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a b s t r a c t 

Recent numerical predictions of turbulent boundary layers subject to very strong Favorable Pressure Gra- 

dient (FPG) with high spatial/temporal resolution, i.e. Direct Numerical Simulation (DNS), have shown a 

meaningful weakening of the Reynolds shear stresses with a lengthy logarithmic behavior [1,2]. In the 

present study, assessment of the Shear Stress Transport and Spalart-Allmaras turbulence models (hence- 

forth SST and SA, respectively) in Reynolds-averaged Navier-Stokes (RANS) simulations is performed. The 

main objective is to evaluate the ability of popular turbulence models in capturing the characteristic 

features present during the quasi-laminarization phenomenon in highly accelerating turbulent boundary 

layers. A favorable pressure gradient is prescribed by a top converging surface (sink flow) with an ap- 

proximately constant acceleration parameter of K = 4 . 0 × 10 −6 . Validation of RANS results is carried out 

by means of a large DNS dataset [1]. Generally speaking, the SA turbulence model has demonstrated 

the best compromise between accuracy and quick adaptation to the turbulent inflow conditions. Tur- 

bulence models properly captured the increasing trend of the freestream and friction velocity in highly 

accelerated flows; however, they fail to reproduce the decreasing behavior of the skin friction coefficient, 

which is typical in early stages of the quasi-laminarization process. Both models have shown deficient 

predictions of the decreasing and logarithmic behavior of Reynolds shear stresses as well as significantly 

overpredicted the production of Turbulent Kinetic Energy (TKE) in turbulent boundary layers subject to 

very strong FPG. 

© 2020 Elsevier Ltd. All rights reserved. 

1. Introduction 

Turbulent spatially-developing boundary layers subject to se- 

vere acceleration or strong Favorable Pressure Gradient (FPG) are 

of fundamental importance. Many flows of industrial and techno- 

logical applications are subject to strong acceleration such as con- 

vergent ducts, turbines blades and nozzles. Although the prescrip- 

tion of streamwise FPG induces a stabilizing effect, a shrinking pro- 

cess of the spatially-developing boundary layer and a significant 

increase of the time-averaged vertical velocity (toward the wall) 

are also present and play key roles. These circumstances cause 

higher communication between the inner and outer regions in- 

side the turbulent boundary layer as well as difficulties on flow 

parameter measurement in such a thin layer. An important phe- 

nomenon in fluid dynamics is when an initially turbulent bound- 

ary layer is subject to a very strong FPG or acceleration, which 

may cause quasi-laminarization or “soft” relaminarization [3] . Ac- 

cording to Narasimha & Sreenivasan [4] , the quasi-laminarization 
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phenomenon is caused by the domination of pressure forces over 

nearly frozen Reynolds stresses. They proposed the parameter = 
−δ d P/d x 

τwo 
(here δ and dP / dx are local values of the boundary layer 

thickness and the streamwise pressure gradient, respectively; τwo 

is the wall shear stress at the last Zero Pressure Gradient ZPG sta- 

tion, upstream of the FPG region) defined as the ratio of the pres- 

sure gradient dP / dx to the characteristic Reynolds stress gradient 

τwo / δ. For large values of ( ≥ 50), they explained that the mean 

flow field could be split into an inner laminar sub-layer and an in- 

viscid but rotational outer layer, and used this criterion as a demar- 

cator of reversion. There is a region located upstream of the quasi- 

laminarization process, called laminarescent by Schraub & Kline 

[5] and Sreenivasan [6] , where the flow parameters exhibit sig- 

nificant deviations from those of the canonical boundary layer or 

constant-pressure region but the flow still shows turbulent charac- 

teristics with increasing values of the wall shear stress and friction 

velocity [7] . A particular type of FPG flow is the sink flow, i.e. flows 

developing between two straight convergent surfaces. A sink flow 

is usually characterized by a constant value of the acceleration pa- 

rameter K = ν/U 2 
∞ dU ∞ / dx ; where ν is the fluid kinematic viscos- 

ity, U ∞ is the freestream velocity, and x is the streamwise coordi- 

nate [8] . Furthermore, it represents the only kind of turbulent flow 
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with varying freestream velocity in which complete self-similarity 

can be achieved since both the outer and inner (or viscous) tur- 

bulent length scales grow at the same rate [6] . Jones & Launder 

[9] experimentally studied sink-flow turbulent boundary layers for 

K = 1 . 5 , 2 . 5 and 3 × 10 −6 , respectively. The ratio of the calculated 

Reynolds shear stress peak u ′ v ′ max to the measured wall shear 

stress decreased as the acceleration parameter K was increased. In 

experimental and theoretical studies in sink flows at mild accelera- 

tion parameters, K = 2 . 7 , 3 . 59 and 5 . 39 × 10 −7 , Jones et al. [10] re- 

ported logarithmic behaviors in both streamwise and spanwise 

Reynolds stress profiles as predicted by the fully turbulent scaling 

laws of Perry et al. [11] . Spalart [12] performed DNS of sink flows 

and found that laminarization occurred at K = 3 . 0 × 10 −6 by sud- 

denly increasing the viscosity from simulations at K = 2 . 5 × 10 −6 

and K = 2 . 75 × 10 −6 . More recently, DNS of very strong FPG sink 

flows [1] subject to K = 4 × 10 −6 has reported that Reynolds shear 

stress, u ′ v ′ , monotonically decreased downstream (in the so-called 

“laminarescent” stage) and exhibited an evident logarithmic be- 

havior, which extended over a significant portion of the boundary 

layer thickness (up to 55%). In a posterior study [2] , a passive scalar 

was included. While evident “signatures” of the very strong FPG 

were identified in the velocity field, those “signatures” were much 

less evident in the temperature field causing a breakdown of the 

Reynolds analogy. Yuan & Piomelli [13] , Yuan & Piomelli [14] stud- 

ied the effects of FPG using Large Eddy Simulation (LES) and DNS. 

They observed that profiles of the time-averaged streamwise veloc- 

ity U exhibited an overshoot as K increases and no longer followed 

the universal logarithmic law. It was also reported that peaks of 

the streamwise Reynolds stress shift away from the wall as the 

viscous sublayer thickens and the wall-normal component reduces, 

caused by increasing flow acceleration. Dixit & Ramesh [15] per- 

formed experiments in relaminarizing sink-flow and observed a 

systematic decrease of the turbulent structure inclination angles as 

the FPG increased. 

In terms of turbulence modeling, Jones & Launder [16] proposed 

a new methodology to calculate local values of the turbulent eddy 

viscosity in highly accelerated flows with eventual laminarization. 

Their model has shown good predicting capabilities and agreement 

with experiments. It is worth noting that in [16] all calculations 

were started well upstream of the region of interest. Rona et al. 

[17] , devised a methodology to prescribe composite time-mean ve- 

locity profiles at the inlet of a computational domain in Reynolds- 

Averaged Navier-Stokes (RANS) simulations. They reported good 

agreement of the obtained profiles in ZPG and mild FPG (i.e., sink 

flows) turbulent boundary layers in comparison with DNS and ex- 

periments from the literature; however, the performance of turbu- 

lent inflow conditions were not tested in actual RANS approaches. 

In summary, while most of previous studies have focused on 

the mean velocity flow field of FPG flows with eventual quasi- 

laminarization, in the present study a detailed numerical analysis 

is carried out to assess two popular turbulence models (SST and 

SA) on their ability to predict the Reynolds shear stresses u ′ v ′ and 

their sensitivity to turbulent inflow conditions. 

2. Numerical details 

In this section, details of the different numerical tools employed 

is supplied. The principal approach is based on Reynolds-Averaged 

Navier-Stokes (RANS). Direct simulations of the governing equa- 

tions have also carried out in prior studies [1] [2] and the most 

important aspects are highlighted here for reader convenience. 

2.1. RANS Approach 

Siemens STAR-CCM+ [18] is a Computational Aided Engineer- 

ing (CAE) software package for solving fluid and solid continuum 

mechanics problems. Its capabilities includes Computer Aided De- 

sign (CAD) import and generation, meshing operations, visualiza- 

tion, and data analysis. The RANS approach was used to solve the 

momentum equations with segregated flow solvers in a 2D do- 

main with STAR-CCM’s solvers. These solvers use the SIMPLE algo- 

rithm to compute the governing equations using the finite volume 

method in a sequential manner. The steady state conservation of 

mass and linear momentum equations for incompressible flow and 

no external forces can be stated as: 

▽ · v̄ = 0 (1) 

▽ · (ρv̄ v̄ ) = −▽ · p̄ I + ▽ · (T + T t ) (2) 

where ρ is the fluid density, v̄ and p̄ are the mean time veloc- 

ity and pressure respectively, I the identity tensor, T the viscous 

stress tensor, T t the Reynolds stress tensor, and denotes the Kro- 

necker product. The eddy viscosity approach attempts to model the 

Reynolds stress tensor, T t , in terms of resolved mean flow quan- 

tities. The models were created using the analogy between the 

molecular gradient-diffusion and turbulent motion. The Boussinesq 

approximation is given by: 

T t = 2 μt S −
2 

3 
(μt ▽ · v̄ ) I (3) 

where S is the mean strain rate tensor and μt is the turbulent 

eddy viscosity, which is used by STAR-CCM+ to model the Reynolds 

stress tensor. Additional transport equations given by turbulence 

models such as SA [19] and SST [20] are used to derive μt . SA de- 

fines μt as: 

μt = ρ f v 1 ̃  v (4) 

where f v 1 is a damping function and ˜ v is the diffusivity. SA uses the 

following transport equation for a steady state problem to solve for 

˜ v and thus calculate μt : 

▽ · (ρ ˜ v ̄v ) = 
1 

σ˜ v 
▽ · [(μ + ρ ˜ v ) ▽ ̃ v ] + P ̃ v + S ̃ v (5) 

where σ˜ v is a model coefficient, μ is the molecular dynamic vis- 

cosity, P ̃ v is the production term, and S ̃ v is the user-specified source 

term. The production term is defined as the sum of the non- 

conservative diffusion and turbulent production minus the turbu- 

lent dissipation: 

P ̃ ν = 
C b2 
σ ˜ ν

ρ(▽ ̃  ν · ▽ ̃  ν) + ρ(1 − f t2 ) C b1 f r1 ̃  S ̃  ν

−ρ C w 1 f w −
C b1 
κ2 

f t2 
˜ ν

d 
2 (6) 

where C b 1 , C b 2 , and C w 1 are model coefficients; f t 2 and f w are 

blending functions; and f r 1 is the rotation function. The definition 

for the turbulent eddy viscosity used by SST can be expressed as: 

μt = ρkT (7) 

where T is the turbulent time scale and k is the turbulent kinetic 

energy. T is defined as: 

T = min 
F 1 α

∗

1 + (1 − F 1 ) α
∗

2 

ω 
, 
a 1 
SF 2 

(8) 

here, ω is dissipation, α∗

1 , α
∗

2 , and a 1 are model coefficients, and 

F 2 and F 1 are blending functions. The transport equations for tur- 

bulent kinetic energy and dissipation are, respectively: 

▽ · (ρk ̄v ) = ▽ · [(μ + σk μt ) ▽ k ] + P k − ρβ∗ f β∗ (ωk − ω 0 k 0 ) + S k 
(9) 
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Fig. 1. Schematic of the RANS computational domain. 

Fig. 2. Schematic of the DNS computational domain (iso-surfaces of instantaneous streamwise velocity fluctuations u ′ ). 

▽ · (ρω ̄v ) = ▽ · [(μ + σω μt ) ▽ ω] + P ω − ρβ f β (ω 
2 

− ω 
2 
0 ) + S ω 

(10) 

where σ k and σω are model coefficients, P ω and P k are production 

terms, f β∗ is the free-shear modification factor, f β is the vortex- 

stretching modification factor, S ω and S k are user-specified source 

terms, and ω 0 and k 0 are ambient turbulence values that counter- 

act turbulence decay [18] . 

Velocity inlet and pressure outlet boundary conditions were 

specified at the domain extremities, as seen in Fig. 1 . As part 

of this study, the velocity and turbulent viscosity ratio’s values 

were prescribed at the inlet as constant or as a profile (See 

Appendix A for details). At the bottom boundary, a condition was 

specified. A symmetry plane or shear-less condition was selected 

for the top boundary. Using this condition, the shear stress at the 

symmetry face is zero. However, the face value for pressure, and 

velocity is extrapolated from the adjacent cell using reconstruction 

gradients. 

Initial conditions were assumed as follows: 101 kPa, 1 m/s, and 

10 for pressure, streamwise velocity, and turbulent viscosity ra- 

tio, respectively; except at the inlet, where profiles of velocity and 

eddy viscosity were prescribed, more details in Appendix A . 

2.2. DNS Approach 

DNS is a numerical tool that resolves all turbulence length/time 

scales; thus, it aims to provide high spatial/temporal thermal- 

fluid data within a computational domain. Furthermore, turbulent 

boundary layers that evolve along the flow direction (i.e., spatially- 

developing boundary layers) pose an enormous challenge due to 

the need for time-dependent inflow turbulence information. Fur- 

thermore, accounting for the effects of strong flow acceleration 

adds significant complexity to the problem since the turbulent 

boundary layer becomes thinner, and a high spatial resolution is 

required in the near wall region. We are using the Dynamic Multi- 

scale Approach [21] , a method for prescribing time-dependent tur- 

bulent velocity inflow conditions. It is an improved modification of 

the rescaling-recycling method proposed by Lund et al. [22] . The 

fundamental idea of the rescaling-recycling method is to prescribe 

time-dependent turbulent information at the inlet plane based on 

the scaled flow solution downstream, from the “recycle” plane (as 

seen in Fig. 2 ). Additionally, in our innovative approach there is 

no need to use empirical correlations to compute inlet parameters, 

as in the methodology introduced by Lund et al. [22] . In order to 

calculate the inlet friction velocity ( u τ ) an additional plane is in- 

volved, the so called “test” plane located between the inlet and re- 

cycle stations ( Fig. 2 ). The computational domain consists of a ZPG 

region or precursor zone for inflow turbulent information genera- 

tion of 20 δinlet -length followed by a FPG region of 40 δinlet -length, 
where δinlet is the measured 99% boundary layer thickness at the 

inlet. Favorable pressure gradient is prescribed by a top converging 

surface (sink flow) with an approximately constant acceleration pa- 

rameter of K = 4 . 0 × 10 −6 . Dimensions of the composite computa- 

tional domain ( L x , L y and L z ) are 60 δinlet , 4.3 δinlet and 4.3 δinlet along 
the streamwise ( x ), wall-normal ( y ) and spanwise ( z ) directions, 

respectively. The mesh configuration is 600 ×80 ×80, which rep- 

resents the numbers of points along x, y and z directions, respec- 

tively. The mesh resolution in wall units is x + = x u τ /ν = 15 , 

y + 
min 

= 0.2, y + max = 13 and z + = 8. The time step is fixed at 

t + = 0.19, whereas the maximum Courant-Friedrichs-Levy (CFL) 

parameter was approximately 0.24 during the simulation. Suitabil- 

ity of the mesh resolution has been demonstrated by means of the 

computation of the Kolmogorov length scales in Araya & Torres [2] . 

2.2.1. Flow solver and DNS validation 

The numerical code for performing DNS of the full Navier- 

Stokes equations is called PHASTA (Parallel Hierarchic Adaptive Sta- 

bilized Transient Analysis). The flow solver is based on a stabi- 

lized finite element method in space to spatially discretize the in- 

compressible Navier-Stokes equations with a Streamline Upwind 

Petrov-Galerkin (SUPG) stabilization. Thus, the weak formulation of 

the problem generates a system of non-linear ordinary differential 

equations, which are discretized in time via a generalized- α time 

integrator generating a set of non-linear algebraic equations. In 

turn, the previously mentioned system is linearized via the New- 

ton’s method which yields a linear algebraic system of equations: 

K G 

−G T C 

˙ u 
˙ p 

= −
R m 

R c 
, (11) 

where matrix K originates from the tangent of the momentum 

equation with respect to the acceleration, G derives from the tan- 

gent of the momentum equation with respect to the pressure 
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Fig. 3. a) Mean streamwise velocity, and b) Reynolds shear stresses in wall units for the ZPG region. 

time derivative, and C develops from the tangent of the continu- 

ity equation with respect to pressure time derivative. The matri- 

ces R m and R c are the momentum and continuity residuals, re- 

spectively. Eq. (11) can be solved monolithically; nonetheless, the 

required tight tolerance makes this approach almost impractical. 

Consequently, a more achievable option consists in solving approx- 

imately a preconditioned system. Thus, the equation for ˙ p is ob- 

tained by static condensation of (11) , leading us to the discrete 

pressure Poisson equation (PPE): 

G 
T ˆ K −1 G + C ˙ p = −G 

T ˆ K −1 R m − R c , (12) 

where ˆ K −1 is an approximation of K −1 obtained by considering 

only the diagonal entries of K −1 . The linear equation system (12) is 

first solved by the Conjugate Gradient (CG) method. Next, the sys- 

tem of Eqs. (11) is computed by the GMRES method. Further- 

more, the fully coupled momentum and continuity equations are 

solved with multiple non-linear iterations (two nonlinear iterations 

are performed on each step) and an additional discrete pressure 

Poisson equation between each iteration, to maintain a tight tol- 

erance on the continuity equation (Whiting & Jansen [23] ; Sun 

[24] ). Although higher orders of accuracy could be achieved with 

PHASTA by selecting appropriate elements; in practice, linear ele- 

ments were used which yielded global second-order accuracy in 

space. DNS performed by means of the PHASTA flow solver has 

been extensively validated in the past [1,2,7] . Fig. 3 (a) shows the 

mean streamwise velocity profile in wall units in the ZPG region of 

the DNS-computational domain, where the local momentum thick- 

ness Reynolds number is Re θ = 382. An excellent agreement is 

obtained with DNS data from Skote [25] in ZPG flows at similar 

Reynolds numbers. In [25] , the laminar-transition region was re- 

solved in order to obtain fully turbulent statistics. The Reynolds 

shear stresses u ′ v ′ 
+ 

in present DNS are depicted by Fig. 3 (b) with 

a very good agreement with DNS from Skote [25] , as well. 

3. Discussion of results 

3.1. Grid independence test 

A grid independence testing was conducted with the purpose 

of finding the optimum meshing parameters for our RANS model. 

It is worth mentioning that the grid independence test was per- 

formed over the SA and SST turbulence models with very similar 

outcomes; however, results obtained by means of the SA model are 

shown and discussed for simplicity. Three meshes were evaluated 

with equidistant node distribution in the streamwise x -direction 

Table 1 

Mesh design parameters. 

Mesh N x N y y + 
min y + max 

Coarse 300 50 0.44 104 

Medium 400 200 0.11 50 

Fine 600 200 0.11 50 

(see Table 1 ). The distribution in the y -direction was set as two- 

sided hyperbolic. The distance between the wall and the first off- 

wall point ( y min ) as well as resolution near the top surface y max 

were specified allowing for a finer mesh inside the boundary layer 

and a coarser one in the inviscid region. Fig. 4 a exhibits the y + 
min 

distribution in wall units according to the SA turbulence model. 

Values of y + 
min 

in all cases were well under one, indicating a very 

good resolution inside the viscous sublayer. All boundary layer pa- 

rameters were post-processed by means of a MATLAB code. The 

y + 
min 

shows an incremental behavior in the FPG zone which is 

consistent with the increase of the local friction velocity due to 

the acceleration enforced to the flow. Convergence criteria was 

considered satisfied when the residuals of the governing equa- 

tions exhibited a consistent and approximately constant behavior. 

In Fig. 4 b, the time history of transport equation residuals is de- 

picted. It can be observed that after 15,0 0 0 iterations, all residu- 

als have reached a significant decrease, at most, of five orders of 

magnitude. The numerical transient took approximately 25,0 0 0 it- 

erations. The streamwise development of the freestream velocity is 

exhibited in Fig. 5 a. All the velocities obtained were normalized by 

the inlet freestream velocity ( U ∞ , inlet = 1 m/s). 

Furthermore, the streamwise position x was normalized in 

terms of the inlet boundary layer thickness, δinlet , obtained by 
DNS. The numerical results with SA show a very good agreement 

with the analytical solution from the sink flow theory by assum- 

ing a constant value of the acceleration parameter K . This confirms 

that the computational domain and the top inclined surface have 

been adequately designed. The theoretical analytical solution from 

Rosenhead [26] is given by the following equation: 

U ∞ 

U ∞ ,i 
= 

1 
KU ∞ 

ν(x i −x )+1 

(13) 

where U ∞ is the local free stream velocity, U ∞ , i is the inlet free 

stream velocity, ν is the kinematic viscosity, x i is the inlet coor- 

dinate, x is an arbitrary streamwise location, and K is the accel- 

eration parameter. It can be observed that, as the mesh was re- 

fined, the free stream velocities obtained by the SA model actu- 
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Fig. 4. a) Near-wall resolution, and b) residual history of the fine mesh case. 

Fig. 5. Streamwise variation of a) the freestream velocity, b) the boundary layer thickness, and c) the shear velocity. 
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ally deviated slightly further from the analytical and DNS solution, 

respectively. However, maximum discrepancies were observed to 

be within 3%. The boundary layer thickness was calculated by per- 

forming a linear interpolation to find the y position at which the 

local streamwise velocity was 99% of the local free stream velocity. 

Spatial filtering of the boundary layer thickness in the x - 

direction is done by using a five-point averaging window, i.e. two 

points downstream and two points upstream at any given stream- 

wise direction. Furthermore, boundary layer thicknesses were nor- 

malized by their respective inlet value. As the mesh was refined, 

the model increased its overprediction with a maximum error of 

approximately 6.5% ( Fig. 5 b). Still, the SA turbulence model is able 

to capture fairly well the typical shrinking process of the boundary 

layer thickness in sink flows. The friction velocity was calculated 

using the following formula: 

U τ = 

 
τw 
ρ

(14) 

where ρ is the density of the fluid and τw is the wall shear stress 

given by 

τw = μ
∂U 

∂y wall 

(15) 

where U is the mean streamwise velocity near the wall and y is the 

vertical distance from the wall. As the mesh was refined, the fric- 

tion velocity yielded lower values. An initial developing section can 

be observed in U τ profiles of Fig. 5 c and in the DNS data as well. 

This sudden increase may be caused by turbulence transition and 

triggering of turbulent events. The U τ values are nearly constant 

in the ZPG zone (flat plate) after flow develops. Downstream of 

the ZPG-FPG transition, the friction velocity increases, as expected. 

At x / δinlet ≈30, SA starts to overpredict U τ with an increasing error 

further downstream of the FPG zone up to 5%. 

3.2. ZPG Turbulent boundary layers 

The flat plate turbulent boundary layer (i.e., ZPG turbulent flow) 

is the classical benchmark to evaluate any turbulence model ( [27] 

[28] ) since a significant number of experiments, theory and em- 

pirical correlations exist. Symmetry conditions were imposed on 

the lower boundary face located upstream of the flat-plate lead- 

ing edge [29,30] in order to assess the performance of the SA and 

SST turbulence model. They stated that the SA model exhibited the 

start of turbulence enhancement much earlier than SST, by observ- 

ing a unitary value of the eddy viscosity ratio within the bound- 

ary layer at a lower Reynolds number based on the streamwsie 

x −coordinate. Based on the skin friction coefficient streamwise de- 

velopment from the leading edge, the SA model showed a grad- 

ual transition from laminar to turbulent, whereas a significant ini- 

tial “dip” with respect to theory (i.e., C f = 0 . 025 Re −1 / 7 
x ) was ob- 

served in the SST model (see Fig. 3 of [30] ). In terms of U + vs. 

y + , both models demonstrated good and very similar comparisons 

with the log law theory at very high Reynolds numbers (by se- 

lecting the following constants: κ = 0.41 and B = 5), as reported 

in [30] . Furthermore, Rumsey & Spalart [30] concluded with re- 

spect to SA and SST models in a flat plate: “However, as is well 

known, the turbulence models actually do not activate immedi- 

ately at the leading edge, but rather at a finite distance down- 

stream of the leading edge that varies with freestream conditions.”

Menter [31,32] , also for incompressible turbulent flat-plate flows, 

reported that the SST turbulence model was completely indepen- 

dent of ω f as compared with the original k − ω model, where ω f is 

the freestream specific rate of dissipation. This improvement was 

achieved by prescribing the original k − ω model in the sub- and 

log-layer and gradually switched to the standard k − ǫ model in 

the wake region of the boundary layer [31] . Menter [32] also re- 

ported a lengthy log layer ( ≈ 10 0 0 wall unit long) in U + pro- 

files for a turbulent flat plate at very high Reynolds numbers (for 

Re θ > 10,0 0 0). More recently, Araya [33] tested the SA, standard 

k − ω and SST turbulence model in an adiabatic supersonic turbu- 

lent flat plate (Mach number = 2) at very high Reynolds numbers 

( Re x = 1 × 10 7 per unit length). The obtained results for C f based 

on the SST model showed a fairly good agreement with DNS re- 

sults by Araya & Jansen [34] in the early transition; however, all 

models depicted an excellent agreement with theoretical correla- 

tions further downstream (i.e., for Re x > 10 7 ). Based on the litera- 

ture review performed, previous studies on turbulence model anal- 

ysis have prescribed freestream values at the computational do- 

main inflow (symmetry conditions on the lower boundary face lo- 

cated upstream of the flat-plate leading edge) in order to resolve 

turbulence transition. To our knowledge, this article represents the 

one-of-a-kind evaluation of inflow conditions for turbulent bound- 

ary layers in RANS simulations. 

3.3. Turbulence model assessment 

The medium mesh from Table B2 has demonstrated to possess 

the best compromise between accuracy and quick convergence; 

therefore, it was selected to perform the turbulence modeling com- 

parison. When using SA, the turbulent viscosity ratio and veloc- 

ity profiles from DNS were prescribed at the inlet of the domain. 

The same DNS profiles were prescribed at the domain inlet hav- 

ing a much larger ZPG region for the SST model. Readers are re- 

ferred to Appendix A for more details. When predicting the free 

stream velocity, both turbulence models showed very good agree- 

ment with the analytical solution based on a constant acceleration 

parameter K of 4 × 10 −6 , as seen in Fig. 6 a. Maximum discrepan- 

cies are within 3%. The SST model depicts a residual flow acceler- 

ation trend in the prescribed ZPG zone, which can be caused by 

some upstream influence induced by the very strong FPG. 

The acceleration parameter, K , was computed according to the 

following formula: 

K = 
ν

U 2 
∞ 

dU ∞ 

dx 
(16) 

where dU ∞ 
dx 

is the local streamwise acceleration of the free stream 

flow U ∞ and ν is the kinematic viscosity. Streamwise smoothing 

of K was done using a five-point averaging window. The SST model 

showed an “overshoot” or overprediction on K values near the inlet 

( Fig. 6 b). This could be attributed to the prescribed inlet conditions 

in the RANS simulations. In the ZPG region, the theoretical values 

of the acceleration parameter should be zero (flat plate); however, 

some residual values of K of the order of 10 −7 (i.e., one order of 

magnitude smaller than that of the very strong FPG) in DNS re- 

sults reveal that the very strong FPG causes a slight upstream in- 

fluence with almost negligible values of K . SA predicts K fairly well 

in the ZPG region until x / δinlet ≈12. Then, the K values exhibit a 

steep increase and tend asymptotically toward K = 4 × 10 −6 as the 

flow accelerates. Both models underpredict K in the ZPG-FPG tran- 

sition. The numerical values of K based on the SA model approxi- 

mately level off around x / δinlet ≈30 with excellent agreement with 

DNS results. The SST model seems to possess a “slower reaction”

to the prescribed flow acceleration, as can be seen in Fig. 6 b. 

The friction velocity obtained with the SST model was found to 

show an underprediction in the ZPG zone with a sharp decrease 

and slow recovery ( Fig. 7 a), whereas the numerical prediction of 

U τ from the SA model depicts a very short inlet developing section 

with nearly constant values downstream, as expected in a canoni- 

cal turbulent boundary layer or flat plate flow. However, still some 

slight underpredictions with respect to DNS data can be observed 

of the order of 2%. As the flow accelerates in the FPG zone, the wall 
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Fig. 6. Streamwise variation of a) freestream velocity and b) the acceleration parameter. 

Fig. 7. Streamwise variation of the a) friction velocity, b) friction coefficient Smits et al. [35] : C f = 0 . 024 Re −1 / 4 
θ

, c) boundary layer thickness, and d) Von Karman 

number. 

shear stresses and friction velocities increase, as expected, while 

RANS results exceed the ones from DNS. Furthermore, the skin fric- 

tion coefficient was calculated as follows: 

C f = 
τw 

1 
2 ρU 2 

∞ 

= 2 
U τ

U ∞ 

2 (17) 

Fig. 7 b depicts the skin friction coefficient along the stream- 

wise direction. In the ZPG zone, DNS predictions are in very good 

agreement with the empirical correlation from Smits et al. [35] for 

low Reynolds numbers (within 3% of discrepancy). Furthermore, 

there is a significant underprediction from the SST model (contrary 

to the SA model), which might be caused by incorrect inlet condi- 
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Fig. 8. Streamwise variation of a) the momentum thickness Reynolds number and b) the shape factor. 

tions, particularly for the fundamental variables, e.g. k (turbulent 

kinetic energy), ω and ε (dissipation). The prescribed turbulent 

inflow boundary condition in RANS computational domains em- 

ployed profiles of the time-averaged streamwise and wall-normal 

velocities, as well as the eddy viscosity ratio from DNS. In the 

FPG zone, C f profiles steadily increase, surpassing the DNS val- 

ues and reaching a maximum error percentage of 31% for the SST 

model. The SA turbulence model gives a more accurate predic- 

tion of the skin friction coefficient in the ZPG zone with an initial 

overshoot and developing section, and maximum discrepancies of 

the order of 7% with respect to DNS. Furthermore, C f from SA in- 

creases asymptotically in the FPG zone toward a maximum value of 

6.4 ×10 −3 , which concurs with the sink flow theory [26] . However, 

since the imposed acceleration parameter K is larger than critical 

proposed values K crit = 3 − 3 . 5 × 10 −6 for flow reversion (Spalart 

[12] and Kline et al. [36] ), the skin friction coefficient is expected 

to decrease as a characteristic of the quasi-laminarization phe- 

nomenon [1,6] . It is worth noting that even though FPG flows have 

been traditionally characterized by the acceleration parameter K , 

it is not a precise demarcator for deciding when relaminarization 

begins, since K does not possess any boundary layer parameter 

(Narasimha [3] ). 

Both turbulence models have shown a tendency to predict 

asymptotically constant values for C f , which is a unique character- 

istic of sink flows subject to weak acceleration parameters. There- 

fore, it is inferred certain insensitiveness of turbulence models to 

capture the effects of quasi-laminarization in the near wall region . 

The boundary layer thickness δ was computed and normalized as 

previously described. As observed in U τ and C f , the boundary layer 

thickness from the SST model also shows a small dip at the in- 

let ( Fig. 7 c). A slowly increasing trend in δ follows, whereas SA’s 

δ increases rapidly and yields more accurate results in the ZPG 

zone. Both models were able to appropriately capture the shrink- 

ing process of the boundary layer in highly accelerated sink flows. 

This is highly consistent with experimental results from Jones et al. 

[10] and RANS results from Rona et al. [17] in turbulent sink flows 

at mild acceleration parameters K and much lower values than 

K crit . The Von Karman number, i.e δ+ 
= 

δ
ν/U τ

, is plotted in Fig. 7 d. 

It is observed that the boundary layer thickness in wall units δ+ 

from DNS depicts a nearly linear increasing trend in the ZPG zone. 

In the downstream vicinity of the ZPG-FPG intersection, this pa- 

rameter shows a steeper increasing slope, to finally tend toward 

approximately constant values beyond x/δinlet = 45 . Moreover, the 

Von Karman number or δ+ can be defined as the ratio of the tur- 

bulence outer ( δ) to the inner viscous ( ν/ U τ ) length scales. There- 

fore, it is concluded that the growth rate of the outer and inner 

turbulent length scales in sink flows is similar, as stated by Sreeni- 

vasan [6] . Overall, the SA turbulence model has been able to re- 

produce fairly well the δ+ -DNS tendency, with discrepancies of the 

order of 8%. 

The momentum thickness Reynolds number was calculated as 

follows: 

Re θ = 
U ∞ θ

ν
(18) 

where θ is the momentum thickness. The momentum thickness 

was computed by means of a postprocessing code in MATLAB (as 

all statistical RANS parameters shown in the present study) using 

a discretized form (numerical integration based on the trapezoidal 

rule) of the following equation: 

θ = 

 
∞ 

0 

U 

U ∞ 
1 −

U 

U ∞ 
dy (19) 

where U is the local time-averaged streamwise velocity. The mo- 

mentum thickness Reynolds number computed from the results of 

SST were significantly higher than the ones obtained from DNS 

( Fig. 8 a). However, they show the expected linear increase in the 

ZPG or canonical boundary layer. The results of Re θ from the SA 

model have a significantly better agreement with DNS, especially 

in the ZPG zone. They also show a linear increase until the ZPG- 

FPG transition where it shows a small dip. Moreover, another char- 

acteristic of sink flows, which are not laminarizing, is to exhibit 

constant values of Re θ ( [6,10,17] ). Because the Re θ profiles from 

turbulence models, particularly in SA results, show evident (and 

almost linear) decreasing trends in the FPG zone, it can be in- 

ferred that SA and SST are macroscopically replicating the extract- 

ing mechanism caused by the pressure gradient term of incoming 

Reynolds shear stress energy. In other words, the major argument 

of the quasi-laminarization or “soft” relaminarization [1] . However, 

it can be seen that the Re θ profile by SA “detaches” from DNS by 

x / δinlet ≈45 with a mild decreasing slope. This suggests that the 

quasi-laminarizarion phenomenon is not fully mimicked. Further- 

more, the shape factor, H , was calculated as follows: 

H = 
δ∗

θ
(20) 

where δ∗ is the displacement thickness and defined as 

δ∗
= 

 
∞ 

0 
1 −

U 

U ∞ 
dy (21) 

Fig. 8 b exhibits a rapid increase of SST’s shape factor H , caused 

by the developing section, followed by a steady decrease as the 

flow becomes increasingly fully turbulent. Values in the ZPG re- 

gion are much higher than those obtained by DNS. In contrast, 

SA’s developing section in the ZPG zone (see a small dip from 
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Fig. 9. Variation of H as a function of K in laminarescent flows [6] . 

x/δinlet ≈ 0 − 10 ) is much shorter, and values are much closer to 

DNS. It is well known that the higher the value of H , the stronger 

the Adverse Pressure Gradient (APG). On the other hand, values of 

H for laminar flows are around 2.59 (Blasius boundary layer). The 

observed sharp decrease of H in DNS data in the ZPG-FPG tran- 

sition zone (best captured by the SA model, indeed) indicates an 

initially strong flow acceleration in the near wall region, which 

causes abrupt increments on the wall shear stresses, and, conse- 

quently on the skin friction coefficient C f , as seen in Fig. 7 b in the 

region 20 < x / δinlet < 25. It is also noticed that an increase of U / U ∞ 

will provoke a decrease of (1 - U / U ∞ ) in Eq. (21) ; and, thus on 

δ∗. While the product U / U ∞ (1 - U / U ∞ ) or θ may remain approx- 

imately constant in Eq. (19) . This seems to be the reason of the 

abrupt decrease of H in the downstream vicinity of the ZPG-FPG 

intersection. There is an initial much faster response of the near 

wall flow to pressure changes than that of the outer flow. Further 

downstream, H reaches a minimum value around x / δinlet ≈32 in 

DNS data. The observed increments of H beyond that minimum 

value could be linked to the onset of early stages of the quasi- 

laminarization phenomenon (or laminarescent region [6] ). Another 

external condition that causes H to increase in boundary layers is 

the presence of APG. Since APG is completely absent in the an- 

alyzed problem, the former hypothesis seems more suitable. Both 

turbulence models have predicted the minimum H location slightly 

further downstream than DNS results. Fig. 9 depicts the variation 

of the shape factor H as a function of acceleration parameter K , 

which was adapted from Fig. 9 (b) of [6] . The value for laminar 

sink flows (i.e., H = 2.07) by Rosenhead [26] is included. For the 

turbulent limit, the solution of Jones & Launder [37] based on the 

mixing length theory is also plotted. According to Sreenivasan [6] , 

for constant-pressure sink flows with a very high acceleration pa- 

rameter, “an initially turbulent boundary layer becomes effectively 

laminar” in an asymptotic manner. Whereas, if K is very weak, the 

boundary layer exhibits a canonical ZPG structure. For intermedi- 

ate values of K , it is expected that the laminarescent state occurs. 

The obtained values of H via DNS fall between 1.5 to 1.6 (only re- 

sults for K ≈ 4 × 10 −6 are considered) and separate from the tur- 

Fig. 10. Profiles of mean streamwise velocity in wall units at a) x / δinlet = 10, b) x / δinlet = 30, c) x / δinlet = 40, and d) x / δinlet = 55 (Blasius solution, dashed-dot-dot cyan curve). 
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Fig. 11. Velocity profiles normalized by the a) Classic, b) George-Castillo, and c) Zagarola-Smits outer scalings. 

bulent sink flow values, revealing that the boundary layer is in 

fact “laminarescent”. The same conclusion on the flow state was 

drawn by Araya et al. [1] by analysing the x -component of the 

time-averaged momentum equation and the computed param- 

eters (lower than the critical value of 50 proposed by Narasimha 

and Sreenivasan [38] ). Different from other proposed relaminariza- 

tion indicators that are based on just local values, the parameter 

incorporates the spatial history of the contesting forces involved 

in this type of relaminarization: the ratio of the pressure gradient 

( dP / dx ) to the Reynolds stress gradient ( τwo / δ) by means of wall 

shear stress at the last zero-pressure-gradient (ZPG) station. Exper- 

imental data from Narayanan and Ramjee [39] and Jones and Laun- 

der [9] at similar K ’s is also inserted, remarking that those sink 

flows were in the laminarescent stage, as well. 

The streamwise velocity profiles in wall units are depicted at 

four streamwise locations in terms of the inlet boundary layer 

thickness, i.e., x / δinlet = 10, 30, 40 and 55, respectively, as seen in 

Fig. 10 . The nondimensional wall distance, y + , is computed by mul- 

tiplying the wall distance, y , by the friction velocity and dividing 

it by the kinematic viscosity. The time-averaged streamwise veloc- 

ity was also normalized in inner units by dividing it by the fric- 

tion velocity. The good performance of the SA model in canonical 

boundary layers is evident according to Fig. 10 a, which depicts an 

excellent agreement with DNS results. Note the very short log U + - 

layer around y + ≈ 25 in DNS data, as expected for the low values 

of the Reynolds numbers involved. The discrepancies in U + pro- 

files obtained by the two-equation model or SST in the wake re- 

gion and above are mainly caused by the underprediction of the 

friction velocity in the ZPG zone. As the flow penetrates into the 

strong FPG region, the effect of quasi-laminarization on U + pro- 

files by DNS can be identified as a thickening of the viscous layer. 

In other words, the U + profiles move closer to the linear trend U + 

= y + . The presence of an “overshoot” in the buffer and log region 

indicates the tendency of the flow toward laminarization. Gener- 

ally speaking, both turbulence models fail to accurately predict the 

time-averaged streamwise velocity beyond the buffer layer in the 

FPG region (i.e., for y + > 10). Since the turbulence models are al- 

ways in “on” mode, there is an overprediction of the turbulent 

eddy viscosity, and, consequently of the Reynolds shear stresses 

(vertical turbulent mixing). A potential improvement over these 

turbulence models could be designed by limiting the turbulence 

production of highly accelerated flows based on the measured lo- 

cal K parameter. However, further investigation needs to be per- 

formed in this line of research and might be published elsewhere. 

The Blasius solution by matching δ at x / δinlet = 55 from DNS is in- 

cluded in Fig. 10 (d). There is a certain trend of the velocity profiles 
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Fig. 12. Reynolds shear stress profiles in wall units at a) x / δinlet = 10, b) x / δinlet = 30, c) x / δinlet = 40, and d) x / δinlet = 55. 

to approach the Blasius solution in the buffer layer (i.e., around 

y + ≈ 30 ); however, it is obvious that the flow is far from being 

completely laminar. It is interesting to highlight that the veloc- 

ity profile shifts upwards the log region, while the wake region 

is nearly nonexistent at x / δinlet = 55. In that streamwise location, 

the SA and SST turbulence models significantly underpredict U + 

for y + > 20 . 

The streamwise velocity profiles at the previously mentioned 

streamwise locations have also been plotted ( Fig. 11 ) using outer 

deficit laws, (U ∞ −U) /U os , such as the Classic, George-Castillo [40] , 

and Zagarola-Smits [41] (henceforth GC and ZS, respectively) scal- 

ing. Based on that, U os is defined as, 

U os = U τ (22) 

U os = U ∞ (23) 

U os = U ∞ 
δ∗

δ
(24) 

for the Classic, GC, and ZS scalings, respectively. In general, the 

normalized velocity deficit profiles shown in Fig. 11 demonstrate 

small discrepancies between DNS and SA. Perhaps, the furthest 

downstream station (i.e., at x/δinlet = 55 ) depicts the most obvious 

differences of SA results in comparison with DNS for all outer scal- 

ing laws. It is worth noting the ability of the ZS scaling to “absorb”

strong pressure gradient effects, given by the excellent collapse of 

all velocity profiles. 

The Reynolds shear stresses u ′ v ′ were calculated and normal- 

ized using inner ( Fig. 12 ) and outer units ( Fig. 13 ) at the four 

streamwise locations. The u ′ v ′ were calculated using, 

−u ′ v ′ = νt 
∂U 

∂y 
(25) 

where the eddy viscosity νt = μt /ρ is computed as in Eqs. (6) and 

(7) for the SA and SST turbulence model, respectively. 

The Reynolds shear stress profiles shown in Fig. 12 are normal- 

ized by U 2 τ . The u 
′ v ′ 

+ 
profile obtained by SA depicts slight under- 

prediction up to y + ≈ 10 with respect to the DNS data in the ZPG 

region or at x/δinlet = 10 . Later, the u ′ v ′ 
+ 

peak is overpredicted in 

about 6% by SA, with a y + -location approximately 5 wall units 

closer to the wall than that predicted by DNS. There is a good 

agreement of SA predictions with DNS in the outer region of the 

boundary layer, i.e. for y + > 80 . It is observed a weakening of u ′ v ′ 
+ 

further downstream of the ZPG zone with an evident logarithmic 

region, as reported by Araya et al. [1] , which becomes longer as the 

flow is further accelerated. It is interesting to highlight the pro- 

gressive growth process of the logarithmic region in DNS data due 

to the very strong FPG effect: at x/δinlet = 30 the constant shear 

layer starts to develop a small negative slope around 30 < y + < 70 , 

which eventually becomes steeper and larger as the flow moves 

downstream. The thickness of the log- u ′ v ′ 
+ 

layer extends over a 

large portion of the boundary layer, approximately up to 55% by 
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Fig. 13. Reynolds shear stress profiles in outer units at a) x / δinlet = 10, b) x / δinlet = 30, c) x / δinlet = 40, and d) x / δinlet = 55. 

x/δinlet = 55 . Both turbulence models significantly overpredict the 

peaks of u ′ v ′ 
+ 
, particularly at streamwise locations x/δinlet = 40 

and x/δinlet = 55 , where peak value remains approximately con- 

stant (or “frozen”) in RANS simulations. Discrepancies in the buffer 

and log region ( 10 < y + < 70 ) for both models seem to increase 

in the FPG zone. Finally, log layers in u ′ v ′ 
+ 

profiles of SA and SST 

models can be observed in the FPG zone; however, with different 

slopes than those of DNS. 

When using outer units in Fig. 13 , SA’s overprediction in 

x/δinlet = 10 diminishes slightly while SST underpredicts the peaks 

of u ′ v ′ . Further downstream, a similar behavior as with inner units 

can be observed. SA’s logarithmic region develops rather quickly 

in the x -direction while SST takes longer. SA’s results seem more 

accurate in the outer region (i.e., for wall-normal values of y be- 

yond 40% of the boundary layer thickness), yet SST’s trend better 

mimics the “shape” of u ′ v ′ profiles by DNS. Approximately constant 

or “frozen” peak values u ′ v ′ are observed at streamwise locations 

x/δinlet = 40 and 55. 

Numerical results from RANS and DNS were compared with ex- 

perimental data from Jones & Launder [9] and Warnack & Fern- 

holz [42] at similar flow conditions. In Jones & Launder [9] , an ex- 

perimental study of asymptotic sink-flow turbulent boundary lay- 

ers was carried out at Re θ = 303 and K = 3 × 10 −6 . The Reynolds 

shear stresses were obtained from the measured mean velocity 

profiles, by transforming and integrating a boundary layer equation 

for flow between converging planes. Moreover, in Warnack & Fern- 

holz [42] initially fully turbulent boundary layers were exposed 

to very strong acceleration. The maximum prescribed acceleration 

parameter (i.e., K = 4 × 10 −6 ) at a momentum thickness Reynolds 

number Re θ = 560 is considered here for comparison purposes. 

Fig. 14 a depicts profiles of the mean streamwise velocity in wall 

units. The DNS data exhibits an excellent agreement with experi- 

ments by Warnack and Fernholz [42] at a similar flow acceleration 

strength ( K = 4 × 10 −6 ). Experimental values by Jones and Laun- 

der [9] at a lower acceleration parameter of K = 3 × 10 −6 show 

a positive shift of approximately U + ≈ 2 in the log-wake region 

given by the weaker acceleration infringed to the flow. Whereas, 

a negative shift (or underprediction) on U + is observed in turbu- 

lence models and in the same log-wake region. However, the tur- 

bulence models show competency in the viscous sub-layer ( y + < 4 ) 

and in some part of the buffer layer (up to y + = 15 ). Profiles of 

Reynolds shear stresses u ′ v ′ are plotted in Fig. 14 b. Peaks of u ′ v ′ 

predicted by DNS are within the values measured by Warnack and 

Fernholz [42] and Jones and Launder [9] . Some discrepancies can 

be seen in the outer region (for y + > 100 ) that can be related to 

some Reynolds number dependency or the way in which the ac- 

celeration parameter was imposed. For instance, in Jones & Laun- 

der [9] a constant- K value was imposed over a significant long 

distance (sink-flow), while in Warnack & Fernholz [42] the K pa- 

rameters were prescribed in a gaussian-like manner between zero 

to 4 × 10 −6 . Overall, SA and SST significantly overpredict peak val- 

ues (65% and 85%, respectively). However, there was good a agree- 
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Fig. 14. Numerical data validation of a) mean streamwise velocity and b) u ′ v ′ 
+ 
at x / δinlet = 55. 

Fig. 15. Logarithmic behavior of u ′ v ′ 
+ 
in a) x / δinlet = 40 and b) 55. 

ment with DNS prediction by the edge of the boundary layer (for 

y + > 200 ). 

The u ′ v ′ 
+ 

profiles at x/δinlet = 40 and 55 are shown in Fig. 15 . 

A logarithmic behavior of Reynolds shear stresses is clearly ob- 

served in the FPG zone [1] . Direct simulations have revealed that 

the log trend of u ′ v ′ 
+ 

is caused by the advection term in the x - 

component of the time-averaged Navier-Stokes equation [1] . Thus, 

V + ∂ U + /∂ y + ∼ 1 /y + ∼ ∂ u ′ v ′ 
+ 
/∂ y + , resulting in a logarithmic u ′ v ′ 

+ 

profile. By the end of the computational domain (i.e., x / δinlet = 

55), this log layer is approximately 141 wall-unit long, representing 

almost 55% of the local boundary layer thickness δ+ . Turbulence 

models significantly overpredict u ′ v ′ 
+ 

obtained by DNS. Some de- 

gree of agreement is observed around the edge of the boundary 

layer thickness, e.g. for y + > 200 . The logarithmic trend of u ′ v ′ 
+ 

has been evaluated by means of the following diagnostic function 

DF log : 

DF log = y + 
∂ u ′ v ′ 

+ 

∂y + 
(26) 

where constant values of DF log indicate local log behavior of the 

analyzed function, in this case the Reynolds shear stresses. Fig. 16 a 

and b show the corresponding diagnostic functions for DNS and 

turbulence models at the streamwise stations x / δinlet = 40 and 55, 

respectively. The solid blue lines illustrate the location and ex- 

tension of the log-layer of u ′ v ′ 
+ 

based on DNS [1] . Moreover, in 

the logarithmic function representing Reynolds shear stresses, e.g., 

−u ′ v ′ 
+ 

= −1 /A u v ln y 
+ 

+ B u v , the diagnostic function DF log is equal 

to −1 /A u v . In fact, the SST model has produced the more accurate 

representation of the DF log or A uv as compared with DNS, with dis- 

crepancies of the order of 30%. Furthermore, the SA model also 

predicts a log trend in u ′ v ′ 
+ 

but with very different slopes or A uv . 

Fig. 17 depicts the principal contributing term to the pro- 

duction of Turbulent Kinetic Energy (TKE), which is defined as 

−2 u ′ v ′ 
+ 
∂ U + /∂ y + (term P k in Eq. (9) ). Here, TKE is represented 

by the square of the turbulence intensities in each direction, i.e. 

k + = 1 / 2(u ′ +2 
+ v ′ +2 

+ w ′ +2 ) . At the ZPG zone ( x / δinlet = 10), notice 

the excellent agreement of present DNS with DNS from Schlatter & 

Orlu [43] . Some small discrepancies are observed in the outer re- 

gion of the boundary layer for y + > 80 that might be attributed to 

some Reynolds number dependency. Regarding RANS performance 

in the ZPG region, both turbulence models predict peaks of TKE 

within 4% of accuracy in the buffer layer (e.g. y + ≈ 10). Some 

significant underpredictions were computed in the linear viscous 

layer, particularly from the SA model. On the contrary, important 

overprediction is observed in the log region and beyond from the 

SST model; whereas, the SA model almost overlaps present DNS 

data. Well inside the FPG region ( x / δinlet = 55), the normalized 

production of 2 k + in wall units exhibits a strong attenuation (of 

the order of 70% decrease in DNS results with respect to ZPG val- 

ues) mostly caused by debilitation of the Reynolds shear stresses 

u ′ v ′ 
+ 
. Since the mean flow accelerates, the mean streamwise ve- 
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Fig. 16. Diagnostic functions for the log-law behavior of u ′ v ′ 
+ 
at x / δinlet = a) 40 and b) 55. 

Fig. 17. Production of Turbulent Kinetic Energy (TKE) at x / δinlet = a) 10 and b) 55. 

Fig. 18. Turbulent Production of ˜ ν in SA at x / δinlet = a) 10 and b) 55. 

locity gradient ∂ U + /∂ y + is expected to actually increase, particu- 
larly in the near wall region. Both SA ans SST models have per- 

formed similarly and captured reduction of TKE production, but 

with a significant overprediction level ( ∼40% decrease). In two- 

equation models of the eddy viscosity approach, such as in the SST 

model, the turbulence production term P k is responsible to trigger 

and sustain turbulence. Whereas, this function is carried out by the 

turbulent production term in the transport of ˜ ν in Eq. (5) of the SA 

model, i.e., ρ(1 − f t2 ) C b1 f r1 ̃  S ̃  ν . Fig. 18 shows the turbulent produc- 

tion term (TP ̃ ν ) of ˜ ν for streamwise stations x / δinlet = 10 and 55 in 

wall units. In a similar way, the SA model predicts a decrease of 

TP ̃ ν in approximately 42% at the very strong FPG region in com- 

parison with the obtained value at the ZPG region. This further 

demonstrates deficiencies of both models to accurately reproduce 

early stages of the quasi-laminarization process. 

4. Conclusions 

A numerical analysis is performed in turbulent sink-flow 

boundary layers subject to very strong FPG. The acceleration pa- 

rameter K has been kept constant for a long distance, approx- 

imately 30- δinlet , with a value of 4 × 10 −6 . The acceleration in- 

fringed over the flow is so strong that it causes “laminarescence”, 

an early event of the quasi-laminarization phenomenon [6] , since 

the computed values of the parameter in [1] were lower than 

the critical value of 50 proposed by [38] . In the RANS approach, 

two different turbulence models are considered: the Spallart- 

Allmaras (SA) model [19] and the Shear Stress Transport (SST) 

model by Menter [20] . The main purpose of the present study is 



G. Saltar and G. Araya / Computers and Fluids 202 (2020) 104494 15 

to evaluate the ability of turbulence models to reproduce and cap- 

ture the main features of the “laminarescence” stage, based on the 

mean flow information. Validation against high spatial/temporal 

resolution DNS data has been performed by reproducing the ge- 

ometry aspects and boundary conditions as in Araya et al. [1] as 

well as by previous experimental studies found in the literature 

at similar working conditions. The major conclusions based on the 

prescribed FPG are summarized as follows: 

I) Overall, the SA turbulence model has exhibited the best com- 

promise between accuracy and quick spatial adaptation to the tur- 

bulent inflow conditions. If one examines carefully the SST’s per- 

formance, the most significant discrepancies with the SA’s results 

in the FPG region are in C f ( ∼8%) and Re θ ( ∼30%). The major de- 

ficiency of the SST model has been identified as its lack of quick 

response to turbulent inflow conditions in the ZPG zone. Contrary 

what happened to the SA model that just depends on a viscosity- 

like variable ν (one equation model); thus, more amenable to 

quickly adapt to an imposed inflow eddy-viscosity profile. 

II) Turbulence models have been able to properly predict the in- 

creasing trend of the freestream and friction velocity in highly ac- 

celerated flows; however, they fail to reproduce the decreasing be- 

havior of the U τ / U ∞ ratio (i.e., the skin friction coefficient), which 

is typical in early stages of the quasi-laminarization process. 

III) Both models have shown poor predictions of the decreasing 

and logarithmic behavior of Reynolds shear stresses subject to very 

strong FPG. In a similar way, the SA and SST models have notably 

overpredicted the production of TKE ( ∼100% of discrepancy with 

DNS) in the FPG zone. 
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Appendix A. Inlet condition assessment 

To improve upon previous results [44] , different cases were 

tested with varying domain dimensions and prescribed inlet data 

( Table A1 ). The eddy viscosity ratio and velocity components 

(streamwise and wall-normal) were prescribed to reduce the de- 

veloping section. Boundary layer thickness and skin friction coef- 

ficient were plotted for Cases 1 and 2 in Fig. A1 . Boundary layer 

thickness at the ZPG-FPG transition increased when the eddy vis- 

cosity ratio was prescribed. However, the initial skin friction coeffi- 

cient overshoot and developing section were significantly reduced. 

Finally, Case 2 was selected to perform the turbulence model as- 

sessment in Section 3.3 . 

On the other hand, results obtained by means of the SST model 

by additionally prescribing the turbulent viscosity ratio showed al- 

most no improvement instead of setting just the velocity compo- 

nents at the inlet plane (Case 3 vs. Case 4). A recycling method 

Table A1 

Prescribed inlet data and ZPG length. 

Case Description ZPG Length Source Prescribed Data Model 

1 SA-inlet DNS 1 22 δinlet DNS U, V 

2 SA-inlet DNS 2 22 δinlet DNS U, V, νT 
ν SA 

3 SST-inlet DNS 1 22 δinlet DNS U, V 

4 SST-inlet DNS 2 22 δinlet DNS U, V, νT 
ν

5 SST-Recycle 22 δinlet RANS U, V, νT 
ν

6 SST-Extended inlet DNS 1 91 δinlet DNS U, V, νT 
ν SST 

7 SST-Extended inlet DNS 2 64 δinlet DNS U, V, νT 
ν

Fig. A1. Streamwise variation of the a) boundary layer thickness and b) skin friction coefficient for Cases 1 and 2. 

https://doi.org/10.13039/100000181
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Fig. A2. Streamwise variation of the a) boundary layer thickness, b) friction velocity, and c) skin friction coefficient for Cases 3 through 7. 

was employed by solving the velocity field using RANS with SST 

in a ZPG domain or flat plate (Case 5). The extracted velocity com- 

ponents and eddy viscosity ratio νT / ν at the streamwise location 

where δinlet matched results from DNS was prescribed to the orig- 

inal domain (sink flow). This improved slightly the boundary layer 

thickness but caused a large peak at the inlet and a larger dip at 

the developing section (see Fig. A2 ). 

The ZPG zone was then extended upstream to allow the com- 

puted flow by means of the SST model a better spatial developing 

before reaching the zone of interest (i.e., FPG region). Two versions 

of the extended domain were tested: 91 δinlet (Case 6) and 64 δinlet 
(Case 7), as observed in Fig. A2 . U τ and C f exhibit a similar dip to 

the prescribed data and 22 δinlet -cases. However, the flow was able 

to develop before the zone of interest and yielded approximately 

constant underpredicted values of the skin friction coefficient and 

friction velocity. The boundary layer thickness shows a slow incre- 

mental trend. Case 7 generated a very similar boundary layer thick- 

ness in the ZPG-FPG intersection and beyond, consequently, it was 

selected for turbulence model assessment in Section 3.3 . 

Appendix B. Turbulence model coefficients 

In this study, we are using standard and proposed RANS coeffi- 

cients, which have been already tested in [19] and [45] . A sensitiv- 

ity analysis of these coefficients is outside of the scope of the cur- 

rent work. According to Schaefer et al. [46] , Schaefer [47] , Schaefer 

Table B1 

SA model coefficients. 

C b 1 0.1355 

C b 2 0.622 

C w 1 
C b1 
κ2 + 1+ C b2 

σ ˜ ν
κ 0.41 

σ ˜ ν 2/3 

Table B2 

SST model coefficients. 

a 1 0.31 

α∗

1 1 

α∗

2 1 

κ 0.41 

σ k F 1 σk 1 + (1 − F 1 ) σk 2 
σk 1 0.85 

σk 2 1 

σω F 1 σω 1 + (1 − F 1 ) σω 2 
σω 2 0.5 

σω 2 0.856 

et al. [48] , the coefficients κ and σ ˜ ν were found to be the most in- 

fluential parameters to uncertainty when the Spalart-Allmaras tur- 

bulence model was used for transonic wall-bounded flows, inde- 

pendently of grid resolution, grid topology, flow solver, and ge- 
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ometric dimensionality. The employed coefficients in the present 

manuscript are described in Table B1 and Table B2 . 

The following coefficients have been used in the present 

manuscript: 
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