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Abstract

We argue that external commonsense knowl-
edge and linguistic constraints need to be in-
corporated into neural network models for mit-
igating data sparsity issues and further improv-
ing the performance of discourse parsing. Re-
alizing that external knowledge and linguis-
tic constraints may not always apply in un-
derstanding a particular context, we propose a
regularization approach that tightly integrates
these constraints with contexts for deriving
word representations. Meanwhile, it bal-
ances attentions over contexts and constraints
through adding a regularization term into the
objective function. Experiments show that
our knowledge regularization approach out-
performs all previous systems on the bench-
mark dataset PDTB for discourse parsing.

1 Introduction

Discourse parsing and identifying rhetorical dis-
course relations between two text spans (i.e., dis-
course units, either clauses or sentences) is crucial
and beneficial for a wide variety of downstream
tasks and applications such as machine transla-
tion (Webber et al., 2017), text generation (Mann,
1984; Bosselut et al., 2018) and text summariza-
tion (Gerani et al., 2014).

In the PDTB-style discourse parsing (Prasad
et al., 2008), we commonly distinguish implicit
discourse relations from explicit relations, de-
pending on whether a discourse connective (e.g.,
“because”, “however”) appears between two dis-
course units. In general, recognizing implicit dis-
course relations is more challenging due to the
lack of connective, which has recently drawn sig-
nificant attention from the NLP researchers.

Recent research for implicit discourse rela-
tion classification has mostly focused on apply-
ing powerful neural network models (Qin et al.,
2016a,b; Liu and Li, 2016; Lei et al., 2017;

Bai and Zhao, 2018) for modeling compositional
meanings and word-level interactions of two dis-
course units. More recent research has also ex-
ploited utilizing broader contexts (Dai and Huang,
2018) as well as leveraging external training
data (Xu et al., 2018). Although progress has been
made, the performance of implicit discourse rela-
tion identification remains low (macro F1 < 50%).
We believe that the low performance is mainly
due to the data sparsity issue (Braud and Denis,
2015), which hinders data-thirsty neural network
models from making further improvements. Con-
sidering the following example from PDTB with
two discourse units (DUs):
DUI: The editorial of the WHO notes that to-
bacco consumption and lung-cancer mortal-
ity rates are rising in developing countries.

DU2: “No smoking should be established as the
norm of social behavior” around the world,
the editorial says, through the enactment of
laws that limit advertising and promote anti-
smoking education.

Discourse Relation: Implicit Contingency.Cause

Humans can easily recognize this discourse re-
lation as “Cause” because we know that “smok-
ing” is the key causal factor for “lung-cancer”, but
it is extremely difficult for neural network mod-
els trained with limited amount of data to detect
it considering the keyword “lung-cancer” only ap-
pears few times in the whole PDTB data.

We further argue that external knowledge and
linguistic constraints need to be considered for im-
proving implicit discourse relation classification
since human annotators also rely on these com-
monsense knowledge (e.g., smoking causes the
lung-cancer) to label the discourse relations. First,
we consider external event knowledge, because
discourse relations (e.g., cause and temporal rela-
tions) are often defined as the relation between two
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events (situations in general) as described in two
discourse units. As shown in the above example,
the “Cause” discourse relation between the two
DUs depends on the relation between two events
“smoking” and “lung-cancer” with one event in
each DU. Second, we consider entity coreference
relations as a useful form of linguistic constraints
in inferring discourse relations. This is motivated
by prior work (Rutherford and Xue, 2014; Ji and
Eisenstein, 2015) showing that coreference based
features can improve entity mention representa-
tions within a DU, which facilitates recognizing
coherence and discourse relations between DU .

In this paper, we investigate how to incorpo-
rate external event knowledge and entity corefer-
ence relation based linguistic constraints into neu-
ral network models for discourse parsing. One
key difficulty we want to address is that external
knowledge derived event relations or hard linguis-
tic constraints may not always apply for interpret-
ing a particular context, and may hurt performance
if used blindly (Kishimoto et al., 2018). Therefore,
we propose to tightly integrate these constraints
into the discourse relation inference process by
manipulating hidden word representations to re-
flect relations between words, and meanwhile bal-
ance attentions to contexts and constraints through
adding a knowledge regularization term in the fi-
nal objective function.

Specifically, we choose the paragraph-level
model we proposed (Dai and Huang, 2018) as the
base model, which exploits wider paragraph-level
contexts and has been shown effective for PDTB-
style discourse parsing. The model mainly con-
sists of a two-level hierarchical BILSTMs (Schus-
ter and Paliwal, 1997) for modeling both word-
level and DU-level inter-dependencies (with a
brief description in section 3.1). To implement
the knowledge guided regularization for discourse
parsing, we first insert a new knowledge layer be-
tween the word-level BiLSTM and DU-level BiL-
STM layer. This knowledge layer modifies hid-
den representations of words that participate in an
event or coreference relation, by applying a re-
lation type specific feedforward neural network.
Then, we compose a knowledge regularizer based
on word representation outputs of the knowledge
layer, by adapting a classic knowledge embedding
method TransE (Bordes et al., 2013). The regular-
ization term is added to the overall objective func-
tion and minimized during model training.

The experiments on PDTB v2.0 demonstrate
that our proposed knowledge regularization ap-
proach can effectively utilize several types of
externally obtained event knowledge and entity
coreference relations', and improves the perfor-
mance of both implicit and explicit discourse re-
lation recognition compared to all previous work.

2 Related Work
2.1 Discourse Parsing on PDTB

With the release of Penn Discourse Treebank
(PDTB) (Prasad et al., 2008), the task of dis-
course parsing, especially implicit discourse re-
lation recognition, has received a lot of attention
from the NLP community and researchers (Pitler
and Nenkova, 2009; Lin et al., 2014; Xue et al.,
2015; Rutherford and Xue, 2016). A large num-
ber of previous work attempted to model the se-
mantic meanings of two discourse units using lat-
est and advanced neural network models (Chen
et al., 2016; Ji et al., 2016; Rutherford et al., 2017;
Qin et al., 2017; Guo et al., 2018; Bai and Zhao,
2018). Paragraph-wide contexts were considered
for building better discourse unit representations
in Dai and Huang (2018). Another research direc-
tion for improving implicit discourse relation clas-
sification is to expand the training data by leverag-
ing explicit relations (Liu et al., 2016; Lan et al.,
2017) or discourse connective informed unlabeled
data (Rutherford and Xue, 2015; Xu et al., 2018).

2.2 Incorporate Knowledge into Discourse
Parsing

Only a few previous work (Park and Cardie, 2012;
Biran and McKeown, 2013; Lei et al., 2018) has
exploited external knowledge, including Word-
Net features (e.g., Antonyms and Hypernyms) and
Verb Class (Levin, 1993), in discourse parsing by
deriving discrete indicator features and then feed
them into feature-based classifiers. Incorporating
knowledge as additional features into neural net-
work models often generalize poorly due to the
sparsity of features, as also shown in our exper-
iments. Recently, Kishimoto et al. (2018) incor-
porated the whole of ConceptNet into a MAGE-
GRU (Dhingra et al., 2017) based neural net-
works, but their experiments show that it did not
work well for improving implicit discourse rela-
tion identification compared with their own base-

"Entity coreference relations were generated using an ex-
isting coreference resolver from Standford CoreNLP toolkit.

2977



line. We interpret this negative result as the con-
sequence of using irrelevant (noisy) knowledge
types blindly without proper regularization.

There are also recent work (Yang and Mitchell,
2017; Xu et al., 2017; Zhou et al., 2018) that in-
corporate external knowledge into neural network
models for improving several other NLP tasks,
including information extraction and conversa-
tion generation, which mostly followed the two-
step approach that first obtained representations of
knowledge (with triplet format) from knowledge
base using knowledge graph embedding methods
such as TransE (Bordes et al., 2013), and then
utilized attention mechanism (or added gates in a
RNN cell (Ma et al., 2018)) to integrate knowledge
representations with hidden word vectors. This
approach has two main drawbacks: (1) Knowl-
edge representations learned from the first step are
fixed without considering the influences of con-
texts, which may be suboptimal when used for un-
derstanding a particular context. (2) With no fil-
tering or regularization, it is difficult for attention
mechanisms to explicitly select and attend to the
relevant knowledge. In contrast, our proposed reg-
ularization approach can be regarded as an end-to-
end joint-learning framework for discourse pars-
ing and knowledge representation learning, which
not only considers both knowledge and contexts
in knowledge-aware word representation learning,
but also naturally balances attentions on both con-
texts and knowledge through regularization.

3 Model

Figure 1 illustrates the overall architecture of our
model, which implements our knowledge regular-
ization approach (the right part) on top of an exist-
ing model as the base model (the left part). There
are only two modifications we made to the base
model: (1) we insert a novel knowledge layer be-
tween the two BiLSTM layers of the base mode;
(2) we add a regularizer into the overall objective
function. We will first briefly describe the base
model, a replication’ of our recently proposed
paragraph-level discourse parsing model (Dai and
Huang, 2018). We will then explain the knowl-
edge layer and knowledge regularizer we added.

’In our re-implementation, we made several minor mod-
ifications to the original base model by using character-level
features as well as supporting both traditional fixed word em-
beddings (300D GloVe (Pennington et al., 2014)) and latest
context-dependent word embeddings (1024D ELMo (Peters
et al., 2018)) for word embedding initialization.

3.1 Base Model

The base model processes a paragraph containing
a sequence of discourse units each time, and pre-
dicts a sequence of discourse relations (both im-
plicit and explicit relations) with one relation be-
tween each pair of adjacent discourse units (DU).
The base model utilizes a hierarchical BiLSTM
to calculate both word-level and DU-level rep-
resentations, followed by a prediction layer and
Conditional Random Field (CRF) layer (Lafferty
et al., 2001) for jointly predicting a sequence of
discourse relations within a paragraph. The base
model consists of the following layers:

Character-level CNN Layer: The character-
level features, such as the prefix or suffix of a
word, can help alleviate the out-of-vocabulary
(OOV) problem and improve the word represen-
tation in neural nets (Santos and Zadrozny, 2014).
In our base model, we use one layer of CNN? with
max-pooling to extract character-level representa-
tion w;?ha’" for the i-th word of the input paragraph.

Word-level BILSTM Layer: Given a words
sequence X = (z1,x2,..., 1) as the input para-
graph, for each word z;, we construct the ex-
panded word vector by concatenating its word em-
bedding w};”‘”’d with its character-level representa-
tion and extra word-level features* as:

word. ,,.char. featureS]
) ’ (3 ) )

The word-level BiLSTM layer will pro-
cess the sequence of expanded word vectors
(w1, w2, ...,wr) and compute the word z;’s hid-
den representation at each word index :

hy, = BiLSTM (w;,ws, ...,wr,)

DU-level BiLSTM Layer: Given the output
of word-level BiLSTM (hy,, hy,,...,hy, ), We
calculate the raw DU representation by applying
max-pooling operation (Conneau et al., 2017) over
the sequence of word representations for all words
within a discourse unit: h’DUj = maXy,;epu; ha;

Then, the DU-level BiLSTM will process the
sequence of raw DU representations and obtain the
refined DU representation hpy, for the j-th dis-
course unit in a paragraph:

hpu, = BiLSTM (Kpy,, Ry, - Ky, )

3Both character embedding and CNN hidden size is 50.

“In this work, we used capitalization (Cap) flag, Part-
of-speech (POS) tag and named entity (NER) tag of each
word as extra word-level features. The embedding size for
Cap/POS/NER is 5/35/20. We used Standford CoreNLP
toolkit (Manning et al., 2014) to generate POS and NER tags.

w; = [w
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Figure 1: Model Architecture for Paragraph-level Discourse Parsing. The left part is the base model. The right
part with colored arrows and neurons show how to incorporate coreference and event knowledge into base model.

Untied (Explicit vs. Implicit) Prediction
Layer: Considering the different natures of ex-
plicit and implicit discourse relations (Pitler et al.,
2009; Lin et al., 2009), the base model trains two
independent linear layers with untied parameters
for predicting explicit or implicit discourse rela-
tions between each two adjacent DUs respectively:

_ Wexp [hDUt; hDUtJrl] + bezpa
v Wimp [hDUt; hDUtJrl] + bimpa

CREF Layer for Discourse Relation Sequence
Labeling: A CRF layer (Biran and McKeown,
2015) is added on top of the prediction layer to
fine-tune the predicted sequence of discourse re-
lations by capturing continuity and transition pat-
terns (e.g., a temporal relation is likely to follow
another temporal relation).

Given the hidden discourse relation represen-
tations H® = (h{” ) . h{)) and the tar-
get discourse relation label sequence y) =
(ygl),yé ),. .,y(TZ)) for the i-th training instance,
we minimize the following CRF loss function dur-
ing model training:

Lere = — Y logp(y|HY)

i
During testing, the Viterbi algorithm is used to
search for the optimal label sequence y* that max-
imizes the conditional probability p(y|H ).

if y; € exp
if y¢ € imp

3.2 Knowledge Layer

We simply insert a knowledge layer between the
word-level and DU-level BIiLSTM layers of the
base model, as shown in Figure 1, for incorporat-
ing external knowledge and linguistic constraints.
Although the knowledge layer can be easily ex-
tended to support other types of knowledge, we
only consider event knowledge and coreference
relations in this paper and leave the exploration of
other knowledge types in the future work.

Since there are some notable differences be-
tween event relations and entity coreference re-
lations, we model event and coreference con-
straints in different ways considering their speci-
ficities. For example, (1) an event relation can
be represented as the triple format ((h,7,t) or
(head, relation, tail) where head and tail are
two event words, relation indicates the relation-
ship between two events head and tail.) while a
coreference relation can have more than two coref-
erential entity mentions; (2) event relations are di-
rected while coreference relations are undirected.

Event Knowledge: As the input of our knowl-
edge layer, E = (E;i,Eqg,...,Ey/) denotes the
collection of event knowledge triplets generated
by matching the paragraph contexts with external
event knowledge base (we will give more details in
the following section 4.1.), where each triplet has
the form of (h, r, t) meaning that there is an event

2979



relation r (either temporal, causal or subevent in
this work) between the head event xj, at the posi-
tion A and tail event x; at the position .

For each triplet E,,, = (h,r,t), we use a feed-
forward neural network® f,.() to update the hidden
word representations of head and tail events:

fr(hxh)§ f’l”(h:l?t) = tanh(Wr [hxh§ hxt] =+ br)

where W, and b, are relation-specific weights and
bias learned for each type of event relation 7 only.

Coreference Relations: Our system assumes
that coreference relations in each paragraph are
given in the form of coreference clusters, which
are generated by running an existing coreference
resolver (Clark and Manning, 2016) from the lat-
est version (3.9.2) of Stanford CoreNLP toolkit.

Let C = (Cy,Cy,...,Ck) denote coreference
clusters in one paragraph, where Cj, contains the
word indices with corresponding words referring
to the same entity. Similar as above, we use one
feedforward neural network f.o.e f() to update the
hidden word representation h,, for words within
each coreference cluster. Specifically, the output
word vector has the following form:

fcoref (hxl)
t3‘4nh(‘/‘/coref [h]}“ h(Ck] + bcoref)a if T; € (Ck
B hy,, otherwise

where W,,..r and b, are the weights and bias,
hc, is a coreference vector calculated by apply-
ing max-pooling to all word representations in one
cluster: hc, = maxg,cc, hz,. The role of coref-
erence vector is similar to “context vector” uti-
lized in soft attention mechanism (Bahdanau et al.,
2015), but we use simple max-pooling instead of
computing weights® for different word vectors.

3.3 Knowledge Regularization

Inspired by the success of TransE (Bordes
et al., 2013) approach in knowledge representation
learning, we adapt the key assumption of TransE
(i.e., we want h + r ~ t when (h,r,t) holds.)
to our framework and hypothesize that the hid-
den representation of tail ¢ should be close to the

SWe also tried to use more complicated neural nets in-
cluding neural tensor networks (Socher et al., 2013) and self-
attentions mechanism (Vaswani et al., 2017), but none of
them performed better than straightforward feedforward neu-
ral network. We even tried to not update (identical function)
hidden word vectors, but it performed significantly worse.

®We tried to employ weights with soft-attention mecha-
nism, but it did not show improvement in our experiments.

hidden representation of head & plus the relation-
specific vector h,. in vector space if (h, 7, t) holds.
To guide the knowledge-aware word represen-
tation learning of the knowledge layer, we pro-
pose a knowledge regularizer based on TransE’
score function dyqnsp() and apply it to the out-
put word vectors of the knowledge layer. The re-
sulting regularization term is also minimized as a
part of the objective function during model train-
ing. In other words, the knowledge regulariza-
tion will smoothly penalize constraint depending
on whether this constraint can be applied for inter-
preting relevant relation in a particular context.
Specifically, we use cosine similarity® to mea-
sure the similarity of two vectors, so the score
function for triplet (h, r, t) has the following form:

dtransE(ha T, t) =1- COS(fr(h:Jch) + hy, fT(tht))

where h, is the relation-specific vector which will
be updated as parameters during model training.
The event knowledge regularization term is:

Revent = Z

Epm=(h,rt)eE

dtransE(ha T, t)

For coreference relations, we create a special
triplet (h, coref,t) for each two entity mentions
h and ¢ in one coreference cluster, and fix the
relation-specific vector hy.cf to be a zero vector
representing the relation of being “identical”. The
coreference relation regularization term is:

Rcoref = Z Z dtrumsE(h7 coref, t)

CrEC (h,t)ECy
Hence, the overall loss function for our model is:

L = Logr + )\event * Revent + Acoref * Rcoref

4 Experiments

4.1 Dataset and Preprocessing

Dataset: We evaluate our model on PDTB
v2.0 (Prasad et al., 2008), which is the largest an-
notated dataset containing 19K explicit discourse
relations and 17K implicit discourse relations. To
make our experimental results directly compara-
ble with previous work, we adopted the most-
used dataset splitting “PDTB-Ji” (Ji and Eisen-
stein, 2015) that uses sections 2-20, 0-1, and 21-22

"We also tried TransD (Ji et al., 2015) and TransR (Lin
et al., 2015) for knowledge regularization, but none of them
showed clear improvement over TransE in our experiments.

8Note that cosine similarity performed better than L1 or
L2 distance in our experiments.
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Relation Type Source # Discourse
Coreference CoreNLP 19,819 | Exp & Cont
Event Temporal Yao et al. 18,515 Temp
Event Causal ConceptNet 947 Cont
Event Subevent | ConceptNet 626 Exp & Temp

Table 1: Overview of relation types. # is the number
of matched triplets (clusters for coreference). The last
column summarizes relevant discourse relation classes
each knowledge type may potentially help identify.

as train, dev and test sets respectively. To recover
the paragraph contexts and gold discourse units,
we directly ran the source code® of Dai and Huang
(2018), and obtained 12,037/1222/1050 paragraph
instances in train/dev/test sets respectively.

Knowledge Preprocessing: Table 1 gives an
overview of the relation types used in our exper-
iments and the number of triplets (clusters) identi-
fied in the PDTB dataset. Specifically, for corefer-
ence relations, we utilized the Stanford CoreNLP
coreference resolver to identify coreference clus-
ters in each paragraph. For event knowledge, we
considered three major event relation types includ-
ing temporal, causal and subevent. We obtained
event temporal knowledge from a previous work
(Yao and Huang, 2018)'% and we retrieved the lat-
ter two types of event knowledge from Concept-
Net!'! (Speer and Havasi, 2012), which is a widely-
used commonsense knowledge base.

4.2 Experiment Setting

Evaluation Setting: Annotated discourse relation
labels in PDTB v2.0 are organized in a three-level
hierarchy. The top-level coarse-grained discourse
relation classes include Comparison (Comp), Con-
tingency (Cont), Expansion (Exp) and Tempo-
ral (Temp), which are further split into 16 fine-
grained classes at the second-level. To compare
with previous work, we report the macro-average
Fl-score and accuracy'? on the top-level multi-

°Available at https://github.com/ZeyuDai/
paragraph_implicit_discourse_relations.
Relations (0.5%) between non-adjacent DUs were discarded.

'We also tried to use VerbOcean (Chklovski and Pantel,
2004) which performed worse than our choices.

" Available at http://conceptnet.io. To extract
event causal knowledge, we merged the relations [‘Causes’,
‘CausesDesire’, ‘Entails’] defined in ConceptNet. To ex-
tract subevent knowledge, we merged the relations [‘Has-
Subevent’, ‘HasFirstSubevent’, ‘HasLastSubevent’]. For
simplicity, we removed relations containing multi-word
events or non-event words (e.g., function words).

2Note that 3% discourse relations in PDTB were anno-
tated with more than one label. Following previous work (Dai
and Huang, 2018; Bai and Zhao, 2018), we considered a pre-
diction as correct if it matches one of the gold labels.

class classification setting. Note that the macro-
average Fl-score is normally treated as the main
evaluation metric in most previous work consid-
ering the imbalanced distribution of discourse re-
lations. In addition, we report class-wise F1-
scores for the top-level implicit discourse rela-
tions. But different from many previous work
that report class-wise Fl-scores obtained by us-
ing the one-versus-all binary classification setting,
we instead report class-wise Fl-scores using the
4-way multi-class classification setting, follow-
ing Dai and Huang (2018) which pointed out that
compared to the one-versus-all binary classifica-
tion setting where all binary classifiers may pre-
dict a positive label for one instance, the multi-
class classification setting is more appropriate in
evaluating a practical end-to-end discourse parser
without the need of prediction conflict resolution.
We additionally evaluate our models at the second-
level using the 11-way'3 multi-class classification.
Training Setting: To make it easy for model
tuning, we only chose Acoref and Acyens from [0.1,
0.5, 1.0] and tuned them based on the best perfor-
mance on the dev set. All the BILSTM layers and
our knowledge layer used the hidden state size of
512, so the dimension of all hidden vectors (h.,
feoref(hs) and f.(hy)) is 512. To prevent gradi-
ent exploding problem of LSTMs, we clipped the
gradient L2-norm with threshold 5.0 and used L2
regularization with coefficient 10~8. We applied
dropout with probability 0.5 on the input/output
of BiLSTMs to alleviate overfitting. For the opti-
mizer, we used the SGD with momentum 0.9 and
batch size of 64, and we set the initial learning rate
as 0.015 which will decay by 5% after each epoch.
To diminish the effects of randomness in neural
network model training, we ran all our proposed
model, its variants as well as our own base model
3 times using different random seeds and reported
the average performance over 3 runs. For fair com-
parison, we implemented all our models with Py-
torch and tested them on a Nvidia 1080Ti GPU.

4.3 Models for Comparison

We compare our proposed regularization models
with the following base model, our own baselines
and recent published discourse parsing systems:

e (Dai and Huang, 2018): the original model
for paragraph-level discourse parsing.

3We followed Ji and Eisenstein (2015) to exclude 5 minor
second-level classes in our experiments because none of these
classes appear in the test or dev sets.
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Implicit Explicit

Model Macro  Acc [ Comp Cont Exp Temp | Macro  Acc
Previous work with the same evaluation setting
(Rutherford and Xue, 2015) 40.50 57.10 - - - - - -
(Liu et al., 2016) 4498  57.25 - - - - - -
(Liu and Li, 2016) 46.29  57.57 - - - - - -
(Lan et al., 2017) 47.80 57.39 - - - - - -
(Dai and Huang, 2018) 4882 5744 | 37772 4939 6745 40.70 | 93.21 93.98
(Bai and Zhao, 2018) (ELMo) 51.06 - - - - - - -
Our models using GloVe word embeddings
Base Model 48.96 5642 | 4129 47.77 66.16 40.60 | 93.78 94.64

Base Model + Coreference (C) 4942  57.15 | 41.39 4926 66.89 40.14 | 93.73 94.62
Base Model + Event Temporal 49.58 5731 | 41.52 4649 6750 42.83 | 93.87 94.72
Base Model + Event (E) 50.02 58.22 | 40.20 48.06 68.35 4345 | 93.63 94.46
Full Model (Base Model + C&E) | 5049 58.32 | 39.61 49.29 68.23 44.83 | 94.32 95.07
Our own baselines with knowledge features using GloVe word embeddings

Base Model + Word Features 4922 5733 | 41.72 4830 67.01 39.88 | 94.05 94.88
Base Model + DU Features 49.27 5755 | 41.72 48.01 6736 3998 | 93.98 94.82
Base Model + two-step approach | 49.63  57.52 | 41.41 4557 68.08 4346 | 93.88 94.71
Our models using ELMo™ word embeddings

Base Model 50.83  56.50 | 47.00 4642 6558 4421 | 9435 95.12
Full Model (Base Model + C&E) | 52.89 59.66 | 4534 51.80 68.50 4593 | 94.84 95.39

Table 2: Top-level Multi-class Classification Results on PDTB. We report macro-average F1-score (Macro), accu-
racy (Acc) and Fl-score on each class (Comparison, Contingency, Expansion and Temporal). Note that Bai and
Zhao (2018) used ELMo word embeddings, so this result is only comparable with the last section.

e Base Model: our replicated model of (Dai which first employs TransE to obtain rela-

and Huang, 2018) for paragraph-level dis-
course parsing.

Base Model + Word Features: our own base-
line that creates discrete features for each
word. We create one feature for each type of
relations, including three types of event rela-
tions and coreference relations, which counts
the number of relation triplets that contain a
word. We concatenate these word features
with the input word vector w;.

Base Model + DU Features: our own base-
line that creates discrete features for each DU
DU;. We create two features for each type
of relations: one counts relation triplets that
have both nodes within DU; and the other
counts relation triplets that have one node in
DUj and the other node in an adjacent DU.
We concatenate these DU features with the
hidden DU representation hpy,. Adding ei-
ther word features or DU features is to imi-
tate traditional feature-based approaches and
incorporate event knowledge and coreference
relation constraints as features.

Base Model + two-step approach: our own
baseline that follows the two-step approach
for incorporating relational constraints, in-
cluding both event relations and coreference
relations. We re-implement the inference
model proposed by Chen et al. (2018)'4,

“We followed Chen et al. (2018) to tune the hyper-

29

tion representations, and then uses attention
mechanism to incorporate relations and build
knowledge-enhanced DU representations.

e (Rutherford and Xue, 2015): a feature-based
classifier that utilizes explicit discourse con-
nectives for creating more implicit relations.

e (Liuetal.,2016): CNN based multi-task joint
learning model that leverages both PDTB and
RST (Carlson et al., 2003) datasets.

e (Liu and Li, 2016): a hierarchical attention-
over-attention neural network model for im-
plicit discourse relation recognition.

e (Lan et al., 2017): multi-task attention-based
model for predicting implicit discourse rela-
tions that leverages both explicit discourse re-
lations of PDTB and unlabeled data.

e (Bai and Zhao, 2018): a complex deep resid-
ual bi-attention based neural network model
for implicit discourse relation classification
which improves the hidden representations at
character, subword, word and DU levels.

4.4 Experiment Results

Table 2 shows the comparisons. The first section
lists the results of previous models that were eval-
uated on PDTB using top-level multi-class classi-
fication. Note that many cells are empty, it is be-
parameter A for each relation type in the range [0.1, 0.5, 1,

5, 10, 20, 50, 100], and we found that the best result was
achieved when A is set to 0.1 for each type of relations.
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Implicit Explicit
Model Macro  Acc | Macro  Acc
Our models using GloVe word embeddings

Base Model 28.59 4388 | 6340 86.02
+ Word Features | 30.83  44.17 | 6547 86.60
+ DU Features 3178 44.65 | 66.06 86.51
Full Model 32.13  46.03 | 69.24 87.25

Our models using ELMo word embeddings
Base Model 31.05 4598 | 70.01
Full Model 3341 48.23 | 70.48

87.83
88.08

Table 3: Second-level Multi-class Classification Re-
sults on PDTB. We report macro-average F1-score
(Macro) and accuracy (Acc).

cause that many previous publications chose to re-
port the class-wise implicit relation prediction per-
formance using the one-versus-all binary classifi-
cation setting, which are not directly comparable
with our class-wise results using the multi-class
classification setting following our previous work
Dai and Huang (2018). In addition, we also report
the explicit relation results.

In the second section, the replicated model
(Base Model) achieves an overall similar perfor-
mance' compared to the original model of Dai
and Huang (2018). By incorporating coreference
relations (+ Coreference) into the base model us-
ing our regularization approach, implicit discourse
relation prediction performance was improved for
two classes, Contingency and Expansion. Adding
event temporal knowledge (+ Event Temporal)
into the base model significantly boosts the perfor-
mance of Temporal discourse relation identifica-
tion. Furthermore, adding the additional two types
of event knowledge (+ Event), causal and subevent
relations, yields clear performance gains in pre-
dicting another two classes of implicit discourse
relations: Contingency and Expansion. These per-
formance gains meet our expectations that event
relations are correlated with discourse relations
and event relational knowledge facilitates predict-
ing corresponding discourse relations, with cor-
respondences listed in Table 1. The full model
considering both event knowledge and corefer-
ence relations (+ C&E) achieves further improve-
ments on implicit relation prediction, and out-
performs the base model by 1.5 and 1.9 points
on macro-average Fl-score and accuracy respec-
tively. Meanwhile, our full model obtains the best

1*We downloaded the pretrained ELMo embedding (5.5B
version) from AllenAl’s website (https://allennlp.
org/elmo) and froze its parameters during model training.
5The performance changes on individual categories are
due to minor modifications we made in replication, such as
adding char-level CNN and replacing word2vec with GloVe.

Implicit Explicit

Model Macro  Acc | Macro  Acc

Our models using GloVe word embeddings
Full Model | 50.49 5832 | 9432  95.07
w/o Reg 4428 5543 | 9256 93.59

Our models using ELMo word embeddings
Full Model | 52.89 59.66 | 94.84 95.39
w/o Reg 48.55 56.45 | 9377 94.65

Table 4: Impact of the Knowledge Regularization. We
report the top-level performance when knowledge reg-
ularizer was removed (w/o Reg) from full model.

results for explicit relation prediction as well.

Shown in the third section, our own baselines
which incorporate relational constraints either as
features or via the two-step approach only perform
slightly better than the base model, but clearly
worse than the full model using the regulariza-
tion approach. The first two baselines incorpo-
rate constraints as additional discrete features and
may suffer from feature sparsity issues, while the
two-step approach may fail to balance attentions
to contexts and knowledge constraints.

The last section presents the performance when
using ELMo word embeddings. Our full model
outperforms the base model on three out of four
(except Comp) implicit discourse relations and
improves both macro-average F1-score and accu-
racy by 2.1 and 3.2 points respectively. Further-
more, our full model outperforms the previous
best system (Bai and Zhao, 2018) using ELMo by
over 1.8 points of macro-average F1-score.

S Analysis

5.1 Second-level Multi-class Classification

Table 3 reports the performance of our models for
predicting second-level fine-grained discourse re-
lations. Same as top-level, our full model consis-
tently outperforms the base model and its variants
using either word-level or DU-level features.

5.2 Impact of the Knowledge Regularization

To study the necessity of the knowledge regular-
ization in our full model, we removed the reg-
ularization terms from the objective function by
setting Acoref and Aepent to be 0, which essen-
tially means that we did not restrict or regulate
the hidden knowledge-aware word vectors at all.
From Table 4, we can see that the model with-
out knowledge regularizer performs significantly
worse than the full model and even worse than the
base model, which supports our hypothesis that
using external knowledge or linguistic constraints
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Model # of errors
Base Model 217
Full Model 193

Table 5: Number of errors made by both models for
predicting implicit discourse relations with constraints.

blindly can hurt the performance. We conclude
that the knowledge regularizer plays a key role
in achieving the state-of-the-art performance and
the knowledge layer must be used together with
knowledge regularization in our framework.

5.3 Qualitative Analysis

To better understand the strengths and weaknesses
of the regularization approach, we analyzed im-
plicit discourse relation predictions made by our
base model and full model on the dev set. In to-
tal, there are 507 implicit discourse relations that
match with at least one event or coreference con-
straint across two DUs, while the remaining 717
instances do not involve those constraints. It turns
out that both the full model and base model per-
formed comparably on recognizing implicit dis-
course relations without event or coreference con-
straints, with 407 vs. 402 discourse relations cor-
rectly predicted by the full model and the base
model respectively. Therefore, the overall perfor-
mance gains achieved by the full model are mainly
from better resolving implicit discourse relations
with constraints, and as shown in Table 5, the full
model made 24 less errors than base model for pre-
dicting such implicit discourse relations.

We further compared predictions made by the
two models for implicit discourse relations with
constraints. We found that 96 predictions in total
have been changed by the full model, with clearly
more corrections (60, i.e., the full model corrected
predictions that were made wrongly by the base
model.) than false reversions (36, i.e., the correct
predictions made by the base model were wrongly
reverted by the full model.). Here is one example
from the 60 corrections made by the full model:

DUI: Steve and his firm still worth a lot of money.

DU2: A package of credit support was put together includ-
ing the assets of Steve and his firm.

Gold Discourse Relation: Implicit Contingency

Base Model’s prediction: Implicit Expansion

Full Model’s prediction: Implicit Contingency

The event causal relation between “worth” and
“support” identified using external event knowl-
edge has enabled the full model to correctly rec-
ognize this Contingency discourse relation.

We further examined the 36 wrong reversions of
decisions. Around one third of these errors were
due to either noise of event relation knowledge
or incorrect coreference relations produced by the
external CoreNLP coreference resolver we used.
The remaining errors came from over-reliance of
the full model on constraints in general. Consider-
ing the following example from the 36 reversions:

DUI: Another analyst thought that India may have pulled
back because of the concern over the stock market.

DU2: India may have felt that if there was a severe drop in
the stock market and it affected sugar, it could buy at
lower prices.

Gold Discourse Relation: Implicit Expansion

Base Model’s prediction: Implicit Expansion

Full Model’s prediction: Implicit Temporal

The full model could have relied on the event tem-
poral relation between “pulled back” and “drop”
and made the wrong discourse relation prediction.

6 Conclusion and Future Work

We have presented an effective regularization ap-
proach for incorporating external event knowledge
and system predicted coreference relations into an
existing paragraph-level neural network model for
discourse parsing. Our approach tightly integrates
knowledge and linguistic constraints with contexts
for deriving knowledge-aware word vectors and
meanwhile balances attentions over context and
constraints through regularization, which robustly
improves both implicit and explicit discourse rela-
tion classification performance on the benchmark
PDTB corpus. In the future, we will identify new
types of commonsense knowledge for further im-
proving the performance of discourse parsing. For
example, antonyms (e.g., warm vs. cold) can di-
rectly indicate a contrast relation between two sit-
uations, and this type of knowledge has potential
to further improve the performance on Compari-
son discourse relations.
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