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ABSTRACT

Gondwana changed its high latitude location during the late Paleozoic (338-265 Ma), relative to the South Pole, and the style of glaciation evolved from localized
alpine glaciers and ice fields to ~30 small ice sheets across the supercontinent. We report the analysis of heavy mineral populations (n = 2217) and the ages of
detrital zircons (n = 2920 U-Pb LA-ICPMS results) from Gondwana diamictite deposits from eight landmasses: Africa (5 samples), Antarctica (5), Australia (8), the
Ellsworth Mountains terrane (1, Antarctica), the Falkland Islands (2, diamictite plus U-Pb SHRIMP ages on granite clasts), India (1), Madagascar (1), Oman (3), the
equatorial Lhasa terrane (2), the equatorial North Qiantang terrane (2) and South America (10). Heavy mineral separations (SEM-WDS analysis) identified one
anomaly, pyrope garnets present only in Dwyka Group and Dwyka-equivalent samples suggesting an ultramafic Antarctic source. Statistical analysis of detrital zircon
age distributions support the inference of local transport of sediment from many small ice centers with five examples of far-field ice transport (> 1000 km; four with
ice flow > 2000 km), and three from ice fields located along coastal Antarctica. We propose that ice was distributed from five main ice-caps of different ages in
southern Gondwana with ice flow away from central Gondwana. We also confirm that the Permo-Carboniferous detrital zircon populations of Euramerica (eolian and
fluvial) and Gondwana (ash, detrital-glacial) are not mixed across the equator or seaway and ponder the possibility of a late Paleozoic snowball Earth.

1. Introduction

The Late Paleozoic Ice Age (LPIA), which occurred from the Visean
(Mississippian) to the Capitanian/earliest Wuchiapingian (Middle-ear-
liest Late Permian), was among the longest episodes of glaciation in
Earth history, and the longest of the Phanerozoic (Figs. 1 and 2).
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Extensive reviews of the LPIA are provided by Fielding et al. (2008),
Isbell et al. (2012) and Montanez and Poulsen (2013). The LPIA had
profound effects on the Earth's physical, chemical and biological en-
vironments at all southern latitudes, and possibly in the northern
hemisphere where glacial deposits of that age may exist (Crowell and
Frakes, 1970; Crowell, 1978, 1999; Crowley and Baum, 1991, 1992;
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Fig. 1. Gondwana with schematic basement geology, the three episodes of LPIA glaciation indicated (Glacial Episode I: 360-342 Ma; Glacial Episode II: 334-313 Ma;

Glacial Episode III: 315-265 Ma) and our sample sites (see Table 1).

Heckel, 1994, 2008; Isbell et al., 2003; Joachimski et al., 2006; Falcon-
Lang, 2004; Grossman et al., 2008; Blakey, 2008; Lopez-Gamundi and
Buatois, 2010; Isbell et al., 2012; Montafez et al., 2016; Isbell et al.
(2016); Liu et al., 2017). Different parts of Gondwana were glaciated at
different times as the supercontinent moved relative to the South Pole,
with glaciation being most widespread during the Late Carbonifer-
ous-Early Permian, following local, alpine glacial episodes of lesser
magnitude (Lopez-Gamundi and Buatois, 2010; Isbell et al., 2012). As
ice volume changed, glacioeustatic sea-level change was widespread on
both Gondwana and Laurasia, with the cyclothems of North America
and Europe arguably the most prominent distal products (e.g. Heckel,
2008), although Pennsylvanian loess deposits are preserved in low-la-
titude settings in western North America (Soreghan et al., 2008).

The dynamics of glacial sedimentation does not favor preservation
of interbedded ash deposits (i.e., primary zircons), so regional strati-
graphic correlations have relied on relative age relationships. However,
recent identification of interbedded ash beds and other volcanic rocks
have better defined the absolute ages of local Gondwana glaciation
(Fig. 3): 1) U-Pb zircon ages for the Dwyka Group of South Africa
(Visser, 1990; Veevers et al., 1994; Key et al., 1998; Bangert et al., 1999
[U-Pb ages recalculated in Isbell et al., 2008]; Stollhofen et al., 2008),
2) For northwest Argentina (Gulbranson et al., 2010), 3) for eastern
Australia (ignimbrites; Roberts et al., 1996; Fielding et al., 2008), and
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4) for the Parana Basin (Cagliari et al., 2014). The agents of diamictite
deposition include ice sheets with various ice lobes, local alpine gla-
ciers, ice caps, and floating ice shelves. These units are preserved be-
cause the depocenters were located along subsiding continental mar-
gins or in various types of subsiding basins, allowing Isbell et al. (2012)
to delineate 30 basins in Gondwana with glacial deposits. These glacial
deposits vary from terrestrial diamictites on striated basement (boulder
pavements) to lacustrine and deep-marine sediments with dropstones
(e.g., Lopez-Gamendi and Buatois, 2010) but often with syndepositional
deformation (Isbell et al., 2008). Glacial striations and ice-flow direc-
tions are well-documented for Gondwana diamictites (Frakes et al.,
1975; Matsch and Ojakangas, 1992; Hand, 1993; Veevers and Tewari,
1995; Visser et al., 1997, Visser, 1997; Fielding et al., 2008; Isbell et al.,
2008a, 2008b; Mory et al., 2008; Rocha-Campos et al., 2008; and Isbell,
2010) but there is a paucity of detrital zircon and heavy mineral data to
allow local and regional provenance analysis.

We document the provenance of Permo-Carboniferous diamictites
based on heavy mineral (n = 2217) and detrital zircon U-Pb age po-
pulations across Gondwana (Fig. 1; 24 sample Sites including 5 cores, 2
with multiple samples, n = 2888 detrital zircon ages) to determine if
glacial transport was local (Isbell et al., 2012), regional (i.e., entirely
from Antarctica; Frakes et al., 1975; Veevers and Powell, 1987; Frakes
et al., 1992; Ziegler et al., 1997; Hyde et al., 1999; Blakey, 2008;
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Fig. 2. Summary diagram of glacial epochs and sedimentation by continent and time (Eyles and Young, 1991; Crowell, 1999; Evans, 2000; Hoffman and Schrag,
2002; Halvorson et al., 2005). Supercontinents are in grey, snowball Earth events in blue. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

Buggisch et al., 2011; Isbell et al., 2012), or both. We also include a
published detrital zircon data set from late Paleozoic diamictites in the
Himalayas and Tibet, which were in an equatorial setting during de-
position (Gehrels et al., 2006a, 2006b, 2011), as well as three other
existing diamictite detrital zircon data sets (Martin, 2008; Ramos et al.,
2014; Linol et al., 2015) in northwest Australia, Argentina and South
Africa, respectively. Ironically, Antarctica is again under a continental
ice cap and analysis of Pleistocene glacial deposit zircons can be used to
interpret what lies beneath Antarctic ice (Harley and Kelly, 2007; Ve-
evers and Saad, 2008; Goodge et al., 2010; Licht and Palmer, 2013) and
aid our provenance analysis. Preliminary results were presented at
various Gondwana-related meetings (Craddock et al., 2008; Craddock,
2011; Craddock and Thomas, 2011).

2. Previous work

Whereas alpine glaciation was understood by the late 1700s in the
Swiss Alps, the concept of continental glaciation developed slowly.
Erratic boulders found over northern Europe were interpreted as the
result of deposition by ancient (vanished) continental glaciers or from
drifting icebergs, and hence the term “glacial drift” was coined. +
+Von Charpentier (1834, but not published until 1841) and +
+ Agassiz (1837, but not published until 1840) presented the idea of
widespread continental glaciers (see Crowell, 1999, p. 4-6.). We now
recognize a wide array of primary sedimentary features in Pleistocene
diamictites including striated boulder pavements, bullet-shaped
boulders, glacial gouge and thrusting created by iceberg grounding

(iceberg turbation), primary clast orientation (e.g., vertical clasts),
convoluted beds, and soft-sediment deformation features such as flame
structures, water-escape structures, rip-ups, clastic dikes and pebble
nests (clast clusters) that likely originated by sediment dumps from
overturned icebergs.

The first evidence for LPIA glaciation was described from the
Permian of India (Blanford et al., 1856) and shortly thereafter in Aus-
tralia, South Africa and South America. Wegener (1915, 1966) utilized
these glacial deposits as a major line of evidence for his Continental
Drift hypothesis, and later (1929) used Du Toit's, 1921 Gondwanaland
reconstruction as further support. Du Toit's book, Our Wandering Con-
tinents (Du Toit, 1937) developed even further the significance of late
Paleozoic glaciations. The forgoing studies of Permo-Carboniferous
glaciations served as one line of evidence for the evolution of Con-
tinental Drift into Plate Tectonic theory.

Recent research indicates that the LPIA consisted of several short
glacial events of < 10 million year duration, separated by similar short
periods of warmer climate as Gondwana rotated and translated across
the high southern latitudes (Fielding et al., 2008; Isbell et al., 2012).
The LPIA started in South America at ~360 Ma, shifted to Africa at
340 Ma, to Antarctica from 320 to 260 Ma, and finally became wide-
spread across Australia (e.g., Frank et al., 2008; Figs. 1 and 3). Gond-
wanan glaciation is subdivided into three episodes, with deposits of
Episode I in northern South America (360-342 Ma), alpine deposits of
Episode II in western South America (334-313 Ma), and deposits of
widespread Episode III present on all the Gondwanan continents
(315-265Ma; Lopez-Gamundi, 1997; Fig. 1). There are several
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Fig. 3. Combined stratigraphy of glacial diamictites across Gondwana, modified from Isbell et al. (2012), with our tillite samples identified (see Fig. 1, Tables 1 and
2). Red lines indicate dated igneous layers. Additional sources: Gulbranson et al. (2010; Paganzo Basin), Rocha-Campos et al. (2008) and Cagliari et al. (2014; Parana
Basin), Isbell et al. and Stollhofen et al. (2008; Dwyka Formation-Karoo Basin), Linol et al. (2015; Congo Basin), Webers et al. (1992), Elliot et al. (2014) and
Craddock et al. (2017a, 2017b, 2017¢); Ellsworth Mountains), Isbell et al., 2008a, 2008b, Transantarctic Mtns.); Lindstrom, 1995; Heimefront Range); Roberts et al.
(2004) and Fielding et al. (2008; E. Australia), and Gehrels et al. (2011; Lhasa and N. Qiantang terranes). (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

excellent volumes of compilations and reviews of ancient glacial de-
posits, including those of the LPIA (Hambrey and Harland, 1981;
Deynoux et al., 1994; Crowell, 1999; Fielding et al., 2008; Lopez-
Gamundi and Buatois, 2010), all nicely summarized in Isbell et al.
(2012). We have adopted the three-episode events of the LPIA, with
samples from Episode II (Paganzo basin, Argentina, n = 5) and Episode
III (everything else; Fig. 3).

3. Methods

Diamictite samples analyzed here were collected over many years
and some are repository samples from central Antarctica (Table 1).
Zircon crystals were extracted from samples by traditional methods of
crushing and grinding, followed by separation with a Wilfley table,
heavy liquids, and a Frantz magnetic separator as described on the
University of Arizona LaserChron website. Samples are processed such
that all zircons are retained in the final heavy mineral fraction; all the
grains are < 500 um in diameter. The non-zircon heavy mineral split
was placed on a puck and analyzed using the SEM for additional pro-
venance information (Table 2). A large split of the zircon grains (of all
available sizes as to avoid bias) was incorporated into a 1” epoxy mount
together with fragments of our Sri Lanka standard zircon. The zircon
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mounts are sanded down to a depth of ~20 um, polished, imaged, and
cleaned prior to isotopic analysis. U-Pb geochronology of zircons is
conducted by laser ablation multicollector inductively coupled plasma
mass spectrometry (LA-MC-ICPMS) at the Arizona LaserChron Center
(Gehrels et al., 2006c, 2008; www.laserchron.org). Data reduction was
done using Isoplot (Ludwig, 2008) and K-S statistical software available
on the LaserChron website.

Zircons from granite clasts in the Fitzroy Diamictite, Falkland
Islands were analyzed using the SHRIMP at the John de Laeter Centre
for Geochronology at Curtin University, Australia. Heavy minerals were
analyzed using the SEM-WDS at Macalester College and Northern
Arizona University; Sites 2 and 3 only include detrital zircon ages and
samples reported in Gehrels et al. (2011). Sites 24 and 25 were pro-
cessed in the field (see Table 2).

4. Results

Our data are presented, generally, from west (South America;
oldest) to east (Australia, youngest) with respect to sample locales
within Gondwana, and include detrital zircon results in glacial deposits
reported by Gehrels et al. (2011) from the Himalaya and Tibet, the
Sauce Grande Formation, Argentina (Ramos et al., 2014), Linol et al.
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Table 1 (continued)

Position within unit*/Comment

Stratigraphic unit

=) Youngest

Zircons (n

Geological province

State/province Region

Latitude Longitude Country

Locality

Sample

Zircon Age

core 4: 412.4-416.05 m (Gascoyne

Lyons Group
Platform)

562

23,13, 85

S. Carnarvon Basin

Carnarvon Shire

WA

113.881853 Australia

—23.509678

Warroora 1

22

core 10: 830.3-831.8 m

1125
503

core 17: 1374.65-1375.9m

192.9 m (Crossland Platform;

Martin et al.,

‘lower’ Grant Group

61 327

Canning Basin

East Pilbara

WA

125.040742 Australia

—19.678043

Drossera 1

23

2008)

106.9 m (Barbwire Terrace)
999.6 m (Fitzroy Trough)

363
295

62

West Kimberley
West Kimberley

125.102405
126.016122

—19.450542
—19.008217

Capparis 1
Cycas 1

61

n = 2506

N. Hemisphere (Carboniferous) Tillites

(2011)

Gehrels et al.

507

216

Lhasa Terrane

Tibet

Himalaya

Mountains
Himalaya

Gebhrels et al. (2011)

523

198

N. Qiangtang Terrane

Tibet

25

Mountains

n =414

n = 2920

* or depth within exploration well

MDA: Maximum depositional age.
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(2015) from the Congo Basin subsurface and the Australian Canning
Basin (Martin, 2008; Fig. 1). Sample sites can be referenced to local
stratigraphy (Fig. 3) and sample details are presented in Table 1. Field
photos can be found in Figs. 4-6 and Appendix 3a-h (for most sample
groupings), heavy mineral populations are tabulated in Table 2, and
detrital zircon relative probability plots in Figs. 7-12 (full data sets are
found in Appendix 1, and the K-S statistical analyses in Appendix 2).
Each sample site sub-heading also includes the figure number with the
appropriate detrital zircon relative probability plot. Several of our
samples had relatively small numbers of zircons analyzed. This was
because of the small sample size and paucity of zircons in the heavy
mineral suites. We decided to use all data sets in our analysis so that we
our geographic coverage is as comprehensive as possible. We caution
that the low number of zircons analyzed in some samples may impact
our interpretations (see Vermeesch, 2004).

4.1. Paganzo Basin, northern Argentina, South America (Site 1, 5 samples;
Fig. 7)

Five samples from the Paganzo Basin (middle-Carboniferous gla-
ciation) were collected across the extent of the basin (Table 1; Appendix
3a). These units were deposited during to the glacial stage from that
occurred from Visean to the early Bashkirian (i.e. equivalent to the
European stages of Visean and Namurian) of the Protoprecordilleran
region of the Paganzo Basin in Argentina (Azcuy, 1975; Net and
Limarino, 1999; Heckel and Clayton, 2006; Net and Limarino, 2006;
Limarino et al., 2014b). In the eastern Paganzo Basin, the samples are
from a paleovalley complex, while the western Paganzo Basin samples
are from the Protoprecordilleran mountain belt that bounded the basin
to the west and existed along the Panthalassic margin of Gondwana.
The Paganzo Group strata are correlated using zircon ages, facies, pa-
lynomorphs, as well as paleoflora occurrences (Gulbranson et al., 2010;
Pérez Loinaze and Césari, 2012; Limarino et al., 2014b). The glacial
deposits of the Guandacol and Agua Colorado Formations in the wes-
tern Paganzo Basin are younger 335 Ma (Serpukhovian), and are cor-
related to the non-glacial deposits of the Malanzan Formation in the
eastern portion of the basin (Pankhurst et al., 1998; Drobe et al., 2011;
Gulbranson et al., 2010; Pérez Loinaze and Césari, 2012; Limarino
et al., 2014b; Moxness et al., 2018). The middle units, the Loma Larga
Formation in the east and Tupe Formation in the west, rest conformably
on their older units, and therefore have been determined to have a
Bashkirian-middle Moscovian age (323-310Ma; Limarino et al.,
2014b).

The Malanzan Formation samples were collected from the south-
western portion of a paleovalley that cuts through the Sierra de
Malanzan, a small northern extension of the Sierra de Chepes, close to
the town of Malanzan (30°48740.4”, W 066°34'24.1”). The Malanzan
Formation rests unconformably on metamorphosed sedimentary and
igneous rocks of the Olta and Chepes formations of Ordovician ages
(Pankhurst et al., 1998). The basal facies in this area of the paleovalley
consists of siltstones with rare pebbles and medium-grained sandstones,
which are poorly sorted, and dominated by quartz with a weak calcite
cement (Qtz 61% F 35% L 4%). Conglomerates, which are interpreted
as fan deltaic and debris flow deposits, dominate the upper Malanzan
Formation (Moxness et al., 2018). Heavy minerals include garnet,
barite, zircon, rutile, apatite, monazite, ilmenite and hematite
(Table 2). Grain shape varies from well-rounded to angular in every
grain size fraction and the matrix is < 15% (Net and Limarino, 2006).
Twenty four concordant U-Pb zircon ages were acquired with an age
peak of ~500 Ma. The youngest zircon is 362 Ma; the oldest is 973 Ma
(Appendix 1). The Loma Larga Formation samples were taken from just
1 km west of the village of Loma Larga (S 30°47’45.1” W 066°32’37.1").
The Loma Larga Formation contains conglomerates and sandstones
interbedded with siltstone and organic-rich layers (Qt 59% F 33% L 8%;
Net and Limarino, 2006). The heavy mineral suite includes abundant of
hematite and ilmenite, with lesser zircon, monazite, and Dbarite
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Table 2 (continued)

Total

Chalcopyrite Chromite

Zircon Monazite Hematite Barite Galena Pyrite

Ilmenite

Continent/Site

98
97
87

25

ca
ca

20
23

30

ca
ca
ca

94
92

15-Antarct
16-Antarect;

17-Antarct
18-Antarct
19-Antarect;

66
62
95

12
10

11

a

ia

20-E. Austr:

21-E. Austral
22-W. Austra
22-W. Austral
22-W. Austra
22-W. Austra

51

ia

22
99

11
17

ia
ia

24

n = 2217

Heavy mineral separates for the Canning Basin samples (Site 23; CYC, CAP and DRO) can be found in Martin (2008).

* Heavy mineral analysis done on thin sections; Samples from the Lesser Himalaya, Tethys, Lhasa, S & N. Qiangtang were field separated and no heavy mineral splits remain.
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(Table 2). The facies are interpreted as meandering fluvial and flood
plain deposits, and are interpreted as the terminal mid-Carboniferous
glacial stage (Bashkirian to the earliest Cisuralian 323 Ma to c. 290 Ma;
Shen et al., 2013). We acquired 50 concordant U-Pb zircon ages with a
peak age of ~500Ma; the youngest zircon is 412Ma, the oldest
2133 Ma.

Samples from the Agua Colorada Formation were collected in the
Famatina Range (listed as Famatina in Fig. 7 and portrayed strati-
graphically in Appendix 3), and are from the northernmost outcrop in
this study and are located in the northern Paganzo Basin (S 28°51746.4”
W 67°36701.0”). The rocks are conglomeratic sandstones with some
larger clasts (8-30 cm) of igneous rocks in a mainly feldspathic sandy
matrix. The grains are poorly sorted and angular, indicating a short
transport history. The heavy mineral composition shows a dominance
of zircon and monazite, with lesser garnet, barite, rutile and hematite
(Table 2). These are interpreted terrestrial sediments related to a gla-
cially-influenced environment, and a glacio-lacustrine environment
post-glacial succession (Limarino and Gutierrez, 1990; Limarino et al.,
2002). The correlation and paleontological evidence point to a Serpu-
khovian age (Limarino et al., 2002). In the sample area, the rocks were
unconformably deposited on Lower Paleozoic igneous rocks (extension
of the Nufiorco Granite; 484 Ma, Pankhurst et al., 1998) and Cambrian
metasedimentary successions (Negro Peinado Formation; Limarino and
Gutierrez, 1990; Collo et al., 2009) of the Famatina Range and border a
granite of unknown age. One age peak of ~500 Ma, is apparent from 95
concordant U-Pb zircon ages. The youngest zircon age is 389 Ma, the
oldest 2116 Ma.

The samples for the Guandacol Formation were collected west of
Huaco, a town in the Precordillera Ranges (Net, 2002; S 30°08’40.6” W
068°32733.3). Here, the formation is overturned and rests un-
conformably on the Ordovician San Juan Formation. Here we sampled
the sandy matrix of a diamictite. The rocks are greyish to bluish and
poorly sorted with a wide range of grain shapes from well-rounded to
angular. Net (2002) reports an average sandstone composition of Q
62.9F 27.4L 9.7, with matrix proportions exceeding 15% of the rock
volume. The heavy mineral suite is dominated by garnet, barite and
rutile (Table 2). Thes rocks are interpreted to be of glacial and deltaic
origin (Net et al., 2002). The age of the rocks is well constrained by
isotopic dating, and range in age from 320 Ma for the glacial deposits
and 315Ma for the fluvial successions and are Bashkirian in age
(Gulbranson et al., 2010; Limarino et al., 2014b). The Guandacol-Huaco
sample has a peak age of ~500 Ma (n = 50) with smaller peaks at 1000,
1500 and 2000 Ma. The youngest zircon age is 385Ma, the oldest
2059 Ma. The Tupe Formation (S 30°03’35.1” W 068°32’25.9”) consists
of medium-grained sandstone units that are interbedded with siltstone
and organic-rich units. Net et al. (2002) reports an average composition
of Q 62.5F 23.2L 14.3, with a larger amount of lithoclasts in com-
parison to the Guandacol Formation. The Tupe Formation represents a
stacked fluvial and coal-bearing facies succession, and is interpreted as
part of the terminal glacial phase that is comparable to the Loma Larga
Formation (Gulbranson et al., 2010; Césari et al., 2011; Limarino et al.,
2014a). Only 19 zircons were obtained from this sample, and an age
peak of ~500 Ma is observed. The youngest zircon is 404 Ma, the oldest
2761 Ma.

4.2. Parand Basin, Brazil, South America (Sites 2 and 3; Fig. 7)

As in other glaciated basins, the primary data on the provenance of
the glacial strata in the Parané Basin derive from the sense of flow of
glaciers interpreted from the orientation of subglacial micro-, macro-
and mega-erosional features, such as striae and furrows, roches
moutonnés and whale backs, as well as depositional featurures like
drumlins, eskers, and moraines (Santos et al., 1996; Rocha-Campos
et al., 2008). This is corroborated by sandstone paleocurrent directions
associated with diamictites and sedimentary petrology, fabrics of local
basement clasts dispersed in diamictite and correlation with similar
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Fig. 4. Gondwana glacial diamictites from Rocky Creek, Australia (A; outcrop with is 1 m) and the Heritage Range of the Ellsworth Mountains, Antarctica (B). Dick
Ojakangas is standing on the boulder pavement in the Whiteout Conglomerate in the Meyers Hills. The white arrow indicates the ice flow direction, north toward the

Sentinel Range. Inset C shows the striations on the boulder pavement.

basement rocks exposed along the eastern and western outcrop belts in
the Parana Basin which includes the < 1400 m of Itarare Formation
(Maack, 1961; Bigarella et al., 1967; Rocha-Campos, 1967; Frakes and
de Figueiredo Filho, 1967; Frakes and Crowell, 1969). Recent ash bed
geochronology by Cagliari et al. (2014) provides an age of 307 Ma for
the Itarare Formation.

The Itarare Formation is present in the Parana Basin and in its
northern equivalent, the San Franciscana Basin (Fig. 1; Appendix 1, 3a),
as part of the depositional system that covered ~1 million km? of South
America between 318 and 300 Ma. Only detrital zircons were retained
from the heavy mineral splits (no entry in Table 2), and the southern
Itarare (Parané Basin) sample yielded 38 concordant zircon ages. Four
small peaks between 440 and 800 Ma are observed; the youngest zircon
ages is 323 Ma and the oldest is 2606 Ma. The San Franciscana Basin
Itarare sample yielded 88 zircons with small age peaks at 600, 1800 and
2000 Ma. The youngest zircon is 365 Ma, the oldest 2743 Ma. All these
detrital zircon ages are known from the basement in the vicinity of the
Parané Basin (e.g., Mantovani and Brito Neves (2005).
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4.3. Sierra de la Ventana Mountains, Argentina, South America (Site 4;
Fig. 7)

The Ventana Mountains (10 x 40 km), in central Argentina, west of
Buenos Aires, were visited by Darwin (1846) and Du Toit (1937) and
they both recognized the similarity of the stratigraphy and structure
with the Cape Mountains in southern Africa (we regard this as as the
equivalent of the Karoo Basin in Fig. 7). The Sauce Grande diamictite in
the Ventana Mountains was thoroughly described by Coates (1969),
relative to Gondwana stratigraphy, following earlier work by Keidel
(1922, 1940), Du Toit (1929, 1937), Fossa-Mancini (1943) and
Harrington (1947). The Sauce Grande Formation is a diamictite that
unconformably overlies the Devonian Lolen Formation and grades up-
ward into the Permian marine Piedra Azul Formation allowing a Car-
boniferous-Permian age designation. The diamictite is ~800 m thick
and contains abundant glacially faceted and striated clasts, and corre-
lates with the Dwyka diamictite in South Africa (Buggisch, 1987; Ap-
pendix 3b). The Gondwanide orogen deformed the Ventana region,
resulting in NE-vergent folds with an axial planar cleavage and a
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Fig. 5. Al Khlata Formation in Oman with a granite dropstone in diamictite (A) that includes a heavy mineral population dominated by garnet (grey and rounded in
inset) and pyrite (bright in inset; image width is 1000 um) and glacial striations on the Edicaran Khufal Limstone from the type locale at Wadi Al Khlata, southern

Hugf (B). GPS unit for scale in A and B.

greenschist metamorphic overprint (Von Gosen et al., 1990, 1991), and
a typical thin-skinned strain pattern (Craddock et al., 1998).

One Sauce Grande thin section was analyzed for heavy minerals
(n = 46) and it is populated by rutile, apatite, sphene and garnet
(Table 2). We analyzed 92 detrital zircons from the Sauce Grande and
added samples SLV-VE-14 and 15 from Ramos et al. (2014), making a
total of 194 concordant zircons included in our analysis. The youngest
grains having a U-Pb age of 386 Ma and the oldest is 3330 Ma (Table 1,
Appendix 1). The age peak is ~500-600 Ma with a lesser peak at
~1100 Ma.

4.4. Southern Africa (Sites 5-8; Fig. 8)
Glaciogenic rocks of the Dwyka Group form the base of the Karoo

Supergroup in the main Karoo Basin of South Africa and associated
smaller sub-basins of southern Africa (e.g. Catuneanu et al., 2005). In
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the central to northern part of KwaZulu-Natal (KZN) Province, the Early
Permian Dwyka Group is sub-divided into the northern Mbizane For-
mation (heterolithic valley- fill facies in a dissected highland region)
and the southern Elandsvlei Formation (platform homogeneous dia-
mictite facies; Visser, 1987, 1990; Von Brunn, 1996). In the north the
regressive glacial deposits of the Mbizane Formation overlie the
homogeneous Elandsvlei Formation diamictite that extends across the
Main Karoo Basin to the south and west. Near the Umlaas Road sam-
pling site the Dwyka Group is about 120 m thick and the Elandsvlei
Formation has a basal heterolithic unit (Kayeni Member), comprising
interbedded laminated shale, sandstone, conglomerate and sandy dia-
mictite (Botha and Botha, 2002). The coarse diamictite in the Durban-
Pietermaritzburg area is interpreted as the result of ice grounding on
highs in the irregular basement topography during the rapid retreat of
the ice sheet (Von Brunn, 1996; Haldorsen et al., 2001). This succession
represents rapid ice-withdrawal at the close of the late Paleozoic
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Fig. 7. Relative probability plots for South American samples (Sites 1-4; see Table 1 and Appendix 1).

glaciation (Thomas et al., 1990) with the main body of sediment ac-
cumulating as massive glaciomarine muds with dropstones in an ice-
free open marine basin (Haldorsen et al., 2001) where icebergs were
generated from marine glacial fronts located to the northeast.

The Dwyka Group is diachronous (younger in the north where
continental glaciation lasted longer than in the south), due to degla-
ciation during warming in the early Permian (Catuneanu et al., 1998).
Ice movement directions can be determined from glacially polished and
striated surfaces of the underlying rocks (Haldorsen et al., 2001). The
northern pre-Dwyka upland of the Karoo Basin directed ice movement
from the northwest across the Kaapvaal Craton to the Tugela region of
KZN where irregular paleorelief developed on the older basement rocks
(von Brunn, 1996). The present distribution of the Dwyka Group is
controlled by Cretaceous faults related to Gondwana breakup. Re-
constructions of Gondwana show that the Falkland Islands lie on a ro-
tated microplate that originally lay off the Eastern Cape- KZN provinces
of South Africa (Marshall, 1994), showing that the Permo-Carboni-
ferous diamictites of the two areas were once contiguous.

In the Western Cape Province, South Africa, thin tuff layers within
the Dwyka Group have been dated at 302Ma (U-Pb zircon with
SHRIMP), close to the Permian-Carboniferous boundary (Bangert et al.,
1999; recalculated in Isbell et al., 2008a, 2008b; Stollhofen et al.,
2008). In our study, U-Pb ages from detrital zircons, extracted from four
samples of the Dwyka diamictite (all Elandsvlei Formation) were col-
lected from the western Cape (near Laingsberg), the southern Cape (east
of Oudtshoorn), the eastern Cape and central KZN (near Pietermaritz-
burg). Sample Sites 5-7 are within the Cape fold belt, sample 8 is from
the Karoo Basin foreland (Fig. 1). All the samples are from the matrix of
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massive diamictite (photo in Appendix 3b). Published models of ice
sheet flow directions in South Africa, show ice movements generally
from NE to SW across the area (Isbell et al., 2008a, 2008b). There is
evidence of possible glacial sediments of Visean age in the Witteberg
Group of South Africa that underlie the Dwyka Group (Streel and
Theron, 1999; see review in Isbell et al., 2008a, 2008b). These dia-
mictites and sparse lonestones in mudstone may be equivalent to the
Bluff Cove Formation in the inverted Falkland Islands and the glacial
Episode II Paganzo Basin units in Argentina; we did not sample this
unit.

The eastern Cape Dwyka detrital zircon age spectrum (n = 85)
ranges from 499 to 3491 Ma (Site 7 on Fig. 1; Dwyka East on Fig. 8).
Peak ages are 508, 628, 1086, 2074, 2972, and 3108 Ma. The central
Cape Dwyka (n = 92) detrital zircon age spectrum ranges from 507 to
1667 Ma (Site 6 on Fig. 1; Dwyka Central on Fig. 8). Peak ages are 540,
589, and 1050 Ma. The western Cape Dwyka detrital zircon age spec-
trum (n = 93) ranges from 499 to 2817 Ma (Site 5 on Fig. 1; Dwyka
Wast on Fig. 8). Peak ages are 571 and 1093 Ma. The KZN Dwyka
detrital zircon age spectrum (n = 90) ranges from 499 to 2817 Ma (Site
8 on Fig. 1; Dwyka East on Fig. 8). Peak ages are 511, and 2649 Ma.

4.5. Central Africa (Congo Basin; Site 9; Fig. 8)

Linol et al. (2015) report detrital zircon results (n = 157) from core
samples D1400 and D1595 from the Carboniferous-Permian Lukuga
Group diamictites of the Dekese section from the Congo Basin. Con-
cordant ages from 157 zircons reveal three peaks at 1930 Ma, 1040 Ma
and 680 Ma, with the oldest zircon age at 2925 + 8 Ma (Fig. 8).
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Fig. 8. Relative probability plots of detrital zircon samples from Greater Africa (Sites 5-14; see Table 1, Fig. 1 and Appendices 1 and 3).

4.6. Oman (Site 10; Fig. 8)

All Upper Carboniferous/Lower Permian diamictites in Oman are
included in the Al Khlata Formation (Martin et al., 2008, 2012; Forbes
et al., 2010). This formation is exposed along the western margin of the
Hugf Hills in southern Oman (Fig. 5) and in a tectonic window in the
Oman Mountains south of Muscat, however, drilling for hydrocarbon
reservoirs has revealed a widespread occurrence of this formation in
central and southern Oman (Appendix 3c and d)

Levell et al. (1988) subdivided the Al Khlata Formation in four
subunits that have been named from top to bottom, Rahab Shale, P1, P5
and P9. In the Hugf Hills only the upper subunits P1 and P5 are ex-
posed, but since the outcrops are lying in a game sanctuary, sampling is
forbidden. Outside the Huqf Hills the outcrops in Wadi Daiqa have been
recently flooded after the construction of a dam, therefore Petroleum
Development Oman provided us some drillcores for analytical purposes.
The three analyzed samples come from (undisclosed) wells southwest of
the Huqf Hills and they represent the diamictites from the base of P1,
P5 and P9 subunits. The ages of the units are based on sample paly-
nology: P1 diamictites, Sakmarian (palynomorph zone 2141;
~293 Ma); P5 diamictites, late Kasimovian (palynomorph zone 2165;
~305 Ma); P9 diamictites, mid-Kasimovian (palynomorph zone 2159;
~304 Ma; Al-Hussein, 2015).

The Al Khlata diamictites are coarse-grained, poorly-sorted clastic
rocks with a matrix-supported texture. Clasts range in size between 0.5
and 1 m. The clasts are highly variable in composition, mostly granites
and other igneous rocks like gabbros, rhyolites, basalts, and quartzo-
feldsphatic porphyrys. Finely bedded sandstones, homogeneous grey
sandstones and black cherts are ubiquitous sedimentary clasts.
Metamorphic clasts are absent. The matrix is a greenish to bluish grey
sandstone to arkosic sandstone without micas. The heavy mineral se-
parates are dominated by rounded almandine and spessartine garnet
(Fig. 5), zircon and pyrite (Table 2).

Detrital zircons were recovered from each of the three core samples
(Appendix 3c and d). Sample Oman-1 (P1) is from a separate core and
produced 83 concordant U-Pb zircon ages with the youngest age
604 Ma and the oldest 3152Ma. The peak age is 799 Ma. Samples
Oman-2 (middle = P5) and Oman-3 (deep = P9) are from a different
core: Oman-2 has 98 concordant ages that ranged from 511 to 2600 Ma.
Age peaks are at 590 and 813 Ma. Oman-3 has 100 concordant ages that
range from 347 to 3559 Ma. Age peaks are at 788 and 2518 Ma.

4.7. Madagascar (Site 11; Fig. 8)

The western third of Madagascar is covered by a succession of
Phanerozoic sedimentary rocks. The lower part of the sedimentary
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Fig. 9. Field photos of the Fitzroy Formation diamictite in the Falkland Islands (A) and a U-Pb concordia age plot of zircons from granite clasts (B).

cover, characterized by thick siliciclastic strata, ranging from the up-
permost Carboniferous to the Early Jurassic, is an equivalent of the
Karoo Supergroup in mainland Africa (Wescott and Diggens, 1998).
This sequence has been deposited during a long-lasting phase of crustal
extension between East Africa and what is now Madagascar, which pre-
dates the decay of Gondwana (Hankel, 1994; Schandelmeier et al.,
2004).

The sampling site is located at the eastern margin of the Morondava
Basin, about 15km east of the town of Ranohira in the valley of the
upper Ihazofotsy River (45°29.811’ E 22°30.510” E). Here, the basal
unconformity between the Precambrian and the overlying Sakamena is
well exposed (Appendix 3c). The sedimentary succession begins with
1.5 to 2m of a grey, poorly sorted, polymict conglomerate. Individual
clasts are made up of amphibolite, milky quartzite, light grey ortho-
quartzite, and garnetiferous paragneisses, embedded in a fine- to
medium-grained quartz matrix. This assemblage reflects the composi-
tion of the crystalline basement within the next 5 km east of the outcrop
and is probably the reworked local debris of the underlying
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Precambrian. The conglomerate is overlain by a light yellow-grey, la-
minated mudstone of 2.5m thickness, which contains a layer of iron
oxide nodules with up to 10 cm diameter half a meter below its top.
With a sharp erosional contact a second approximately 60 cm thick
conglomerate is lying on top of the mudstones. The upper conglomerate
contain additional to the components recorded in the basal conglom-
erate, also pink granites and dark granulites, which do not appear near
the exposure and may represent an input from a larger provenance area.
Clasts are subangular to well-rounded and the largest components are
up to 8 cm in diameter (Appendix 3c). The sample was collected from
this second conglomerate. The upper conglomerate is overlain by a light
brown arkosic sandstone. Heavy mineral populations are dominated by
rutile and chalcopyrite (Table 2). Detrital zircon (n = 59) age peaks are
at 560 and 1000 Ma. The youngest zircon is 442 Ma and the oldest
2496 Ma (Fig. 8). The exposed basal sequence of the sedimentary cover
represents a part of the approximately 2500 m thick lower Sakamena
Formation, which was dated with pollen and spores (260 Ma; Wescott
and Diggens, 1998).
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4.8. India (Site 12; Fig. 8)

The Gondwanan diamictites of India are known as the Talchir
Boulder Beds (Talchir Formation) and are Late Carboniferous to Early
Permian in age. The Talchir series of diamictite, shale and sandstone
may be as thick as 250 m at other places in India, and generally overlies
Archean rocks; paleocurrent indicators show a south to north move-
ment of the glaciers (Ahmad, 1981). The diamictite sample and photos
herein (diamictite and lonestones in shale) are from small, weathered
exposures in the Damodar Valley region of east-central India (Appendix
3c). They are within the city limits of Dhanbad, about 10 km south of
the campus of the Indian School of Mines. The Talchir is strati-
graphically beneath the Permian Barakar coal-bearing formation that is
being actively mined. Sandstone and shale overlie the diamictite-these
are in separate but nearby outcrops, each about 1 m thick. A thin sec-
tion of the diamictite matrix shows it to be a poorly sorted mixture of
sand (quartz, feldspars and schistose rock fragments), silt, and clay,
with minor larger clasts of granite, schist, and till pellets.

Heavy minerals include a variety of non-pyrope garnets (60%), ru-
tile, apatite and pyrite. Detrital zircons (n = 46) are dominantly
900-1300 Ma with a small age peak at 2600 Ma. The youngest zircon
age is 431 Ma, and the oldest 3436 Ma (Fig. 8).

4.9. Falkland Islands (Site 13; Figs. 8 and 9)

In the Falkland Islands, glacial diamictites of the Lafonian
Diamictite (Frakes and Crowell, 1967) or Fitzroy Diamictite Formation
of the Lafonia Group (Aldiss and Edwards, 1999) outcrop on both of the

main islands. The diamictite is massively bedded, and almost
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completely lacking internal stratification to indicate its structural atti-
tude. Frakes and Crowell (1967) report a range in thickness for this unit
of 350 to 850 m, and they identify a continental to proximal marine
depositional setting. Based on the abundance and size of continent-
derived clasts as well as linear sand bodies suggested to be subglacial
eskers, Frakes and Crowell (1967) and Trewin et al. (2002) surmise a
west-to-east (modern coordinates) transport direction for the glacial
sediments, effectively toward the SE margin of Africa when the Falk-
lands (Malvinas Islands) are restored to their pre-Jurassic position
within the Gondwana supercontinent (Adie, 1952; Mitchell et al., 1986;
see also a tectonic review by Ramos et al., 2017). The detrital zircon
(n = 96) age spectrum includes age peaks at 521 and 1085 Ma. The
youngest grain in 480 and the oldest is 2707 Ma (Table 1, Fig. 9). Py-
rope garnets (60%) dominate the heavy mineral population (Table 2).

As noted, the Fitzroy Diamictite contains abundant sub-rounded to
sub-angulose, dropstone clasts up to 7 m (Fig. 9a). These clasts are of a
diverse origin. A population of 100 clasts from Port Purvis, West
Falkland Islands (coordinates 51°27’37.24”S, 59°30’03.57”W) has
shown the following distribution: quartzite 43%, sandstone 24%,
granite 22%, foliated granite and gneiss 3%, schist 3%, quartz (from
veins) 2%, felsic volcanic (rhyolite?) 1%, mylonite 1%, carbonate rock
1%. Within this population, 2 clasts of granite are faceted and striated.
Eight clasts of granite lithology were obtained from the north shore of
Byron Sound, West Falkland Islands (coordinates 51°2710.83”S,
60°02747.22”W) for zircon SHRIMP geochronology to help establish the
provenance of the Fitzroy Diamictite. Zircons from three individual
clasts were analyzed, yielding a Concordia age of 447.3 +/— 8.1 Ma
with errors at the 1 sigma level (Fig. 9; Table 3). Minor amounts of
discordance are observed from these two samples, as well as the
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Fig. 11. Relative probability plots for detrital zircon samples from Australia (Sites 20-22; see Table 1, Fig. 1 and Appendices 1 and 3). Canning Basin data from

Martin (2008).

presence of individual inherited grains of Neoproterozoic (ca. 630 Ma).
Zircons from the third sample presented a larger proportion of dis-
cordant analyses, with a mean-weighted U/Pb age of 435 = 14 Ma
calculated from two concordant analyses of individual zircon grains.

4.10. Ellsworth Mountains, Antarctica (Site 14; Fig. 8)

The Ellsworth Mountains are part of the Ellsworth-Whitmore ter-
rane in central Antarctica and contain a Cambrian-Permian strati-
graphic section, deformed in the Gondwanide orogeny, that overlies
Grenville-aged basement rocks (Millar and Pankhurst, 1987; Craddock
et al., 2017a, 2017b, 2017c). The stratigraphic section is ~13,000 m
thick with more than half of the thickness being Cambrian sediments
(Webers et al., 1992; Sporli and Craddock, 1992). The Gondwana
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section is well preserved: the Crashsite Quartzite (Cambrian?-Devonian;
1000 m thick), the Whiteout Conglomerate (Carboniferous-Permian;
1000 m thick) and the Polarstar Formation (Permian; 1000 m thick).
The Whiteout Conglomerate is thought to be equivalent to the late
Paleozoic diamictites in the Transantarctic Mountains (see below), an
observation aided when the Ellsworth-Whitmore terrane is rotated 90°
clockwise to its tectonic position adjacent to the Pensacola Mountains
during the Paleozoic (Watts and Bramall, 1981; Grunow et al., 1987).
Exposures of the Whiteout Conglomerate in the Ellsworth Mountains
include the massive, folded diamictite in the northern Sentinel Range
and the thinly-bedded, interbedded diamictite-diamictite in the
southern Meyers Hills of the Heritage Range (Matsch and Ojakangas,
1992). Exposures in the Meyers Hills include diamictite zones with
boulder pavements (the grounding line) and abundant glacially striated
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clasts (Fig. 4; see also Appendix 3b) all indicating the ice flowed from
the Meyers Hills (south) toward the open ocean (Sentinel Range to the
north). Meyers Hills diamictites contain numerous 2-3 cm diameter
pyrope garnets (SiOs: 43.4%; Al,O3: 21%; FeO: 12.9%; MgO: 16.9%;
CaO: 4.7%; MnO: 0.8%) in the basal layer.

Matsch and Ojakangas (1992) report that the Whiteout is populated
by quartzite (66%) and granite clasts (17%) and petrographic analysis
reveals a variety of feldspars and garnet. We analyzed thin sections
from the northern Sentinel Range and Meyers Hills for their heavy
mineral populations (SEM-WDS) and report the presence of much py-
rope garnet (64%; Table 2). The detrital zircons (n = 90) from the
Whiteout of the northern Sentinel Range range from 520 to 3569 Ma,
with peak ages of 564 and 1065 Ma. The Whiteout Conglomerate con-
tains the highest proportion of pyrope garnet.

4.11. Heimefront Range, Dronning Maud Land, Antarctica (Site 15;
Fig. 10)

The Permo-Carboniferous diamictites of the Heimefront Range are
part of the Amelang Plateau Formation (Wolmarans and Kent, 1982).
On the basis of palynologic analyses, the age of the basal Amelang
Plateau Formation has been narrowed down to the Early Permian, i.e.
Asselian to Artinskian (Larsson et al., 1990; Lindstrom, 1995). The most
complete section in the Heimefront Range is exposed on the northern
flank of Mount Schivestolen where the diamictites form the 0.8 to 3m
thick basal part of the 160m Permian cover, resting on a striated
basement of metamorphic rocks (see Appendix 3e).

The diamictite has a dark grey, sandy matrix that contains in-
dividual silty lenses which define a poor bedding. Embedded in this
matrix are granite and gneiss pebbles with diameters between 10 and
30 cm. The facies interpretation of the diamictites as glaciogenic de-
posits is based on provable contact with the glacially abraded and
striated basement as well as striated and faceted clasts in the

diamictites. A paleo-ice flow direction of 335° + 10° was determined
from the striated basement. The diamictite is overlain by 12 m of pale
grey, well-stratified sandstones. Parallel small furrows, probably pro-
duced by floating icebergs sliding on the ground, were found within
these strata. Poscher (1994) assumes glacial to periglacial conditions
during the deposition in a fluviolacustrine environment, which is sub-
stantiated by dropstones and ice-dump tills. A decrease of dropstones
and an increase of phytoclasts to the top of this unit suggest a change
from a glacial to a periglacial paleoclimate. The heavy mineral suite is
unremarkable, lacking a pyrope garnet population (Table 2). The det-
rital zircons (n = 100) include the youngest and oldest ages of 521 and
1282 Ma, which correlate with age peaks of 671 and 1142 Ma (Fig. 10).

4.12. Transantarctic Mountains, Antarctica (Sites 16-19; Fig. 10)

Tectonic reconstructions place the Ellsworth-Whitmore terrane
(EWT; Dalziel and Elliot, 1982; Storey et al., 1988; Craddock et al.,
2017a, 2017b, 2017c) in a position north of the Pensacola Mountains
adjacent to the Falkland Islands as part of Gondwana. The Whiteout
Conglomerate in the Ellsworth Mountains (above) is correlated with a
variety of late Paleozoic glacial deposits that are present throughout the
Transantarctic Mountains, and to the Dwyka-Sauce Grande formations
in South Africa and South America. (Figs. 1, 3; Table 1). From north
(Pensacola Mountains) to south to north (Darwin Glacier, South Vic-
torialand) these units are: the Gale Mudstone (Pensacola Mountains,
600 m; Schmidt and Williams, 1969; Tessensohn et al., 1999), the
Buckeye Diamictite (Ohio and Wisconsin Ranges, 300 m; Long, 1962),
the Metschel Formation (Queen Maude Range, 50 m; Barrett, 1965), the
Pagoda Formation (Queen Alexandra Range, 100 m; McDougall and
Grindley, 1965) and the Darwin Diamictite (Darwin Glacier, South
Victorialand; Haskell et al., 1965) all of which is summarized in
Schmidt and Williams (1969), Isbell et al. (2003) and Isbell et al.,
2008a, 2008b; Fig. 3; see also Appendix 3e). Koch and Isbell (2013)
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provide a poignant description of the Permian Pagoda Formation dia-
mictites and ice flow dynamics (thrusting) in the Diamictite glacier area
of the Transantarctic Range.

Our samples come from the Pensacola Mountains (n = 91), Ohio
Range (n =95), Queen Alexandra Range (n =91), and Queen
Elizabeth Range (n = 91; Fig. 1). All the samples have detrital zircon
age spectra with a primary peak at ~600 Ma (Pan-African), a secondary
peak around 1100 Ma (Grenville), and a smattering of older ages. The
youngest and oldest ages are 498 and 3276 Ma (Pensacola Range), 493
and 2741 Ma (Ohio Range), 474 and 3347 Ma (Queen Alexandra
Range), and 507 and 3414 Ma (Queen Elizabeth Range; Fig. 10). The
heavy mineral populations are unremarkale and do not include any
pyrope garnets as found in the Ellsworth, Falkland and Cape (Dwyka
Group) diamictites (Table 2).

4.13. East Australia (Sites 20 & 21; Fig. 11)

Eight glacial intervals, four during the late
Mississippian-Pennsylvanian (C1-C4) and four in the Permian (P1-P4),
spanning the period from 327 to 255Ma, have been identified in
eastern Australia within the southern New England Orogen (Roberts
et al., 1995, 1996, 2006; Glen, 2005; Birgenheier et al., 2009; Fielding
et al., 2008; Roberts and James, 2010; Laurie et al., 2016). Diamictite
facies include faceted, striated and bullet-shaped clasts. These facies are
interbedded with laminated mudstone, sandstone and conglomerate.
Clast penetration structures (dropstones) within laminated mudstone
support an origin from floating ice. Age control for these facies is almost
exclusively from SHRIMP dating of zircons from the volcanic facies.

The Currabubula Formation in the central part of the Tamworth Belt
encompasses glacial episodes C3—4 (Fielding et al., 2008). The forma-
tion consists of up to 1200m of thick alluvial sandstone and con-
glomerate beds with a significant volcanic component. Prominent in-
terbedded ignimbrites have yielded U-Pb zircon ages of 319.1 to
308.9 = 2.8Ma (Roberts et al., 2004, 2006). Three intervals of gla-
cially-influenced facies can be recognized and their complex internal
facies reflect the ice-proximal position of the formation. The Rocky
Creek Conglomerate (Fig. 4b; see also Appendix 3 g), in the northern
Tamworth Belt, is from the C3 interval (Fielding et al., 2008) and has a
similar depositional history and thickness (up to 880 m; Roberts et al.,
2003). Its age is constrained by U-Pb zircons from an interbedded ig-
nimbrite dated at 319 + 2.7 Ma (Roberts et al., 2003).

Heavy mineral separates for both samples are similar (Table 2).
Overall the detrital zircon populations in the Rocky Creek Conglom-
erate (n = 45) and Currabubula Formation (n = 30) samples are also
similar, each with one age peak presumably close to the depositional
age, and a smattering of Proterozoic zircons (Fig. 11). The oldest zir-
cons are 992 Ma (Currabubula) and 2209 Ma (Rocky Creek). However,
the maximum depositional ages (MDA), based on the 10 youngest zir-
cons, are 302.9 = 2.5Ma for Rocky Creek and 317.1 = 2.3Ma for
Currabubula (Fig. 11). The latter is consistent with other isotopic ages
in that area (Roberts et al., 2004; Fielding et al., 2008) but the former is
at least 1 Ma younger than basal pyroclastics from the overlying Lark
Hill Formation (310.6 *= 4.0 Ma; Roberts et al., 2003, Fig. 8). This
discrepancy probably relates to the large errors inherent in both
SHRIMP and LA-ICPMS techniques that make both unsuitable for de-
termining depositional ages in relatively young strata.

4.14. Western Australia (Carnarvon and Canning basins; Figs. 1 and 11)

Upper Carboniferous — Lower Permian (Gzhelian — mid-Sakmarian)
glacial deposits are widespread in all Phanerozoic basins in west
Australia (apart from the Mesozoic-Cenozoic basins) and have been
intersected in many onshore petroleum wells and mineral boreholes.
The absence of associated volcanic facies or diverse faunas means that
the age of the glacial succession is based on spore-pollen zones in
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subsurface sections (outcrops are usually too oxidized) and marine
faunas largely from outcrop of stratigraphically enclosing units. Glacial
facies in west Australia contain ‘Stage 2’ (now Microbaculispora tentula)
and overlying Pseudoreticulata confluens spore-pollen zones (Kemp et al.,
1977; Backhouse, 1991, 1993; Mory et al., 2008). In east Australia these
zones are associated with rare volcanic tuffs from which zircons dated
by ID-TIMS indicate that the M. tentula Zone likely spans the Carboni-
ferous-Permian boundary and the P. confluens Zone covers much of the
Asselian (Bodorkos et al., 2016).

Whereas previous provenance studies in Western Australia in-
corporating the Permian had no samples from glacial facies (e.g.
Cawood and Nemchin, 2000; Veevers et al., 2005; Dillinger et al., 2018)
distinctive clasts in outcrop, particularly those derived from Proterozoic
basement within the Nangetty Formation (Perth Basin; Playford et al.,
1976) indicate an input from nearby sources. By comparison, clasts in
the Grant Group (Canning Basin) indicate sources from both the Pro-
terozoic Kimberley Basin to the north (Playford et al., 2009) as well as
the Pilbara Craton to the south (O’Brien and Christie-Blick, 1992).

In the Petrel sub-basin of the Bonaparte Basin Gorter et al. (2005,
2008) placed the commencement of glacial conditions in the early
Pennsylvanian, whereas in the Canning Basin unambiguous glacial fa-
cies do not appear until the latest Pennsylvanian (Mory, 2010). Further
south the glacial affinity of mid-Carboniferous (late Visean — Serpu-
khovian) strata in the Perth and Carnarvon basins has recently been
questioned (Playford and Mory, 2017). Even if there are variations in
the onset of glaciation across Western Australia, such a relationship
may have more to do with local tectonics (and hence accommodation)
than uplift providing local seeding points for the onset of glaciations as
implied by Eyles (2008).

Southern Carnarvon Basin, west Australia (Site 22, 3 samples;
Fig. 11).

In the Southern Carnarvon Basin Warroora-1 (Johnstone and
Pudovskis, 1955; Crostella and Iasky, 1997), drilled within the northern
part of the Gascoyne Platform, is one of the few wells with core showing
distinct glacial characters including diamictite, exotic clasts and con-
torted bedding (cores 4 to 17 from 412 to 1376 m). Four of the 14 short
cores within the glacial succession in this well were selected for zircon
dating (Appendix 3f).

The zircon age profiles of the productive Warroora-1 samples (cores
4, 412.4-416.05m; 10, 830.3-831.8m; and 17, 1374.65-1375.9 m)
show overlapping as well as different ages (Fig. 11), but the only ones in
common to all three are around 1100-1200 Ma. In terms of Western
Australian Precambrian terranes (summarized by Southgate et al.,
2011, Fig. 1), this best matches the younger parts of the Albany-Fraser
Province (~1000-1500Ma) over 1000 km south of the well. More
striking are similarities in the 2600-2750 Ma peaks between the sam-
ples from cores 4 and 10 that match ages from the Yilgarn Craton, and
peaks within 500-580 Ma also shown by the Madagascan and Indian
samples. The comparison of cores 10 and 17 is hindered by the disparity
in zircon yields, but shows some similarity over 1020-1800 Ma. In
addition, the age profile from core 17 shows a conspicuous similarity to
that of the Perth Basin for ages < 1700 Ma implying reworking of early
Paleozoic deposits rather than direct transportation from the original
source areas. The lowest sample from Waroora-1 has detrital zircons
with Archean ages of 2917, 3099, 3117, 3205, 3207 and 3460 Ma,
likely sourced from the Yilgarn or Pilbara cratons, but Paleoarchean
zircons are known from Jack Hills (Compston and Pidgeon, 1986) ap-
proximately 400 km southeast of Warroora-1.

Overall, the age profiles are typical of the ‘pan-Gondwanaland’
signature (Veevers et al., 2006) for which an origin from (now sub-
glacial) mountains in Antarctica has been suggested (Veevers and
Saeed, 2008). Such an origin is consistent with Cawood and Nemchin's
(2000) conclusion of “an overall longitudinal supply of detritus from
the south” even though they did not analyse lowermost Permian glacial
samples. Given the near-polar position for most of Gondwana during
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the Late Paleozoic ice age, a common southern provenance is not sur-
prising. Similarities between non-contiguous provinces (e.g., the two
youngest peaks in the oldest Western Australian sample and the Ma-
dagascan sample) imply longevity of uplift in the central source area as
well as for the pattern of ice movement during this glacial episode.

4.15. Canning Basin, northwest Australia (Site 23; n = 3; Fig. 11)

The Canning Basin in northwest Australia lay at mid- to high lati-
tudes in East Gondwana during the Permo-Carboniferous, with prox-
imal Precambrian highlands (Arunta Inlier, Musgrave Block) and rifting
along its northwestern margin as a prelude to break-up with India and
Himalayan terranes (Veevers and Tewari, 1995; Hand et al., 1999; Betts
et al., 2002; Veevers, 2004; Glen, 2005). Deposition of the Grant Group
in the NW-SE trending Canning Basin was associated with deglaciation
following ice motion toward the NW (Martin et al., 2007; Playford
et al., 2009). Samples from three petroleum wells drilled in the central
part of the basin (Fig. 6; Drosera-1, —19.678043, 125.040742; Cap-
paris-1, —19.4505, 125.1024; and Cycas-1, —19.0082, 126.0161)
yielded detrital zircons dominantly from central Australia discussed in
detail by Martin et al. (in press). The age profile of the 1000-2000 Ma
components are close to that from the basal sandstone of the Neopro-
terozoic Murabba Basin (Haines and Allen, 2017) whereas the younger
tail is similar to zircon ages from the Neoproterozoic Amadeus Basin
(see Maidment et al., 2007). Core from the underlying Upper Carbo-
niferous Reeves Formation was not sampled as its strong fluvio-deltaic
character is likely to reflect local provenance and/or input from central
(and possibly eastern) Australia, largely driven by the Alice Springs
Orogeny (Haines et al., 2001) rather than ice-related transport.

Sample DRO is from the ‘lower’ Grant Group (latest Carboniferous)
interval of Drosera-1 (192.9m) on the Barbwire Terrace (Fig. 6; also
Appendix 3 g). Sixty-one U-Pb age determinations were obtained from
DRO zircons, ranging from 2828 to 306 Ma, with 62% of the grains >
90% concordant (Table 1, Appendix 1). Noteable age populations in-
clude: 1) Paleoproterozoic to early Mesoproterozoic ages of
1796-1449 Ma, and 2) Mesoproterozoic ages of 1289-1164 Ma
(Fig. 11). Late Neoproterozoic to Cambrian ages of 602-508 Ma also
form a population. Remaining zircons yielded a single Archean age of
2828 Ma, several Palaeoproterozoi ages between 2220 and 058 Ma,
Neoproterozoic ages between 966 and 743 Ma, and four Devonian to
Pennsylvanian ages between 427 and 306 Ma. The youngest zircon from
this sample (dro66c¢) has an age of 306 + 8 Ma (20, 96% concordant).

Sample CAP, from the ‘lower’ Grant Group of Capparis-1 (106.9 m)
on the Barbwire Terrace (Fig. 4.1), yielded a total of 60 zircon U-Pb age
determinations that range from 2908 to 298 Ma, with 72% of the
grains > 90% concordant (Table 1, Appendix 1) Age populations in-
clude: 1) Palaeoproterozoic to early Mesoproterozoic ages of 1802-
1492 Ma and 2) Mesoproterozoic ages of 1329-1086 Ma. Late Neo-
proterozoic to Devonian ages of 604-408 Ma also form a population
Remaining ages include a single Archean age of 2908 Ma, several Pa-
leoproterozoic ages from 2140 to 1919 Ma, Neoproterozoic ages from
943 to 750 Ma, and several Mississippian to Early Permian ages of
335-298 Ma. The youngest zircons from this sample have ages of
298 Ma and 304 Ma. Additional ablations yielded ages of 305 and
306 Ma, respectively.

Sample CYC is from a cross-bedded sandstone in the ‘lower’ Grant
Group interval of Cycas-1 (999.6 m) in the Fitzroy Trough (Fig. 6). Sixty
U-Pb age determinations were obtained from CYC zircons, ranging from
3359 to 297 Ma, with 68% of the grains > 90% concordant (Table 1,
Appendix 1). Age peaks include: 1) Paleoproterozoic to early Meso-
proterozoic ages of 1866-1472Ma, and 2) Mesoproterozoic ages of
1374-1037 Ma. Remaining ages include Archean to early Paleoproter-
ozoic ages of 3359-2304 Ma, Neoproterozoic ages of 955-585 Ma, and
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Cambrian to Early Permian ages of 537-297 Ma. The youngest zircon is
297 Ma.

4.16. Lhasa and North Qiangtang terranes (Sites 24 & 25; Fig. 12)

Diamictites are common in upper Paleozoic strata belonging to
several of the main assemblages that make up the Himalayan-Tibetan
orogen (Fig. 12; Appendix 3h). Several samples were collected from
diamictite-bearing strata in each assemblage, with results reported by
Gehrels et al. (2011). This includes samples 05AL46 and 613,021
(n = 216) from the Lhasa terrane and 06GT56 and 05GT42 (n = 198)
from the North Qiangtang terrane. The Lhasa terrane diamictites pre-
serve age peaks of 47-580, 940-1230 and 1530-1870 Ma. Diamictites
from the North Qiangtang terrane include zircon age spectra of
520-630 and 740-1030 Ma. Both sample suites include minor age
peaks ~2500 Ma with a few Paleoarchean grains (n = 6, between 3115
and 3271 Ma). These results were included in one K-S analysis and all
glacially-related results from Gehrels et al. (2011) were included in a
second analysis (see Discussion and Figs. 15 and 16). We also used
detrital zircon age data for diamictites and interbedded sands from the
Tethyan Himalayan sub-terranes (see inset box, Appendix 3 h; DeCelles
et al., 2000, 2004; Gehrels et al., 2006a, 2006b; McQuarrie et al., 2008;
Myrow et al., 2010). There is a paucity of glacial striation data in these
terranes but the detrital zircon provenance connects Oman with the
Qiangtang terranes and the southern Tethys and Lhasa terranes with
northwest Australia.

5. Discussion

We preformed a K-S statistical analysis on all the detrital zircon age
populations in various 30 by 30 matrices (Appendix 2) as this is a more
rigorous evaluation of correlations and provenance than visual in-
spection of the relative probability plots (Figs. 7-12) and can be com-
pared with the heavy mineral (pyrope garnet) provenance (Table 2). Of
the 428 possible detrital zircon site correlations, 45 yielded a reliability
coefficient > 0.050 (yellow highlights in Appendix 2) and, after addi-
tional evaluation (see below), only 38 correlations appear meaningful
(boldface type, yellow highlight in Appendix 2). As a first pass, 38
provenance correlations of 428 (or, 390 failures of 428 = 88%) does
not support the hypothesis that Gondwana-aged diamictites all came
from the same Antarctic source. There are many additional analyses
that support the hypotheses of Isbell et al. (2012) where three glacial
phases existed between 338 and 256 Ma in a multitude of glacial cen-
ters across Gondwana. We have adopted the use of Episodes I-III (oldest
to youngest) for the LPIA in Gondwana (Fig. 1).

5.1. Episode II heavy mineral provenance

Heavy mineral suites from five samples from the Paganzo Basin
were analyzed (n = 366). The samples preserve a wide range of heavy
minerals (spessartine garnet, zircon, hematite, ilmenite and barite) in a
wide range of concentrations (Table 2) within the section from samples
around the basin indicating local sourcing.

5.2. Episode II detrital zircon correlations

We did not sample any Episode I diamictites in northern Brazil but
we do present results from five samples from the Paganzo Basin,
Argentina of Episode II glaciation (Site 1, Fig. 1). Details of the Paganzo
stratigraphy and a few field photos can be found in Appendix 3a. The
Paganzo heavy mineral provenance was locally sourced (Table 2) and
the detrital zircon relative probability plots show a demonstrable age
peak at 500 Ma (Fig. 7) with many older 2nd and 3rd order peaks, and
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Fig. 13. Schematic drawing of the southern margin of Gondwana showing the Karoo Basin and Dwyka-equivalent diamictites after restoration of the Permian.

no zircons as young as the predicted depositional age (Table 1;
Gulbranson et al., 2010). The statistical analysis demonstrates a pro-
venance correlation in only 5 of 25 possibilities, with K-S correlation
values between 0.707 and 0.122, some up-section, and some across the
basin but with poor correlation elsewhere (i.e., to Episode III deposits).
We interpret this to support the local, alpine nature of glaciation in the
Paganzo Basin, a result that is likely in nearby Episode II glacial de-
posits (Henry et al., 2014; Gulbranson et al., 2014; Limarino et al.,
2014a).

5.3. Episode III heavy mineral provenance

In Fig. 4 we show the boulder pavement in the Meyers Hills,
southern Ellsworth Mountains, reported in Matsch and Ojakangas
(1992). This basal contact is also rich in garnets suggesting a proximal
source (see insets, Fig. 13). Additional analysis identified most of the
garnets as pyrope (Mg-rich) garnets of an ultramafic source. In separ-
ating zircons from the diamictite samples we also characterized the
heavy mineral populations (Table 2) and found that samples 4-8, 13
and 14 (2 sites) all contain concentrations of pyrope garnets thereby
providing an additional provenance tracer (Fig. 13). In outcrop ap-
pearance, the diamictite at all these locales look like classic “Dwyka”
(see Appendix 3b), and all but sample 8 (KwaZulu Natal) are found in
the deformed rocks of the Permian Gondwanide belt. To properly
characterize the pre-Gondwanide depositional setting of the Karoo
Basin, we made a palinspastic restoration (plane strain) and plotted the
restored sites and pyrope garnet concentrations. We also plotted the
grounding lines in the Ellsworth Mtns. and Falkland Islands to create an
ice flow map. The pyrope-rich garnet source is likely east of the Ells-
worth Mountains but from a different source than the Pagoda Forma-
tion diamictites found in the Transantarctic Mountains (see below) as
there are no pyrope garnets in samples 16-19 and the Pagoda Forma-
tion is younger (Isbell et al., 2003).

306

5.4. Episode III new age constraints

Only a few of the youngest detrital zircon ages were close to the
presumed late Paleozoic depositional age of their respective diamictites
(Table 1; Appendix 1). The two samples from eastern Australia, in the
Tamworth belt, the Rocky Creek and Currabubula formations (Sites
20-21), had several young zircons so we calculated maximum deposi-
tional ages for each (MDA; Fig. 11). These ages are consistent with
other ages for igneous materials in the section that are part of the local
island arc system (Roberts et al., 2004; Fielding et al., 2008) and the
zircons are likely from reworked ash deposits. We also included the U-
Pb ages of euhedral zircons found in the Permian Polarstar Formation in
(reworked ash bed eudedral zircons; Craddock et al., 2017a, 2017b,
2017c), and near (ash beds; Elliot et al., 2014), the Ellsworth Mountains
where the Polarstar Formation overlies the Whiteout Conglomerate
(Fig. 3).

5.5. Episode III granite clasts, Falkland Islands

The presence of Ordovician (447 Ma; Fig. 9) plutonic clasts within
the Fitzroy Diamictite provides some constraints on the bedrock
geology of the glaciated headlands. Within the Cape Belt of South
Africa, plutonic rocks of late Ediacaran to Cambrian age form part of
the Cape Granite Suite (Da Silva et al., 2000), which outcrops ex-
clusively in southwestern South Africa. A better match in age is found in
displaced terranes of the West Antarctica peninsula as well as the
Amundsen Province of Marie Byrd Land, where Pankhurst et al. (1998)
identify ca. 450 Ma calc-alkaline granite plutons. We note that the
North Patagonia massif also contains similarly-aged granite plutons
dated by *°Ar/*°Ar techniques (Rapalini et al., 2013). All of these
granitic source areas are west of the Falklands at the time of deposition
(Fig. 1), which is consistent with the glacial flow direction observed by
Frakes and Crowell (1967; west to east), but is inconsistent with the
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detrital zircon and pyrope garnet provenance of the diamictite matrix
(Site 13). Statistically, the detrital zircons in the Fitzroy Diamictite are
not similar to the adjacent east Dwyka diamictites (Site 7) but preserve
a robust pyrope garnet population that diminishes from east (Ellsworth
Mtns.; sample 14) to west (Sauce Grande Formation; Site 4; see below).

5.6. Episode III isolated and unlikely detrital zircon correlations

Visual inspection of the relative probability plots (Figs. 7, 8, 10-12)
hints at the detrital zircon provenance correlations of adjacent sample
sites (Fig. 1). Using the K-S statistical analysis makes these correlations
more analytical with two end-members: detrital zircon populations that
are isolated outliers (no correlations) and distal sites that happen to
have similar detrital zircon populations despite separations of
+1000 km and differences in age.

Six of the 30 samples do not have a detrital zircon population that
correlates with any other samples (K-S result: 0.00; Appendix 2). These
include: Site 11 (Oman-1, the top of the core; see below), which does
not correlate with the two samples lower in the same core or any other
distal sample; Sites 7 and 8 (east Dwyka and KwaZulu Natal, South
Africa) with no horizontal detrital zircon correlation, despite a rich
pyrope garnet concentration like its neighbors (Fig. 13); Site 12 (Talchir
Formation, India), no correlation with anything; Sites 20 and 21 (east
Australia) correlate almost perfectly with each other (K-S result: 0.986;
the two samples were thereby combined in 1 column in Appendix 2) but
with nothing else in the study (K-S result: 0.00), and Site 22 (Carnarvon
Basin, western Australia) where the two upper samples in the Warroora
#1 core (see well log in Appendix 3f) do not correlate with the bottom
of the core but correlate with the Canning Basin.

Sample 10 (Oman-1) makes the minimum K-S correlation threshold
(P = .050) with the Sauce Grande Formation (Site 4, Argentina) and is
discarded due to the 3000 km separation with no supporting ice flow
connection. Site 11 (Madagascar) correlates with the Parana Basin (Site
3; 0.159), the Pensacola (Site 16; 0.096) and Queen Elizabeth (Site 18;
0.186) ranges, Antarctica despite separations of 3000, 3500 and
4500 km, respectively. The Congo (Site 9) correlates (0.618) with Site
22 in western Australia despite being separated by 4000 km, and India
has no correlatives. There are other oddball correlations: The Falkland
Islands (Site 13) and Pensacola Mountains (Site 16) correlate with each
other and the western Dwyka Grp. (Site 5) but not with the adjacent
eastern Dwyka Grp. (Site 7), but all four of these samples have pyrope
garnets.

5.7. Episode III vertical detrital zircon correlations

We have three sites with drill core through LPIA diamictites that
allow for analysis of provenance through time in a single location.
Oman (Site 11; Fig. 5 and Appendix 3) provides 3 samples from the Al
Khlata Formation, specifically samples Oman-1 (glacial zone P1, top),
Oman-2 (glacial zone P3) and Oman-3 (glacial zone P9, bottom). All
three core samples are populated with abundant of non-pyrope garnet
and pyrite (Table 2, Fig. 5). The detrital zircon populations all have age
peaks of varying intensity (Fig. 8) at ~525Ma (East Africa orogeny),
~620 Ma (amalgamation of the Arabian shield-Pan-African orogeny),
and ~800Ma (Arabian basement) that are zircons derived locally.
Older zircon populations are likely from Africa: ~1000 Ma (Grenville-
equivalent Namaqua-Natal Province) and 2500-3000 Ma (Kaapvaal
craton) and not India, based on the ice flow data in Oman and the
provenance outlier status of India (Appendix 2). The K-S analysis shows
Oman-1 (top) has poor correlations anywhere, including samples
Oman-2 and Oman-3 lower in the core. Oman-2 and Oman-3 have a K-S
correlation coefficient of 0.346. Samples Oman 2 and 3 also correlate
with the North Qiantang terrane (Fig. 1; K-S values of 0.051 and 0.923).
This suggests that the older samples correlate with the nearby, offshore
North Qiantang terrane, but not with the younger (P1) glacial advance.
We thereby define an “Oman” ice cap which flowed to the northeast.
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The Carnarvon Basin in western Australia (Site 22) provides the
Warroora #1 core where 3 of 4 cores yielded detrital zircons. Heavy
mineral populations are garnet-rich in the upper samples and rutile-rich
in the lower sample (Table 2). The sample details are: AUS-4
(412.4-416.4m depth; mostly Archean Yilgarn zircons), AUS-5
(478.2-483.7 m, no zircons recovered), AUS-10 (830.3-831.8 m; Pro-
terozoic Badgeradda and Centralian Group and Archean Yilgarn zir-
cons), and, AUS-17 (1374.6-1375.9 m; Proterozoic Pan-African and
Pinjarra orogen zircons). Statistical analysis indicates no correlation
within the three samples of the core; the only horizontal correlation is
between the basal diamictite and the Lhasa terrane (0.618; Site 23). Ice
flow indicators around the Carnarvon Basin are mixed (local) and
generally northerly, suggesting northerly transport of Australian zircons
to the Lhasa terrane, perhaps from Antarctica.

5.8. Episode III aross-basin detrital zircon correlations

Detrital zircon U-Pb age probability distribution plots indicate the
Grant Group in the Canning Basin was sourced predominantly from
proximal Proterozoic and Phanerozoic terranes with ages of
1800-1500, 1300-1000, and 600-500 Ma (Fig. 11). Statistical analysis
of the three samples from the same unit in the Canning Basin, from 3
wells, separated by ~100km each, have K-S correlation coeffi-
cients > 0.90, so across-basin provenance correlation is excellent. Ac-
cordingly, many of the detrital zircon ages are equivalent with orogenic
events in terranes to the south and east of the Canning Basin, notably
the Arunta Inlier, Musgrave Block, and Capricorn Orogen. A lack of
Archaean detrital zircons, as observed by other Western Australian
provenance investigations of Permian sediments (Cawood and
Nemchin, 2000), highlights the importance of considering regional
models in the interpretation of U-Pb age data (e.g. Kohn et al., 2002),
and the three Canning Basin samples correlate nicely with the detrital
zircon populations in the Lhasa terrane (Fig. 12; Appendix 2). The
Canning Basin and Carnarvon-Perth Basins, where the Grant and Lyons
Groups are age-equivalent (mid-Ghezelian — early Sakmarian), also
correlate statistically and were connected to the open ocean to the
northwest toward the Lhasa terrane. We thereby identify a “Mawson”
ice cap that flowed to the northwest (Figs. 5 and 16; Appendix 3d) and
deposited glacial sediment on the nearby exotic terrane (see ternary
analysis below; Fig. 14).

5.9. Episode III detrital zircon correlations

The pyrope garnet populations from Sites 4-8, 13 and 14 provide
one line of evidence of an ultramafic garnet source in continental
Antarctica and, based on the glacial striations and grounding line in the
Meyers Hills, southern Ellsworth Mountains, for ice motion into the
southern Karoo Basin all the way to the Sauce Grande Formation,
Ventana Mountains, Argentina (Fig. 12). The Sauce Grande Formation
(Site 4) passes the K-S correlation coefficient minima (0.050) with 9
other sites, with a correlation coefficient total of 3.015. The two other
highest correlations are for the Pensacola Mountains (Site 16; 8 corre-
lations = 2.69) and the adjacent Ellsworth Mountains (Site 14; 6 cor-
relations = 2.991). The highest detrital zircon correlation in the study
is between the Ellsworth and Pensacola populations: 0.998. The Sauce
Grande Formation detrital zircon population thereby correlates with
both Itarare Formation till samples to the north in the Parand Basin
(0.077, 0.58; we don't have heavy mineral splits to look for pyrope
garnets), as well as robustly with the western Dwyka diamictite in
South Africa (0.34), the Falkland Islands (0.725) and the Pensacola
Mountains, Antarctica (0.737). Sites 6,7,8 (Dwyka Diamictite) and 15
(Heimefront Range, Antarctica) do not correlate at all. One ice flow
model could be a significant ice sheet in northwest Antarctica that
flowed west across the southern Karoo Basin to the Sauce Grande
Formation (~4000km), an interpretation supported by cumulative
probability plots (Fig. 15).
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Fig. 14. Ternary plots of diamictite detrital zircon ages compared to detrital zircon ages from modern river sediment (Rino et al., 2008).

The more traditional view of ice flow trajectories for deposition of
the Dwyka diamictites in the greater Karoo Basin argue for a highland
to the northeast with flow to the southwest (Appendix 3a). This is
complicated by the lack of ice flow data in the Cape fold belt, poor K-S
correlation data between Dwyka Sites 5-8, and the preponderance of
pyrope garnets in the Dwyka (see Fig. 13). All the southern Africa,
Falkland, and Ellsworth diamictites (Sites 5-8, 11, 13, 14) include age
spectra peaks at ~560 Ma (Pan-African orogen) and 1000 Ma (Na-
maqua-Natal belt = Grenville) with varying concentrations of
2700-3000 Ma zircons and rocks of these ages are north, south and
beneath (buried) southern Africa (see text below concerning Archean
zircons in the diamictites; Jacobs et al., 2003, Jacobs et al., 2008; Robb
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et al., 2006; Cornell et al., 2006). There was likely an ice divide se-
parating the southerly Dwyka till deposition from diamictite deposition
in the north (Cargonian Highland). Isbell et al. (2008a, 2008b) have
demonstrated the complexity of local sedimentation and ice flow dy-
namics in the Dwyka diamictites in the north, supported by studies of
Dwyka-aged eskers (deWit et al., 2016). Local, detailed detrital zircon
studies will better define these issues.

5.10. Episode III continental-scale sedimentation and provenance patterns

In order to discriminate the possible sediment source of the zircon
grains in the glacial deposits analyzed and compiled here, we have
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et al., 2017). See Fig. 16.

separated the detrital zircons into five age groups that are observed in
sediments from major rivers (Saylor et al., 2013) and can be correlated
with major orogenic events on the globe: 1. Zircons that range in age
from 530 to 650 Ma, which corresponds to African and South American
orogenic events related to the formation of Gondwana, 2. Zircons that
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range in age from 750 to 950 Ma, which correlate with the breakup of
Rodinia, 3. 1000-1300 Ma which, corresponds to the Grenville orogeny
in North and South America as well as the age-equivalent events Africa
and Antarctica, 4. Zircons that were dated between 2000 and 2750 Ma,
which correspond to the formation of late Archean shields and the
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Paleoproterozoic amalgamation of these terranes, and 5. Older than
3000 Ma, which represent the older cores of Archean shields.

These five populations were normalized and projected on two
ternary plots (Fig. 14a,b). The apexes of both of these plots represent
populations 1-3 from the list above, while the colour of the symbols
represents the proportion of 2000-2750 Ma zircons on Fig. 14a, and the
proportion of > 3000 Ma zircon on Fig. 14b. We plotted all of our
samples on these two figures in addition to the proportions of these
zircon populations from major rivers draining the present- day con-
tinents of Africa, North America, South America and the Himalaya.
These detrital zircon data were used as a proxy for the detrital zircon
signature of the African continent (AFR), Himalayan orogen (HIM),
Laurentian continent (LAU), and South American continent (SAU).

The resulting plots indicate that most of our samples (80% or 30 out
of 38) generally plot along two major trends: a trend that appears to be
mixing the African (AFR) and South American (SAM) signature, and
another trend between the African and an unidentified source that
would have ~20% 2000-2750 Ma zircons, 55% 750-950 Ma zircons,
~25% 530-650 Ma zircons and minimal to none of both 1000-1300 Ma
and > 3000 Ma zircons. Based on the regional context of our detrital
zircon samples and the tectonic history of the Indian plate and the
Arabian platform, both of which lack major late Mesoproterozoic
(Grenville-age) and Paleozoic events, it seems likely that this uni-
dentified sediment source is the Indio-Arabian plates.

Most of our South American, South African and Trans-Antarctic
samples (e.g., Parana, Karoo Basin, Ellsworth Mountains, Ohio Range,
Queen Alex and Queen Elizabeth) fall along the SAM-AFR mixing trend.
On the other hand, our Oman, North Quiangtang samples seem to re-
present mixing of the African source (AFR) and the proposed Indo-
Arabian source. Several of our samples that don't fall along these two
trends appear to come from the Australian continent (western
Australian and easternAustralia samples) and have high proportions of
Archean and early Proterozoic ages (> 2000 Ma). We infer these to be
dominated by a local Australian signature that has a high proportion of
Paleoproterozoic and older zircons. Finally, the Lhasa terrane and
central India samples appear to have detrital zircon populations that do
not fall along the trends described above, potentially because they are
spatially isolated from any of the other samples.

This type of broad-scale analysis can be useful in identifying large-
scale depositional fairways during glaciation events. A possible ex-
planation for the patterns we observe is the existence of two or three
major ice-shields that were at least periodically connecting smaller ice-
shields. One of the shields would cover large regions of South America,
South Africa and Antarctica, in which case we should expect that sig-
nificant areas of Archean (> 2600 Ma) basement would be covered
under the present-day Antarctic ice; the oldest Antarctic zircon is
3568 Ma. The other ice shield would cover large regions of the Arabian
plate, India and portions of Australia, mixing sediment from these
source areas.

5.11. Episode III out-of-Antarctica detrital zircon correlations

Goodge et al. (2010) presented the first data on the rock types, and
ages

of glacial sediment delivered to coastal Antarctica north of North
Victoria Land, a study duplicated for the Byrd Glacier and sites down-
stream in the Ross Sea area (Fig. 15) by Licht and Palmer (2013). Cu-
mulative probability plots of all the zircon ages (see K-S data in Ap-
pendix 3) confirm the common provenance of zircons delivered to
modern coastal Antarctica and detrital zircons delivered to the Permian
Pagoda Formation in the Transantarctic Mountains (Sites 16-19; see
Isbell et al., 2003, Isbell et al., 2008a, 2008b). We have named this the
“Pagoda ice cap” (Fig. 16).

The Whiteout Conglomerate (Site 14, Ellsworth Mountains,
Antarctica) has the most pyrope garnets (Table 2), the oldest detrital
zircon in the study (3568 Ma; Appendix 1), and the remarkable boulder
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pavement loaded with pyrope garnets (Fig. 4), so we think this allows
us to propose an “Ellsworth ice cap” that sourced ultramafic rocks east
of the Ellsworth Mountains (Fig. 15). Diamictites in the Ellsworth de-
positional system also included carbonate clasts with Cambrian arche-
ocyathids (Fig. 13) sourced in the Cambrian Heritage Group sediments
in the Ellsworth Mountains and delivered to the west (Cooper and
Oosthuizen, 1974; Isbell et al., 2008a, 2008b). The provenance of this
ice cap includes the SAM-AFR affiliations of the ternary analysis
(Fig. 14) but the Whiteout Conglomerate (Dwyka-equivalent) does not
correlate well with the Pagoda Formation diamictites in the Transan-
tarctic Mountains by age or K-S analysis (we analyzed data sets from
Elliot et al., 2014 and Bader et al. 2017 and found no correlation) and is
thereby older and unique (Isbell et al., 2008a, 2008b; Isbell et al.,
2012). We therefore propose that the Ellsworth ice cap was centered
along coastal Antarctica in the Late Carboniferous and flowed west
depositing glacial sediment as far as the Sauce Grande Formation in
Argentina (Fig. 13). A cumulative probability plot for Sites 4-7, 13 and
14, supports this hypothesis (Fig. 15). The glacial diamictites in the
Heimefront range, Antarctica (Site 15; Appendix 3e) represent an out-
lier, not correlating with any other site but may be the older equivalent
of the glacially-derived rocks described by Veevers and Saeed (2008)
for the Prince Charles Mountains, Antarctica. Neither the Ellsworth or
Pagoda ice centers, based on their detrital zircon provenance, are in any
way connected to the “Mawson ice cap”, which flowed north on the
opposite side of Antarctica (see below).

5.12. Episode III equatorial glaciation and exotic terranes

Tectonic reconstructions for the late Paleozoic include a variety of
(“Peri-Gondwana”) terranes in low-latitude locations off the northern
coast of Gondwana (Fig. 1; Blakey, 2008). Four of these terranes have
since been accreted to Asia as part of the greater Himalayan-Tibet
plateau and contain LPIA diamictites (Gehrels et al., 2011 and refer-
ences therein; Sites 24 and 25; Appendix 3 h). The diamictites contain
dropstones and thus are of glacial origin. As the Tethys, Lhasa and
North and South Qiangtang terranes have since been intensely de-
formed during accretion to Asia, they were larger in the late Paleozoic
and had greater surface areas, making their glacial proximity to Oman
and Australia more likely. Sites 10 and 25 (Oman-3; K-S correla-
tion = 0.923 with North Qiangtang; Oman-2; K-S correlation with
North Qiangtang = 0.053) correlate well and, in general tectonic terms,
must be nearly equatorial. Site 23 (Canning Basin; K-S correlations of
0.264, 0.154, 0.083, and 0.51 with the Tethys samples) and Site 22
(Carnarvon Basin; K-S correlations = 0.618 with Lhasa) support ice
flow from northwest Australia to the Tethys-Lhasa terranes. The detrital
zircon cumulative probability plots in Fig. 15 support the presence of a
Permian ice cap centered over Oman and an ice cap flowing northwest
from Antarctica, across Australia to the Tethys-Lhasa terranes (Fig. 16).

5.13. Episode III five ice centers and ice volumes

We can thus propose that there were at least five ice centers on
Gondwana, from oldest to youngest (Fig. 16):

e 1. The “Dwyka ice center”centered around present-day Zimbabwe,
from which ice flowed W and SW, around the Cargonian Highland,
to deposit the Dwyka Group diamictites (depositional distance:
~2000 km);

2. The“Ellsworth ice center’centered east of the Ellsworth
Mountains, from which ice flowed west with a source rich in pyrope
garnets and Cambrian archeocyathids (Fig. 13; depositional dis-
tance: ~2000 km);

3. The “Mawson ice center” situated along the Australia-Antarctic
coast, from which ice flowed NW through the Carnarvon and
Canning basins to the Tethys and Lhasa terranes (depositional dis-
tance: ~1500 km);
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e 4. The “Pagoda ice center”, inland of Site 19 (Transantarctic
Mountains; see Isbell et al., 2003, Isbell et al., 2008a, 2008b for
images of grounding line deformation), where the ice flowed north,
toward the current South Pole (depositional distance: ~1000 km);

e 5. A lower latitude “Oman ice center” covering Oman-Qiangtang,
where ice flowed to the NE (depositional distance: ~1500 km).

Our proposal of five Episode III ice centers is supported by ice flow
striation observations and detrital garnet, archeocyathid and zircon
provenance data but also presents a different mechanism for ice flow
and diamictite deposition far from an ice center. Pleistocene continental
ice centers, and their remnants in Greenland and Antarctica, did (do)
not leave evidence of diamictite deposition ~2000km offshore al-
though ice streams that drain the Antarctic ice cap into the Ross and
Weddell Seas have flow distances of 1000-2000 km. Only the Pagoda
and Ellsworth deposits preserve a grounding line, but it appears that
most of the LPIA glacial deposits may be marine in origin. The Dwyka
Group diamictites are remarkably uniform (no interbedded sands, etc.)
in outcrop across southern Africa, southern Argentina, the Falkland
Islands and Ellsworth Mountains (Fig. 4b, Appendix 3c) yet there ap-
pear to have been two unique ice centers to delineate the Dwyka and
Ellsworth systems (Fig. 16). The Ellsworth ice center was located east of
the Ellsworth Mountains and the grounding line, tillite deposition
(east), and diamictite deposition (west) is located in the Meyers Hills of

S.
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Fig. 16. Pangea during the Permo-Carboniferous
with regional Gondwana ice centers based on detrital
zircon provenance (Figs. 14 and 15) with the pa-
leopole. Blue ellipses are local ice centers. In the
Northern Hemisphere, possible glacial tillites (or-
ange stars) and non-glacial diamictites (black star;
see Isbell et al., 2016) are plotted, as are glacial loess
deposits (yellow circle; Soreghan et al., 2002) and
rivers draining the Appalachian Mountains (Kissock
et al.,, 2017) west and around the inverted Ka-
puskasing-Keweenaw highland (Craddock et al,
2017a, 2017b, 2017¢). See Fig. 15 for detrital zircon
comparisons and cummulative probability plots.(For
interpretation of the references to colour in this
figure legend, the reader is referred to the web ver-
sion of this article.)

N. Qiangtang

Qiangtang

the southern Ellsworth Mountains (Matsch and Ojakangas, 1992), in-
dicating westward flow. The Whiteout Conglomerate, Dwyka Group,
Fitzroy and Sauce Grande formations have a common detrital zircon
provenance (Fig. 15a) and pyrope garnet concentrations (Fig. 13) de-
crease from east to west. How big was the Antarctic ice center (ice
volume) to get diamictite deposition ~2000 km west of the ice center?
Antarctica was centered over the South Pole during much of Episode III,
but how much of the polar continent was covered in ice centers that fed
the Ellsworth, Mawson and Pagoda systems.

The Mawson ice center presents a different, complex fluvial-glacial
depositional system (Fig. 6; Appendices 3 e,f) sourced in Antarctica
(Wilkes Land), and spread over western Australia and the Tethys and
Lhasa terranes (Fig. 16). Paleo-ice flow indicators (Fig. 6) and detrital
zircon provenance data (Fig. 15 d, with the exception of the Waroora)
support our model. Without the detrital zircon data it would be difficult
to prove how the south Carnarvon and Canning basins were connected
as both represent cratonic arms of an open sea connected to the Tethys
and Lhasa terranes. Evidence of that open marine connection is vague
as the Permian has not been reached by drilling along the North West
Shelf, but is seen in structurally dissected sections in the Gondwanan
part of Timor-Leste Basin (Davydov et al., 2013; Haig et al., 2014; Haig
et al., 2017). The oceanic connection played out somewhat differently
in both basins with a greater fluvial input in the Canning during the
mid-Ghezelian - early Sakmarian (likely the age of both the Grant and
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Lyons groups) so clearly there is a temporal connection. The older
glacial section in Warroora #1 on the northern Gascoyne Platform and
south Carnarvon Basin, is much the same age as the non-marine Reeves
Formation in the Canning Basin (latest Visean to ~Bashkirian). Strata of
latest Visean — Serpukhovian age further east (northern Merlinleigh
sub-basin, south Carnarvon Basin) are restricted to a siliciclastic section
in Quail #1 (Quail Formation) and a possible equivalent unit in outcrop
(Harris Sandstone, next to the eastern edge of the basin). There are also
outcrops of this age much farther south in the northern Perth Basin
(formerly assigned to the Nangetty Fm but their glacial character has
recently been questioned by Playford and Mory, 2017). Perhaps the five
Episode III ice centers present a different type of glacial environment
with far-field ice movement and diamictite deposition, similar to the
paradigm of far-field fluvial distribution proposed by Rainbird et al.
(1992) for Grenville orogen detrital zircons that is now uniformly ac-
cepted.

5.14. Episode III late Paleozoic snowball earth?

The LPIA in the southern supercontinent of Gondwana has a broad
correlation with the 55 cyclothems in the midcontinent of North
America reported by Heckel (1986) and Rygel et al. (2008) over a ~10
million year period (Westphalian and Stephanian) as ice volume fluc-
tuated (Fig. 15). These Pennsylvanian cyclothems are found in the
Appalachian-Ouachita foreland but southeast of the Kapuskasing-Ke-
weenaw inversion uplift in North America (Craddock et al., 2017a,
2017b, 2017c). In Europe, the cyclothems are east of the Variscan
highlands and west of the Ural uplift with precise ash bed age control in
the Donets Basin (Khodjanyazova et al., 2014). Coal seams are ubi-
quitous, found in the northern hemisphere cyclothems and several
Gondwana glacial basins (Heckel, 2008; Isbell et al., 2012). The
northern hemisphere also includes Pennsylvanian loess in the Ancestral
Rocky Mountains of the southwest US (Soreghan et al., 2008), which
includes eolian detrital zircons that have a North American provenance
but no K-S correlation with the fluvial detrital zircons moving from the
Appalachian highlands west (Kissock et al., 2017). Neither the eolian
nor fluvial detrital zircons correlate with any of our southern hemi-
sphere Gondwana diamictite detrital zircon populations (K-S = 0.0).
Glacial diamictites are reported in a variety of high-latitude Siberia
locations (Mikhaylov et al., 1970; Hambrey and Harland, 1981;
Chumakov, 1994; Chumakov and Zharkov, 2003), although Isbell et al.
(2016) report that the Siberian Atkan Formation is a Permian non-
glacial diamictite. Did the LPIA have a glacial presence in the northern
hemisphere, and thereby all of Pangea?

5.15. Episode III tectonic implications

As Gondwana moved during the late Paleozoic, the majority of the
Episode III glaciation occurred between 310 and 290 Ma when
Antarctica was centered over the South Pole (paleopoles, Figs. 1 and
16) with three of our proposed ice caps (Ellsworth, Pagoda, Mawson)
flowing away from Antarctica. The older Dwyka and youngest Oman ice
caps formed far from the South Pole and at moderate to low latitudes,
respectively, and flowed off unknown highlands. Yeh and Shellnutt
(2016) have documented the presence of mid-Permian high-tempera-
ture mafic intrusions along the northern margin of Gondwana in ter-
ranes they group as “Cimmeria”, and include some of our exotic ter-
ranes. They have argued that the ice mass caused crustal flexure, then
decompression through melting, which initiated rifting of Cimmeria
from Gondwana. We find this unlikely as Gondwana was not covered by
a single, massive ice sheet (Isbell et al., 2012; this study) and most of
the LPIA glacial deposits are diamictites (with dropstones) so there is
little crustal depression associated with floating ice.

312

Earth-Science Reviews 192 (2019) 285-316

6. Conclusions

The LPIA spanned 338-256 Ma with three separate glacial episodes
where ice volumes and ice flow run-out (1000-2000 km), as docu-
mented by glacial diamictite deposition, increasingly dominated the
southern landscape as Gondwana rotated. We did not sample the
Episode I glacial deposits in northern South America (Lopez-Gamundi
and Buatois, 2010). Episode II glacial deposits in the Paganzo Basin are
the oldest samples we studied in the LPIA and their heavy mineral and
detrital zircon provenances are of a local origin. Episode III glaciation
dominated the LPIA with large ice caps centered in Zimbabwe (oldest,
SW flow), coastal Antarctica (Ellsworth ice cap, westward flow), the
Pagoda ice cap (flow toward the current South Pole), and lesser ice caps
in SW Australia-Antarctica (Mawson ice cap, north flow) and Oman
(youngest, northeast flow; youngest) where ice flow, and deposition of
diamictites, reached distances of 1000 to 2000 km. Evidence of LPIA
glaciation in the northern hemisphere is probable.
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