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Abstract

The objective of this paper is to quantify the precision of a novel approach for computational

heat transfer modeling based on spectral graph theory. Two benchmark heat transfer

problems with planar boundaries, for which exact analytical solutions are available, are

used to determine the precision of temperature predictions obtained from spectral graph,

finite difference (one-dimensional), and finite element (three-dimensional) methods. These

studies show that the spectral graph approach captures the temperature trends in the

benchmark case studies with error in the range of 2% to 10% depending on the location

in the body. These verification studies also provide an approach to calibrate the numerical

parameters in the new method. The spectral graph approach is applied for predicting

the thermal history of a complex three-dimensional additive manufactured (3D printed)

part. The temperature trends in a 50-layer part are computed 2.3 times faster than a

commercial finite-element software package, and the results differ by less than 7.5%. Further

improvements in the computational speed of the spectral graph approach are expected

through code optimization and code parallelization. This work has far-reaching practical

implications for predicting thermal-induced defects in a variety of manufacturing processes

including casting and additive manufacturing.
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1 Introduction

1.1 Objective and Motivation

In this paper a spectral graph (SG) approach is developed for quantitative thermal mod-

eling. The SG approach enables rapid thermal simulation in a physical object through

a pragmatic balance of precision and computation speed. The precision of the SG ap-

proach is found by comparison with benchmark heat transfer problems, specifically, one–

and three–dimensional bodies with planar boundaries for which exact analytical solutions

are available.

The heat conduction problem to be solved in this work is stated using vector notation,

as follows:

∂T

∂t
= α∇2T (domain R) (1)

∂T

∂n
= 0 (boundary of R) (2)

T (x, y, z, t = 0) = T0(x, y, z) (initial condition) (3)

Here T is temperature (K), (x, y, z) is spatial location in the body, t is time (s), n is the

outward-facing unit vector (m) which has direction normal to the boundary, α is thermal

difussivity (m2/s), and T0 is the initial temperature. The Laplacian operator ∇2 describes

the spatial-diffusion portion of the heat conduction equation for any orthogonal coordinate

system, in one, two or three dimensions. The above form of the heat conduction equation

implicitly assumes that the thermal property α is independent of temperature.

Note that the SG approach described here is limited to a body with insulated boundaries,

i.e., the Neumann (type 2) boundary condition (Eq. (2)). In future work the method will

be extended to include Dirichlet (type 1) and Robin (type 3) boundary conditions.

1.2 Background

In this section the literature of the SG method is discussed in the context of the heat

conduction equation. Recently the SG method has been used to solve the heat conduction

equation in the context of image processing and filtering of other large data sets [1, 2]. A

review paper by Solomon [3] discusses discrete differential operators that arise from partial

differential equations such as the heat conduction equation; it shows that the Laplacian

matrix constructed from a uniformly spaced grid gives a solution to the heat conduction
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equation. However, if the grid is not equally spaced, the relationship to the correct solution

of the heat conduction equation is not clear.

In a study of geometric surface smoothing, Belkin et al. [4] show that the discrete

Laplacian matrix obtained from spectral graph theory approaches the continuous Laplacian

(∇2 in Eq. 1) in the limit as the grid becomes sufficiently fine, even if the grid pattern is

nonuniform. In a study of image smoothing, Zhang and Hancock use randomly assigned

node locations to construct a discrete Laplacian matrix and subsequently to solve the heat

conduction equation [1].

The graph-theoretic approach is distinct from several mesh-free methods developed pre-

viously. The peridynamic method was developed for systems undergoing dynamic cracking

[5, 6]. The peridynamic method is meshfree in the sense that only the bonds between node

points are tracked as the body deforms (bonds change length) or cracks (bonds break). The

governing equation for each node is developed from an integral balance on force (or energy)

in a neighborhood around each node. The peridynamic method requires a standard matrix

inversion at each time step, similar to finite-element methods.

The spectral collocation method uses splines to provide an a priori functional form of

the solution as part of a standard matrix inversion process [7, 8]. The moving particle

system method was developed for free-surface fluid-flow problems, and it has recently been

applied to heat conduction [9, 10]. The heat conduction equation is discretized by use of a

Laplacian matrix with weighting functions that involve the square of the distance between

the nodes. The resulting matrix form of the heat conduction equation requires a standard

matrix inversion at each of many small time steps, similar to finite element methods.

1.3 Overview of the Paper

The paper is divided into six sections. Section 2 is an introduction of the spectral graph

method applied to heat conduction. Section 3 explores a one-dimensional example to show

the details of SG method, and compares the resulting solution with an exact analytical

solution and with the finite difference method. Section 4 provides a three-dimensional case

of the SG method and a procedure to calibrate the model parameters based on solutions

from the exact analytical solution. The three-dimension heat transfer problem is also solved

using the finite element method implemented in a commercial solver (Abaqus). Section

5 demonstrates the practical utility of the SG approach in the context of the additive
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manufacturing (3D printing) process. Specifically, the SG method is used to predict the

temperature distribution for an additively manufactured part with overhangs and undercuts.

The same part is also simulated with a commercial finite element solver and the predictions

are compared with the those obtained from the SG method. Section 6 contains a summary

and discussion of future work.

2 Spectral Graph Method (SG)

In this section the SG method is introduced using vector notation independent of the spatial

details of the problem. Later specific examples of the SG method will be presented for a

one-dimension problem and for a three-dimension problem.

First, dimensionless variables are introduced in Eq. (1) - Eq. (3), as follows:

T̃ = T/T1; t̃ = αt/`2; ñ = n/` (4)

where ` is a characteristic length and T1 is a characteristic temperature. Subsequently, the

dimensionless heat conduction problem has the following form:

∂T̃

∂t̃
= ∇̃2T̃ (domain R) (5)

∂T̃

∂ñ
= 0 (boundary of R) (6)

T̃ (x̃, ỹ, z̃, t̃ = 0) = T̃0(x̃, ỹ, z̃) (initial condition) (7)

where ∇̃2 is the dimensionless Laplacian differential operator.

The spectral graph theory approach replaces the spatial derivatives represented by the

continuous Laplacian operator (∇̃2) in the heat conduction equation, Eq. (5), by a discrete

matrix called the Laplacian matrix (L) , as well as the continuously varying temperature

(T̃ ) by a vector of discrete temperatures (T̃ ) at node points in the domain. The discrete

form of the above heat conduction problem may be written as

∂T̃

∂t̃
= −LT̃ (domain R) (8)

∂T̃

∂ñ
= 0 (boundary of R) (9)

T̃

∣

∣

∣

t̃=0

= T̃0 (initial condition) (10)
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Note the sign change in Eqn. (8), as the Laplacian matrix L from graph theory is defined

with sign opposite to that of the continuous Laplacian operator (∇̃2). Construction of the

Laplacian matrix is discussed later in section 3.2 and will be shown to be symmetric and

diagonally dominant. At present the solution to the discrete heat conduction equation will

be provided in matrix form.

The next step is to solve the following well-known eigenvalue problem, using standard

matrix methods. Laplacian matrix L satisfies the eigenvalue equation:

Lφ = φΛ (11)

where φ is the orthogonal eigenvector matrix

Λ is the diagonal eigenvalue matrix

The eigenvector matrix φ is orthogonal because L is symmetric and diagonally dominant

[3]. Since for an orthogonal matrix the transpose is equal to its inverse, the product of the

eigenvector matrix and its transpose is the identity matrix. That is:

φφ′ = φφ−1 = I (12)

Using this property, post-multiply the eigenvalue equation, Eq. (11), by the matrix φ′:

Lφφ′ = φΛφ′

LI = φΛφ′

L = φΛφ′ (13)

Replace this result into the discrete diffusion equation, Eq. (8):

∂T̃

∂t̃
= −(φΛφ′)T̃ (14)

This above equation is a first order matrix differential equation whose solution, subject to

insulated boundaries, has the form of a matrix exponential [1, 3]:

T̃ = e−φΛφ′ t̃
T̃0 (15)

Recall that T̃0 is the initial temperature vector. Next the exponential in the above solution

will be expanded using a Taylor series. The exponential of matrix u is given by

e−u = I − u

1!
+

u2

2!
− u3

3!
+ . . .
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Apply the above Taylor series expansion to the exponential term from Eq. (15), and sim-

plify:

e−φΛφ′ t̃ = I − t̃
φΛφ′

1!
+ t̃ 2

(φΛφ′)2

2!
− t̃ 3

(φΛφ′)3

3!
+ . . .

= I − t̃
φΛφ′

1!
+ t̃ 2

(φΛφ′)(φΛφ′)

2!
− t̃ 3

(φΛφ′)(φΛφ′)(φΛφ′)

3!
+ . . .

= I − φ(Λt̃)φ′

1!
+

(φ(Λt̃)2φ′)

2!
− (φ(Λt̃)3φ′)

3!
+ . . .

= φ

[

I − Λt̃

1!
+

(Λt̃)2

2!
− (Λt̃)3

3!
+ . . .

]

φ′

= φ
[

e−Λt̃
]

φ′ (16)

The final exponential argument contains only the eigenvalue matrix multiplied by time.

With this simplification the temperature solution is given by

T̃ = φe−Λt̃φ′
T̃0 (17)

In this solution, the spatial behavior is embodied in the eigenfunction matrix φ and the time-

evolution behavior is embodied in the eigenvalue matrix Λ. At small values of time, many

eigenvalues within the matrix exponential e−Λt̃ contribute to the temperature distribution.

At large values of time, however, the temperature depends only on the smallest non-zero

eigenvalue (also called the Fiedler eigenvalue Λ2), which determines the rate at which the

temperature decays toward the final (steady) value. This is analogous to the effect of time

on the number of series terms needed from a Fourier-series solution of the continuum heat

conduction equation.

3 One-Dimensional Example

In this section a one-dimensional (1D) heat conduction problem is solved using the exact

analytical method and the resulting solution is compared with the SG and finite difference

(FD) methods.
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3.1 1D Exact Analytical Solution

Consider the following 1D problem with a piecewise initial condition and insulated (Neu-

mann) boundaries:

1

α

∂T

∂t
=

∂2T

∂x2
(18)

at x = 0,
∂T

∂x
= 0 (19)

at x = `,
∂T

∂x
= 0 (20)

at t = 0, T (x, 0) =

{

T1; 0 < x < a

0; otherwise
(21)

This problem is denoted case X22B00T5 in the numbering system for heat conduction [11,

chap. 2]. An exact analytic solution for this problem is given by [12, p. 101]

T (x, t) = T1

[

a

`
+ 2

∞
∑

m=1

e−m2π2αt/`2

mπ
cos

mπx

`
sin

mπa

`

]

(22)

3.2 1D Spectral Graph Method

In this section the Laplacian matrix will be constructed with the operational steps provided

by spectral graph theory [3]. The first step is to find the distance between nodes i and j

which are located at coordinates xi and xj .

For the one-dimensional problem, the distance is,

cij =
√

(xi − xj)2

Weights are assigned to each edge (connection between nodes) which depend on the distance

between the nodes. The edge weights can take various forms, but to agree with the finite-

difference formulation, the edge weights are given by

aij =







1

c2
ij

; cij ≤ b and i 6= j

0; cij > b or i = j
(23)

where b is called the neighborhood distance. All the nodes inside the neighborhood distance

are connected to each other. For i = j the edge weight is zero so that a node is not

connected to itself (avoiding cycles within a graph). Also to agree with 1D finite difference,
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the neighborhood distance is the node spacing b = dx. In other words, the nodes are

equi-spaced.

The adjacency matrix is a matrix containing these weights:

A =





















0 1

b2
0 · · · 0

1

b2
0 1

b2

0
. . .

. . .
. . .

...
... 1

b2
0 1

b2

0 · · · 0 1

b2
0





















(24)

Next the sum across rows of the adjacency matrix is constructed:

di =
∑

j

aij

and assembled into the degree matrix which is a diagonal matrix:

D =
1

b2





















1 0 0 · · · 0

0 2 0

0
. . .

...
... 0 2 0

0 · · · 0 0 1





















(25)

Finally, the Laplacian matrix is constructed by subtracting the adjacancy matrix from the

degree matrix as L = D −A, as follows:

L =
1

b2





















1 −1 0 · · · 0

−1 2 −1 · · · 0

0
. . .

. . .
. . .

...
... −1 2 −1

0 · · · 0 −1 1





















(26)

The Laplacian constructed in this way for the one-dimensional problem with uniform node

spaceing is the same as the finite difference matrix discussed in the next sub-section. It is

important to note that this development gives the Laplacian for insulated (Neumann, type

2) boundaries.
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the heat fluxes, the energy equation may be shown to have the form:

Ṽ
∂T̃

∂t̃
= Q̃e + Q̃w (30)

The normalized heat fluxes are given by:

Q̃w =
Ã

d̃x
(T̃w − T̃ ); Q̃e =

Ã

d̃x
(T̃e − T̃ ) (31)

Combine the heat fluxes with the energy equation, divide by Ṽ , and recognize that for

one-dimensional transfer Ṽ = Ãd̃x, the result is:

∂T̃

∂t̃
=

Ã

d̃xṼ
(T̃w − T̃ ) +

Ã

d̃xṼ
(T̃e − T̃ )

=
1

d̃x
2

(

T̃w − 2T̃ + T̃e

)

(32)

The above energy equation applies to all interior nodes. At the left boundary let Qw = 0

and at the right boundary let Qe = 0 to describe insulated boundaries (homogenesous

Neumann condition). Then the boundary node equations have the form

left boundary:
∂T̃

∂t̃
=

1

d̃x
2

(

T̃e − T̃
)

(33)

right boundary:
∂T̃

∂t̃
=

1

d̃x
2

(

T̃w − T̃
)

(34)

If the interior node equation, Eq. (23), is repeated for every interior node and combined

with the boundary-node equations above, a matrix form comprising all node equations has

the form

∂

∂t̃





















T̃1

T̃2

...

T̃n





















= − 1

d̃x
2





















1 −1 0 · · · 0

−1 2 −1

0
. . .

...
... −1 2 −1

0 · · · 0 −1 1









































T̃1

T̃2

...

T̃n





















(35)

Note that a minus sign before the right-hand side is included so that the square matrix is

identical to the Laplacian matrix (L) developed in the previous section for the SG method.

Pertinently, the Laplacian in Eq. 35 developed from the FD method is also real, diagonally

dominant, and symmetric, and was developed for homogeneous type 2 (Neumann) boundary
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conditions. Homogeneous boundary conditions of type 1 and 3 are also possible but are not

treated in this paper.

To complete the finite difference approach, the time derivative ( ∂
∂t̃
) must also be ap-

proximated by a time-wise difference, and then a matrix solution must be carried out to

solve for the temperature at each time step (see for example [13, p. 54]). However, these

well-known details are omitted for the purpose of brevity.

3.4 1D Results: Compare FD and SG Solutions

Results for the one-dimensional example problem are given in this section. The SG method

was implemented in Matlab. Standard matrix methods were used to find the eigenvalues

and eigenvectors of the Laplacian matrix, and to carry out matrix multiplication for the

SG temperature solution in Eq. (17). The one-dimensional SG results were verified by

comparison with the exact solution and with a fully-implicit FD solution using the same

uniformly spaced grid points.

A three-way comparison between the SG solution (Eq. 17), a fully-implicit FD solution

(Eq. 35), and the exact solution (Eq. 22) is shown in Fig. 2, which contains two plots

of temperature versus time at the centerline of the body (x̃ = 0.5). For nx= 21 spatial

nodes, both the SG and FD methods overshoot the correct temperature by about 10 % at

t̃ = 0.1. For nx = 101 the error at t̃ = 0.1 is below one percent. The maximum time t = 0.2

was chosen because the temperature at x/L = 0.5 has essentially reached its final value for

initial heating condition a/L = 0.238. A more complete picture of the error relative to the

exact solution is found by examining the symmetric mean absolute percent error (SMAPE)

over the time range. Let Tex be the exact temperature and let Tsg be the spectral graph

temperature, evaluated at the center of the body. Then the SMAPE error is given by

SMAPE =
1

m

m
∑

i=1

|Tex(ti)− Tsg(ti)|
Tex(ti) + Tsg(ti)

× 100% (36)

where m is the number of timesteps. Values for the SMAPE error for both the SG and the

FD solutions are given in Table 1. The error is sensitive to spatial discretization, decreasing

with inverse proportion to the number of spatial nodes as nx changes from 11 to 1001.

An odd number of nodes was used to place a node precisely at x/L = 0.5 to facilitate

comparison among different cases. The time step size has no influence at all on the error for

the SG method, because in the SG solution the temperature is computed from the initial
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Table 1: Symmetric mean absolute percentage error (SMAPE) in SG and FD values, com-

pared to the exact temperature, versus number of spatial nodes nx and time steps nt. The

comparison is made at the center of the body over the time range (0,0.2) and the body is

initially heated over (0 < x̃ < 0.238).

SG FD

nx nt SMAPE SMAPE

11 40 6.783405 7.056041

21 40 3.713437 3.841302

101 40 0.783407 0.772047

1001 40 0.079316 0.033775

11 400 6.783405 6.811669

21 400 3.713437 3.727278

101 400 0.783407 0.783257

1001 400 0.079316 0.075729

11 4000 6.783405 6.786241

21 4000 3.713437 3.714831

101 4000 0.783407 0.783401

1001 4000 0.079316 0.078966

implementation of an FE model for the same case. This section also provides a guideline

for calibrating the SG method through the exact analytical method.

4.1 3D Exact Analytical Solution

Consider heat conduction in a parallelepiped a piecewise initial condition and with insulated

boundaries. The geometry is shown in Fig. 3. The temperature in the parallelepiped
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t̃ < 0.01, use:

T̃ (x̃, ỹ, z̃, t̃) =
1

4

[

erf

(

x̃+ L̃1√
4t̃

)

− erf

(

x̃− L̃1√
4t̃

)

− erf

(

2− x̃− L̃1√
4t̃

)

+ erf

(

2− x̃√
4t̃

)

]

×
[

erf

(

W̃ (ỹ + W̃1)√
4t̃

)

− erf

(

W̃ (ỹ − W̃1)√
4t̃

)

− erf

(

W̃ (2− ỹ − W̃1)√
4t̃

)

+ erf

(

W̃ (2− ỹ)√
4t̃

)]

×
[

erf

(

H̃(z̃ + H̃1)√
4t̃

)

− erf

(

H̃(z̃ − H̃1)√
4t̃

)

− erf

(

H̃(2− z̃ − H̃1)√
4t̃

)

+ erf

(

H̃(2− z̃)√
4t̃

)]

(41)

The dimensionless variables used in the above expression are defined by

x̃ =
x

L
; ỹ =

y

W
; z̃ =

z

H
; W̃ =

W

L
; H̃ =

H

L
;

L̃1 =
L1

L
; W̃1 =

W1

W
; H̃1 =

H1

H
; t̃ =

αt

L2
; T̃ =

T

T0

(42)

Figure 4 shows values from the above exact solution for the temperature history at four

points in an equal-sided parallelepiped (cube) initially heated over one-eigth of its volume

(L1 = W1 = H1 = 0.5), so that the final temperature is T/T0 = 0.53 = 0.125. A full

discussion of this solution, along with other plots and computer codes, is available elsewhere

[14].

4.2 3D Spectral Graph Method

Construction of the Laplacian matrix for three-dimensional SG method is similar to the

one-dimensional process discussed earlier, with two differences. The first difference is that

the distance between nodes is found using the Euclidean norm in three-space, that is,

cij =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2

where (xi, yi, zi) is the Cartesian coordinate of node i. The second difference is that the

edge weights are chosen to have a Gaussian form:

aij =

{

e−c2ij/σ
2

; cij ≤ b and i 6= j

0; cij > b or i = j
(43)
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Figure 4: Temperature in a cube at four locations, one in the heated region and three

in the unheated region. The initial temperature is T/T0 = 1 in the region defined by

(L1 = W1 = H1 = 0.5).

As before, b is the radius defining the neighborhood, within which each node is connected

to its neighbors, and σ is the standard deviation of internodel distances cij . The Gaussian

edge weights used here are taken from the graph theory literature (for example, [1]) and

as such have no inherent connection to the heat conduction problem. Gaussian-distributed

edge weights do have the benefit of an upper bound of unity when the internodal distance

is very small, as can occur in a randomly distributed grid. In this way the heat flow at

a single node is never singular (or nearly singular) as would occur for cij ≈ 0 if the edge

weight was 1/c2ij in the one-dimensional formulation discussed earlier.

The application of the SG method to three dimensional geometries involves random

node placement and Gaussian edge weights. As noted above, because the Gaussian edge

weights are not inherently connected to heat conduction, the results of the SG method must

be appropriately scaled for heat conduction. A gain factor is used for this purpose which

modifies the SG method solution given by Eq. (17) with factor g premultiplying time in

the argument of the exponential term:

T̃ = φe−gΛt̃φ′
T̃0 (44)
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The effect of the gain factor (g) is to speed up or slow down the time rate of the ther-

mal response. The correct choice of the gain factor, to calibrate the SG method for heat

conduction, is carried out by comparing the SG solution to a known solution.

4.2.1 Procedure for node generation.

Several mesh-block geometries were created for the parallelepiped-shaped part by specifying

the same number of blocks along each coordinate direction, nb, and the number of grid

points within each block, ng. Table 2 shows the total number of nodes in a mesh created

from different combinations of nb and ng. For example, nb = 4 and ng = 3 give the total

number of points as 4 · 4 · 4 · 3 = 192. To study the effect of random node locations

within blocks, ten meshes were created by different random embodiments of each block-

grid combination studied, and many of the results are reported as the mean and variance

over these ten meshes. To avoid the possibility of too-close mesh points, the randomly

determined points in each block were sampled from a finely divided grid placed on each

block, without replacement. Usually the block was subdivided into 1000 locations.

Table 2: Number of mesh points in a paralellepiped body created by nb blocks along each

axis and ng grid points within each block. Total number of mesh points = n3
b · ng.

ng

nb 3 4 5 6

4 192 256 320 384

6 648 864 1080 1296

8 1536 2048 2560 3072

4.2.2 Sensitivity of the gain factor.

A sensitivity study was carried out to explore the impact of time range and temperature-

observation location on the optimal gain factor. The purpose is to find the gain factor (g).

To investigate the sensitivity, the normalized sensitivity coefficient was found in the form

X = g
∂Tj(t)

∂g
(45)
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Like all numerical methods, the SG method introduces numerical parameters that have

to be reconciled with the physical domain of interest. In the SG method, such numerical

parameters include the number of spatial nodes, the distribution of these nodes, and the

manner in which nodes are connected. These numerical parameters must be chosen so

that the solution is insensitive to these introduced parameters while providing acceptable

precision, usually determined by comparison with benchmark problems.

An exact solution in a regular-shaped body (parallelepiped) was used as the standard

against which the SG solution was compared, and a sensitivity study was used to determine

the best spatial location(s) and the best time domain over which the SG method should be

calibrated.

The calibration procedure for obtaining the gain factor involves a rigorous comparison

between the SG method and the exact solution discussed earlier in Section 4.1. Such

comparisons are variously termed regression analysis, parameter estimation, or data fitting

[15, p. 2]. The benchmark data for the comparison is the time history of the temperature

from the exact solution in the time range (0,0.4) at the center of the initially heated region

for a cubic body. Twenty temperature values at uniformly-spaced time points were used.

The initially heated region is of size L1 = W1 = H1 = 0.5 as defined in Eq. (42).

The baseline for the comparison is the SG method evaluated at the same space and time

locations in a similarly heated cube. Because the SG method produces temperatures only at

node locations which are randomly distributed within blocks, an interpolation procedure was

used to find the temperature at the precise locations desired; the Matlab routine ‘griddata’

was used for this purpose. In contrast, no interpolation is needed for the time coordinate.

The data fitting procedure was the minimization of the sum-of-square error between the

exact solution and the SG model. The data fitting was carried out with a Gauss-Newton

method [15, p. 29] which converged to four-digit precision in about six iterations; the

resulting gain factor was not sensitive to the initial guess.

Although in this study a simple body shape is used, for a more complex shape such as

that simulated in Sec. 5 in the context of additive manufacturing, the calibration could be

carried out by comparison with a commercial FE solver.
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approximated by the appropriate fraction of the surface of local volume Ṽ , given by

Ãi =
4πr̃2

nb
(48)

Distance d̃i to neighbor node i is something less than radius b̃; let d̃i = s1 · b̃ where s1 is

an unknown scale factor. The number of neighbor nodes must be proportional to the total

number of nodes in the body ntot, so let nb = s2 · ntot where s2 is another scale factor.

Finally, let the radius of the local volume be some fraction of the neighbor radius, r̃ = s3 · b̃
where s3 is a third scale factor. Assemble these scaling relations into the weight factor from

Eq. (46), the result is :

Ãi

d̃iṼ
=

4π(s3b̃)
2/(s2ntot)

(s1b̃)
4

3
π(s3b̃)3

=
3

s1s2s3

1

b̃2ntot

(49)

The above result for the scaling argument is that the edge weight needed for the SG method

is proportional to 1/(b̃2ntot), that is, inversely proportional to the square of the neighbor-

hood radius and inversely proportional to the number of nodes in the body. This scaling

relation explains the behavior of the gain factor when ntot and b are varied in the calibration

experiments described in the previous section.

4.3.3 Calibration Applied to Related Cases.

In this section the calibration gain factor, found once, is applied to related cases whose

heating geometry or physical geometry is different from the calibration case. The purpose

here is to ascertain the domain of applicability of one calibration to other cases. The

calibration geometry is the unit cube initially heated over the smaller cube L1 = W1 =

H1 = 0.5, or one-eighth of the total volume.

Consiider the SG applied to the unit cube where the amount of heat initially present

is also one-eighth of the total volume, but the distribution of that heat varies. Some

of the initial-heating geometries considered are shown in Fig. 8, where the central cube

(red) is the cubic heated region used for calibration, and the (green) non-cubic shapes are

heating shapes for the test cases. For each test geometry, the SG method was carried out

using the calibration gain factor (gain values shown in Fig. 6) and the temperature was

compared to the exact solution using the correct, non-cubic, initial heating condition. The

error was computed for each geometry at six points on each of three diagonals: corner-to-

corner; edge-to-edge; and, face-to-face. For each geometry the calculation was repeated:
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a heated region of size (1x1/2x1/4); for these cases the SMAPE error is less than 8 percent

and the RMSE is less than 0.03. The last three rows of Table 3 are for different orientations

of a flattened-out heated region of size (1x1x1/8); for these cases the SMAPE error is less

than about 11 percent and the RMSE error is less than about 0.05. The results show that

the error increases somewhat as the shape of the heated region diverges from the cube-shape

used for calibration. However, the overall error values are acceptable for the rough level of

precision needed to contribute to the AM application.

In a similar way the SG method was applied to bodies with varying-sized heated regions

and to non-cubic bodies of fixed volume. The results of these additional studies (not shown

to save space) provide error values comparable to those in Table 3. That is, calibration of

the SG method on one body is a gateway to simulate a variety of heating geometries and

body shapes.

4.4 Precision of the SG Method and Comparison with FEA

A detailed study is presented to provide evidence that the SG method gives physically

meaningful results with acceptable precision. Several comparisons are presented in this

section with the exact solution presented earlier. The comparison is carried out at several

discrete locations along a corner-to-corner transit of the cube, and along a face-to-face

transit of the cube, at locations shown in Figure 9. Figure 10 shows the comparison along

the corner-to-corner transit. Figure 10a shows the temperature at three heated-region

locations, and Fig. 10b shows the temperature at the three unheated-region locations. The

temperature from the exact solution is also plotted. The best agreement is for the middle

curve of Fig. 10a because this is the location used to fit the gain value. For every pair of

curves (SG and exact), the curves begin at the same point, have the same shape, and are

tending toward the same final temperature of T/T0 = 0.125. Figure 10c shows the error

value for all six locations plotted versus time.
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10 pecent everywhere, with the largest value in the unheated region. The SMAPE values

tend to be larger at locations farthest from the heated region. For the FEA analysis, carried

out with 9261 nodes, the RMSE error is everywhere less than 0.017 and the SMAPE values

are everywhere less than 12 percent. The largest SMAPE values for the FEA analysis also

occur in the heated region. At many locations the FEA errors are larger than the SG errors,

even though six times more nodes were used for the FEA analysis.

Table 4: Error for SG results and FEA results, by comparison with an exact solution, at

several locations (refer to Fig. 8) in the partially heated cube. Both SMAPE and RMSE

error are given which are averaged over the time range (0 < t̃ < 0.4).

Spectral Graph FEA (ABAQUS)

location (1536 nodes) (9261 nodes)

x y z SMAPE RMSE SMAPE RMSE

0.15 0.15 0.15 2.7400 0.017850 2.3906 0.016919

0.25 0.25 0.25 0.8245 0.004877 2.0111 0.010396

0.35 0.35 0.35 0.6053 0.004325 1.7192 0.009505

0.65 0.65 0.65 1.1600 0.001259 5.4397 0.009440

0.75 0.75 0.75 6.0921 0.003235 8.7527 0.010892

0.85 0.85 0.85 10.0173 0.002599 11.7532 0.011756

0.25 0.25 0.15 1.1316 0.005843 2.1357 0.012168

0.25 0.25 0.25 0.8245 0.004877 2.0111 0.010396

0.25 0.25 0.35 0.5966 0.002651 1.8573 0.008136

0.25 0.25 0.65 1.5087 0.008071 1.4488 0.004348

0.25 0.25 0.75 1.6503 0.005840 2.0714 0.005192

0.25 0.25 0.85 1.3080 0.003402 5.6774 0.017143

5 Application to Additive Manufacturing

Additive manufacturing (AM) refers to a host of processes for which material is gradually

added layer-upon-layer. The AM process allows creation of parts with complex geometries

in a short time that are difficult or impossible to make with conventional subtractive or
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formative manufacturing processes. However, poor part quality and process inconsistency

presently restricts the wider applicability of the AM process. The thermal history of the

part is a key determinant of its quality [16].

Accurate quantitative modeling approaches based on finite element (FE) analyses have

been successfully developed and applied for understanding the thermal aspects of AM at the

part-level as summarized in review papers [17, 18]. However, non-proprietary approaches

are computationally expensive, with simulation of a few deposited layers amounting to

many hours, if not days. For example, Cheng et al., reported that the computation time

for thermomechanical analysis for a 6 mm cuboid shape exceeds 92 hours [19].

Hence, newer computationally efficient approaches are needed to approximate the tem-

perature for different part designs and process parameters. In the context of FE-based mod-

eling, it is important to note that certain commercial software, such as Autodesk Netfabb

and Ansys 3DSim, have leveraged adaptive meshing to drastically reduce the computational

time. However, the underlying mathematics of these commercial applications is proprietary

[20, 21].

5.1 Advantages of the SG Approach for Thermal Modeling in AM

The computational advantages in using the spectral graph method to solve the heat con-

duction equation are two-fold.

1. Reduced computational burden due to elimination of mesh-based analysis.

Instead of solving the heat diffusion equation for each element through element birth-and-

death techniques as in FE analysis, in the present paper the temperature in the part is

associated with nodes of a planar graph projected onto the part geometry. Comparing

results from the spectral graph approach with those of FE analysis shows that a significant

portion of the computation effort in FE analysis is consumed by the meshing of elements, and

simulation of the birth-and-death process to mimic material deposition in AM. The spectral

graph approach greatly simplifies the meshing process, and as a result, the computation

time for simulation of AM processes can be considerably reduced compared to existing,

non-proprietary FE analysis-based approaches.

2. Reduced computational burden due to elimination of matrix inversion steps.

The SG method e required to solve the heat conduction equation. While FE analysis rests

on matrix inversion for each timestep in the solution of the heat conduction equation, the
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spectral graph method instead relies on the more computationally tractable matrix multi-

plication operations to obtain the temperature, which greatly reduces the computational

burden. Moreover, if the temperature is needed at a later time portion of an AM cycle, it

may be computed directly in one large time step without computing the temperature at

intermediate times and without loss of precision.

These advantages significantly reduces the computational time for predicting the tem-

perature within the build time, compared to hours, if not days required by existing non-

proprietary finite element simulations. The near real-time prediction of the temperature

distribution in AM parts in turn enables the following developments.

• Physics-based, as opposed to expensive trial-and-error, optimization of the process

parameters

• Feed-forward control of the AM process to preempt defects, as opposed to purely

data-driven machine learning and analytics.

• Prediction of distortion and microstructural evolution.

• Identify red-flag problems in the part design and placement of supports.

5.2 Assumptions for Thermal Modeling of AM

In this paper a specific type of AM processs is considered, laser powder bed fusion (LPBF).

In LPBF a layer of powdered metal is depositied on a build plate and selectively sintered

by a laser. Then the build plate is lowered by one layer thickness (typically 50 micometers)

and a new layer of powdered metal is deposited and sintered. Refer to Fig. 12 for a

schematic of the LPBF process. The heat energy supplied by the laser (200 - 500 W) and

the repeated melting/refreezing of the metal causes steep thermal gradients in the part,

which are responsible for defects such as cracking and distortion [22]. In the LPBF process

there is a short period of laser-scanning (and metal sintering) which is followed by a longer

laser-off period for metal solidification, heat dissipation, and powder addition. Consequently

the simulation of LPBF has two length scales and two time scales. First, the small-scale

thermal details (less than 200 micrometers) are associated with the short-duration laser-

sintering process (a few seconds), and second, the larger scale involving diffusion of heat

throughout the yet-incomplete part during the longer laser-off portion (up to 60 s) of each

cycle.
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Table 5: Simulation parameters for comparison between FE and spectral graph method.

Simulation Parameters Values

Layer thickness (mm) 0.2 mm

Total number of nodes in the part, n ∼ 3000

Node Density (nodes per mm3) ∼ 12

Number of neighbors connected to each node 50

Gain factor, g 1.3× 104

Convection coefficient of powder, hw (W m−2 K) 10−5

Convection coefficient of build plate, hs (W m−2 K) 10−2

Ambient temperature, T∞ (K) 300

Inter-layer cooling time (s) 6.5

Material SS 316

Density, ρ (kg m−3) 8440

Thermal diffusivity, α (m2 s−1) 3× 10−6

to agree with the insulated boundary (no heat loss) studied earlier in the paper. Although

this insulated boundary with the powder somewhat simplifies the simulation, it is uniformly

applied to both the SG method and to the FE method so as to maintain the validity of the

comparison.

A summary of spectral graph simulation in metal additive manufacturing processes is

illustrated schematically in Figure 14. The graph theory simulation studies require tuning

of two types of factors:

(1) Number of Nodes (n). Generally, if the part is discretized with a high number of nodes

provides, the simulation error is smaller but at the cost of higher computation time. Hence,

choosing the total number of nodes should be a balance between accuracy and computation

time.

(2) Heat Diffusion Parameters. In the spectral graph approach two model parameters must

be determined, namely, the gain factor g, Eqn. (38), and the neighborhood radius over

which nearby nodes are connected (for this calculation we used an alternate parameter, the

number of neighbors connected to each node). These parameters govern the connectivity of

the nodes and diffusion of the heat in the part. These parameters were taken from a previous
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Table 6: Comparison of finite element (FE) method (Abaqus) and spectral graph (SG)

method for N-shaped part using equal size layer thickness and equal number of nodes.

Computation MAPE RMSE

Time, s % (o K)

FE 1968 (32 min) - -

SG 887 (14 min) 7.5 27.7

first principles. The error in the SG solution is reported relative to the exact analytical

solution for one– and three–dimensional bodies with planar boundaries. Solutions for these

benchmark problems are also obtained with finite difference (one-dimensional body), and

finite element (three-dimensional body) methods, and comparisons of computational speed

with the SG approach are also given. Specific conclusions from these investigations are as

follows:

1. For the one-dimensional problem, the relative error (symmetric mean absolute error)

with the exact analytical solution ranges from 0.7 percent to 7 percent (coarse node

distribution). The SG solution converges almost identically to the finite difference

solution as the timesteps are decreased, and when a uniformly spaced node distribution

is used.

2. For the three-dimensional problem, the precision of the SG method is explored for

several heating conditions and several box-shaped bodies. The error associated with

varying the heating condition is in the range of 3 to 11 percent. The three-dimensional

cases also show the inter-relationship among the numerical parameters in the SG

approach, and provides a systematic approach to calibrate these parameters against

the exact analytical solution.

3. The error in the SG approach relative to the exact analytical solution for the three-

dimensional cases were of the same order of magnitude as the finite element solution -

the worst case difference in error is 3 percent in favor of the SG method. Moreover, the

SG approach requires less than 20 percent of the nodes of the finite element method;

which provides a significant computational advantage for the SG approach.
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4. A direct comparison was made between the SG method and a commercial finite el-

ement code applied to a ‘N’-shaped body for a realistic simulation of an additive

manufacturing process involving 50 layers of material. The SG method was computed

2.3 times faster with simulated temperature values within 7.5 percent of the FE code

even though the SG code was run using an interpreted computer language (Matlab)

without parallel processing, whereas the FE solver was implemented in an optimized

commercial solver (Abaqus).

In future work, the SG approach will be further developed to: include type 1 and type 3

boundary conditions; include internal source terms; and, further increase the computation

speed through use of a compiled computer language and through code parallelization.
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