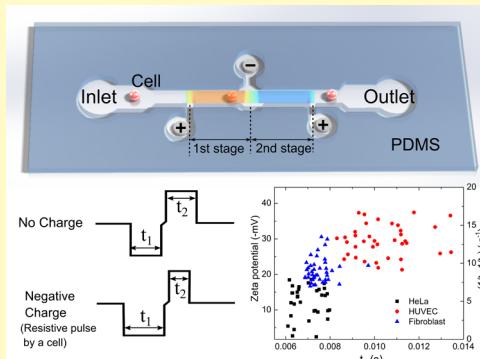


1 A Microfluidic Sensor for Continuous, In Situ Surface Charge 2 Measurement of Single Cells

3 Liwei Ni, Rubia Shaik, Ruiting Xu, Ge Zhang,* and Jiang Zhe*

Cite This: <https://dx.doi.org/10.1021/acssensors.9b02411>

Read Online


ACCESS |

Metrics & More

Article Recommendations

Supporting Information

4 **ABSTRACT:** Cell surface charge has been recognized as an important cellular 5 property. We developed a microfluidic sensor based on resistive pulse sensing to 6 assess surface charge and sizes of single cells suspended in a continuous flow. The 7 device consists of two consecutive resistive pulse sensors (RPSs) with identical 8 dimensions. Opposite electric fields were applied on the two RPSs. A charged cell 9 in the RPSs was accelerated or decelerated by the electric fields and thus exhibited 10 different transit times passing through the two RPSs. The cell surface charge is 11 measured with zeta potential that can be quantified with the transit time difference. 12 The transit time of each cell can be accurately detected with the width of pulses 13 generated by the RPS, while the cell size can be calculated with the pulse 14 magnitude at the same time. This device has the ability to detect surface charges 15 and sizes of individual cells with high tolerance in cell types and testing solutions 16 compared with traditional electrophoretic light scattering methods. Three different 17 types of cells including HeLa cancer cells, human dermal fibroblast cells, and 18 human umbilical vein endothelial cells (HUVECs) were tested with the sensor. Results 19 showed a significant difference of zeta potentials between HeLa cells and fibroblasts or HUVECs. In addition, when HeLa cells were treated with various concentrations of 20 glutamine, the effects on cancer cell surface charge were detected. Our results demonstrated the great potential of using our sensor 21 for cell type sorting, cancer cell detection, and cell status analysis.

22 **KEYWORDS:** surface charge, zeta potential, cell analysis, electrophoresis, resistive pulse sensing

23 ■ INTRODUCTION

24 Over past few decades, the advances in electrophysiology have 25 revealed that cell surface charge is an important property of cell 26 characteristics, which plays a crucial role in regulating cell 27 functions.¹ Most cell surfaces are negatively charged and create 28 a surface electrical potential that affecting ion concentrations at 29 the cell membrane and consequently influencing important 30 cellular events such as cell adhesion,² cellular uptake,³ cell–cell 31 communication, signal transduction, and protein trafficking.^{4,5} 32 Interestingly, recent studies reported that cell surface charge 33 changes during different cell status and varies among cell types. 34 For example, the cell surface charge of rat neural stem cells 35 significantly altered during their differentiation process.⁶ 36 Negative surface charge increased during the maturation of 37 human B lymphocytes.⁷ Compared with normal cells, cancer 38 cells generally have abnormal negative surface charge.^{8–10} 39 Therefore, the ability to rapidly measure the surface charge of 40 individual cells will enable new approaches for cell detection 41 and analysis.

42 To measure the cell surface charge, multiple methods have 43 been developed, including electrostatic interaction, isoelectric 44 equilibrium analysis, and electrophoresis. The electrostatic 45 interaction method, usually based on the electrostatic 46 interaction chromatography (ESIC) technique, uses charged

ion-exchange resins/molecules to interact with cells; the 47 affinity of the interaction depends on the cell surface 48 charge.^{11,12} Hence, from the affinity between cells and resins, 49 relative cell surface charge can be evaluated. Recently, 50 nanoprobe (NPs) with certain charges have also been used 51 for cell surface charge detection in terms of measuring affinity 52 between NPs and cells.¹⁰ However, this type of methods does 53 not provide direct surface charge measurement and is often 54 time-consuming. For the isoelectric equilibrium analysis 55 method, cells are loaded onto a column with a linear pH 56 gradient and migrate under an appropriate voltage.¹³ The cell 57 surface charge can affect the isoelectric positions, which cells 58 migrate to after isoelectric equilibrium. Although zeta potential 59 of cells can be derived from the isoelectric positions, this 60 method needs a long time to achieve isoelectric equilibrium. It 61 is unsuitable for in situ measurement of single-cell surface 62 charges. The electrophoresis method has been widely used for 63 zeta potential measurement, which consists of microelectro- 64

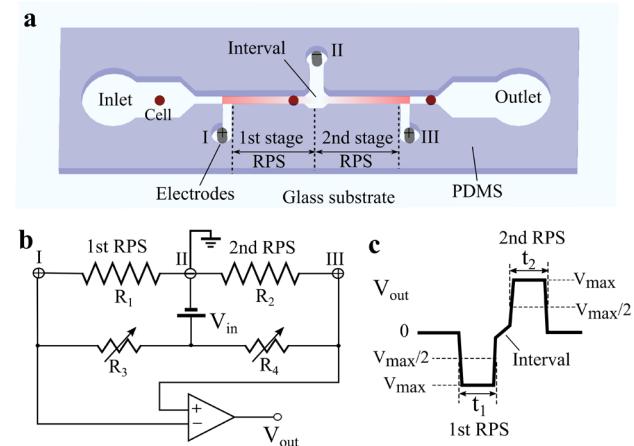
Received: December 5, 2019

Accepted: January 15, 2020

Published: January 15, 2020

65 phoresis and electrophoretic light scattering. Microelectrophoresis applies a voltage across the cells suspended in the 66 electrolyte and observes the movement of cells over a given 67 distance.¹⁴ The velocity of cells can be used to calculate 68 electrophoretic mobility and zeta potential of cells. This 69 method has proven to be effective in obtaining the zeta 70 potential values of cells. Still, tracking individual cells over time 71 is laborious and time-consuming.¹¹ More recent works have 72 been using the electrophoretic light scattering method for zeta 73 potential detection.^{1,15} The velocity of cells under electric 74 fields is measured in terms of the frequency change of the laser 75 light scattered by the cell movement. However, using optical 76 measurement for accurate capture of cell motions largely 77 increases the complexity and cumbersomeness of operation. In 78 addition, this method usually detects the motions of a group of 79 cells suspended in a chamber, and the rapid movement of 80 many cells makes the method hard to identify zeta potential for 81 each single cell. Moreover to eliminate the numerous noise 82 signals derived from the micro/nanoparticles (e.g., serum 83 proteins, growth factors, and antibiotics) typically present in 84 cell culture medium, specific testing solution (e.g. PBS) usually 85 is required to suspend cells. Since the testing solution is not 86 optimized for cell growth, potential cell status change and 87 increased cell death may affect the accuracy of the measurement.⁸⁸

90 Recently, resistive pulse sensing has been used to determine 91 zeta potentials of nano-objects.^{16–20} This technique allows the 92 particle-by-particle surface charge measurement by capturing 93 the pulse signals when particles passing through a sensing 94 channel or pore; the velocities/mobilities and therefore the 95 zeta potentials of the particles can be calculated from the 96 resistive pulses. This method allows measurements of both the 97 size and zeta potential of each particle. It has been used to 98 determine the zeta potential of emulsions,²¹ liposomes,^{22,23} 99 and DNA-conjugated nanoparticles.^{24–26} However, there are a 100 few problems that need to be addressed. First, the resistive 101 pulse sensing method relies on comparisons of transit times 102 through the sensing channel with and without applying an 103 electrophoretic electric field. Therefore, a reference test with 104 exactly the same flow velocity without applying an electrophoretic 105 electrical field must be conducted prior to the 106 electrophoretic test. Second, in the reference test and 107 electrophoretic test, while any difference in flow velocity 108 would cause an error in cell velocity (and thus the zeta 109 potential), fluid flow velocity must be accurately controlled, 110 which increases the operation complexity. More importantly, 111 in the reference and electrophoretic tests, the sequence of cells 112 passing through the sensing channel could be different each 113 time. As a result, identifying and comparing the resistive pulses 114 induced by exactly the same cell in two separate experiments 115 are impractical and difficult. While it works for particles with 116 uniform surface charges and sizes, this approach is impractical 117 for surface charge measurements of single cells in general due 118 to the inhomogeneous nature of cells.


119 To overcome the above problems, we demonstrate a 120 microfluidic device based on dual RPS stages to measure the 121 zeta potential of single cells *in situ* without any reference test. 122 The cells pass through two consecutive RPSs applied with 123 opposite electric fields. By detecting the transit time difference 124 through the two RPS stages, the zeta potential of each cell can 125 be accurately measured, without a need to conduct any 126 reference test. The zeta potential of each cell can be measured

in situ in a continuous flow without a need for accurate flow 127 control.¹²⁸

EXPERIMENTAL SECTION

Materials. The following materials were purchased from Sigma-Aldrich: HeLa cells, human negroid cervix epitheloid carcinoma-P9 (product# 93021013); minimum essential medium eagle, with ear (EMEM, product# M2279); L-glutamine solution Bioextra, 200 mM (product# G7513); MEM nonessential amino acid, 100× (NEAA, product# M7145); fetal bovine serum (FBS, product# F0926); and 0.25% trypsin-EDTA solution (product# T4049), whereas Gibco DMEM high glucose 1× (product# 11995065), penicillin streptomycin (10,000 U/mL, product# 15140122), Dulbecco's phosphate-buffered salt solution 1× (DPBS, product# MT21031CV), and trypan blue solution 0.4% (product# SV3008401) were purchased from Thermo Fisher Scientific, and EGMTM-2 endothelial cell growth medium-2 BulletKit (product# CC-3162) was purchased from Lonza.

Sensing Principle. To detect the surface charge of single cells *in situ* in a continuous flow, we designed a microfluidic sensor, as shown in Figure 1. The sensor consisted of two successive resistive pulse

Figure 1. Schematic of the microfluidic sensor for *in situ* cell surface charge measurement. (a) Illustration of the two-stage resistive pulse sensing structures for cell surface charge measurement. (b) Scheme of the circuit for applying the electric field and measuring the resistive pulse. $V_{in} = 10$ V. The electrophoretic voltage $V_e = 7.5$ V. (c) Illustration of a typical resistive pulse signal when a cell passes the two-stage RPS consisting of a negative pulse and a positive pulse, separated by an interval with an alleviated slope.

sensors (RPSs), three Ag/AgCl electrodes I, II, and III placed in separate access holes, one inlet reservoir, and one outlet reservoir. An electric bridge circuit was used to apply the electric fields and measure the resistance changes of the two RPSs, shown in Figure 1b. R_1 and R_2 represent the resistance of the first and second RPSs. R_3 and R_4 are two external adjustable resistors used to (1) form a Wheatstone bridge with R_1 and R_2 and (2) maintain the electrophoretic voltage applied at electrodes I and III to be the same. A constant input voltage (V_{in}) is applied on the electric bridge circuit. When a cell passes through the two RPSs, it induces a small change in R_1 or R_2 , resulting in a small differential voltage between electrodes I and III. The differential voltage is amplified and detected as the output voltage (V_{out}). When a cell passes through the first RPS, R_1 increases, while R_2 remains unchanged; the output voltage drops accordingly. When the cell travels through the second RPS, R_2 increases, and the output voltage rises. Hence, when a cell passes the two successive RPSs, it generates one negative and one positive voltage pulses consecutively.

The pulse width reflects the transit time/travel velocity through each RPS. Under an electric field, a charged cell experiences acceleration or deceleration due to electrophoretic motion, causing a change in transit time. Hence, the surface charge can be obtained

167 from measuring the pulse width. Here, a small interval channel is
 168 designed between the two stages, which has a larger width than the
 169 RPS channel. There are two reasons to design this short interval
 170 channel: (1) to separate the two RPS stages because of the larger
 171 cross section, when a particle passes the interval channel, the change
 172 in channel resistance is reduced, causing a voltage change with an
 173 alleviated slope between the two resistive pulses (see Figure 1c), and
 174 (2) to reduce the transition effect due to sudden polarity change of
 175 electrophoretic electrical fields, which may cause variation in cell's
 176 transit time. Finite element analysis on the electrical field in the
 177 sensing area was conducted, showing the electric field was
 178 considerably uniform within the two RPS channels. Details of the
 179 simulation are provided in the Supporting Information.

180 The net electrical charge (or the magnitude of the surface charge)
 181 of a particle can be quantified by the zeta potential.²⁸ Zeta potential is
 182 the electric potential in the interfacial double layer of a dispersed
 183 particle or droplet versus a point in the continuous phase away from
 184 the interface.²⁹ The relation of the zeta potential ζ and the effective
 185 charge density σ_{eff} can be described with the Gouy–Chapman
 186 equation³⁰

$$\sigma_{\text{eff}} = \sqrt{8cNe_r\epsilon_0 k_B T} \sin h\left(\frac{e\zeta}{2k_B T}\right) \quad (1)$$

188 where c is the ion concentration, N is the Avogadro constant, ϵ_r is the
 189 relative dielectric permittivity of the solution, ϵ_0 is the vacuum
 190 permittivity, k_B is the Boltzmann constant, and T is the temperature.
 191

192 In this article, we used zeta potential to represent the cell surface
 193 charge property. To detect the zeta potential of single cells, we applied
 194 opposite electric fields on the two RPS stages. In the first RPS, a
 195 positive voltage is applied across electrodes I and II; a negative
 196 charged cell is decelerated. On the contrary, in the second RPS, a
 197 positive voltage is applied across electrodes II and III; when a cell
 198 travels through the second RPS, it is accelerated. The two RPSs have
 199 the same length l . The transit times through the two RPS stages are
 200 used to calculate the zeta potential ζ with the electrophoretic mobility
 201 μ of cells via the Helmholtz–Smoluchowski equation^{30,31}

$$\zeta = \frac{\mu\eta}{\epsilon_r\epsilon_0} \quad (2)$$

$$\mu \equiv \nu/E \quad (3)$$

203 where η is the viscosity of the aqueous solution, and ν is the drift
 204 velocity of the particle or cell under an electric field ($E = V_e/l$).
 205 Because the carrier flow velocities are the same in the two RPSs, the
 206 drift velocity can be calculated with the transit times t_1 and t_2 of cells
 207 crossing through the two RPS stages with the same length l

$$\mu = \frac{1}{E} \left(\frac{1}{t_2} - \frac{1}{t_1} \right) \times \frac{1}{2} = \frac{1}{2E} \left(\frac{1}{t_2} - \frac{1}{t_1} \right) \quad (4)$$

209 Thus, by capturing the transit times t_1 and t_2 , the zeta potential ζ
 210 can be calculated

$$\zeta = \frac{\eta l}{2E\epsilon_r\epsilon_0} \left(\frac{1}{t_2} - \frac{1}{t_1} \right) \quad (5)$$

212 The sensor is designed to capture the transit times through the two
 213 RPS stages in situ in a continuous flow. Therefore, the zeta potential
 214 of single cells can be obtained contiguously one by one without any
 215 reference test. The particle/cell size can be calculated from the pulse
 216 magnitude.^{32–34} The relation between the size and the pulse
 217 magnitude can be found in the Supporting Information.

218 A similar structure of two successive microchannels was used in our
 219 prior study³⁵ aiming to detect magnetic bead-labeled cells via travel
 220 velocity that was affected by a magnetic field. The major merits of the
 221 current structure are as follows: (1) the use of an interval channel
 222 reduces the transition effect and helps identify two successive resistive
 223 pulses; (2) cell's travel velocity is affected by the applied voltage,
 224 without a need for any external actuator; and (3) the measurement is
 225 label-free.

Device Fabrication. The standard soft lithography method was used to fabricate the microfluidic sensor, shown in Figure 2. First, an

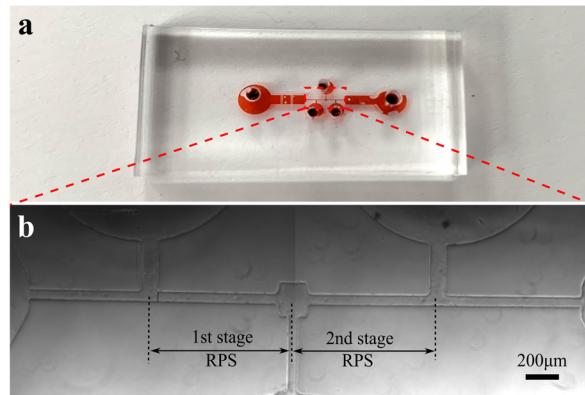


Figure 2. Pictures of the two-stage RPS sensor. (a) Picture of the microfluidic sensor on a glass substrate. (b) Microscopic image of the two RPS sensing channels and the interval channel.

SU-8 (2025, MicroChem, MA, USA) master pattern was created, consisting of the two RPS channels, an interval channel, three detecting arm channels where the electrodes are placed, one inlet reservoir, and one outlet reservoir. Next, a polydimethylsiloxane (PDMS) slab was made by pouring the PDMS on top of the SU-8 master to transfer the pattern, followed by degassing and curing the PDMS. Then, the inlet reservoir, electrode interface, and outlet reservoir were created by punching the PDMS slab with biopsy punches. Finally, the whole PDMS slab was bonded to a glass substrate after air plasma treatment (200 mTorr, 50 W, 50 s). The nominal dimensions of the two successive RPS channels are 60 μm (width), 45 μm (depth), and 700 μm (length) for both stages. The dimensions measured by the surface profilometer (Dektak 150, Veeco Instrument, NY, USA) were $58.08 \pm 2.47 \mu\text{m}$ (width), $48.87 \pm 2.74 \mu\text{m}$ (depth), and $711.87 \pm 3.43 \mu\text{m}$ (length) for the first RPS and $55.82 \pm 2.66 \mu\text{m}$ (width), $50.13 \pm 2.31 \mu\text{m}$ (depth), and $718.16 \pm 4.23 \mu\text{m}$ (length) for the second RPS. The interval between the first and second stages was 76.03 μm (length) and 189.97 μm (width). Three Ag/AgCl electrodes (1 mm in diameter) were inserted into the detecting arm channel to measure the resistive pulses from the two RPSs. The diameters of inlet and outlet holes were 1.5 mm.

Testing Procedures. For each test, the particle or single-cell suspension was loaded into the inlet reservoir and driven through the device by a constant pressure of 3 kPa from a flow controller (Flow-EZ, Fluigent, France). The pressure and flow rate were chosen to achieve the suitable pulse width. While at a high flow rate, the cell counting rate can be improved, and the resistive pulses may be too narrow. It is difficult to capture the complete shapes of narrow resistive pulses and thus identify the pulse width difference between the two successive resistive pulses, leading to lower resolution for the zeta potential measurement. A high pressure might also cause leakage between the PDMS channel and the glass substrate. A cell concentration of 100 cells/ μL was used for the experiments. A direct current voltage of 10 V was applied on the electric bridge circuit (V_{in}). By adjusting the R_3 and R_4 (in the range of 5 to 500 $\text{k}\Omega$), electrophoretic voltages of 7.5 and -7.5 V were applied on the first and second stages of RPS. The electric field applied on each channel was estimated to be 10.7 V/mm. An external circuit was used to amplify the voltage output with an instrumentation amplifier (AD620BN, Analog Devices Inc., USA). The gain for the amplifier is 100. The amplified signal was recorded at a sampling rate of 500 kHz with an NI-DAQ board (PCI-6133, National Instruments, USA). The recorded voltage signals were analyzed using a custom MATLAB program. The particle and cell sizes can be calculated from the recorded pulse magnitude. The zeta potentials can be calculated from the transit time difference. All quantified results demonstrated in

274 means \pm standard deviation were obtained from more than 100
275 independent values. Further increasing the data points did not cause a
276 significant change in the results. Student's *t* test was conducted to
277 compare significant differences between experimental groups. A *p*
278 value of less than 0.05 was considered as statistically significant.

279 Because the width and the depth of the sensing channel were
280 approximately two times of the tested sizes of cells/particles, there
281 should be a gap in the micrometer level when the particles and cells
282 passed through the RPSs. Because (1) the gap was much larger than
283 the double layer thickness of the channel walls and (2) the
284 electroosmotic flow is weak due to low voltage, the surface charge
285 of the walls was unlikely to affect the cells' motions and hence the zeta
286 potential measurement.

287 Joule heating could be a problem when the electrical current is
288 relatively large. In our device, the electrical current through the RPS
289 channel was approximately 7.81 μ A. Calculation showed that such a
290 small current was unlikely to generate a significant temperature
291 gradient affecting the cells' viability and movement during the
292 measurement. In fact, in a prior study,³⁶ we used similar resistive pulse
293 sensing for cell analysis with a higher electrical current (12.7 μ A);
294 good cell viability was observed after the tests.

295 **Particles for Device Calibration.** Three types of standard
296 microparticles with different surface coatings were used to calibrate
297 the device: yellow polyethylene microspheres (YPMs), black
298 paramagnetic polyethylene microspheres (BKPMS), and fluorescent
299 green (UV) polyethylene microspheres (UVPMS) (polyethylene
300 microsphere, Cospheric, CA, USA). These particles were diluted in
301 phosphate-buffered saline (PBS) with a concentration of 100
302 particles/ μ L. The sizes of three types of particles were measured
303 with AccuSizer single particle optical sizing (SPOS) systems (LE400,
304 Entegris, MA, USA). The zeta potentials of these particles were
305 measured using Zetasizer (Nano Z, Malvern Panalytical, UK). Next,
306 these particles with the known sizes and zeta potentials were loaded to
307 the device for calibration purpose.

308 **Cell Culture and Glutamine Treatment.** After the calibration,
309 cells were tested to demonstrate in situ surface charge measurement
310 capability of the sensor. Three types of cells including HeLa cells,
311 human umbilical vein endothelial cells (HUVECs), and human
312 dermal fibroblast cells (HDFs) were tested using our device. Each cell
313 was cultured in their own optimized growth medium supplemented
314 with 1% penicillin. For HeLa cells, the growth medium was EMEM
315 medium with 10% FBS, 1% NEAA, and 2 mM glutamine. The growth
316 medium of HDFs was DMEM medium with 10% FBS. The complete
317 EGM-2 medium was used as the growth medium for HUVECs. All
318 three types of cells were cultured in a humidified environment at 37
319 °C with 5% CO₂. The growth medium was then replaced every day.
320 For device testing, cells were harvested and resuspended in their
321 growth media with a concentration of 100 cells/ μ L for surface charge
322 measurement. To test the influence of glutamine concentration on the
323 surface charge of HeLa cells, various concentrations of glutamine (2,
324 6, and 10 mM) were added to the growth medium of HeLa cells. After
325 48 h of treatment, cells were harvested and suspended in the growth
326 medium at a concentration of 100 cells/ μ L for zeta potential
327 measurement using our device.

328 ■ RESULTS AND DISCUSSION

329 **Resistive Pulses of the Two-Stage RPS.** Three different
330 types of particles, YPMs, UVPMS, and BKPMS, were loaded
331 into the device separately in suspension flows. The resistive
332 pulses of microparticles passing through the two RPSs are
333 shown in Figure 3. A negative pulse and a positive pulse were
334 observed consecutively when a particle passed through the first
335 and second RPSs. There was an interval ramp with an
336 alleviated slope between the negative and positive pulses, when
337 the particle passed through the short interval channel between
338 the first and second RPSs. The transit time through each RPS
339 is defined as the full width at half-maximum (FWHM) of the
340 resistive pulse (Figure 1c). The FWHM of a pulse is measured

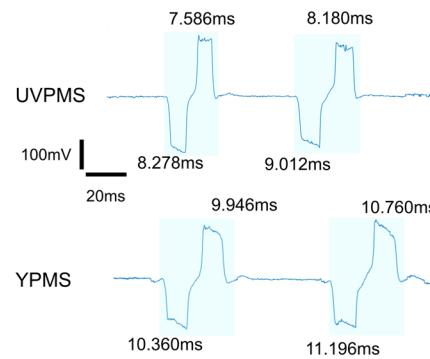


Figure 3. Typical resistive pulses of particles passing through the two RPSs. Significant difference in the transit time through the first and second RPSs was observed.

341 between the two points having half the maximum amplitude. 342 Using FWHM as the transit time duration in this device can 343 eliminate the entry effects of resistive pulse signals (i.e., a 343 particle starts to induce a voltage pulse before it fully enters the 344 RPS channel).³⁴ The significant difference between the transit 345 time of the first and second RPSs was observed for both types 346 of particles, shown in Figure 3. The difference of transit times 347 can be used to calculate the zeta potential of each particle. 348

349 The sloped peak tops of the resistive pulses in Figure 3 are 349 likely caused by the entry effects of RPS, the rotational motions 350 and off-axis effects of the particles, the fabrication error of the 351 channels, and the signal acquisition.³⁷ Note that the peak tops 352 had been observed to be not flat in multiple studies utilizing 353 resistive pulse sensing.^{36–39}

354 **Validation and Calibration of the Device.** As a 355 demonstration of the resistive pulse sensing, we first checked 356 its size measurement. From the voltage pulse magnitude, the 357 particle sizes of YPMs, UVPMS, and BKPMS were calculated 358 to be $31.04 \pm 4.01 \mu$ m, $30.83 \pm 3.49 \mu$ m, and $31.58 \pm 3.94 \mu$ m 359 in diameter, respectively. Compared to the measurements from 360 the AccuSizer particle optical sizing system, $30.31 \pm 3.31 \mu$ m, 361 $29.17 \pm 3.81 \mu$ m, and $30.91 \pm 4.15 \mu$ m for the three types of 362 particles, the two sets of measurement were in good 363 agreement, which indicated the validity of the RPS. The 364 measured size distribution is shown in Figure S2a–c in the 365 Supporting Information.

366 Next, we calibrated the device for single-cell surface charge 367 measurement using the three particles (YPMs, UVPMS, and 368 BKPMS), which have various zeta potentials due to their 369 different surface coatings. They were first tested with the 370 Zetasizer Nano Z system. The zeta potentials of YPMs, 371 UVPMS, and BKPMS were -15.26 ± 0.83 mV, -22.36 ± 3.98 372 mV, and -47.3 ± 3.49 mV, respectively. Note that before the 373 measurement, we used zeta potential transfer standard particles 374 (DTS1235, Malvern Panalytical, UK) with the known zeta 375 potentials provided by the vendor to confirm the validity of the 376 instrument. The measured value (-38.4 ± 2.9 mV) was in 377 agreement with the known value (-42 ± 4.2 mV). Then, each 378 type of particles was loaded into our sensor separately under 379 the same pressure. We recorded the voltage pulses generated 380 from all particles for analysis. Typical voltage pulses are shown 381 in Figure 3. When one particle passed through the two RPS 382 stages, two resistive pulses with reverse polarity were 383 generated. By comparing the pulse width of two consecutive 384 pulses, it is obvious that for each negatively charged 385 microparticle, the transit time through the first RPS (t_1) is 386

387 longer than that through the second RPS (t_2) due to
 388 electrophoretic deceleration in the first stage and acceleration
 389 in the second stage. The difference in $1/t_1$ and $1/t_2$ ($1/t_2 - 1/t_1$) of YPMS, UVPMS, and BKPMs particles was 6.11 ± 1.25
 390 s^{-1} , $10.29 \pm 1.93 \text{ s}^{-1}$, and $20.84 \pm 3.47 \text{ s}^{-1}$, respectively, shown
 391 in Figure 4. The results showed that the $(1/t_2 - 1/t_1)$ value
 392

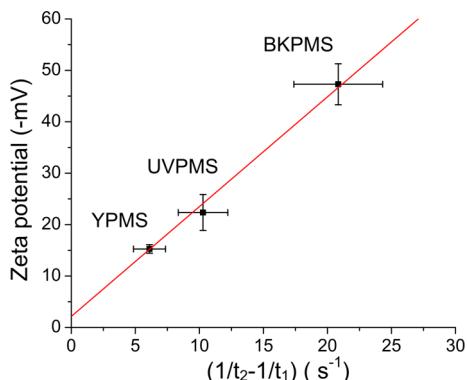


Figure 4. $(1/t_2 - 1/t_1)$ measured from microparticles of YPMS, UVPMS, and BKPMs with different zeta potentials.

393 was nearly proportional to the zeta potential values of particles,
 394 which can be explained by eq 5. The linear fitting line is shown
 395 in Figure 4. The correlation between the transit time difference
 396 and the zeta potential is obtained

$$\zeta = 2.1381 \left(\frac{1}{t_2} - \frac{1}{t_1} \right) + 1.7509 \quad (6)$$

397 Equation 6 can be used as the calibration curve of particle's
 398 zeta potential versus $(1/t_2 - 1/t_1)$. Note that the nonzero
 399 zeta potential versus $(1/t_2 - 1/t_1)$. Note that the nonzero

400 intercepts in eq 6 were mainly caused by the variation in the
 401 zeta potentials of the microparticles used for the calibration
 402 (see the vertical error bars in Figure 4). The factors
 403 contributing to the nonzero intercept include (1) the
 404 dimensions of the first and second RPSs have a small
 405 difference because of the fabrication error, and (2) due to
 406 the sudden change of electrophoretic field, a cell may not
 407 achieve electrophoresis force-flow drag force equilibrium,
 408 causing variation in transit time. The differences in channel
 409 width, depth, and length between RPS 1 and RPS 2 could
 410 certainly cause a difference in the pulse width, which can in
 411 turn induce an error in zeta potential if we directly use eq 5 to
 412 calculate the zeta potential. However, when we calibrated the
 413 relation between the zeta potential and $(1/t_2 - 1/t_1)$, shown in
 414 Figure 4, the dimension difference from the microfabrication
 415 can be compensated by the calibration. 415

416 In theory, the zeta potential of a particle can be calculated
 417 from eq 5 without any calibration. However, to use eq 5, the
 418 viscosity and relative permittivity need to be precisely
 419 determined. While different cells may have different media, it
 420 is a challenge to measure these two parameters in situ, in
 421 particular for field applications. More importantly, it is difficult
 422 to determine the lengths of the first stage and second stage of
 423 RPS because of the entry effect, that is, a particle starts to
 424 induce a resistance/voltage change before it enters the RPS
 425 channel. Similarly, there is still a resistance/voltage change
 426 when the particle exits the RPS sensing channel. While the use
 427 of FWHM pulse width can reduce error in t_1 and t_2 caused by
 428 the transition, the exact lengths of the RPSs corresponding to
 429 the t_1 and t_2 are still difficult to determine. Hence, a calibration
 430 is still needed to overcome these challenges. 430

431 **Identifying Cell Species via Measuring Zeta Poten- 431**
 432 **tials.** With the calibration of eq 6, next, we used the device to 432

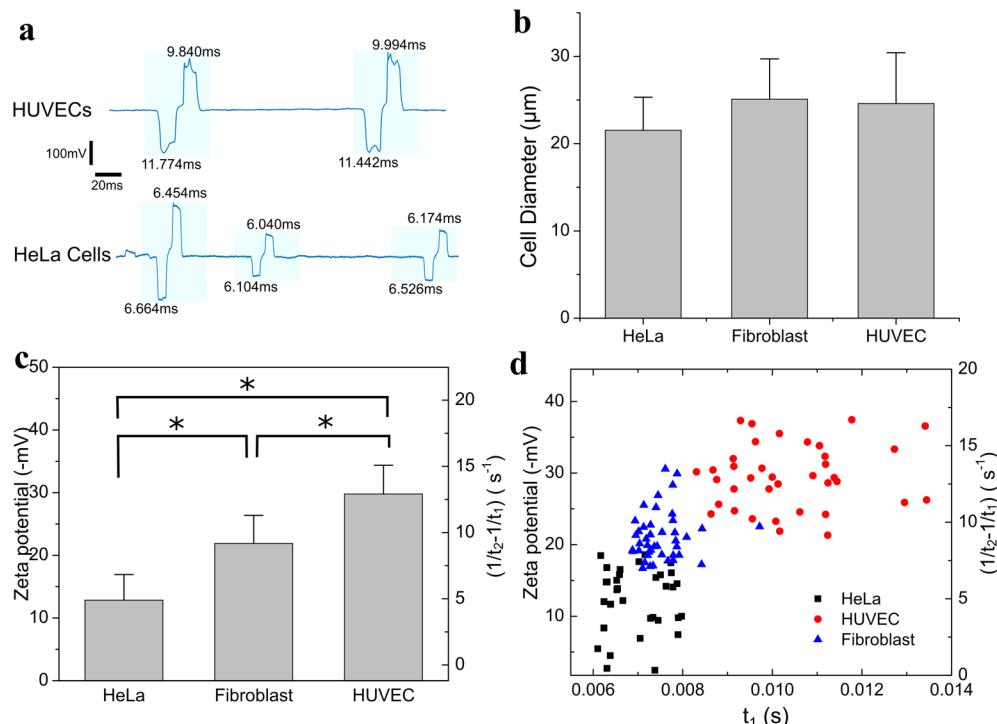
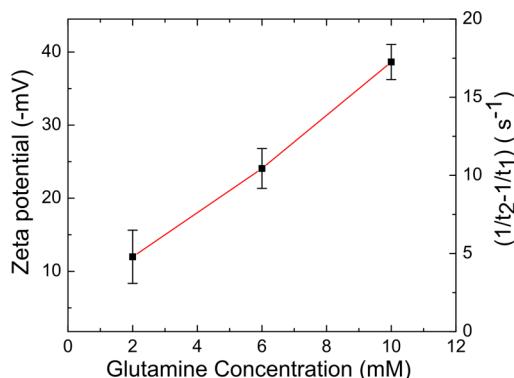


Figure 5. Resistive pulse sensing of HeLa cells, human dermal fibroblast cells (HDF), and HUVECs. (a) Typical pulses of HUVECs and HeLa cells. (b) Size measurement of the cells. (c) Measured $(1/t_2 - 1/t_1)$ values for the three types of cells. (d) $(1/t_2 - 1/t_1)$ and corresponded zeta potential versus t_1 for different cells. The asterisk symbol represents a statistically significant difference between two groups with p less than 0.05.

433 measure the zeta potentials of HUVECs, fibroblast cells, and
434 HeLa cells. These three types of cells represent three different
435 types of properties and functions in human body. HUVECs are
436 cells derived from the endothelium of veins and are widely
437 used for the study of the function and pathology of endothelial
438 cells. Fibroblast cells synthesize the extracellular matrix and
439 collagen, produce the structural framework (stroma) for animal
440 tissues, and play a critical role in wound healing. HeLa cells are
441 cervical cancer cells used extensively as sample cells for cancer
442 cells' functions and properties. Cell suspensions were
443 introduced into the device separately. The magnitude and
444 transit time of resistive pulses generating from each cell passing
445 through the two RPSs were recorded to measure the size and
446 zeta potential of single cells. Typical pulses generated by
447 HUVECs and HeLa cells are given in Figure 5a. The
448 equivalent diameter of the cells can be calculated from the
449 pulse magnitude. The measured sizes of HeLa cancer cells,
450 fibroblast cells, and HUVECs were $21.53 \pm 3.79 \mu\text{m}$, $25.09 \pm$
451 $4.62 \mu\text{m}$, and $24.60 \pm 5.83 \mu\text{m}$ in diameter, respectively, shown
452 in Figure 5b. The size distribution of the cells is shown in
453 Figure S2d–f in the Supporting Information.

454 The transit times t_1 and t_2 were measured from resistive
455 pulses generated by cells passing through the two RPSs, and
456 the values ($1/t_2 - 1/t_1$) of the three types of cells are plotted in
457 Figure 5c,d. The results from statistical analysis shown in
458 Figure 5c indicated that there was a significant difference of the
459 transit time difference value ($1/t_2 - 1/t_1$) among HeLa cells,
460 HUVECs, and fibroblast cells. The ($1/t_2 - 1/t_1$) values of
461 HeLa cells, fibroblast cells, and HUVECs were $4.38 \pm 2.32 \text{ s}^{-1}$,
462 $9.41 \pm 2.10 \text{ s}^{-1}$, and $13.67 \pm 2.39 \text{ s}^{-1}$, respectively. The smaller
463 ($1/t_2 - 1/t_1$) value of HeLa cells implied that HeLa cells had
464 smaller surface charges. The calculated zeta potential of HeLa
465 cells, fibroblast cells, and HUVECs were $-11.11 \pm 4.96 \text{ mV}$,
466 $-21.88 \pm 4.49 \text{ mV}$, and $-30.97 \pm 5.11 \text{ mV}$, respectively.

467 Note that the significant difference in the surface charge
468 between normal and transformed cancer cells has also been
469 reported in multiple studies.^{8,9} The surface charge of cells is
470 mainly due to the outer envelope macromolecules containing
471 the ionized phosphate, carboxylate, and amino functions,
472 which are exposed to the extracellular environment.⁴⁰ The cell
473 surface charge is usually assessed via the zeta potential, which is
474 the electrical potential between the cell surface and the
475 aqueous environment.⁴¹ The cell-type-specific membrane
476 structure and redistribution of ions at cell membrane interfaces
477 during certain cell status can cause changes of cell surface
478 charge.⁸ As a result, the zeta potential of the cells, represented
479 by the transit time difference value ($1/t_2 - 1/t_1$), can be used
480 as an important marker to identify different cells or track the
481 changes of cell status. While our sensor can clearly identify the
482 group patterns in zeta potentials of the three types of cells, we
483 noticed that there is a difference between the measured values
484 of HeLa cells and HUVECs by our sensor and the reported
485 values by prior studies.^{42,43} The difference could be caused by
486 the use of different solutions during cell surface charge
487 measurement. Unlike other measurements that require the use
488 of specific solution (e.g., PBS) during testing to eliminate the
489 noise signal, this sensor can specifically detect cells from other
490 particles in the cell culture medium, which allows measuring
491 the cell surface charge in cell growth medium. The growth
492 medium could help maintain high cell viability and stable cell
493 surface property of the tested cells.


494 While the transit time t_1 (reflects the velocity of a cell
495 passing through the RPS) alone is also representative of the

496 zeta potential/surface charge of a cell, it is difficult to use t_1 to
497 quantitatively determine the zeta potential. This is because the
498 velocity of cell is dependent not only on the electrophoretic
499 motion but also on the carrier flow rate induced by the applied
500 pressure, geometry of the microchannel, and the entry effect of
501 RPS. The size, shape, and orientation of the cell certainly cause
502 variations on the resistive pulse width at t_1 .⁴⁴ Even if a
503 reference test without electrophoretic motion can be
504 conducted to focus to compensate the carrier flow velocity
505 and obtain only the electrophoretic velocity of a cell because
506 individual cells have different sizes and surface charges, it
507 would be very difficult to pair the resistive pulses of the same
508 cell in two separate tests. Additionally, any flow variation
509 during the test would also cause an error in the measurement.
510 In contrast, with the unique two successive RPSs, we use $1/t_2 - 1/t_1$
511 to calculate the zeta potential, which can nearly eliminate
512 the effects of cell size, shape, and orientation, carrier
513 flow velocity, and the flow fluctuation without a need to
514 conduct a reference test. With a calibration, other factors such
515 as channel geometries, the entry effect, and the transition effect
516 due to the sudden change of electrophoretic fields can also be
517 taken into account. Using eq 6, we can calculate the zeta
518 potential of the cells from $(1/t_2 - 1/t_1)$ values. Clearly, the
519 data points of three types of cells form three distinct clusters,
520 showing that the value $(1/t_2 - 1/t_1)$ measured from this device
521 can be used to identify HeLa cancer cells from HUVECs and
522 fibroblast cells in a continuous flow.
523

524 The above tests demonstrated the ability of this device to
525 measure the zeta potential of each individual cell in a
526 continuous flow. While many studies utilized electrophoretic
527 light scattering method to measure the average zeta potential
528 of a group of cells, it is difficult to measure the zeta potential of
529 each single cell. In many biomedical applications (such as cell
530 sorting, detecting cancer cells from circulating blood, and
531 identifying stem cells from tissue lysate), individual cells in a
532 continuous flow need to be analyzed. This device has the
533 capability of scanning single cells in a continuous flow, which
534 enables high-throughput detection. In addition, its simple
535 structure allows it to be easily integrated with other
536 microfluidic analysis into a chip.
537

538 **Glutamine Effects on HeLa Cell Surface Charge.** To
539 explore the potential biomedical application of our device, we
540 tested the glutamine effect on HeLa cell surface charge using
541 our sensor. Cancer cells fundamentally differ from normal cells
542 by having a much higher rate of glutamine metabolism. Most
543 recently, studies have revealed the correlation between the cell
544 surface charge and metabolic patterns.^{45,46} In this study, we
545 treated HeLa cells with three different concentrations of
546 glutamine to alter their glutamine metabolism rate and assess
547 their effects on surface charge.
548

549 The $(1/t_2 - 1/t_1)$ values of HeLa cells cultured at
550 concentrations of 2, 6, and 10 mM were $4.79 \pm 1.70 \text{ s}^{-1}$,
551 $10.44 \pm 1.27 \text{ s}^{-1}$, and $17.25 \pm 1.12 \text{ s}^{-1}$, respectively. The
552 calculated zeta potentials of HeLa cells cultured at these three
553 concentrations were $-11.98 \pm 3.63 \text{ mV}$, $-24.07 \pm 2.73 \text{ mV}$,
554 and $-38.64 \pm 2.39 \text{ mV}$, shown in Figure 6. The results showed
555 that when increasing the glutamine concentration during the
556 HeLa cell culturing process, the negative surface charge
557 amount on the cell surface increased accordingly. Our results
558 confirmed the similar observations from previous published
559 studies⁴⁷ and proved the effects of glutamine on cancer cell
560 surface charge.
561

Figure 6. Measured $(1/t_2 - 1/t_1)$ and the calculated zeta potential of HeLa cells cultured under multiple glutamine concentrations.

558 Since this phenomenon is unique for cancer cells, it has the
 559 potential to be utilized as a highly sensitive biomarker for
 560 cancer cell detection. We envision in the future study that this
 561 sensor can be applied to capture the significant change of cell
 562 surface charge of individual cancer cells after glutamine
 563 treatment and use the identified change to not only detect
 564 cancer cells but also derive glutamine metabolic patterns for
 565 different cancer types.

566 ■ CONCLUSIONS

567 We developed a microfluidic sensor that can measure zeta
 568 potentials of single cells in a cell growth medium. The device
 569 utilizes two successive resistive pulse sensors. By applying
 570 electrophoretic voltages on the two stages with reverse
 571 polarities, each charged cell exhibits different transit times
 572 when it passes through the two successive microresistive pulse
 573 sensing structures. The transit times are measured via the two
 574 successive voltage pulses generated by the cell. From the
 575 transit time difference, the electrophoretic mobility and thus
 576 the zeta potential of single cells can be obtained. The device
 577 can measure not only the zeta potential of each single cell in
 578 situ but also its size simultaneously without a need for a
 579 reference test or flow control. We validated and calibrated the
 580 device using three types of standard microparticles, YPMS,
 581 UVPMS, and BKPMs, which have different zeta potential
 582 values due to their surface coating. We then demonstrated that
 583 this device can identify different types of cells, such as
 584 HUVECs, fibroblast cells, and HeLa cells, versus their zeta
 585 potentials without labeling the cells. Further, we showed that
 586 the device can detect the surface charge change of HeLa cells
 587 when increasing the glutamine concentration during the
 588 culturing process. Results showed that this device has great
 589 potentials for cell type sorting, cancer cell identification, and
 590 cell status analysis.

591 ■ ASSOCIATED CONTENT

592 ■ Supporting Information

593 The Supporting Information is available free of charge at
 594 <https://pubs.acs.org/doi/10.1021/acssensors.9b02411>.

595 Supporting figures of electric field modeling and
 596 particle/cell size distribution ([PDF](#))

■ AUTHOR INFORMATION

Corresponding Authors

Ge Zhang — Department of Biomedical Engineering, University of Akron, Akron, Ohio 44325, United States; Email: ge10@uakron.edu

Jiang Zhe — Department of Mechanical Engineering, University of Akron, Akron, Ohio 44325, United States; Email: jzhe@uakron.edu

Authors

Liwei Ni — Department of Mechanical Engineering, University of Akron, Akron, Ohio 44325, United States

Rubia Shaik — Department of Biomedical Engineering, University of Akron, Akron, Ohio 44325, United States

Ruiting Xu — Department of Mechanical Engineering, University of Akron, Akron, Ohio 44325, United States

Complete contact information is available at:

<https://pubs.acs.org/10.1021/acssensors.9b02411>

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was supported by the National Science Foundation of USA under award numbers ECCS 1625544, ECCS 1905786, and DBI 1911526.

■ REFERENCES

- Wilson, W. W.; Wade, M. M.; Holman, S. C.; Champlin, F. R. Status of Methods for Assessing Bacterial Cell Surface Charge Properties Based on Zeta Potential Measurements. *J. Microbiol. Methods* **2001**, *43*, 153–164.
- Metwally, S.; Stachewicz, U. Surface Potential and Charges Impact on Cell Responses on Biomaterials Interfaces for Medical Applications. *Mater. Sci. Eng. C* **2019**, *104*, 109883.
- Fröhlich, E. The Role of Surface Charge in Cellular Uptake and Cytotoxicity of Medical Nanoparticles. *Int. J. Nanomed.* **2012**, *7*, 629 5577–5591.
- Tsai, C. C.; Hung, H. H.; Liu, C. P.; Chen, Y. T.; Pan, C. Y. Changes in Plasma Membrane Surface Potential of PC12 Cells as Measured by Kelvin Probe Force Microscopy. *PLoS One* **2012**, *7*, e33849.
- Goldenberg, N. M.; Steinberg, B. E. Surface Charge: A Key Determinant of Protein Localization and Function. *Cancer Res.* **2010**, *70*, 1277–1280.
- Chou, Y. S.; Lu, J. N.; Li, Y. C.; Wang, J. H.; Young, T. H. The Surface Potential Variation of Neural Stem/Progenitor Cells during Differentiation Process. *J. Neurol. Neurosci.* **2015**, *06*, 1–8.
- Bauer, J.; Kachel, V.; Hannig, K. The Negative Surface Charge Density Is a Maturation Marker of Human B Lymphocytes. *Cell. Immunol.* **1988**, *111*, 354–364.
- Cook, G. M. W.; Jacobson, W. The Electrophoretic Mobility of Normal and Leukaemic Cells of Mice. *Biochem. J.* **1968**, *107*, 549–557.
- Zhang, Y.; Yang, M.; Portney, N. G.; Cui, D.; Budak, G.; Ozbay, E.; Ozkan, M.; Ozkan, C. S. Zeta Potential: A Surface Electrical Characteristic to Probe the Interaction of Nanoparticles with Normal and Cancer Human Breast Epithelial Cells. *Biomed. Microdevices* **2008**, *10*, 321–328.
- Shi, D. Cancer Cell Surface Negative Charges: A Bio-Physical Manifestation of the Warburg Effect. *Nano Life* **2017**, *07*, 1771001.
- Pedersen, K. Electrostatic Interaction Chromatography, a Method for Assaying the Relative Surface Charges of Bacteria. *FEMS Microbiol. Lett.* **1981**, *12*, 365–367.

657 (12) Dickson, J. S.; Koohmariae, M. Cell Surface Charge
658 Characteristics and Their Relationship to Bacterial Attachment to
659 Meat Surfaces. *Appl. Environ. Microbiol.* **1989**, *55*, 832–836.

660 (13) Sherbet, G. V.; Lakshmi, M. S. Characterisation of Escherichia
661 Coli Cell Surface by Isoelectric Equilibrium Analysis. *Biochim.
662 Biophys. Acta, Biomembr.* **1973**, *298*, 50–58.

663 (14) Bier, M. *Electrophoresis: Theory, Methods, and Applications*;
664 Elsevier, 2013.

665 (15) Blake, R. C., II; Shute, E. A.; Howard, G. T. Solubilization of
666 Minerals by Bacteria: Electrophoretic Mobility of Thiobacillus
667 Ferrooxidans in the Presence of Iron, Pyrite, and Sulfur. *Appl.
668 Environ. Microbiol.* **1994**, *60*, 3349–3357.

669 (16) Sikora, A.; Shard, A. G.; Minelli, C. Size and ζ -Potential
670 Measurement of Silica Nanoparticles in Serum Using Tunable
671 Resistive Pulse Sensing. *Langmuir* **2016**, *32*, 2216–2224.

672 (17) Vogel, R.; Anderson, W.; Eldridge, J.; Glossop, B.; Willmott, G.
673 A Variable Pressure Method for Characterizing Nanoparticle Surface
674 Charge Using Pore Sensors. *Anal. Chem.* **2012**, *84*, 3125–3131.

675 (18) Ito, T.; Sun, L.; Crooks, R. M. Simultaneous Determination of
676 the Size and Surface Charge of Individual Nanoparticles Using a
677 Carbon Nanotube-Based Coulter Counter. *Anal. Chem.* **2003**, *75*,
678 2399–2406.

679 (19) Blundell, E. L. C. J.; Vogel, R.; Platt, M. Particle-by-Particle
680 Charge Analysis of DNA-Modified Nanoparticles Using Tunable
681 Resistive Pulse Sensing. *Langmuir* **2016**, *32*, 1082–1090.

682 (20) Arjmandi, N.; Van Roy, W.; Lagae, L.; Borghs, G. Measuring
683 the Electric Charge and Zeta Potential of Nanometer-Sized Objects
684 Using Pyramidal-Shaped Nanopores. *Anal. Chem.* **2012**, *84*, 8490–
685 8496.

686 (21) Somerville, J. A.; Willmott, G. R.; Eldridge, J.; Griffiths, M.;
687 McGrath, K. M. Size and Charge Characterisation of a Submicro-
688 metre Oil-in-Water Emulsion Using Resistive Pulse Sensing with
689 Tunable Pores. *J. Colloid Interface Sci.* **2013**, *394*, 243–251.

690 (22) Kozak, D.; Broom, M.; Vogel, R. High Resolution Particle
691 Characterization to Expedite Development and Regulatory Accept-
692 ance of Nanomedicines. *Curr. Drug Delivery* **2015**, *12*, 115–120.

693 (23) Maas, S. L. N.; De Vrij, J.; Van Der Vlist, E. J.; Geragousian, B.;
694 Van Bloois, L.; Mastrobattista, E.; Schiffelers, R. M.; Wauben, M. H.
695 M.; Broekman, M. L. D.; Nolte-T Hoen, E. N. M. Possibilities and
696 Limitations of Current Technologies for Quantification of Biological
697 Extracellular Vesicles and Synthetic Mimics. *J. Controlled Release*
698 **2015**, *200*, 87–96.

699 (24) Adela Booth, M.; Vogel, R.; Curran, J. M.; Harbison, S. A.;
700 Trervas-Sejdic, J. Detection of Target-Probe Oligonucleotide Hybrid-
701 ization Using Synthetic Nanopore Resistive Pulse Sensing. *Biosens.
702 Bioelectron.* **2013**, *45*, 136–140.

703 (25) Healey, M. J.; Rowe, W.; Siasi, S.; Sivakumaran, M.; Platt, M.
704 Rapid Assessment of Site Specific DNA Methylation through
705 Resistive Pulse Sensing. *ACS Sens.* **2018**, *3*, 655–660.

706 (26) Mayne, L.; Lin, C. Y.; Christie, S. D. R.; Siwy, Z. S.; Platt, M.
707 The Design and Characterization of Multifunctional Aptamer
708 Nanopore Sensors. *ACS Nano* **2018**, *12*, 4844–4852.

709 (27) Liu, F.; KC, P.; Zhang, G.; Zhe, J. A Microfluidics Based
710 Magnetic Beads Assay For Label Free Cell Analysis. In *2015 Annual
711 Meeting of the Biomedical Engineering Society*, Tampa, Florida, Oct. 8th;
712 2015.

713 (28) Dukhin, A. S.; Goetz, P. J. Fundamentals of Interface and
714 Colloid Science. In *Characterization of Liquids, Nano- and Micro-
715 particulates, and Porous Bodies Using Ultrasound*; 2010, pp 21–89,
716 DOI: [10.1016/S1383-7303\(10\)23002-8](https://doi.org/10.1016/S1383-7303(10)23002-8).

717 (29) Lu, G. W.; Gao, P. Emulsions and Microemulsions for Topical
718 and Transdermal Drug Delivery. In *Handbook of Non-Invasive Drug
719 Delivery Systems*; 2010, pp 59–94, DOI: [10.1016/b978-0-8155-2025-2.10003-4](https://doi.org/10.1016/b978-0-8155-2025-2.10003-4).

721 (30) Ge, Z.; Wang, Y. Estimation of Nanodiamond Surface Charge
722 Density from Zeta Potential and Molecular Dynamics Simulations. *J.
723 Phys. Chem. B* **2016**, *121*, 3394–3402.

724 (31) Hunter, R. J. *Zeta Potential in Colloid Science - Principles and
725 Applications*; Ottewill, R. H.; Rowell, R. L., Eds.; Elsevier, 1981.

726 (32) Carbonaro, A.; Sohn, L. L. A Resistive-Pulse Sensor Chip for
727 Multianalyte Immunoassays. *Lab Chip* **2005**, *5*, 1155–1160.

728 (33) Jagtiani, A. V.; Carletta, J.; Zhe, J. A Microfluidic Multichannel
729 Resistive Pulse Sensor Using Frequency Division Multiplexing for
730 High Throughput Counting of Micro Particles. *J. Micromech.
731 Microeng.* **2011**, *21*, No. 065004.

732 (34) DeBlois, R. W.; Bean, C. P. Counting and Sizing of Submicron
733 Particles by the Resistive Pulse Technique. *Rev. Sci. Instrum.* **1970**, *41*,
734 909–916.

735 (35) Liu, F.; KC, P.; Zhang, G.; Zhe, J. In Situ Single Cell Detection
736 via Microfluidic Magnetic Bead Assay. *PLoS One* **2017**, *12*, 736
No. e0172697.

737 (36) Liu, F.; KC, P.; Zhang, G.; Zhe, J. Microfluidic Magnetic Bead
738 Assay for Cell Detection. *Anal. Chem.* **2015**, *88*, 711–717.

739 (37) Kozak, D.; Anderson, W.; Vogel, R.; Trau, M. Advances in
740 Resistive Pulse Sensors: Devices Bridging the Void between
741 Molecular and Microscopic Detection. *Nano Today* **2011**, *6*, 531–
742 545.

743 (38) Saleh, O. A.; Sohn, L. L. Quantitative Sensing of Nanoscale
744 Colloids Using a Microchip Coulter Counter. *Rev. Sci. Instrum.* **2001**,
745 *72*, 4449–4451.

746 (39) Willmott, G. R.; Parry, B. E. T. Resistive Pulse Asymmetry for
747 Nanospheres Passing through Tunable Submicron Pores. *J. Appl. Phys.* **2011**,
748 *109*, No. 094307.

749 (40) Mozes, N.; Léonard, A. J.; Rouxhet, P. G. On the Relations
750 between the Elemental Surface Composition of Yeasts and Bacteria
751 and Their Charge and Hydrophobicity. *Biochim. Biophys. Acta, Biomembr.* **1988**,
752 *945*, 324–334.

753 (41) Saito, T.; Takatsuka, T.; Kato, T.; Ishihara, K.; Okuda, K.
754 Adherence of Oral Streptococci to an Immobilized Antimicrobial
755 Agent. *Arch. Oral Biol.* **1997**, *42*, 539–545.

756 (42) Hondroulis, E.; Zhang, R.; Zhang, C.; Chen, C.; Ino, K.;
757 Matsue, T.; Li, C. Z. Immuno Nanoparticles Integrated Electrical
758 Control of Targeted Cancer Cell Development Using Whole Cell
759 Bioelectronic Device. *Theranostics* **2014**, *4*, 919.

760 (43) Selvi, R. B.; Chatterjee, S.; Jagadeesan, D.; Chaturbedy, P.;
761 Suma, B. S.; Eswaramoorthy, M.; Kundu, T. K. ATP Driven Clathrin
762 Dependent Entry of Carbon Nanospheres Prefer Cells with Glucose
763 Receptors. *J. Nanobiotechnol.* **2012**, *10*, 35.

764 (44) Maugi, R.; Hauer, P.; Bowen, J.; Ashman, E.; Hunsicker, E.;
765 Platt, M. A methodology for characterising nanoparticle size and
766 shape using nanopores. *Nanoscale* **2020**, *12*, 262–270.

767 (45) Le, W.; Chen, B.; Cui, Z.; Liu, Z.; Shi, D. Detection of Cancer
768 Cells Based on Glycolytic-Regulated Surface Electrical Charges.
769 *Biophys. Rep.* **2019**, *5*, 10–18.

770 (46) Wang, Y.; Han, X.; Cui, Z.; Shi, D. Bioelectricity, Its
771 Fundamentals, Characterization Methodology, and Applications in
772 Nano-Bioprobe and Cancer Diagnosis. *Adv. Biosyst.* **2019**, *3*,
773 1900101.

774 (47) Chen, B.; Le, W.; Wang, Y.; Li, Z.; Wang, D.; Ren, L.; Lin, L.;
775 Cui, S.; Hu, J. J.; Hu, Y.; Yang, P.; et al. Targeting Negative Surface
776 Charges of Cancer Cells by Multifunctional Nanoprobes. *Theranostics*
777 **2016**, *6*, 1887–1898.