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Abstract—This letter considers the task of estimating the
norm of an n-dimensional Gaussian random vector given a
noisy/perturbed observation of it. In particular, the focus is on the
case of additive Gaussian noise perturbation, which is assumed
to be independent of the original vector. First, an expression
for the optimal estimator is derived, and then the corresponding
minimum mean square error (MMSE) is computed. The regime
of large vector size is also analyzed, and it is shown that the
MMSE normalized by n equals zero when n → ∞.

I. INTRODUCTION

In this letter, we consider an estimation framework that
seeks to estimate the ℓ2-norm of a random vector based on
a noisy observation of the vector itself. More specifically,
the observed n-dimensional random vector Y is obtained by
passing an input X ∼ N (0, In) through an additive white
Gaussian noise channel. In other words, Y = X+N, where
N ∼ N (0, Inσ

2), and independent of X. The goal is to
estimate ∥X∥ given the observation of Y.

The problem of estimating the norm of a random vector
given a noisy observation of it, can be applied in several
scenarios. For instance, in distributed computing, a master
node might want to distribute the effort of computing the mag-
nitude/norm of a massive vector across some worker machines
which operate in parallel. However, this vector might contain
sensitive/confidential data (e.g., clinical/genomic health), and
hence it has to be perturbed [1], [2], [3] before being dis-
tributed to the worker machines. In this case, the level of noise
perturbation (i.e., captured by σ2) can be chosen so that the
corresponding MMSE is below a certain threshold. Another
scenario where our estimation framework can find applicability
is in the context of wireless systems. The strength/norm estima-
tion of the noisy channel can indeed be leveraged to improve
the performance of the system, for instance by selecting the
“best” users for transmission [4], and efficiently adapting the
transmission data rate [5]. Moreover, in the context of wireless
sensor networks, different sensors can independently measure
different noisy vectors Y (e.g., capturing a noisy signal) and
the final estimate of the norm of X (e.g., signal strength)
can be obtained in a centralized way (using a common fusion
center) or in a fully decentralized fashion [6], [7].

Depending on the particular optimality criterion used, there
are different approaches to optimally estimating the norm of
X. Specifically, consider the following estimators:
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Lmle(y) = ∥y∥, (1)

Lplug-in-1(y) = ∥E[X|Y = y]∥ =
1

1 + σ2
∥y∥, (2)

Lplug-in-2(y) =
√︁

E[∥X∥2|Y = y]

=

√︄
n

σ2

1 + σ2
+

1

(1 + σ2)2
∥y∥2. (3)

The estimator in (1) is the maximum likelihood estimator
(MLE) of ∥X∥, which can be derived using standard tech-
niques from the literature [8, Ch. 7]. The estimator in (2) is
a plug-in estimator that first computes the Bayesian estimator
for X and then applies the norm function. Finally, the esti-
mator in (3) is a plug-in estimator that first estimates (in an
MMSE fashion) the norm squared ∥X∥2 and then applies the
square-root function. Due to Jensen’s inequality we have that
Lplug-in-1(y) ≤ E[∥X∥|Y = y] ≤ Lplug-in-2(y). In other words,
Lplug-in-1(y) underestimates the true value and Lplug-in-2(y)
overestimates the true value.

To asses the performance of the aforementioned estimators,
we first derive an expression for the optimal estimator, i.e.,
the conditional expectation of ∥X∥ given the observation of
Y, and then compute the corresponding MMSE. Towards
this end, we use properties of Gaussian and Poisson random
variables, such as the Poisson representation of the probability
density function (PDF) of the non-central chi-squared random
variable. Moreover, we consider the large n regime, and show
that the MMSE normalized by n vanishes as n → ∞.

The derived optimal quantities are then used to argue that
the plug-in estimator Lplug-in-2 in (3) is a reasonable choice for
the estimation of ∥X∥. First, while Lplug-in-2 does overestimate
the true value, the overestimation is relatively small and in
fact it decreases with the dimension n. Second, Lplug-in-2
is relatively simple to implement compared to the optimal
estimator. Third, by using the derived optimal MMSE, we
numerically show that the MSE of the plug-in estimator
Lplug-in-2 is close to the fundamental lower bound. Finally, we
numerically demonstrate that the MLE in (1) and Lplug-in-1
in (2) should only be used in the small noise regime.

II. OPTIMAL ESTIMATOR AND ITS MMSE

In this section, we present our results on estimating the ℓ2-
norm of X given the observation of Y. The next theorem
presents an expression for the optimal MMSE estimator, i.e.,
the conditional expectation of ∥X∥ given Y.
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Fig. 1: Comparison of estimators of ∥X∥ in (1), (2) and (3)
with the optimal estimator in (6). Here n = 3 and σ = 2.

Theorem 1. Let X ∼ N (0, In), and Y = X+N with N ∼
N (0, Inσ

2). Then,

E [∥X∥ | Y = y]

=

√
σ2 1

(2π)
n
2

fY(y)
E
[︃√︂

V ∥y∥2
σ2

exp

(︃
−σ2

2
V ∥y∥2

σ2

)︃]︃
(4)

=

√︃
2σ2

1 + σ2
e
− ∥y∥2

2σ2(1+σ2)

∞∑︂
k=0

ak

(︃
∥y∥2

2σ2(1 + σ2)

)︃k

(5)

=
Γ(n+12 )

√
2σ2e

− ∥y∥2

2σ2(1+σ2)

Γ(n2 )
√
1 + σ2

F1,1

(︃
n+1

2
,
n

2
;

∥y∥2

2σ2(1+σ2)

)︃
, (6)

where Vλ is a random variable distributed according to a chi-
squared distribution with parameter λ, and

ak =
Γ
(︁
k + n+1

2

)︁
k!Γ

(︁
k + n

2

)︁ , (7)

with Γ(·) being the gamma function, and where F1,1(·, ·; ·) is
the confluent hypergeometric function [9, Ch. 13].

Remark 1. Note that Theorem 1 provides three different forms
of the optimal estimator. The one in (4) is particularly suitable
for running Monte Carlo simulations. The one in (5) can be
easily approximated by truncating the sum to a sufficiently
large number of terms. Finally, the one in (6) can be com-
puted by standard off-the-shelf packages for hypergeometric
functions.

In Fig. 1 we compare the optimal estimator in (6) with the
MLE and plug-in estimators in (1)-(3), respectively. Using the
explicit representations of the optimal estimator (see Theo-
rem 1), we can obtain an explicit expression for the MMSE
of estimating the ℓ2-norm of X from Y.

Theorem 2. Let X ∼ N (0, In), and Y = X+N with N ∼
N (0, Inσ

2). Then, for ak defined in (7)

mmse (∥X∥ | Y) = E
[︁
∥X∥2

]︁
− E

[︁
(E[∥X∥ | Y])2

]︁

0 5 10 15 20
0

0.2

0.4

0.6

n

M
SE

no
rm

al
iz

ed
by

n

mmse(∥X∥|Y)
MSE of MLE
MSE of Lplug-in-2

MSE of Lplug-in-1

Fig. 2: Comparison of MSEs of estimating ∥X∥ with the
estimators in (1), (2) and (3) and the optimal estimator

in (6). The noise parameter is σ = 1.

=n− 2σ2+n

1 + σ2

∞∑︂
k=0

∞∑︂
m=0

akam

(σ2 + 2)k+m+n
2

Γ(n2 + k +m)

Γ(n2 )
.

The MMSE in Theorem 2 provides the fundamental limit
on the recover of ∥X∥ under the square error. In Fig. 2, we use
the characterization of the MMSE in Theorem 2, to show that
the MSE obtained by the suboptimal estimator Lplug-in-2(y)
in (3) has comparable performance. Moreover, in Fig. 2 we
also compare the MSEs of the MLE in (1) and Lplug-in-1 in (2).

We conclude this section by providing some asymptotic
analysis of the MMSE in Theorem 2.

Theorem 3. Let X ∼ N (0, In), and Y = X+N with N ∼
N (0, Inσ

2). Then, we have the following asymptotic results:
• σ → 0, then mmse (∥X∥ | Y) = 0;
• σ → ∞, then mmse (∥X∥ | Y) = V[∥X∥] where

V[∥X∥] = n−
(︃√

2
Γ(n+1

2 )
Γ(n

2 )

)︃2

; and

• n → ∞, then limn→∞
mmse(∥X∥|Y)

n = 0, for all σ > 0.

III. PROOF OF MAIN RESULTS

A. Proof of Theorem 1

We here derive the optimal estimator in Theorem 1. We have

E [∥X∥ | Y = y]

(a)
=

∫︂ ∞

0

t
fY,∥X∥(y, t)

fY(y)
dt

(b)
=

∫︂ ∞

0

t

1

(2π)
n
2
e−

t2

2
1√
σ2
fChi

(︂
t√
σ2
;n, ∥y∥√

σ2

)︂
fY(y)

dt

(c)
=

√
σ2 1

(2π)
n
2
E

[︄
U ∥y∥√

σ2

exp

(︄
−σ2

2 U2
∥y∥√
σ2

)︄]︄
fY(y)

(d)
=

√
σ2 1

(2π)
n
2
E
[︃√︂

V ∥y∥2
σ2

exp

(︃
−σ2

2 V ∥y∥2
σ2

)︃]︃
fY(y)

, (8)



where the labeled equalities follow from: (a) Bayes’ rule; (b)
is derived below in (10) with fChi(x;n, λ) being the PDF of
the non-central chi random variable, i.e.,

fChi(x;n, λ) = e−
x2+λ2

2

(︂x
λ

)︂n
2

λIn
2 −1(λx), x > 0, (9)

where n specifies the degrees of freedom, Iv(z) is the modified

Bessel function of the first kind and λ =

√︃∑︁n
i=1

(︂
µi

σi

)︂2
,

such that Xi are n independent, normally distributed random
variables with means µi and variances σ2

i ; (c) doing a change
of variable t√

σ2
= u and noting that fChi

(︂
u;n, ∥y∥√

σ2

)︂
is

the PDF of the non-central chi random variable U ∥y∥√
σ2

with

parameter ∥y∥√
σ2

; and (d) using the transformation between chi
and chi-squared random variables. The equality above in (b)
follows from the following derivation:

fY,∥X∥(y, t)
(b1)
=

∫︂
Rn

fY|X(y|x)f∥X∥|X(t|x)fX(x) dx

=

∫︂
Rn

e−
∥y−x∥2

2σ2

(2πσ2)
n
2
δ (t− ∥x∥) 1

(2π)
n
2
e−

∥x∥2
2 dx

(b2)
=

∫︂
Sn−1

e−
∥y−tΘ∥2

2σ2

(2πσ2)
n
2

1

(2π)
n
2
e−

t2

2 tn−1 dΘ

=
e−

∥y∥2+t2

2σ2

(2πσ2)
n
2

e−
t2

2

(2π)
n
2
tn−1

∫︂
Sn−1

e
tΘT y

σ2 dΘ

(b3)
=

1

(2π)
n
2
e−

t2

2
1√
σ2

fChi

(︃
t√
σ2

;n,
∥y∥√
σ2

)︃
, (10)

where the labeled equalities follow from: (b1) Markov
chain ∥X∥ → X → Y since fY,∥X∥|X(y, t|x) =
f∥X∥|X(t|x)fY|X(y|x), where we use the chain rule of the
PDF, and the fact that, given X = x, then ∥X∥ = t is uniquely
determined; (b2) changing the integration to spherical coor-
dinates, where Sn−1 = {x : ∥x∥ ≤ 1} is the n-dimensional
unit-hypersphere, and using the sifting property of the delta
function [10]; (b3) computing the integral as in (11) and using
the PDF of the non-central chi random variable in (9). To
compute the integral in (b3), we use the following steps:∫︂

Sn−1

eΘ
T
nyRdΘn

(b3′)
=

∫︂ 2π

0

∫︂ π

0

eR∥y∥ cos(θ1)

·
n−2∏︂
k=1

(sin θk)
n−1−k

dθ1 . . . dθn−2dθn−1

(b3′′)
=

∫︂ π

0

eR∥y∥ cos(θ1)(sin(θ1))
n−2dθ1

∫︂
Sn−2

dΘn−1

(b3′′′)
=

(2π)
n
2

(R∥y∥)
n
2 −1

In
2 −1(R∥y∥), (11)

where the labeled equalities follow from: (b3′) by noting that
the Jacobian of the spherical transformation is given by

dΘn =

n−1∏︂
k=1

(sin θk)
n−1−k

dθ1 . . . dθn−2dθn−1, (12)

where θi ∈ [0, π), i ∈ [1 : n − 2], θn−1 ∈ [0, 2π), and by
applying the definition of inner product; (b3′′) observing that
the integration over θ2, ..., θn−1 is an integral over the Sn−2

sphere; and (b3′′′) using the definition of modified Bessel
function of the first kind, and the fact that∫︂

Sn−2

dΘn−1 =
2π

n−1
2

Γ
(︁
n−1
2

)︁ .
We now prove that the expression in (8) is equal to the
conditional expected value provided in (5). Towards this end,
we compute E

[︁√
Vλe

−tVλ
]︁

as

E
[︂√︁

Vλe
−tVλ

]︂
(a)
=

∫︂ ∞

0

√
xe−tx 1

2
e−

x+λ
2

(︂x
λ

)︂n
4 − 1

2

In
2 −1(

√
λx)dx

(b)
=

e−
λ− λ

1+2t
2

(1 + 2t)
n+1
2

∫︂ ∞

0

√
ufChi-Sq

(︃
u;n,

λ

1 + 2t

)︃
du

=
e−

λ− λ
1+2t
2

(1 + 2t)
n+1
2

E
[︃√︂

V λ
1+2t

]︃
, (13)

where the labeled equalities follow from: (a) using the PDF
of the non-central chi-squared random variable, i.e., for x > 0

fChi-Sq(x;n, γ)=
1

2
e−

x+γ
2

(︃
x

γ

)︃n
4 − 1

2

In
2 −1(

√
γx); (14)

(b) change of variable (1+2t)x = u, and using the definition
of fChi-Sq

(︂
u;n, λ

1+2t

)︂
in (14). Next, we use the Poisson rep-

resentation of the PDF of the non-central chi-squared random
variable [11], i.e.,

fChi-Sq (u;n, λ) =

∞∑︂
k=0

p

(︃
k;

λ

2

)︃
fChi-Sq (u;n+ 2k, 0) ,

where p (k;x) = e−xxk

k! k = 0, 1, 2, . . . Let V0,y denote a
centered chi-squared random variable of order y. Then,

E
[︃√︂

V λ
1+2t

]︃
=

∞∑︂
k=0

p

(︃
k;

λ

2(1 + 2t)

)︃
E
[︂√︁

V0,n+2k

]︂

=

∞∑︂
k=0

√
2e−

λ
2(1+2t)

(︂
λ

2(1+2t)

)︂k
k!

Γ
(︁
n+2k+1

2

)︁
Γ
(︁
n+2k

2

)︁ , (15)

where the last equation follows by using the expression for
the moments of a centered chi-squared random variable, i.e.,

E[Xm] = 2m
Γ
(︁
m+ k

2

)︁
Γ
(︁
k
2

)︁ , m > 0.

Combining (13) and (15), we arrive at

E
[︂√︁

Vλe
−tVλ

]︂
= e−

λ
2 (1 + 2t)−

n+1
2

√
2

∞∑︂
k=0

ak

(︃
λ

1 + 2t

)︃k

,

where ak = 1
2k

Γ(k+n+1
2 )

k!Γ(k+n
2 )

. Finally, the proof of Theorem 1 is
concluded by using the follows series:

F1,1(a, b;x) =

∞∑︂
k=0

Γ(a+ k)Γ(b)

Γ(a)Γ(b+ k)

xk

k!
, min{a, b, x} > 0.



B. Proof of Theorem 2

We here derive the MMSE in Theorem 2. We have

E
[︁
(E[∥X∥ | Y])2

]︁
(a)
=

2σ2

1 + σ2
E

⎡⎣e− ∥Z∥2

σ2

(︄ ∞∑︂
k=0

ak

(︃
∥Z∥2

2σ2

)︃k
)︄2
⎤⎦

=
2σ2

1 + σ2
E

[︄
e−

∥Z∥2

σ2

∞∑︂
k=0

∞∑︂
m=0

akam
∥Z∥2(k+m)

2k+mσ2(k+m)

]︄
(b)
=

2σ2+n

1 + σ2

∞∑︂
k=0

∞∑︂
m=0

amak

(σ2 + 2)k+m+n
2

Γ(n2 + k +m)

Γ(n2 )
, (16)

where the labeled equalities follow from: (a) using the optimal
estimator derived in Theorem 1, and rescaling the Gaussian
random vector Y; and (b) changing the order of summation
and integration via Tonelli’s theorem, and using

E
[︃
∥Z∥ke

t∥Z∥2
2

]︃
=

1

(2π)
n
2

∫︂
Rn

∥x∥ke
t∥x∥2

2 e−
∥x∥2

2 dx

(b1)
=

1

(1− t)
n
2
E
[︁
∥XG∥k

]︁
=

1

(1− t)
n
2

1

(1− t)
k
2

E
[︂
∥Z∥2 k

2

]︂
(b2)
=

1

(1− t)
k+n

2

2
k
2
Γ
(︁
k+n
2

)︁
Γ
(︁
n
2

)︁ , (17)

where the labeled equalities follow from: (b1) defining XG ∼
N
(︂
0, 1

1−tIn

)︂
; and (b2) using the k

2 -th moment about zero of
the chi-squared random variable with n degrees of freedom.
Combining (16) with E

[︁
∥X∥2

]︁
= n concludes the proof of

Theorem 2.

C. Proof of Theorem 3

Because of space limitations, we omit the detailed proof for
σ → 0 and σ → ∞, which amounts to an application of the
dominated convergence theorem. We focus on n → ∞. We
start by analyzing the following term, which is equivalent to
1+σ2

2σ2
1
nE
[︁
(E[∥X∥ | Y])2

]︁
(because of step (a) in (16))

1

n
E

⎡⎣e− ∥Z∥2

σ2

(︄ ∞∑︂
k=0

ak

(︃
∥Z∥2

2σ2

)︃k
)︄2
⎤⎦

(a)
=

1

n
E

⎡⎣e−2U

(︄ ∞∑︂
k=0

akU
k

)︄2
⎤⎦

(b)
=

1

n
E
[︂
(E[K!aK |U ])

2
]︂

(c)
≈ 1

n
E

[︄(︃
E
[︃√︃

K +
n

2
|U
]︃)︃2

]︄
, (18)

where the labeled equalities follow from: (a) letting U = ∥Z∥2

2σ2

with standard normal random variable Z; (b) noting that K|U

is a Poisson random variable with parameter U ; and (c) using
the expression for aK in (7) and observing that

Γ
(︁
K + n+1

2

)︁
Γ
(︁
K + n

2

)︁ = CK,n

√︃
K +

n

2
, (19)

where CK,n ≈ 1 for large enough n (independently of K) as
a consequence of using Stirling’s bounds [12] as follows:√︄(︁

1 + 1
n

)︁n
e

e−
1

(n+2)(n+1) ≤ CK,n ≤
(︃
1 +

1

n

)︃
e

1
(n+2)(n+1) .

We now show that

lim
n→∞

1

n
E

[︄(︃
E
[︃√︃

K +
n

2
|U
]︃)︃2

]︄
=

1

2σ2
+

1

2
. (20)

Towards this end, we derive an upper bound and a lower bound
on the limit in the left-hand side of (20) and show that these
bounds converge to the right-hand side of (20).

Jensen’s inequality provides the upper bound

1

n
E

[︄(︃
E
[︃√︃

K +
n

2
|U
]︃)︃2

]︄
≤ 1

n
E
[︂
E
[︂
K+

n

2
|U
]︂]︂

=
1 + σ2

2σ2
,

where we used E[K|U ] = U since K|U is a Poisson random
variable with parameter U . Next, we focus on the lower bound.
We use the following bound which follows by using the Taylor
expansion of

√
1 + x about a variable a

√
x+ 1 ≥

√
a+ 1 +

x− a

2
√
a+ 1

− (x− a)2

8(a+ 1)
3
2

(21)

for any a > 0. With this, we obtain

1√
n
E
[︃√︃

K +
n

2
|U
]︃

≥ 1√
2

(︄
√
a+ 1 +

2U
n − a

2
√
a+ 1

−
4
n2 (U

2 + U)− 4
nUa+ a2

8(a+ 1)
3
2

)︄
,

where we used the fact that E[K|U ] = U and E[K2|U ] =
U + U2. This, together with Jensen’s inequality, leads to

1

n
E

[︄(︃
E
[︃√︃

K +
n

2
|U
]︃)︃2

]︄
≥
(︃

1√
2
f(a)

)︃2

,

where by using the fact that E[∥Z∥4] = n(n+ 2) we obtain

f(a) =
√
a+ 1+

1
σ2 − a

2
√
a+ 1

−
4
n2 (

n(n+2)
4σ4 + n

2σ2 )− 2
σ2 a+ a2

8(a+ 1)
3
2

.

Next, by taking the limit as n → ∞, we obtain

lim
n→∞

1

n
E

[︄(︃
E
[︃√︃

K +
n

2
|U
]︃)︃2

]︄
≥ 1

2

(︃
1 +

1

σ2

)︃
,

where since a is arbitrary, we have chosen it to be a = 1
σ2 .

Thus, (20) holds. Now, observe that the term that we computed
in (18) is equivalent to 1+σ2

2σ2
1
nE
[︁
(E[∥X∥ | Y])2

]︁
. This follows

from step (a) in (16). We therefore obtain

lim
n→∞

mmse (∥X∥ | Y)

n
= 1− lim

n→∞

E
[︁
(E[∥X∥ | Y])2

]︁
n

= 0.

This concludes the proof of Theorem 3.



REFERENCES

[1] C. C. Aggarwal and P. S. Yu, A General Survey of Privacy-Preserving
Data Mining Models and Algorithms. Springer US, 2008, pp. 11–52.

[2] L. Sweeney, “k-anonymity: A model for protecting privacy,” Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
vol. 10, no. 5, pp. 557–570, 2002.

[3] C. Dwork and A. Roth, “The algorithmic foundations of differential
privacy,” Found. Trends Theor. Comput. Sci., vol. 9, no. 3-4, pp.
211–407, Aug. 2014. [Online]. Available: http://dx.doi.org/10.1561/
0400000042

[4] X. Zhang, E. A. Jorswieck, B. Ottersten, and A. Paulraj, “User selec-
tion schemes in multiple antenna broadcast channels with guaranteed
performance,” in IEEE 8th Workshop on Signal Processing Advances in
Wireless Communications (SPAWC), 2007, pp. 1–5.

[5] E. Björnson and B. Ottersten, “Pilot-based Bayesian channel norm esti-
mation in Rayleigh fading multi-antenna systems,” in Proceedings of the
Twentieth Nordic Conference on Radio Science and Communications,
2008.

[6] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE Transactions on Information Theory, vol. 52, no. 6,
pp. 2508–2530, 2006.

[7] ——, “Gossip algorithms: design, analysis and applications,” in Pro-
ceedings IEEE 24th Annual Joint Conference of the IEEE Computer
and Communications Societies., vol. 3, 2005, pp. 1653–1664 vol. 3.

[8] S. M. Kay, Fundamentals of Statistical Signal Processing. Prentice
Hall PTR, 1993.

[9] M. Abramowitz and I. A. Stegun, Handbook of Mathematical functions:
With Formulas, Graphs, and Mathematical Tables. Courier Corporation,
1970, vol. 9.

[10] R. N. Bracewell and R. N. Bracewell, The Fourier Transform and its
Applications. McGraw-Hill New York, 1986, vol. 31999.

[11] R. J. Muirhead, Aspects of Multivariate Statistical Theory. John Wiley
& Sons, 2009, vol. 197.

[12] H. Robbins, “A remark on Stirling’s formula,” The American Mathemat-
ical Monthly, vol. 62, no. 1, pp. 26–29, 1955.

http://dx.doi.org/10.1561/0400000042
http://dx.doi.org/10.1561/0400000042

	Introduction
	Optimal Estimator and its MMSE
	Proof of Main Results
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	References

