017). 
[69] Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S.-T. Wu, Appl. Phys. Lett. 94, 101104 (2009). 
[70] D.-Y. Guo, C.-W. Chen, C.-C. Li, H.-C. Jau, K.-H. Lin, T.-M. Feng, C.-T Wang, T. J. 

Bunning, I. C. Khoo, and T.-H. Lin, Nat. Mater. (2019). 
[71] T. Machon, New J. Phys. 19, 113030 (2017). 
[72] P. J. Ackerman, Z. Qi, and I. I. Smalyukh, Phys. Rev. E - Stat. Nonlinear, Soft Matter 

Phys. 86, 1 (2012). 
[73] P. J. Ackerman, Z. Qi, Y. Lin, C. W. Twombly, M. J. Laviada, Y. Lansac, and I. I. 

Smalyukh, Sci. Rep. 2, 1 (2012). 
 
 
 
 
 
 


