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Abstract

In polymer grafted nanoparticles (PGN), covalent tethering of apolar polymer chains to a polar
inorganic nanoparticle (NP) core induces the formation of self-assembled aggregates. Since the
nature of these aggregates determine bulk mechanical and transport properties, it is of
importance to understand the factors that determine the underlying assembly processes. In the
literature, the solution assembly of PGNs has been understood in analogy to small molecule
amphiphiles. However, in any experimental realization, PGNs are invariably characterized by
additional structural complexity, such as the distributions in the inorganic core size and in the
grafted chains. These strongly influence the assembly of amphiphilic PGNs. We have
previously demonstrated that dispersity in core size qualitatively affects the structure of PGN
aggregates, and Jayaraman et al. have demonstrated the effect of grafted chain length
dispersity. The combined effects of dispersity in the size of the core and grafted chains has not
been explored previously. Here, we develop a model that builds on the work of Daoud and
Cotton to explore a wide parameter space of PGN with dispersity simultaneously in core size
and grafted chain length. We demonstrate that dispersity in core size is the dominant factor
affecting the self-assembled solution structure of PGN aggregates. Our work suggests the
importance of focusing on synthetic strategies for control of core size dispersity to control
aggregate structure in PGN.
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Introduction: Controlling nanoparticle (NP) miscibility in a polymer matrix has been of
considerable interest over the last two decades. This topic is particularly germane since optimal
spatial filler dispersion can yield significantly improved behaviour, e.g., mechanical* and
optical properties,’ and enhanced gas permeation*°. Both experiment®’ and theory®®® have
demonstrated that grafting polymer chains onto the NPs improves their miscibility in solvents
and in polymer matrices, providing a synthetic route for control of structure in NP/polymer
systems. Akcora et al.,® for example, demonstrated that polymer grafted nanoparticles (PGNs)
in a polymer matrix self-assembled to form a variety of aggregate structures. These workers
identified the grafting densities for chains on the nanoparticle surface (pg) and the ratio of the
grafted chain molecular weight (My) to the matrix chain My, as the two key parameters that
controlled the aggregate structure. Systematic variation of these parameters afforded rational
control of aggregates in a homopolymer matrix, ranging from three-dimensional, disordered
structures to completely dispersed individual particles. Asai et al.!” theoretically rationalized
the experimental phase diagram of Akcora et al.® by invoking concepts similar to Israelachvili’s
geometric packing parameter. They modelled!® PGNs as nanoparticles whose surfaces were
“covered” with patches of grafted polymer chains and were able to predict the different self-
assembled structures obtained experimentally.

Initial theoretical studies were on idealized PGN systems!'!!2

comprised of NPs of a single core
size grafted at a given grafted density with monodisperse chains in a matrix of monodisperse
polymers. However, such ideal systems are not representative of experiments. Real systems are
characterized by distributions in the length of grafted chains, in core NP size, in graft density
on the NP surface and in chain length of the matrix polymer. Recently, it has become clear that
such dispersity effects play an important role in determining the miscibility of NPs and the
matrix polymer and on the self-assembled structures that form. This has implications for the
properties of the nanocomposite. For example, recent studies show that nanocomposites
containing PGNs with a bimodal distribution of grafted chains exhibit enhanced

11314 and optical properties'>. Therefore, there is renewed interest in

thermomechanica
predicting the effect of dispersity on self-assembly in PGNs. Jayaraman ef al.!?* demonstrated
using Monte Carlo simulations that increasing the dispersity of grafted chains increases the
contact repulsion between monodisperse NPs, thereby improving miscibility in a polymer
matrix. Bachhar et al.” demonstrated that the distribution in NP size (comparable to that
observed in experiments), strongly affects NP dispersion in polymer matrices and in solvent.

In particular, they showed that NP dispersity governed the formation of a variety of self-
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assembled structures including dispersed NPs, strings of NPs, etc. The distribution of the
number of grafted chains on NP cores has typically been modelled?!?? as a Poisson distribution,
analogous to the treatment for micelles?**. However, Hakem er al.?® established that the
Poisson distribution does not accurately model the grafting process and provided a more
accurate theoretical description. Bachhar er al’® have however demonstrated that the
distribution in the number of grafted chains (comparable to that reported in the literature?>-6)

played only a secondary role, relative to the core size dispersity, in PGN assembly.

Investigations that consider dispersity simultaneously in NP size, graft density and graft chain
size have not been attempted in the past, since suitable theoretical frameworks were unavailable
and since such simulations were computationally very expensive. In this work we demonstrate
that a direct extension of the Daoud and Cotton?’ (DC) theory, combined with a previously
reported model® allows us to describe the assembly state of dispersions of polymer grafted
nanoparticles in solution, accounting for effects of dispersity in both NP core size and grafted
chain length. We use DC theory to estimate the size of a grafted polymer chain that forms the
corona around a given NP core. This is subsequently coupled with the model of Bachhar et al.’
to systematically account for dispersity in NP core size and in graft chain length. Our results
establish that the assembly/miscibility of PGNs in solution is dominated by the size dispersity
of the NP cores and that the dispersity in grafted chain length plays a secondary role.

Theory: We extend DC theory to obtain the mean size of the corona formed by polydisperse
chains grafted on an NP core, which is dispersed in a good solvent. The DC model?”?® considers
a star polymer having fy arms, each having a statistical step length (monomers) of size a. This
model has been generalized by Ohno et al.?® for chains grafted to a NP of radius .o (where the
chain grafting density, pg = fo/4mrc0?). We modify DC theory to account for a distribution of
grafted chain lengths as follows. We consider Nk as the number of monomers in the A" grafted
chain and assume that N is normally distributed. (Other N distributions can be employed as
appropriate.) We divide the star-like grafted chain into radial shells such that the shell at a
distance r from the centre of the NP contains f{r) blobs (arms) of size &(r). Thus, unlike the
original DC theory (Fig. 1a), the number of arms, f'is no longer constant, but varies with » and

is given as:

Ery=rf(r)"” (1)

Since the chains are polydisperse, longer grafted chains extend further from the NP surface



than shorter chains. This is represented in terms of a “surviving” number of star arms that
decreases progressively from fy at the NP surface to 0 at large r (Fig. 1b). We define this

survival function for each grafted chain as the complementary cumulative distribution function

{d)?v (N;) = %{1 —erf ( N —#, JD for the number of monomers from the current monomer to

20,

the free end of the polymer. This function decreases radially as short chains reach their chain

ends before longer chains. Following DC theory,?”-?%30 the grafted chain thus comprises three

regions, an inner melt-like region (r <r,, where r, ~ afol/2 ), a second intermediate semi-dilute

region (72 < r < r1) where the blobs are ideal, and a third outer region (1 <7 < R) where the

blobs are swollen. The monomer volume fraction, ¢(r), follows,

$() ~1, r<af?
$() ~ (] @) F ()", of? <r<af() (v a’)! @)
P(r)~(r/ a)_M3 f()?*? (v/a3 )_1/3 , af(n)"?(v/a’) ' <r<R

(b)

£AOB = 26,; A'OB' = 20,

Figure 1. Representation of the model. (a) DC theory without modification, the blob size for
constant number of grafts fo. (b) Modified DC theory, for polydisperse grafted chains. Short
chains terminate with increasing radial distance from the NP core. Therefore, at these
distances, the blob size for the longer chains increases such that 26, > 20

According to DC theory, chains that radiate from a central core are modelled as blobs of

radially increasing size. Here, we additionally account for the change in the number of grafted



chains at a distance r, from the centre. For » < r,, we assume that there is no attrition in the
number of chains, i.e., all fo grafted chains survive in the inner melt region. For r > r2; f(r)
changes with radial distance . From Fig. 1b, we observe that the radial distance to the centre
of the first blob in region 2 is 7>+ &/2. The area subtended by the blob is ~ (£1/2)? and the
surface area of the shell is ~ (r2+ &1/2)%. Thus, from Fig. 1b we can write,

&2 ) -
i) ®

Eq. 3 is consistent with the modified DC theory described in eq. 1and can be generalized as the

chain radiates outwards to yield:

£12

~f (4)
Bty E+E 12

i—1
where, f, = f,® (Nmm +anj. Here, @n° is the survival function of the chain, Nmin is the

k=1
number of monomers in the inner melt region and n is the number of monomers in the & shell.
Thus, we iteratively calculate f; from eqs (3) and (4), and obtain the survival function at the i
shell. Since we know the form of the survival function, we can obtain the number of monomers
in the i shell (see Supplementary Information for detailed derivation). The survival function

decays to 0 at = R.

From eq. 2, one can estimate the total volume fraction (¢, , which is the total volume fraction

including all three regimes) of monomers in the corona as:
3 R
2
b= |90 5)

The brush height follows: 4, = R—r, ;. We calculate / for an ensemble of NPs and define o (=

hirco). The probability distribution, P(a), can be obtained from the A-distribution over the
ensemble of particles. We follow Bachhar ef al.” and Asai et al.!” to obtain the “morphology
diagram” for the PGN aggregates as a function of a. Briefly, these previous workers model

PGNs as patchy particles with the patchiness defined by the number of chains grafted on the



NP core and the brush height. Interparticle interactions between PGNs are then obtained by
invoking a geometric model, similar in spirit to that of Israelachviili.*! Asai et al.!°
demonstrated that o represents a geometric measure for the interaction between PGNs. An
increase in o promotes steric hinderance between PGNs resulting in well-dispersed, miscible
PGNs in the matrix. They were able to demonstrate that a “morphology diagram” that
delineates the boundaries of the self-assembled PGN clusters could be obtained in this manner.
Bachhar et al.® generalized the model of Asai ef al.!” and demonstrated that dispersity in NP
cores resulted in a distribution of self-assembled structures in polymeric matrix or in different
solvents. Here, we use the method strategy developed by Bachhar ef al.’ and obtain the
distribution of different aggregates from P(a). For dispersity in both the NP core size and
grafted chain length, P(a) is obtained as the joint probability of Prn(7colk:) and Pn(h:), where
Prn(re0lht) represents a conditional probability. We note that the introduction of dispersity in
brush height or in core size does not change the underlying mechanism of particle assembly,
as elucidated by Asai ef al.!® We investigate PGNs at fixed pg — thus, dispersity in the size of
the NP core results in varying /- The joint probability of P(a) and P(f) represents the bivariate
probability of both & and /. ® By integrating the bivariate probability in each phase, we estimate

the fraction of different types of self-assembled aggregates.

m p =005 ch/nm’ (Dukes et al.)
model prediction
A p =039 ch/nm’ (Dukes et al.)
80 model predictior;
Py = 0.55 ch/nm” (Dukes et al.)
model prediction
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Figure 2. Comparison of prediction from the modified DC model with the experimental data

of Dukes et al. for various grafted chain lengths (with known dispersity) and for different
grafting density on a NP core radius =10 nm.

Results and Discussion: We validate the modified DC model by comparison with the
experimental brush height data reported by Dukes et al.*? (Fig. 2). For dilute dispersions of

polystyrene grafted silica particles in good solvent (benzene), our model accurately describes
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the experimentally obtained corona size (4:= R- 1), as long as the excluded volume parameter,
v, varies with M,, (Fig S2, SI). This idea is consistent with literature®? and we use this purely
as a phenomenological parameter in our model. We note that the modified DC model is
inapplicable for short chains, i.e., when the chain size is smaller than a blob. This is evident
since in DC theory, short chains (viz. f"> > N) are in a melt state with ¢(r) = 1. When radially
propagating grafted chains are polydisperse, short chains terminate at lower radial distances.
Thus, long chains (< f'?) that survive beyond the short chains will not have ¢(r) = 1 even in
regime 1. Thus, the model fails. Therefore, we are constrained to investigations where

N >> f"*. Following this, we limit our estimates to N > 144 (corresponding to My, > 15 kDa).

Dispersity of grafted chain length for fixed core particle size: We now examine how dispersity

in grafted chain-length affects NP self-assembly for monodisperse particle cores. Here, we
implicitly assume that the NP core is solvophobic, while the chains are in good solvent.
Therefore, the aggregation of the polymer grafted NPs is determined by a balance between
core-core attraction and steric repulsion provide by the grafted polymer. Depletion attraction
between the NPs, in the spirit of the venerable ideas of Asakura and Oosawa,’** is not
considered. We consider the case of PGNs in solvent and therefore, we do not consider the
effect of the grafted brush on the entropy of the matrix chains as in the case of Martin et al.!”

Thus, our results cannot be directly compared with their work.

We assume that polydisperse chains are grafted on a NP of radius (7c0). The resulting effective
radius of the NP includes a corona of height = 4. Using the central limit theorem, we assumem
, that the mean number of monomers per grafted polymer will have a normal distribution with
mean un and with standard deviation, o (~ On /\/7 ) We note that for a given dispersity in
grafted chain length and for monodisperse NP cores, each particle has the same corona size

(hy). Variations in the corona size arise only when the NP core size is varied (SI, Table S1).
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Figure 3. Distributions of self-assembled aggregate structures for variations in core NP
dispersity (PDIc) and in grafted chain dispersity (PDI). (a) PDIc =1 (uc = 10nm, o.= 0) and
PDI=1, (b) PDIc =1 (uc = 10nm, g. = 0) and PDI = 1.3, (¢) PDIc = 1.3 (uc = 10nm, .= 5)

and PDI = 1 and (d) PDIc = 1.3 (uc = 10nm, o.= 5) and PDI = 1.3. We present data at
different grafting densities, namely 0.002, 0.01, 0.05 and 0.5 chains/nm?. The y-axis
represents the % fraction of NPs in various self-assembled aggregates.

We now obtain P(a) from the Ai-distribution. Following Bachhar et al.” we define different
types of NP aggregate structures through the coordination number (CN) of the NPs, viz.
disperse (isolated NPs, CN= 0), clumps (small aggregates, with CN= 1-3), strings (one-
dimension linear aggregate, CN = 2), and aggregates (two or three-dimensional disordered
aggregates, CN >3). We note that this measure cannot differentiate between sheet like two-
dimensional structures and three-dimensional aggregates. We estimate the “amounts” of
different phases by integrating P(a) over each morphology. The morphology diagram reported

by Asai et al.'’

shows that, as a and f increase, the assemblies change from disordered 3-
dimensional aggregates to sheets (2-dimensions), to strings (1-dimension), to small clumps and
finally to completely dispersed particles. To examine the role of the dispersity of grafted chain

lengths (PDI) we chose two PDIs, namely 1.0 and 1.3, respectively. A comparison between
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Figs. 3a and 3b clearly shows that varying the grafted chain dispersity has no substantial effect
on the distribution of self-assembled structured formed over the range of grafting densities
investigated. We observe no effect even at low grafting densities where the system is in a mildly

aggregated state.

Polydisperse grafted chains on polydisperse NP cores: We now study the combined effect of

particle size distribution and grafted chain dispersity on the aggregation behaviour of the NPs.
Therefore, our system is now characterized by dispersity in the NP core size (PDI.) and in the
grafted chain size (PDI). The dispersity in grafted chain-length remains the same as previously
reported in Table S1. We assume that the core radius (7.0) can be described by a normal
distribution quantified by mean radius (u. = 10nm) and standard deviation (o). We define the

NP core dispersity in the same language as the grafted chain length PDI, as PDIc =

Yn Niri2
%/Z"Nm We investigate systems with PDIc = 1.0 and 1.3 (details in Table S1). We note

XnN;

that the corona size, 4 is determined by the NP core size, since varying r.o results in variations
in the number of grafted chains, fo for constant graft density, p;. We note that the breadth of the
corona size distribution (op) is obtained from the variation in A for the 7. distribution. As
explained earlier, we obtain P(a) = Prn(rcolh)Pn(h:) and then obtain the joint probability of
P(a) and P(f). We obtain the fraction of different self-assembled aggregates from this bivariate
probability. Representative phase diagrams for two different grafting densities are reported in

Fig S3 in SL

Since a in the phase-diagram is affected by the core-size and chain-length dispersity we
examine the effect of individually varying PDI and PDIc on a. Using our present model, we
have estimated the a-distribution for PDI (from 1 to 1.3) and PDIc (from 1 to 1.3) at three
different grafting densities, e.g. 0.01, 0.05 and 0.5 chains/nm? (Fig. 4). We observe that varying
the grafted chain dispersity, PDI from 1 to 1.3 has only a minor influence on the a-distribution.
In contrast, varying the core dispersity, PDIc from 1.0 to 1.3 significantly changes the a-
distribution. We attribute this to the strong dependence of /4 on r.o. This is also apparent from
a comparison between Figs. 3¢ and 3d. Thus, at the same PDI., the effect of varying PDI does
not significantly affect the distribution of self-assembled aggregate structures. We note that, in
our model, we account for the effect of solvent quality on the brush height through the fitted

excluded volume parameter, v. The quantitative value of 4 is determined by the value of v,
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especially when for long grafted chains when the brush extends to regime 3. However, here too
the aggregation behavior is dominated by core dispersity for the range of v considered in this

work. Further, we also observe that as p, decreases, the effect of PDI is enhanced. This is

consistent with our expectations from the DC model, since ¢ ~ f "> which means o also scales
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Figure 4. Effect of both grafted-chain dispersity (PDI) and core-size dispersity (PDIc) on o
for different grafting densities (pg): (a) pg = 0.01 ch/nm?, (b) py = 0.05 ch/nm? and (c) pg = 0.5
ch/nm?,
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Following the same trend, we see a significant change in self-assembled structures when we
change PDIc from 1 to 1.3 (Figs. 2 and 4). The system evolves from a highly aggregated state
to well-dispersed PGNs by increasing the grafting density of the tethered polymer. There is a
small increase in the dispersed fraction for PDIc = 1.3 (shown in SI, Fig S4) with an increase
in PDI from 1 to 1.3 — however, it is clear that the effect of PDIc is dominant. This is the main

result of our paper.
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Figure 5. The effect of molecular weight (My) on the fraction of various self-assembled
aggregates for a grafting density of 0.01 ch/nm?. The different hashed bars represent different
PDIc and PDI combinations.: (a) My = 15kDa, (b) 35kDa and (c) 50kDa.

Fig. 5 presents the effects of both core nanoparticle size (r.0) distribution (PDIc) and grafted
chain length (V) distribution (PDI) on the self-assembly of PGNs across a range of graft chain
lengths. We see that as we increase the dispersity of grafted chains, the dispersed fraction
increases, consistent with the findings of Jayaraman er al.!!"-* However, we continue to
reiterate that NP core dispersity (PDIc) strongly determines the fraction of dispersed PGNss,
and this effect dominates over the effect of grafted chain dispersity. This conclusion is robust
to changes in the shape of the core size distribution. For example, we have modeled a system
where the nanoparticle core is characterized by a log normal distribution (as compared with the
normal distribution for which results have been presented in this work). Specifically, we use a
mean NP core size = 10 nm with standard deviations of 2.0 nm, 2.6 nm and 5 nm, matched
with the data presented in Figures 3 and 5. We note that for a log normal distribution of core
size, these standard deviations correspond to dispersities of PDIc = 1.45, 2.33 and 4.62,
respectively. We observe that varying the grafted chain dispersity, PDI, has only a marginal
effect on the shape of the self-assembled aggregates (Supporting Information, Fig. S5, S6).

However, changing the core dispersity, PDIc qualitatively changes the nature of the self-
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assembled aggregates (Supporting Information, Fig. S5, S6).

Our results suggest that to obtain a specific desired self-assembled state, it would be more
profitable to focus on synthetic strategies aimed at controlling the size distribution of the
inorganic nanoparticles used in PGN nanocomposites, rather than in control of grafted chain
length dispersity. We note that there have been significant advances in synthetic methodologies
to obtain highly monodisperse metal nanoparticles.?**” These systems are amenable to surface
grafting using thiol-terminated polymer chains. Our results indicate that exploration of
composites synthesized using such materials could represent an interesting future experimental

direction.

We reiterate that the results presented here are for dispersions of PGN in a good solvent for the
grafted chains. Therefore, effects that are relevant in polymeric matrices, such as, for example,
the effect of the grafted chains on matrix chain conformations are not considered here,
precluding a direct comparison of our results with the literature on PGNs in polymer melt
matrices. It is possible to extend?’ the modified DC model for melt matrices — this is a

promising avenue for future work.

Conclusions:

In this work, we present a direct extension of the Daoud and Cotton?”-28

model for star polymers
that allows us to investigate a wide parameter space for PGNs. We investigate the effect of
dispersity simultaneously in the core NP size and grafted chain lengths for dispersions of PGNs
in solvent. Our results indicate that NP dispersion can be improved by increasing the dispersity
in grafted chain length, consistent with the previous work of Martin e/ al.!'” However, we show
that increasing the dispersity in core nanoparticle size distribution strongly diminishes the
enhancement in dispersion due to chain-length dispersity. We conclude that well-dispersed
GNPs in solution can be obtained by reducing particle dispersity and enhancing chain

dispersity. The structure of self-assembled GNP aggregates is determined primarily by the

dispersity in core NP size.
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