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Abstract 

In polymer grafted nanoparticles (PGN), covalent tethering of apolar polymer chains to a polar 
inorganic nanoparticle (NP) core induces the formation of self-assembled aggregates. Since the 
nature of these aggregates determine bulk mechanical and transport properties, it is of 
importance to understand the factors that determine the underlying assembly processes. In the 
literature, the solution assembly of PGNs has been understood in analogy to small molecule 
amphiphiles. However, in any experimental realization, PGNs are invariably characterized by 
additional structural complexity, such as the distributions in the inorganic core size and in the 
grafted chains. These strongly influence the assembly of amphiphilic PGNs. We have 
previously demonstrated that dispersity in core size qualitatively affects the structure of PGN 
aggregates, and Jayaraman et al. have demonstrated the effect of grafted chain length 
dispersity. The combined effects of dispersity in the size of the core and grafted chains has not 
been explored previously. Here, we develop a model that builds on the work of Daoud and 
Cotton to explore a wide parameter space of PGN with dispersity simultaneously in core size 
and grafted chain length. We demonstrate that dispersity in core size is the dominant factor 
affecting the self-assembled solution structure of PGN aggregates. Our work suggests the 
importance of focusing on synthetic strategies for control of core size dispersity to control 
aggregate structure in PGN. 
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Introduction: Controlling nanoparticle (NP) miscibility in a polymer matrix has been of 

considerable interest over the last two decades. This topic is particularly germane since optimal 

spatial filler dispersion can yield significantly improved behaviour, e.g., mechanical1,2 and 

optical properties,3 and enhanced gas permeation4,5. Both experiment6,7 and theory6,8,9 have 

demonstrated that grafting polymer chains onto the NPs improves their miscibility in solvents 

and in polymer matrices, providing a synthetic route for control of structure in NP/polymer 

systems. Akcora et al.,6 for example, demonstrated that polymer grafted nanoparticles (PGNs) 

in a polymer matrix self-assembled to form a variety of aggregate structures. These workers 

identified the grafting densities for chains on the nanoparticle surface (ρg) and the ratio of the 

grafted chain molecular weight (Mw) to the matrix chain Mw as the two key parameters that 

controlled the aggregate structure. Systematic variation of these parameters afforded rational 

control of aggregates in a homopolymer matrix, ranging from three-dimensional, disordered 

structures to completely dispersed individual particles. Asai et al.10 theoretically rationalized 

the experimental phase diagram of Akcora et al.6 by invoking concepts similar to Israelachvili’s 

geometric packing parameter. They modelled10 PGNs as nanoparticles whose surfaces were 

“covered” with patches of grafted polymer chains and were able to predict the different self-

assembled structures obtained experimentally.  

 

Initial theoretical studies were on idealized PGN systems11,12 comprised of NPs of a single core 

size grafted at a given grafted density with monodisperse chains in a matrix of monodisperse 

polymers. However, such ideal systems are not representative of experiments. Real systems are 

characterized by distributions in the length of grafted chains, in core NP size, in graft density 

on the NP surface and in chain length of the matrix polymer. Recently, it has become clear that 

such dispersity effects play an important role in determining the miscibility of NPs and the 

matrix polymer and on the self-assembled structures that form. This has implications for the 

properties of the nanocomposite. For example, recent studies show that nanocomposites 

containing PGNs with a bimodal distribution of grafted chains exhibit enhanced 

thermomechanical13,14 and optical properties15. Therefore, there is renewed interest in 

predicting the effect of dispersity on self-assembly in PGNs. Jayaraman et al.16–20 demonstrated 

using Monte Carlo simulations that increasing the dispersity of grafted chains increases the 

contact repulsion between monodisperse NPs, thereby improving miscibility in a polymer 

matrix. Bachhar et al.9 demonstrated that the distribution in NP size (comparable to that 

observed in experiments), strongly affects NP dispersion in polymer matrices and in solvent. 

In particular, they showed that NP dispersity governed the formation of a variety of self-
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assembled structures including dispersed NPs, strings of NPs, etc. The distribution of the 

number of grafted chains on NP cores has typically been modelled21,22 as a Poisson distribution, 

analogous to the treatment for micelles23,24. However, Hakem et al.25 established that the 

Poisson distribution does not accurately model the grafting process and provided a more 

accurate theoretical description. Bachhar et al.9 have however demonstrated that the 

distribution in the number of grafted chains (comparable to that reported in the literature25,26) 

played only a secondary role, relative to the core size dispersity, in PGN assembly.  

 

Investigations that consider dispersity simultaneously in NP size, graft density and graft chain 

size have not been attempted in the past, since suitable theoretical frameworks were unavailable 

and since such simulations were computationally very expensive. In this work we demonstrate 

that a direct extension of the Daoud and Cotton27 (DC) theory, combined with a previously 

reported model9 allows us to describe the assembly state of dispersions of polymer grafted 

nanoparticles in solution, accounting for effects of dispersity in both NP core size and grafted 

chain length. We use DC theory to estimate the size of a grafted polymer chain that forms the 

corona around a given NP core. This is subsequently coupled with the model of Bachhar et al.9 

to systematically account for dispersity in NP core size and in graft chain length. Our results 

establish that the assembly/miscibility of PGNs in solution is dominated by the size dispersity 

of the NP cores and that the dispersity in grafted chain length plays a secondary role. 

 

Theory: We extend DC theory to obtain the mean size of the corona formed by polydisperse 

chains grafted on an NP core, which is dispersed in a good solvent. The DC model27,28 considers 

a star polymer having f0 arms, each having a statistical step length (monomers) of size a. This 

model has been generalized by Ohno et al.29 for chains grafted to a NP of radius rc,0 (where the 

chain grafting density, ρg = f0/4πrc,02). We modify DC theory to account for a distribution of 

grafted chain lengths as follows. We consider Nk as the number of monomers in the kth grafted 

chain and assume that Nk is normally distributed. (Other Nk distributions can be employed as 

appropriate.) We divide the star-like grafted chain into radial shells such that the shell at a 

distance r from the centre of the NP contains f(r) blobs (arms) of size ξ(r). Thus, unlike the 

original DC theory (Fig. 1a), the number of arms, f is no longer constant, but varies with r and 

is given as: 

  (1) 

Since the chains are polydisperse, longer grafted chains extend further from the NP surface 

1/2( ) ( )r rf rx -=
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than shorter chains. This is represented in terms of a “surviving” number of star arms that 

decreases progressively from f0 at the NP surface to 0 at large 𝑟 (Fig. 1b). We define this 

survival function for each grafted chain as the complementary cumulative distribution function 

 for the number of monomers from the current monomer to 

the free end of the polymer. This function decreases radially as short chains reach their chain 

ends before longer chains. Following DC theory,27,28,30 the grafted chain thus comprises three 

regions, an inner melt-like region , a second intermediate semi-dilute 

region (r2 < r ≤ r1) where the blobs are ideal, and a third outer region (r1 < r ≤ R)   where the 

blobs are swollen. The monomer volume fraction, ϕ(r), follows, 

   (2) 

 

 
Figure 1. Representation of the model. (a) DC theory without modification, the blob size for 
constant number of grafts f0. (b) Modified DC theory, for polydisperse grafted chains. Short 

chains terminate with increasing radial distance from the NP core. Therefore, at these 
distances, the blob size for the longer chains increases such that 2θ2 > 2θ1 

 

According to DC theory, chains that radiate from a central core are modelled as blobs of 

radially increasing size. Here, we additionally account for the change in the number of grafted 
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chains at a distance r, from the centre. For r ≤ r2, we assume that there is no attrition in the 

number of chains, i.e., all f0 grafted chains survive in the inner melt region. For r > r2; f(r) 

changes with radial distance r. From Fig. 1b, we observe that the radial distance to the centre 

of the first blob in region 2 is r2+ ξ1/2. The area subtended by the blob is ~ (ξ1/2)2 and the 

surface area of the shell is ~ (r2+ ξ1/2)2. Thus, from Fig. 1b we can write,  

  (3) 

 

Eq. 3 is consistent with the modified DC theory described in eq. 1and can be generalized as the 

chain radiates outwards to yield: 

  (4) 

where, . Here, ΦNc is the survival function of the chain, Nmin is the 

number of monomers in the inner melt region and nk is the number of monomers in the kth shell.  

 

Thus, we iteratively calculate fi from eqs (3) and (4), and obtain the survival function at the ith 

shell. Since we know the form of the survival function, we can obtain the number of monomers 

in the ith shell (see Supplementary Information for detailed derivation). The survival function 

decays to 0 at r= R. 

 

From eq. 2, one can estimate the total volume fraction ( , which is the total volume fraction 
including all three regimes) of monomers in the corona as: 

  (5) 

The brush height follows: . We calculate ht for an ensemble of NPs and define α (= 

ht/rc,0). The probability distribution, P(α), can be obtained from the ht-distribution over the 

ensemble of particles. We follow Bachhar et al.9 and Asai et al.10 to obtain the “morphology 

diagram” for the PGN aggregates as a function of α. Briefly, these previous workers model 

PGNs as patchy particles with the patchiness defined by the number of chains grafted on the 
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NP core and the brush height. Interparticle interactions between PGNs are then obtained by 

invoking a geometric model, similar in spirit to that of Israelachviili.31 Asai et al.10 

demonstrated that α represents a geometric measure for the interaction between PGNs. An 

increase in α promotes steric hinderance between PGNs resulting in well-dispersed, miscible 

PGNs in the matrix. They were able to demonstrate that a “morphology diagram” that 

delineates the boundaries of the self-assembled PGN clusters could be obtained in this manner. 

Bachhar et al.9 generalized the model of Asai et al.10 and demonstrated that dispersity in NP 

cores resulted in a distribution of self-assembled structures in polymeric matrix or in different 

solvents. Here, we use the method strategy developed by Bachhar et al.9 and obtain the 

distribution of different aggregates from P(α). For dispersity in both the NP core size and 

grafted chain length, P(α) is obtained as the joint probability of Pr,h(rc,0|ht) and Ph(ht), where  

Pr,h(rc,0|ht) represents a conditional probability. We note that the introduction of dispersity in 

brush height or in core size does not change the underlying mechanism of particle assembly, 

as elucidated by Asai et al.10 We investigate PGNs at fixed ρg – thus, dispersity in the size of 

the NP core results in varying f. The joint probability of P(α) and P(f) represents the bivariate 

probability of both α and f. 9 By integrating the bivariate probability in each phase, we estimate 

the fraction of different types of self-assembled aggregates. 

 

 
Figure 2. Comparison of prediction from the modified DC model with the experimental data 

of Dukes et al. for various grafted chain lengths (with known dispersity) and for different 
grafting density on a NP core radius =10 nm. 

 

Results and Discussion: We validate the modified DC model by comparison with the 

experimental brush height data reported by Dukes et al.32 (Fig. 2). For dilute dispersions of 

polystyrene grafted silica particles in good solvent (benzene), our model accurately describes 
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the experimentally obtained corona size (ht = R- rc,0), as long as the excluded volume parameter, 

v, varies with Mw (Fig S2, SI). This idea is consistent with literature32 and we use this purely 

as a phenomenological parameter in our model. We note that the modified DC model is 

inapplicable for short chains, i.e., when the chain size is smaller than a blob. This is evident 

since in DC theory, short chains (viz. ) are in a melt state  with f(r) = 1. When radially 

propagating grafted chains are polydisperse, short chains terminate at lower radial distances. 

Thus, long chains (< f1/2) that survive beyond the short chains will not have f(r) = 1 even in 

regime 1. Thus, the model fails. Therefore, we are constrained to investigations where 

. Following this, we limit our estimates to 𝑁 > 144 (corresponding to Mw > 15 kDa). 

 

Dispersity of grafted chain length for fixed core particle size: We now examine how dispersity 

in grafted chain-length affects NP self-assembly for monodisperse particle cores. Here, we 

implicitly assume that the NP core is solvophobic, while the chains are in good solvent. 

Therefore, the aggregation of the polymer grafted NPs is determined by a balance between 

core-core attraction and steric repulsion provide by the grafted polymer. Depletion attraction 

between the NPs, in the spirit of the venerable ideas of Asakura and Oosawa,33,34 is not 

considered. We consider the case of PGNs in solvent and therefore, we do not consider the 

effect of the grafted brush on the entropy of the matrix chains as in the case of Martin et al.17 

Thus, our results cannot be directly compared with their work. 

 

We assume that polydisperse chains are grafted on a NP of radius (rc,0). The resulting effective 

radius of the NP includes a corona of height = ht. Using the central limit theorem, we assumem 

, that the mean number of monomers per grafted polymer will have a normal distribution with 

mean µn and with standard deviation, σ &~	𝜎!/+𝑓-. We note that for a given dispersity in 

grafted chain length and for monodisperse NP cores, each particle has the same corona size 

(ht). Variations in the corona size arise only when the NP core size is varied (SI, Table S1). 

1/2f N>

1/ 2N f>>
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Figure 3. Distributions of self-assembled aggregate structures for variations in core NP 
dispersity (PDIc) and in grafted chain dispersity (PDI). (a) PDIc = 1 (μc = 10nm, σc = 0) and 
PDI = 1, (b) PDIc = 1 (μc = 10nm, σc = 0) and PDI = 1.3, (c) PDIc = 1.3 (μc = 10nm, σc = 5) 

and PDI = 1 and (d) PDIc = 1.3 (μc = 10nm, σc = 5) and PDI = 1.3. We present data at 
different grafting densities, namely 0.002, 0.01, 0.05 and 0.5 chains/nm2. The y-axis 

represents the % fraction of NPs in various self-assembled aggregates. 
 

 

We now obtain P(α) from the ht-distribution. Following Bachhar et al.9 we define different 

types of NP aggregate structures through the coordination number (CN) of the NPs, viz. 

disperse (isolated NPs, CN= 0), clumps (small aggregates, with CN= 1-3), strings (one-

dimension linear aggregate, CN = 2), and aggregates (two or three-dimensional disordered 

aggregates, CN >3). We note that this measure cannot differentiate between sheet like two-

dimensional structures and three-dimensional aggregates. We estimate the “amounts” of 

different phases by integrating P(α) over each morphology. The morphology diagram reported 

by Asai et al.10 shows that, as α and f increase, the assemblies change from disordered 3-

dimensional aggregates to sheets (2-dimensions), to strings (1-dimension), to small clumps and 

finally to completely dispersed particles. To examine the role of the dispersity of grafted chain 

lengths (PDI) we chose two PDIs, namely 1.0 and 1.3, respectively. A comparison between 
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Figs. 3a and 3b clearly shows that varying the grafted chain dispersity has no substantial effect 

on the distribution of self-assembled structured formed over the range of grafting densities 

investigated. We observe no effect even at low grafting densities where the system is in a mildly 

aggregated state. 

 

Polydisperse grafted chains on polydisperse NP cores: We now study the combined effect of 

particle size distribution and grafted chain dispersity on the aggregation behaviour of the NPs. 

Therefore, our system is now characterized by dispersity in the NP core size (PDIc) and in the 

grafted chain size (PDI). The dispersity in grafted chain-length remains the same as previously 

reported in Table S1. We assume that the core radius (rc,0) can be described by a normal 

distribution quantified by mean radius (μc = 10nm) and standard deviation (σc). We define the 

NP core dispersity in the same language as the grafted chain length PDI, as 𝑃𝐷𝐼𝑐 =
∑ #!$!

"
#

∑ #!$!#
%

∑ #!$!#
∑ #!#
%

. We investigate systems with PDIc = 1.0 and 1.3 (details in Table S1). We note 

that the corona size, ht is determined by the NP core size, since varying rc,0 results in variations 

in the number of grafted chains, f0 for constant graft density, ρg. We note that the breadth of the 

corona size distribution (σp) is obtained from the variation in ht for the rc,0 distribution. As 

explained earlier, we obtain P(α) = Pr,h(rc,0|ht)Ph(ht) and then obtain the joint probability of 

P(α) and P(f). We obtain the fraction of different self-assembled aggregates from this bivariate 

probability. Representative phase diagrams for two different grafting densities are reported in 

Fig S3 in SI.  

 

Since α in the phase-diagram is affected by the core-size and chain-length dispersity we 

examine the effect of individually varying PDI and PDIc on α. Using our present model, we 

have estimated the α-distribution for PDI (from 1 to 1.3) and PDIc (from 1 to 1.3) at three 

different grafting densities, e.g. 0.01, 0.05 and 0.5 chains/nm2 (Fig. 4). We observe that varying 

the grafted chain dispersity, PDI from 1 to 1.3 has only a minor influence on the α-distribution. 

In contrast, varying the core dispersity, PDIc from 1.0 to 1.3 significantly changes the α-

distribution. We attribute this to the strong dependence of ht on rc,0. This is also apparent from 

a comparison between Figs. 3c and 3d. Thus, at the same PDIc, the effect of varying PDI does 

not significantly affect the distribution of self-assembled aggregate structures. We note that, in 

our model, we account for the effect of solvent quality on the brush height through the fitted 

excluded volume parameter, v. The quantitative value of ht is determined by the value of v, 
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especially when for long grafted chains when the brush extends to regime 3. However, here too 

the aggregation behavior is dominated by core dispersity for the range of v considered in this 

work. Further, we also observe that as ρg decreases, the effect of PDI is enhanced. This is 

consistent with our expectations from the DC model, since σ ~ which means σ also scales 

with  

 

Figure 4. Effect of both grafted-chain dispersity (PDI) and core-size dispersity (PDIc) on α 
for different grafting densities (ρg): (a) ρg = 0.01 ch/nm2, (b) ρg = 0.05 ch/nm2 and (c) ρg = 0.5 

ch/nm2. 

1/ 2f -

1/ 2
gr
-
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Following the same trend, we see a significant change in self-assembled structures when we 

change PDIc from 1 to 1.3 (Figs. 2 and 4). The system evolves from a highly aggregated state 

to well-dispersed PGNs by increasing the grafting density of the tethered polymer. There is a 

small increase in the dispersed fraction for PDIc = 1.3 (shown in SI, Fig S4) with an increase 

in PDI from 1 to 1.3 – however, it is clear that the effect of PDIc is dominant. This is the main 

result of our paper. 

 

 
Figure 5. The effect of molecular weight (Mw) on the fraction of various self-assembled 
aggregates for a grafting density of 0.01 ch/nm2. The different hashed bars represent different 
PDIc and PDI combinations.: (a) Mw = 15kDa, (b) 35kDa and (c) 50kDa.   
 

 

Fig. 5 presents the effects of both core nanoparticle size (rc,0) distribution (PDIc) and grafted 

chain length (N) distribution (PDI) on the self-assembly of PGNs across a range of graft chain 

lengths. We see that as we increase the dispersity of grafted chains, the dispersed fraction 

increases, consistent with the findings of Jayaraman et al.16,17,35 However, we continue to 

reiterate that NP core dispersity (PDIc) strongly determines the fraction of dispersed PGNs, 

and this effect dominates over the effect of grafted chain dispersity. This conclusion is robust 

to changes in the shape of the core size distribution. For example, we have modeled a system 

where the nanoparticle core is characterized by a log normal distribution (as compared with the 

normal distribution for which results have been presented in this work). Specifically, we use a 

mean NP core size = 10 nm with standard deviations of 2.0 nm, 2.6 nm and 5 nm, matched 

with the data presented in Figures 3 and 5. We note that for a log normal distribution of core 

size, these standard deviations correspond to dispersities of PDIc =  1.45, 2.33 and 4.62, 

respectively. We observe that varying the grafted chain dispersity, PDI, has only a marginal 

effect on the shape of the self-assembled aggregates (Supporting Information, Fig. S5, S6). 

However, changing the core dispersity, PDIc qualitatively changes the nature of the self-



13 
 

assembled aggregates (Supporting Information, Fig. S5, S6).  

 

Our results suggest that to obtain a specific desired self-assembled state, it would be more 

profitable to focus on synthetic strategies aimed at controlling the size distribution of the 

inorganic nanoparticles used in PGN nanocomposites, rather than in control of grafted chain 

length dispersity. We note that there have been significant advances in synthetic methodologies 

to obtain highly monodisperse metal nanoparticles.36,37 These systems are amenable to surface 

grafting using thiol-terminated polymer chains. Our results indicate that exploration of 

composites synthesized using such materials could represent an interesting future experimental 

direction. 

 

We reiterate that the results presented here are for dispersions of PGN in a good solvent for the 

grafted chains. Therefore, effects that are relevant in polymeric matrices, such as, for example, 

the effect of the grafted chains on matrix chain conformations are not considered here, 

precluding a direct comparison of our results with the literature on PGNs in polymer melt 

matrices. It is possible to extend27 the modified DC model for melt matrices – this is a 

promising avenue for future work.  

 

Conclusions:  

In this work, we present a direct extension of the Daoud and Cotton27,28 model for star polymers 

that allows us to investigate a wide parameter space for PGNs. We investigate the effect of 

dispersity simultaneously in the core NP size and grafted chain lengths for dispersions of PGNs 

in solvent. Our results indicate that NP dispersion can be improved by increasing the dispersity 

in grafted chain length, consistent with the previous work of Martin el al.17 However, we show 

that increasing the dispersity in core nanoparticle size distribution strongly diminishes the 

enhancement in dispersion due to chain-length dispersity. We conclude that well-dispersed 

GNPs in solution can be obtained by reducing particle dispersity and enhancing chain 

dispersity. The structure of self-assembled GNP aggregates is determined primarily by the 

dispersity in core NP size. 
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