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No evidence for globally coherent warm and cold 
periods over the preindustrial Common Era
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Earth’s climate history is often understood by breaking it down 
into constituent climatic epochs1. Over the Common Era (the 
past 2,000 years) these epochs, such as the Little Ice Age2–4, have 
been characterized as having occurred at the same time across 
extensive spatial scales5. Although the rapid global warming seen 
in observations over the past 150 years does show nearly global 
coherence6, the spatiotemporal coherence of climate epochs 
earlier in the Common Era has yet to be robustly tested. Here we 
use global palaeoclimate reconstructions for the past 2,000 years, 
and find no evidence for preindustrial globally coherent cold and 
warm epochs. In particular, we find that the coldest epoch of the 
last millennium—the putative Little Ice Age—is most likely to have 
experienced the coldest temperatures during the fifteenth century 
in the central and eastern Pacific Ocean, during the seventeenth 
century in northwestern Europe and southeastern North America, 
and during the mid-nineteenth century over most of the remaining 
regions. Furthermore, the spatial coherence that does exist over the 
preindustrial Common Era is consistent with the spatial coherence of 
stochastic climatic variability. This lack of spatiotemporal coherence 
indicates that preindustrial forcing was not sufficient to produce 
globally synchronous extreme temperatures at multidecadal and 
centennial timescales. By contrast, we find that the warmest period 
of the past two millennia occurred during the twentieth century for 
more than 98 per cent of the globe. This provides strong evidence 
that anthropogenic global warming is not only unparalleled in 
terms of absolute temperatures5, but also unprecedented in spatial 
consistency within the context of the past 2,000 years.

The study of past climate provides an essential baseline from which 
to understand and contextualize changes in the contemporary climate. 
Since the formative period of modern Earth sciences in the 1800s, the 
complex history of Earth’s climate has been conceptualized through 
the construction of distinct climatic periods or epochs1–7. Several 
terms for climatic epochs within the past 2,000 years have come into 
wide use. Most prominent among these is the ‘Little Ice Age’ (LIA), 
a term that was originally created to broadly describe glacier growth 
in the Sierra Nevada mountains during the late Holocene (the past 
few thousand years)2; later, the LIA was used to describe inferred late 
Holocene glacial advances in many locations, particularly the European 
Alps3,4. Over the past few decades, this term has been widely used 
in palaeoclimatology and historical climatology to indicate a nearly 
global, centuries-long cold climate state that occurred between roughly 
1300 ad and 1850 ad (refs 5,8). This period is often contrasted with 
the Mediaeval Warm Period, also known as the Mediaeval Climate 
Anomaly (MCA)8–10, which is commonly associated with warm tem-
peratures in 800–1200 ad. The first millennium of the Common Era 
has also been subdivided into the ‘Dark Ages Cold Period’ (DACP)11,12, 
or ‘Late Antique Little Ice Age’ (LALIA)13, which occurred within about 
400–800 ad, and lastly the ‘Roman Warm Period’ (RWP)12,14, which 
covers the first few centuries of the Common Era. We note that for all of 
these epochs, no consensus exists about their precise temporal extent.

Each of these climatic epochs has its origin in pieces of palaeocli-
matic evidence from the extratropical Northern Hemisphere, particu-
larly Europe and North America4,9–12. Climate-epoch narratives were 
constructed to explain the early palaeoclimatic evidence, and later-de-
veloped time series from across the globe were situated within these 
narrative frameworks. This process probably created the expectation 
that Common Era climate epochs are global-scale phenomena. Loosely 
defined epochs based on a few dozen specific proxies were hard to 
falsify given the inherent noise of natural proxies, with, for example, 
nearly all annually resolved proxies that cover the Common Era having 
a signal-to-noise ratio of less than 1, and usually less than 0.5 (ref. 15). 
Yet the association of a relatively small number of palaeoclimate proxy 
records with global-scale phenomena did not come without contro-
versy and the discovery of proxy time series that did not match the 
standard climate-epoch narratives4,10,16. Studies that have attempted 
to assess the spatial coherence of Common Era climate epochs have 
used relatively few proxy records (for example, 14 proxy time series17), 
or only continentally averaged temperature reconstructions18, or only 
one or two reconstruction methods8,12—a choice that has been shown 
to limit the reliability of the assessment of temperature patterns19.

Here we test the hypothesis that there were globally coherent climate 
epochs over the Common Era by using a collection of probabilistic, 
global temperature reconstructions for the period 1–2000 ad, derived 
from a set of six different ensemble field reconstruction methodol-
ogies (see Methods; we note that we use ‘coherence’ here in its gen-
eral, non-signal-processing sense). The reconstructions are based on 
techniques that vary widely in their assumptions and approaches to 
the reconstruction problem. They span a broad range of complexity, 
from basic proxy composites at the one end, to advanced statistical 
techniques at the other that incorporate physical constraints and forc-
ing information from climate-model simulations. All methods use 
the same set of input data, namely the annual records from the recent 
PAGES 2k global temperature-sensitive proxy collection20 (see Fig. 1 
and Methods). This multimethod, probabilistic framework allows us to 
robustly assess the spatiotemporal homogeneity of climatic variability 
over the Common Era.

At the original annual resolution, the reconstruction ensemble mean 
shows no clear indication of a long period of years with globally con-
sistent below-average temperatures relative to the mean for 1–2000 ad 
(Fig. 2a); the area fraction of warmth and cold shows high interannual 
variability. Of the years before 1850, 97% had at least 10% of the globe 
experiencing above-average temperatures, and 10% of the globe expe-
riencing below-average temperatures. It is only if the reconstructed 
time series are smoothed over multidecadal timescales (see Methods), 
and if global area is shown in aggregate, that the classical picture of a 
loosely defined LIA and MCA appears (Fig. 2b and Extended Data 
Fig. 1). Yet the analysis in Fig. 2 does not include information from 
individual ensemble members (Extended Data Fig. 1); nor does it indi-
cate spatial patterns of coherence, or provide a precise evaluation of the 
climate-epochs hypothesis.
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To quantify the spatial coherence of cold and warm epochs, we con-
sider the time of occurrence of a climate anomaly as the variable to 
be characterized within a probabilistic framework. We calculate the 
most probable period of peak warming or cooling during each of 
the five climatic epochs discussed previously (see Methods). At each 
grid-point location, we identify the warmest 51-year average within 
the epochs commonly referred to as warm, namely the RWP, MCA 
and current warm period (CWP). Analogously, we identify the coldest 
51-year average for the DACP and LIA cold epochs. Given the lack of 
objective definitions for these epochs, we keep a wide window for our 
search for peak warming or cooling for each period (see Methods and 

Fig. 3). To assess the CWP, we search for the warmest peak within the 
entire Common Era. The century within which we find the highest 
ensemble-based probability for maximum warming or cooling at each 
location is shown in Fig. 3.

There is considerable spatial heterogeneity in the timing  
of temperature maxima and minima (Fig. 3). No preindustrial epoch 
shows global coherence in the timing of the coldest or warmest 
periods. There is, however, regional coherence. For example, there 
are almost continental-scale patterns during many of the periods, 
and there is a coherent pattern in the tropical Pacific in the RWP, 
DACP and LIA periods, reminiscent of the El Niño–Southern 
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Fig. 1 | Spatiotemporal distribution of proxy data. a, Map showing 
the locations of the proxy records20 used in our reconstructions, by 
archive type (bivalve, coral, glacier ice, hybrid, lake sediment or tree). 
Shading indicates the distance of a given 5° × 5° grid cell to the closest 
proxy record(s). b, Temporal availability of proxy data for each archive 

type, colour-coded as in panel a. The red line (right-hand y axis) 
shows the width of the 90% confidence interval (CI) for the unfiltered 
reconstructions, latitude-weighted and averaged over all methods. Values 
are relative to the instrumental temperature standard deviation over 
1911–1995 ad.
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Fig. 2 | Distribution of warm and cold temperatures over the Common 
Era. The figure shows the percentages of global area with warm (red 
shading) and cold (blue shading) temperature anomalies with respect to 

a 1–2000 ad reference period (see Methods). Shading intensity indicates 
the magnitude of warmth and cold. a, Annual unfiltered data. b, 51-year 
lowpass filtered data (see Methods).
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Oscillation—the most dominant mode of interannual variability in 
the climate system21.

In contrast to the spatial heterogeneity of the preindustrial era, the 
highest probability for peak warming over the entire Common Era 
(Fig. 3c) is found in the late twentieth century almost everywhere 
(98% of global surface area), except for Antarctica, where contempo-
rary warming has not yet been observed over the entire continent22. 
Thus, even though the recent warming rates are not entirely homoge-
neous over the globe, with isolated areas showing little warming or even 
cooling22,23, the climate system is now in a state of global temperature 
coherence that is unprecedented over the Common Era.

Through a boostrapping uncertainty analysis (see Methods and 
Extended Data Fig. 2), we find that the particular spatial patterns shown 
in Fig. 3 are robust. Furthermore, the heterogeneity in the timing of 
maxima and minima is an inherent property of the input proxy data, 
which show a similar lack of global coherence in the timing of each 
putative climate epoch (Extended Data Fig. 3).

Is the amount of spatial coherence in the preindustrial period  
consistent with stochastic climate variability? We find that it is (Fig. 4), 
and that the spatial agreement across all reconstructions is typically 
low: in 84% of reconstruction ensemble members, less than 50% of 
the global area fraction agrees on the timing of the warmest or coldest 
51-year peaks across all preindustrial epochs (Fig. 4). This supports 
the results shown in Fig. 3, providing evidence that peak preindus-
trial warm and cool periods occurred at different times in different 
locations. By contrast, the CWP shows distinct temporal and spatial 
agreement, with the warmest multidecadal peak of the Common Era 
occurring in the late twentieth century. The area fraction agreeing 
on the timing of the CWP is significantly larger than that expected 
from stochastic climate variability (Mann–Whitney U-test; P < 0.01; 
see Methods).

In addition to using an unprecedented collection of reconstruction 
methods to test the climate-epochs hypothesis, we conducted a range 
of sensitivity experiments, including noise-proxy reconstructions 
(Methods). These confirm the robustness of our results to the specific 
proxy network, the choices of reconstruction parameters, potential 
biases arising from the selection and calibration of proxies over the 
observational period, and the specific statistical tests of spatiotemporal 
coherence (see Methods and Extended Data Figs. 4–7). In addition, we 
confirm the lack of preindustrial spatial coherence in last-millennium 
climate-model simulations (Extended Data Fig. 8). Moreover, as in the 
reconstructions, the spatial consistency seen in model simulations over 
the twentieth century suggests that anthropogenic global warming is the 
cause of increased spatial temperature coherence relative to prior eras.

An important caveat to our results is that the spatiotemporal distri-
bution of high-resolution proxy data is inherently unequal and often 
sparse. Future improvements in this regard may lead to better-resolved 
spatial patterns, especially in the Southern Hemisphere and during the 
first millennium, where uncertainties in our reconstructions are highest 
(Fig. 1, Extended Data Figs. 9, 10). However, such improvements are 
unlikely to lead to greater global coherence when the extant proxy data 
do not show indications of such (Extended Data Fig. 3).

The results shown here can explain at least two curious facts about 
climate epochs of the Common Era: the lack of consensus about the 
timing of climate epochs, and the discovery of records that do not fit 
the standard narratives. Peak warming and cooling events appear to 
be regionally constrained. Anomalous globally averaged temperatures 
during certain periods do not imply the existence of epochs of globally 
coherent and synchronous climate. This global asynchronicity suggests 
that multidecadal regional extremes are driven by regionally specific 
mechanisms, namely either unforced internal climate variability24,25 or 
regionally varying responses to external forcing26–28.
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Fig. 3 | Timing of peak warm and cold periods. a–e, Centuries with the highest ensemble probability of containing the warmest (a–c) and coldest (d, e) 
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Given these results, we advocate for a regional framing for under-
standing the climate variability of the preindustrial Common Era. 
Likewise, the interpretation of individual palaeoclimate time series 
should not be forced to fit into global narratives or epochs. Rather, 
the a priori belief about a given palaeoclimate time series should be 
that it represents local information, with the extent of its correlation 
length scale to be justified and not assumed. In this framing, specific 
individual records can provide regional tests of the mechanisms of 
climate variability29,30, while collections of many records can address 
larger scales. Against this regional framing, perhaps our most striking 
result is the exceptional spatiotemporal coherence during the warming 
of the twentieth century. This result provides further evidence of the 
unprecedented nature of anthropogenic global warming in the context 
of the past 2,000 years.
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Methods
Instrumental target. We use the HadCRUT4 global temperature grid31 with a 
spatial resolution of 5° × 5°, infilled using GraphEM, to obtain complete global 
coverage over the calibration period20. We use annual values aggregated over the 
April-to-March seasonal window, which reflects the ‘tropical year’ and, unlike a 
calendar-year window, does not interrupt the austral growing season.
Proxy data. We use the data from the PAGES 2k temperature database v2.0.020 
as predictors. For the results shown in the main text, we use a screened network 
based on regional false-discovery-rate screening (R-FDR)20, which reduces the 
number of proxies from the original 688 to 257. The spatial coverages of the full and 
screened networks are displayed in Extended Data Fig. 3 and Fig. 1, respectively. 
The screened network yields improved reconstruction skill for most methods over 
much of the globe. However, our conclusions are robust to the choice of either the 
full or the screened network (Extended Data Fig. 4). The present implementation 
of some of the reconstruction methods used herein does not allow us to incorporate 
proxy data with gaps, or missing values over the calibration period. Therefore we 
use only records with annual or higher resolution (210 records; Fig. 1), thereby 
using mainly records with very small to negligible age uncertainties (85% of the 
records used are from tree or coral archives). Records of subannual resolution are 
averaged to annual resolution over the April-to-March window. Missing values 
in the proxy matrix over the calibration/validation window (2.2%) were infilled 
using DINEOF32.
Reconstruction parameters. The calibration period used for all methods is 1911–
1995 ad. This reflects a compromise between using as many years as possible to 
cover a large temperature range for calibration, and using a period with sufficient 
spatial coverage of instrumental data (at the beginning of the calibration period) 
or proxy records (at the end). We use 100-member ensembles for all methods to 
generate the analyses and plots presented here, yielding a total ensemble size of 600.

We use the period 1881–1910 ad for validation to compare the relative per-
formance of the reconstruction methods (Extended Data Figs. 9, 10). We use the 
following metrics to assess the performance of our reconstructions. The continuous 
ranked probability score33,34 (CRPS) has been conceptually adapted to mimic the 
reduction-of-error (RE) and coefficient-of-efficiency (CE) scores35. The CRPS of 
the reconstructions is subtracted from the CRPS generated from surrogates based 
on instrumental target data according to refs 36,37. CRPS_RE (CRPS_CE) compares 
the mean potential CRPS of the reconstruction with the instrumental surrogates 
over the 1911–1995 ad calibration (1881–1910 ad validation) period. In contrast 
to the traditional RE and CE measures, these metrics are strictly proper scoring 
rules33. For a detailed description of the metrics, see ref. 37. The root mean squared 
error (RMSE) of the ensemble median over the validation period is divided by the 
instrumental standard deviation at each location to allow a relative comparison 
at different locations. Finally we calculate the Pearson correlation coefficient of 
the reconstruction ensemble median with the target over the validation period.

While the spatial distribution of the proxy network is global, the Northern 
Hemisphere contains more proxies than the Southern Hemisphere, and the num-
ber of proxies decreases further back in time (Fig. 1). Consequently, the recon-
structions generally have highest confidence and intermethod agreement closer 
to the present (Fig. 1b, Extended Data Fig. 10) and nearest to the proxy locations 
(Extended Data Fig. 9). We note that no particular method stands out as being 
particularly more or less skillful than the others (Extended Data Fig. 9).
Reconstruction methods. Composite plus scale (CPS). CPS is a widely used index 
reconstruction method that has been used to reconstruct local to global mean 
climate38,39. The input proxy data are averaged into a composite time series, which 
is then scaled to the mean and standard deviation of the reconstruction target over 
the calibration period. Here we use a point-by-point40 implementation of CPS, 
probably the most simple way to reconstruct a climate field. This method does 
not make use of the spatial covariance structure of the target temperature field, 
which may lead to unrealistic spatial consistency in the reconstructed fields. On 
the other hand, the point-by-point approach is, unlike most other CFR techniques, 
not bound to the problematic assumption that the spatial temperature patterns in 
the calibration period are stable over time.

Here, we use the CPS implementation of ref. 41, which weights the proxy records 
by their correlation with the (grid cell) target. We do not limit the number of prox-
ies at each location by using a maximum search radius, as the spatial decorrelation 
distance is not uniform over the globe; in addition, this allows information from 
teleconnected areas to be included in the reconstructions. We use an ensemble 
approach similar to that of ref. 41, combining uncertainties arising from param-
eter decisions and calibration errors. The following reconstruction parameters 
are resampled for each reconstruction member: proxy selection (removing 10% 
of records); calibration period (removing a block of ten years within the 1911–
1995 ad calibration period); proxy weight (multiplying the correlation-based 
weight by a factor between 1/1.5 and 1.5). Ensemble perturbation based on the 
calibration error is implemented as in ref. 15: we add to each ensemble member 
multivariate noise time series with the same standard deviation as the residuals 

between the target and reconstructed field over the calibration period. We use 
first-order autoregressive (AR(1)) noise with the same AR(1) coefficients as the 
residuals. We use a nested approach, which means that the reconstruction pro-
cess is repeated for each time period over the Common Era with unique proxy 
availability. The results of each nest are spliced together to obtain a reconstruction 
covering the full Common Era.
Principal-component regression (PCR). PCR has been widely used in climate field 
reconstructions42–46. This method reduces the dimensions of both the target field 
and the proxy matrix using principal-component analysis (PCA). The instrumental 
principal components are predicted back in time on the basis of regression with 
the proxy principal components, and then back-transformed to the spatial dimen-
sions of the target grid using the loadings from the PCA. As such, this approach 
assumes that the covariance structure of the temperature grid remains the same 
over the reconstruction period as in the time window used for calibration. Here 
we use the PCR approach introduced in ref. 42 and an ensemble integration similar 
to that in refs 41,44. The nested and ensemble approach is identical to that of the 
CPS (described above), with the following exceptions. The random weight factor 
is multiplied by the weight of each proxy derived from the PCA. We also resample 
the principal-component truncation parameters for the proxy (or instrumental) 
matrices in such a way that the retained principal components explain between 
40% and 90% (or between 60% and 99%) of the total variance. We resample this 
parameter for two reasons: because there are multiple existing approaches to trun-
cating principal components without an objectively discernible best method; and 
because the truncations are often sensitive to the period over which the PCA is 
performed.

In contrast to earlier studies using PCR, we do not readjust the variance of the 
reconstructed field to the target variance over the calibration period. This readjust-
ment is often done to avoid strong variance changes between the reconstructions 
of the different proxy nests. We do not apply this correction because in our case 
the differences in variance between the adjusted and non-adjusted reconstructions 
are relatively small. The largest effect of the readjustment is that it produces a large 
ratio of low- versus high-frequency variance in the reconstructions, particularly 
over the high northern latitudes, leading to reconstructed temperatures that are 
very low compared with those obtained by other methods over the entire recon-
struction period.
Canonical correlation analyis (CCA). CCA uses singular-value decomposition 
(SVD) to carry out dimensional reductions separately on the instrumental temper-
ature matrix, the proxy matrix, and the regression coefficient matrix that describes 
their relationships47,48. The basic assumption, as in most palaeoclimate applica-
tions, is that the first few leading modes of empiral orthogonal function (EOF)–
principal-component pairs contain most of the variance in the target climate field 
and the multiproxy network. The algorithm seeks an optimal set of truncation 
parameters that yields good approximations of the above-mentioned matrices. 
These truncation parameters are chosen by minimizing the area-weighted RMSE of 
the reconstruction relative to the target field using a leave-half-out cross-validation 
procedure. Specifically, a separate set of parameters was obtained for each proxy 
nest, so that the algorithm accounts for the heterogeneity in data availability and 
can thus adaptively regularize the regression matrix. This adaptive procedure was 
developed15,19 as an improvement to the original algorithm48. Ensemble pertur-
bations were done as for PCR above.
GraphEM. GraphEM49 is based on the theory of Gaussian graphical models (GGMs 
or Markov random fields). A GGM makes use of the conditional independence 
structure of the climate field, in order to reduce the dimensionality and obtain a 
parsimonious estimate of the inverse of the covariance matrix Σ̂. The conditional 
independence relations are estimated by solving an l1 (lasso)-penalized maximum 
likelihood problem50. Σ is then estimated in accordance with these conditional 
independence relations. The resulting Σ̂  is sparse and better conditioned, and 
therefore is applicable within the ordinary-least-squares framework. This proce-
dure is implemented within the standard expectation-maximization algorithm 
without further need for regularization.

Specifically, the covariance model is chosen via the graphical lasso algorithm50. 
Three sparsity parameters need to be specified to determine the graphical structure, 
separately for the temperature–temperature (TT), proxy–proxy (PP) and tempera-
ture–proxy (TP) parts of the covariance matrix. The values need to be large enough 
that the true graph is contained within the estimated one, but small enough for the 
covariance matrix to be well conditioned. We set the parameters to (TT, TP) = (2%, 
2%), with a diagonal matrix for PP, reflecting the conditional independence of 
proxies given the temperature field.
Data assimilation (DA). We use an off-line data-assimilation technique that opti-
mally combines proxy data with climate-model states51,52. The climate model pro-
vides an initial, or prior, state estimate that is updated on the basis of the proxy 
observations and an estimate of the errors in both the observations and the prior. 
For the annual reconstructions here, the reconstruction is made by iteratively com-
puting the state update equations of data assimilation for each year of the existing 
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proxy data without the need to run an ensemble of online simulations (see ref. 
53 for precise mathematical details and links to data-assimilation palaeoclimate 
reconstruction code). As in previous work53, we construct the prior using sim-
ulation number 10 from the Community Earth System Model Last Millennium 
Ensemble (CESM LME)54.

For the prior we specifically used the middle 998 years of the CESM LME simu-
lation, excluding the two simulation endpoints, to create a static 998-member prior 
ensemble that we used to estimate the climate state in each year of the reconstruc-
tion. As in ref. 53, we performed sensitivity tests with different members from the 
CESM LME and found no discernible differences in the results.

As in ref. 52, the proxies in the data-assimilation framework are modelled as 
linear univariate responders to temperature; the errors in the model’s estimate 
of the proxies are taken as the residuals of a local linear univariate fit between 
the proxies and HadCRUT4 over the calibration period. This method naturally 
provides uncertainty estimates for the target field in the form of an ensemble of 
equally likely state estimates for each year. For the analyses performed here, we used 
a random sampling of 100 of these state estimates from the available 998 members.
Analogue method (AM). The analogue method has been successfully used as a CFR 
technique to reconstruct global temperature fields55. The method requires the 
existence of a pool of plausible climate fields, which can be obtained from computer 
simulations, observations or combinations of both. As in ref. 55, we use the ensem-
ble of available simulations within the PMIP3 project, which consists of 18,327 
annual temperature fields. For direct comparison with the climate fields, each 
proxy time series is converted into a ‘local temperature reconstruction’ through a 
local linear univariate fit with HadCRUT4. We then calculate the distance between 
each field and the local, proxy-based reconstructions in a given year; the distance is 
based on minimizing the spatial RMSE between the local reconstructions and the 
pool sampled at the closest grid point to each proxy location. The full CFR is then 
the average of the five fields that most closely resemble the local reconstructions 
at a given time step55. Thus the spatial structure of temperature is provided by 
the different climate models, while the temporal evolution is obtained from the 
information contained in the network of proxies.

To produce an ensemble that accounts for the probabilistic nature of this recon-
struction and their uncertainties, we apply a bootstrap-based approach. We sub-
sample both the pool of analogues and the local reconstructions so that in each 
instance only half of the information is used. This degradation of the available 
information naturally leads to spread within the ensemble that is larger around 
locations in which the pool is loosely constrained by the proxies, and therefore 
allows us to quantify the uncertainties implicit in the reconstruction.
Spatial anomalies in Fig. 2. To generate Fig. 2, the ensemble median reconstruc-
tions of each method and at each grid cell are first centred to the reference period 
1–2000 ad. The (area-weighted) fraction of grid cells that exceed the temperature 
thresholds shown using the right-hand colour bar of Fig. 2 is then calculated. The 
values from the six methods are then averaged as shown in Fig. 2. In Fig. 2b, the 
reconstruction time series are smoothed with a 51-year butterworth lowpass filter 
before analysis56.
Analysis of cold and warm periods. Figure 3. To calculate the timing of peak 
warming/cooling over the climatic epochs, we first calculate 51-year running 
temperature averages for each location and ensemble member. For each warm 
(or cold) epoch and grid cell, we then identify the year with the maximum (or 
minimum) value, using the centre-year of the warmest (or coldest) 51-year period. 
In the following we use the term ‘peak-year’ for this maximum (or minimum). 
We then identify the century within which the largest number of members (over 
the combined 600-member reconstruction ensemble) have the peak-year. This 
century is then indicated in Fig. 3 for each grid point. The maps thus show the 
century within which the multidecadal peak warming (or largest cooling) is most 
probable for each epoch. The DACP and LIA minima are searched for within the 
first and second millennium ad, respectively. RWP maxima are allowed to occur 
within 1–750 ad, MCA maxima between 751–1350 ad, and the CWP in the full 
2,000 years of the Common Era.
Uncertainty analysis for Fig. 3. Uncertainties in the analysis are quantified by boot-
strapping. We recalculated the peak warm/cold analysis described above 1,000 
times using 600 bootstrap samples drawn from the reconstruction ensemble mem-
bers (Extended Data Fig. 2). We find that the particular spatial patterns shown in 
Fig. 3 are robust, with at least 75% of locations having a 1σ range of less than 50 
years for all epochs except the DACP. For this epoch, 33% of locations show a 1σ 
range of over 100 years, mostly concentrated in a few Southern Hemisphere and 
tropical regions (Extended Data Fig. 2).
Sensitivity tests for Fig. 3. We also conducted a number of sensitivity tests. We 
tested using an alternative period length of 101 years (instead of 51 years) to cal-
culate running averages (Extended Data Fig. 5) and using the full proxy network 
instead of the screened proxy network (Extended Data Fig. 4). We computed epoch 
maps using the raw proxy data instead of the reconstructed fields (Extended Data 
Fig. 3). We also ran reconstruction experiments using detrended calibration data 

to test for potential artefacts arising from the twentieth-century calibration period 
(Extended Data Fig. 8).

There is also the potential concern that the proxy screening process and the 
reconstruction methodologies themselves could produce global coherence in the 
twentieth century (Fig. 3) given noisy proxies (thus no ‘real’ underlying coherence). 
In this hypothetical scenario, signal-less proxies that by chance contain a trend 
in the twentieth century could be selected in the screening process and weighted 
strongly in the reconstruction process, thus giving rise to a false sense of twenti-
eth-century coherence.

To test this null hypothesis, we generated three kinds of noise proxies that we 
then used within each of the reconstruction routines. For the first kind, we gener-
ated noise proxies that are in the same locations and have the same autoregressive 
spectrum and temporal coverage as the 210 real proxies used in our reconstruc-
tions57,58. This kind of noise proxy assesses the role that the reconstruction method-
ologies themselves have in potentially biasing the result of Fig. 3. The second kind 
of proxies is the same as the first except that we additionally applied the R-FDR 
proxy-screening process to noise proxies representing the full PAGES2k database 
of 515 annually or higher resolved proxies20. This screening leaves on average about 
n = 66 noise proxies and may shed light on the influence of the screening approach 
on the results. As a final, even more conservative noise proxy experiment, we force-
screened the noise proxies to have the same number (n = 210) as the screened real 
proxy data used herein. This means that we repeatedly generate noise-proxy time 
series at each location until the time series passes the R-FDR screening criterion. 
These second and third kind of proxies test the role that screening plays in the 
reconstruction process.

Of these three noise proxy experiments, we consider the second (n = 66) to be 
the most likely representative null experiment against which to compare the results 
of Fig. 3. Although the third, n = 210 experiment uses the same number of input 
data, it does not accurately reflect the process of how proxy data are selected for 
the real data reconstructions. Repeatedly generating noise proxies at each location 
until a certain number of them pass the screening will increase the potential bias 
of the screening effect and will further amplify and build the observational signal 
into the proxy network, thereby eroding the ‘noisiness’ of the null.

We generated 25 sets of noise proxy networks for the three kinds of noise proxies 
and performed 100-member ensemble reconstructions for each reconstruction 
method, thus producing 45,000 global noise-proxy reconstructions. The results 
(Extended Data Fig. 7) indicate that, although it is possible in some proxy noise 
realizations to generate artificial twentieth-century warming coherence from the 
reconstruction algorithms themselves as well as from the proxy screening process, 
neither of these factors can explain the amount of twentieth-century warming 
coherence (Extended Data Fig. 7c). We note also that the twentieth-century warm-
ing in the noise proxy reconstructions is a product of largely three reconstruction 
methods (GraphEM, data assimilation and the analogue method, depending on 
the screening approach). We find that the noise-proxy reconstructions produce 
coherence that is always less than that seen in the real proxy reconstructions over all 
noise-proxy experiments and methods. The median global area fraction showing 
the largest ensemble probability for maximum 51-year temperatures within the 
twentieth century is between 37% and 67% for the noise proxies, depending on 
the screening approach, versus a 98% global area fraction for real proxies for both 
unscreened and screened networks (Extended Data Fig. 7c) and climate-model 
data (Extended Data Fig. 8).

All of these analyses, together with the independent verification using cli-
mate-model data shown in Extended Data Fig. 8, corroborate the results of Fig. 3 
and show that they are robust to major technical choices.

Figure 4. While Fig. 3 is based on ensemble probabilities, Fig. 4 addresses the 
spatial consistency of warm and cool extremes within each ensemble member. To 
generate Fig. 4, we first calculate 51-year running averages of each reconstruction 
ensemble member and identify the epoch peak-years (the maximum values for 
warm epochs or minimum values for cold epochs) at each grid point. Then we 
find which sliding 51-year period contains the most peak-years in terms of the 
global area fraction. The centre year of this 51-year period is shown on the x axis 
of Fig. 4, while the y axis is the area-weighted fraction of peak-years that are con-
tained within the 51-year period. This process thus identifies the period for which 
there is the largest spatial agreement about multidecadal temperature extremes. 
For example, 24% of grid cells in PCR ensemble member 1 have the LIA peak-
year (that is, the coldest 51-year average during the LIA epoch) within the period 
1815–1865 ad. No other 51-year period within the LIA epoch contains a higher 
area fraction of LIA minima in this ensemble member. The circle for this ensemble 
member is therefore drawn at the coordinates (1840, −0.24) in Fig. 4. Boxplots on 
the right-hand side of Fig. 4 integrate the area fractions of all ensemble members 
independently of the timing.

As a null reference to test the significance of the area fractions, we repeated 
the Fig. 4 calculations on the basis of multivariate random fields with realistic 
spatiotemporal covariance properties15 using the rmvn function in the R package 
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mgcv. First, the covariance matrix V of the ensemble median reconstruction field 
over the full 2,000 years is calculated for each reconstruction method. Second, a 
‘square root’ of V is generated using pivoted cholesky decomposition59. A matrix 
of normal white noise is then multiplied with the transpose of this square root 
matrix to obtain a multivariate normal matrix with the same covariance structure 
as the reconstructed field. Each grid cell in this random field is then modified with 
an AR(1) model to obtain a time series with the same first-order autoregression 
coefficient as the corresponding grid cell in the ensemble median reconstruction60. 
This process is repeated 100 times for each reconstruction method to obtain a 
600-member ensemble as in the real-world reconstructions. We then perform the 
search for the peak warming/cooling for each epoch in this noise-field ensemble 
using the process described above. The area fractions resulting from these noise 
fields are shown with grey shading in Fig. 4. We use the Mann–Whitney U-test 
(α = 0.05; one-tailed) to test whether the area fractions in the reconstruction 
ensembles are significantly larger than expected from these noise fields (both 
n = 600). Alternative benchmarks based on noise-proxy reconstructions are shown 
in Extended Data Fig. 6. As for Fig. 3, all of our sensitivity experiments (Extended 
Data Figs. 4–6) confirm the robustness of our findings.

Data availability
The PAGES 2k v.2.0.0 dataset is archived at the World Data Service (WDS) 
for Paleoclimatology (hosted by the National Oceanic and Atmospheric 
Administration (NOAA)), formatted for both LiPD and WDS ASCII template 
(https://www.ncdc.noaa.gov/paleo/study/21171). The screened input data matrix 
and instrumental target grid, as well as the reconstruction outcomes from this 
study, are available at Figshare (doi:10.6084/m9.figshare.c.4498373.v1) and 
NOAA WDS Paleoclimatology (www.ncdc.noaa.gov/paleo/study/26850). We 
strongly recommend using the multimethod ensembles when working with the 
reconstructions. For analyses of global mean temperatures we recommend using  
the reconstruction of the PAGES 2k companion project that explicitly targets the 
global mean61.

Code availability
The code to generate the figures is available with the output data (see above).
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