
 Genome-phenome wide association in maize and 

Arabidopsis identifies a common molecular and evolutionary 

signature

Zhikai Liang1,2, Yumou Qiu3 and James C. Schnable1,2*

1. Department of Agronomy and Horticulture, University of Nebraska-Lincoln, 

Lincoln, NE, USA

2. Plant Science Innovation Center, University of Nebraska-Lincoln, Lincoln, NE, 

USA

3. Department of Statistics, Iowa State University, Ames, IA, USA

      * Corresponding author: James C. Schnable; Email: schnable@unl.edu

Running title

Genome-phenome wide association in multiple plants

Abstract

Linking natural genetic variation to trait variation can help determine the functional roles 

different genes play. Often variation of one or several traits are assessed separately.  

High throughput phenotyping and data mining can capture dozens or hundreds of traits 

from the same individuals. Here we test the association between markers within a gene 

and many traits simultaneously. This Genome-Phenome Wide Association Study 

(GPWAS) is both a multi-marker and multi-trait test. Genes identified using GPWAS with 

260 phenotypic traits in maize were enriched for genes independently linked to 

phenotypic variation. Traits associated with classical mutants were consistent with 

reported phenotypes for mutant alleles. Genes linked to phenomic variation in maize 

using GPWAS shared molecular, population genetic, and evolutionary features with 

classical mutants in maize. Genes linked to phenomic variation in Arabidopsis using 

GPWAS are significantly enriched in genes with known loss of function phenotypes.  

GPWAS may be an effective strategy to identify genes where loss of function alleles will 

produce mutant phenotypes. The shared signatures present in classical mutants and 
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genes identified using GPWAS may be a marker for genes with a role in specifying plant 

phenotypes generally, or pleiotropy specifically.   
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Introduction

In multicellular eukaryotes, only a small proportion of all annotated genes have yet to be 

linked to loss of function phenotypes (Schnable and Freeling, 2011; Schofield et al., 

2012; Lamesch et al., 2012; Rhee and Mutwil, 2014; Chong et al., 2015; Schnable, 

2019). Even in extensively studied single celled eukaryotes such as fission yeast 

(Schizosaccharomyces pombe) where the number of annotated genes is less and it is 

easier to screen for fitness effects under many environmental conditions there are 

thousands of genes where predicted gene functions have yet to be supported by a loss 

of function phenotype (Lock et al., 2019). The functions of many other genes have been 

inferred from quantitative genetic analyses. Arguably, the first such quantitative genetic 

association was the identification of a seed size QTL in dry bean (Phaseolus vulgaris) in 

1923. This study used a single genetic marker, which was a qualitative trait controlled 

by a single gene (Sax, 1923). Soon after, quantitative trait variation could be linked 

directly to chromosome structural markers (Sprague, 1941). Technology for scoring 

genetic markers continued to advance, making it possible to genotype markers covering 

the entire genome across a population. This enabled Genome Wide Association Studies 

(GWAS) employing the linkage disequilibrium (LD) present in natural populations to 

identify functionally variable alleles of a gene influencing variation in a target trait 

(Eagle, 2006; Dewan et al., 2006; Atwell et al., 2010). The vast majority of loss of 

function mutations affect multiple traits. However, the majority of current quantitative 

genetics approaches seek to identify either genetic markers or genes linked to single 

phenotypes, with a subset considering data from multiple correlated phenotypes (Zhou 

and Stephens, 2012; O’Reilly et al., 2012; Korte et al., 2012; van der Sluis et al., 2013; 

Stephens, 2013; Wang et al., 2015; Turley et al., 2018; Pitchers et al., 2019). It is now 

feasible to collect data for thousands of intermediate molecular phenotypes, such as 
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transcript, protein, or metabolite abundance, from entire association populations and 

incorporate these data into quantitative genetics models as either explanatory (Lin et al., 

2017; Kremling et al., 2019) or response variables (Wen et al., 2014; Matsuda et al., 

2015; Diepenbrock et al., 2017; Kremling et al., 2018). Advances in high-throughput 

plant phenotyping have expanded the capacity of these techniques to score dozens or 

hundreds of whole-organism phenotypes across multiple time points and environments 

(Walter et al., 2015; Araus et al., 2018). Incorporating data on large sets of phenotypes 

scored in the same populations, including both correlated and uncorrelated traits, may 

aid in the identification of genes that, like the vast majority of classical loss of function 

mutants, play roles in controlling variation in multiple traits within an organism.

    Here we employ a published dataset of 260 distinctly scored traits for 277 

resequenced maize inbred lines (Flint-Garcia et al., 2005; Bukowski et al., 2018) to 

develop and evaluate a novel approach to identify the links between genes and 

quantitative phenotypic variation per se using a multi-trait multi-SNP framework. We 

demonstrate that the genes identified using this method, which we call Genome-

Phenome Wide Association Study (GPWAS), show substantially greater cross-validation 

in an independent study using data from approximately 20 times as many individuals 

(Wallace et al., 2014) than do genes identified using conventional GWAS analysis of the 

same dataset. For a wide range of features, including expression level and breadth, 

syntenic conservation, purifying selection in related species, and the prevalence of 

presence-absence variation (PAV) across diverse maize lines, the genes identified using 

this multi-trait multi-SNP approach appear more similar to genes identified using forward 

mutagenesis, and less similar to the overall population of annotated maize gene 

models.

Results

Conceptual design of the GPWAS model 

Scoring plant phenotypes from genetically identical populations across multiple 

environments and/or extracting plant phenotypes from different types of sensor data can 

produce high(er) dimensional trait datasets. We sought to develop and evaluate a 

model which could incorporate data from many traits, including uncorrelated traits, and 
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identify associations between genes and trait variation in practical amounts of 

computational time. Briefly our model requires two data matrices: one containing allele 

calls for many genetic markers across individuals in a population, and a second 

containing observed values for the same individuals across many traits. One or more 

genetic markers are assigned to a given gene or other genomic interval of interest. 

These markers are then treated as a response variable. The significance of the 

association between the gene or other genomic interval of interest and trait variation 

(considered as a whole) is determined by the comparison of two models. The first model 

seeks to predict genotype values for genetic markers in the target interval using solely 

information on population structure. The second model seeks to predict genotype 

values for genetic markers in the target interval using both trait data and population 

structure data using a stepwise selection procedure (see Methods and Figure 1).   

Application of both GPWAS and GWAS to data from a maize diversity 

panel

Being able to employ and evaluate GPWAS required  high density genotype and 

phenotype data collected from a common population. For this initial application and 

evaluation, data was collected from public sources. Genetic marker data were obtained 

from resequencing data of 277 inbred lines from the Buckler-Goodman maize 

association panel (Flint-Garcia et al., 2005). These lines are part of Maize HapMap3, 

which contains data for a total of 81,687,392 SNPs (Bukowski et al., 2018). After 

removing the SNPs with high levels of missing data, those that were not polymorphic 

among the 277 individuals employed here, and several other quality filtering 

parameters, 12,411,408 SNPs remained. Of these, 1,904,057 SNPs were assigned to 

32,084 annotated gene models from the B73 RefGenV4 genome release. Filtering to 

eliminate redundancy between SNPs assigned to the same gene in high LD with each 

other reduced this number to 557,968 highly informative SNPs. A phenotypic dataset 

consisting of 57 specific traits scored for the Buckler-Goodman maize association panel 

across 1 to 16 distinct environments for a total of 285 unique phenotypic datasets was 

obtained from Panzea (Zhao et al., 2006). Removing datasets with extremely high 

levels of missing data resulted in 260 trait datasets with a median missing data rate of 

18%. Of the total 72,020 potential trait datapoints (277 inbred lines × 260 traits), 

23.6% or 16,963 trait datapoints were missing. Missing trait datapoints were imputed 
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using PHENIX a method which employs a combination of both kinship and between trait 

correlations to impute missing values in large-dimensional phenotypic datasets 

collected from populations (Dahl et al., 2016), and the estimated imputation accuracies 

for the individual traits are reported in Supplemental Data 1A. A conventional GWAS 

analysis generally employs either empirically determined statistical significance cutoffs 

(Wallace et al., 2014), or a Bonferroni correction based on the total number of 

hypothesis tests (International HapMap Consortium and others, 2005) or the number of 

"effective number" Meff of independent hypothesis tests conducted (Li and Ji, 2005). For 

the above dataset, employing a naive Bonferroni correction would mean each individual 

analysis would be conducted using a multiple-testing corrected p-value cutoff of 8.96e -

08, while a sequential analysis of all 260 traits should employ a multiple-testing corrected 

p-value of 3.45e-10. As shown in Figure 2A, a given gene might be identified in multiple 

independent GWAS analyses for individual traits but not be considered significantly 

associated with any traits when correcting for the total number of traits analyzed. In the 

example given, Zm00001d002175 shows a statistically significant association with 

flowering time in multiple environments, yet none of these associations are individually 

significant enough to meet the threshold for the full multiple testing correction. 

    Bonferroni multiple testing correction assumes that each test is independent of all 

other tests, however, the different trait datasets collected from the Buckler-Goodman 

association panel exhibited significant correlation (Figure 2C), including three large 

blocks of traits related to flowering time, plant architectural traits, and tassel structure 

traits respectively. To address the challenges of partially correlated traits and partially 

correlated genotype matrices, we developed an approach based upon a stepwise 

regression model fitting. 

    Multiple testing was corrected using a permutation-based method (see Methods), 

which controls for the complexities introduced by iterative model selection. It must be 

noted that this procedure controls the overall false discovery rate (FDR) among the 

population of genes identified as showing a statistically significant link between 

genotypic and phenotypic variation. It is not an estimate of Family Wise Error Rate 

(FWER) which would be obtained by only considering the single most significant p-value 

obtained for any gene in each permutation. Although computationally expensive, 

permutation has been shown to be robust for controlling false positives in both GWAS 
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and PheWAS studies (Tian et al., 2011; Namjou, B et al., 2014). Based on the 

permutation analysis, a p-value cutoff of 1.00e-23 resulted in the classification of 1,776 

genes as being significantly associated with phenomic variation in the Buckler-

Goodman association panel, resulting in an estimated FDR < 1.00e-3. Imputation 

accuracy varied significantly among individual traits. To test whether it might be 

beneficial to exclude traits with high missing data rates and low imputation accuracy, the 

effect of adding additional simulated zero-heritability phenotypes to the trait matrix was 

evaluated. Log transformed p-values for individual genes were highly correlated (R2 = 

0.96) before and after the addition of simulated zero heritability traits. All 260 traits were 

retained for downstream analysis as low information content traits may still provide 

some value and, based on the test above, appear to be, at worst, benign. For 

comparison purposes, the same set of traits and genotypes was also tested for 

associations using three conventional GWAS algorithms: a general linear model (GLM 

GWAS) (Price et al., 2006), a mixed linear model (MLM GWAS) (Yu et al., 2006; Price et 

al., 2006), and FarmCPU GWAS (Liu et al., 2016) (See Methods). Applying an 

equivalent permutation based FDR threshold to each conventional GWAS algorithm 

removed the vast majority of positive signals (Supplemental Figure 1). Therefore, for 

GWAS models, a conventionally multiple testing corrected p-value cutoff was employed 

(Supplemental Figure 1).

Validation of Gene-Phenome Associations

A second published dataset of genes identified as being associated with variation in trait 

values in the maize nested association mapping (NAM) population, which includes 

approximately 5,000 lines (McMullen et al., 2009), was employed to assess the relative 

power and accuracy of three conventional GWAS algorithms as well as the GPWAS 

algorithm (McMullen et al., 2009; Wallace et al., 2014). As the published data for the 

NAM population used B73 RefGenV2, all comparisons employed only the subset of 

29,372 gene models with a clear 1:1 correspondence between gene models included in 

the B73 RefGenV2 and B73 RefGenV4 annotation versions. Of these, 4,227 genes 

were identified as being associated with at least one trait in the NAM dataset (Wallace 

et al., 2014). Genes identified using GPWAS showed significantly higher cross-

validation in the NAM dataset than the sets of genes identified using GLM GWAS (p = 

2.05e-5; Chi-squared test; two-sided), MLM GWAS (p = 0.010; Chi-squared test; two-
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sided), or FarmCPU GWAS (p = 0.013; Chi-squared test; two-sided) (Figure 3A and 3B; 

Supplemental Data 1B). Filtering to remove signals from rare SNPs where the minor 

allele was present in only one or two of the NAM population founder lines reduced the 

total number of genes identified in that study to 3,621. However, the overall trend 

observed remained consistent and statistically significant, with the genes identified 

using the GPWAS algorithm continuing to show statistically significantly higher rates of 

identification in the reduced NAM dataset (GLM GWAS, p=1.63e-4; MLM GWAS, 

p=0.002; FarmCPU GWAS, p=0.025; Chi-squared test; two-sided) (Supplemental Data 

1B). Analyses with two smaller real-world datasets for biochemical traits related to 

vitamin A (24 traits) and vitamin E (20 traits) metabolism (Owens et al., 2014; 

Diepenbrock et al., 2017) did not reveal any significant increase in the number of a 

priori gene candidates identified as showing a link to phenotypic variation relative to 

conventional GWAS approaches (Figure 3C). Conventional GWAS showed substantial 

advantages in power at low false discovery thresholds when compared to GPWAS for a 

single trait in simulation studies, while GPWAS showed significant advantages in power 

FDR trade offs when data on multiple traits (e.g more than 5 traits) was integrated into 

the analysis (Figure 3D). These simulations likely overstate GPWAS's performance 

advantage as phenotypes are likely to exhibit different degrees of genetic architecture 

complexity and differing degrees of shared v.s. unique causal loci.

    Our GPWAS algorithm also produces a list of the specific traits included in the model 

for a given gene (Supplemental Data 1C). For example, in Figure 2B, the overall 

association between Zm00001d002175 and the trait dataset was statistically significant. 

The 11 individual traits included in the Zm00001d002175 model included both flowering 

time measured in multiple locations, as well as additional traits with indirect links to 

flowering time (e.g. number of leaves, Summer 2008, Cayuga, NY), and others with no 

obvious links to flowering time. These included the total kernel volume in one year in 

one location and kernel proteins as estimated using near infrared imaging in another 

year in a different location. 

GPWAS Accurately Predicts Pleiotropic Consequences of Gene 

Knockouts

It is important to keep in mind that the associations of individual phenotypes identified 
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within the model are not rigorously controlled for false discovery. We therefore sought to 

qualitatively evaluate whether traits included in the model for an individual gene make 

sense in the context of existing detailed biological knowledge about the function of a 

given gene. One such gene was anther ear1 (an1), a classical maize gene encoding an 

ent-copalyl diphosphate synthase involved in gibberellic acid biosynthesis, for which 

knockout alleles have been shown to reduce or abolish tassel branching, reduce plant 

height, delay growth, and delay flowering (Bensen et al., 1995). In a separate analysis 

of the 5,000 individual maize NAM lines, an1 was identified as being associated with 

one trait, tassel spike length (Brown et al., 2011), however, it was not found to be 

associated with any individual traits through a conventional GWAS analysis of the 

Buckler-Goodman 282 dataset. GPWAS identified a statistically significant link between 

an1 and a model incorporating multiple phenotypes including flowering time, plant 

height, and tassel branch number, all consistent with the known mutant phenotypes 

(Figure 4A and 4C). At least one additional phenotype included in the GPWAS model -- 

germination count (Summer 2006, Johnston, NC) -- was not supported by direct reports 

of characterization of the an1 knockout allele, but is consistent with the role of an1 in 

gibberellic acid metabolism (Peng and Harberd, 2002; Landoni et al., 2007). Overall, the 

set of phenotypes identified using GPWAS for the an1 gene appeared to be consistent 

with previously reports based on either the characterization of the knockout allele or 

quantitative genetic analyses of natural populations. To disambiguate the effects of the 

multiple SNP and multiple traits portions of this analysis, the same multiple marker 

analysis for an1 was conducted separately for each individual trait from the set of 260. 

This approach identified a larger total number of traits than a joint analysis of all 260 

traits together. However, individually significantly associated traits tended to represent a 

smaller number of phenotype groups (i.e. multiple correlated measurements of the 

same phenotype in different environments) and failure to capture some of the traits 

consistent with the known function and mutant phenotypes of an1 (Supplemental Figure 

2).

    The GPWAS model also identified liguleless2 (lg2), another classical maize mutant 

with a well characterized knockout mutant phenotype (Brink, 1935). The lg2 encodes a 

bZIP transcription factor (Walsh et al., 1998). The loss of lg2 function disrupts the 

establishment of the ligule and auricle of the maize leaf and results in plants with 

extremely erect leaves (Brink, 1935; Harper and Freeling, 1996). Lines carrying lg2 
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knockout alleles have been reported to exhibit substantially (10-50%) higher grain yield 

than otherwise isogenic hybrids (Pendleton et al., 1968; Lambert and Johnson, 1978), 

reduced tassel branch numbers (Lambert and Johnson, 1978; Walsh and Freeling, 

1999), and moderately increased central spike length (Walsh and Freeling, 1999). 

Quantitative genetic analyses have identified signals for leaf angle, tassel branch 

number, and kernel row number associated with the lg2 locus (Walsh and Freeling, 

1999; Tian et al., 2011; Brown et al., 2011; Li et al., 2018), although the effect on kernel 

row number was not significant in at least one study utilizing null alleles of lg2 (Walsh 

and Freeling, 1999). In our study, GPWAS identified a statistically significant link 

between lg2 and a model incorporating multiple phenotypes including upper leaf angle, 

leaf length, central spike length, kernel weight (a yield component trait), and cob 

diameter. Cob diameter exhibits substantial correlation and overlapping genetic 

architecture with kernel row number (Liu et al., 2015) (Figure 4B). The GPWAS model 

for lg2 also incorporated a number of flowering-time related traits, which do not have 

consistent support in either the characterization of lg2 knockout mutants, or previous 

quantitative genetic analyses of flowering time in maize. Despite this, knockout alleles of 

lg2 have been reported to alter the vegetative-to-reproductive phase transition in maize 

and produce increased numbers of leaves on the main stalk, which would be consistent 

with its altered flowering time (Walsh and Freeling, 1999; Liu et al., 2015). As in the 

case of an1, the traits identified as being associated with lg2 using GPWAS appear to 

be largely consistent with previous characterization of the functional roles of lg2 in 

maize (Figure 4B and 4D).

    Individual case studies such as the ones presented above can be misleading. As a 

control, we set out to identify similar case studies for genes identified by conventional 

GWAS. A total of seven classical maize mutants from the list in (Schnable and Freeling, 

2011) were identified as linked to one or more traits by one of the three GWAS models 

tested: GLM 5, MLM 1, FarmCPU 1 (Supplemental Data 1D). In many cases there was 

no apparent link between the known gene function and the trait where a significant 

association was identified. For example, a gene -- glossy8 -- involved in the reduction of 

ketones as part of the biosynthesis of cuticle waxes showed a statistical association 

with plant tillering, and a transcription factor regulating the production of anthocyanin -- 

colored alurone1 -- showed a statistical association with cob diameter (Supplemental 

Data 1D) (Paz-Ares et al., 1987; Xu et al., 1997). A mutant involved in sex determination 
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-- indeterminate spikelet1/Tasselseed6 -- showed a link to flowering time and a second 

gene involved in cuticular wax production -- glossy1 -- showed a link to a disease 

resistance phenotype (Supplemental Data 1D) (Chuck et al., 1998; Sturaro et al., 2005). 

However, we were not able to identify any stronger links between GWAS trait 

associations and classical maize mutants in this dataset.

Greater Functional Specificity of Genes Identified Using GPWAS

Genes identified using GPWAS appear to be a significantly less random sample of total 

gene models than the set of genes identified using GLM GWAS. A set of 1,406 genes 

were uniquely identified using GPWAS but not GLM GWAS. An equivalent set of 1,630 

genes were identified using GLM GWAS but not GPWAS. In the larger unique-to-GLM 

GWAS gene set, a single Gene Ontology (GO) term showed a statistically significant 

bias towards being associated with phenotypic variation (GO:0046034: ATP metabolic 

process), and two GO terms with nearly identical gene assignments showed a 

statistically significant bias towards not being associated with phenotypic variation 

(GO:0000723: Telomere maintenance and GO:003220 Telomere organization). 

However, the moderately smaller set of genes uniquely identified using GPWAS was 

enriched or purified for the presence of many more GO terms. A total of 71 GO terms 

were overrepresented in the unique-to-GPWAS (relative to GLM GWAS) gene set to a 

statistically significant degree, including numerous terms linked to development, 

hormone signalling, response to different stimuli, and cell growth (Supplemental Data 

1E). The 13 GO terms that were underrepresented among genes uniquely identified 

using the GPWAS algorithm were generally associated with DNA conformation and 

replication (Supplemental Data 1E). A similar comparison was made between genes 

uniquely identified using GPWAS and FarmCPU GWAS. In this case only 706 genes 

were uniquely identified using FarmCPU. As it is more likely for an enrichment or 

purification to be statistically significant in larger populations, only the 706 most 

significant unique-to-GPWAS (relative to FarmCPU GWAS) genes were evaluated in 

this comparison to eliminate any potential bias. Among the unique-to-FarmCPU GWAS 

gene set, only a single GO term was overrepresented to a statistically significant degree 

(GO:0051707: Response to other organism). However, among the the unique-to-

GPWAS (relative to FarmCPU GWAS) gene set of equal size, 39 GO terms showed a 

statistically significant overrepresentation, while another 4 were statistically 
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underrepresented (Supplemental Data 1E).

    Several potential factors could explain the large difference in GO enrichment 

purification we observed between genes identified solely using GWAS and genes 

identified solely using GPWAS. A number of factors, including the number of GO terms 

per gene and the proportion of genes with no assigned GO term, differed modestly 

between the different populations of genes (Supplemental Data 1F). The specificity of 

GO terms was higher for genes identified using only GPWAS than for genes identified 

using only GWAS. GO terms assigned to genes identified using only GPWAS were 

assigned to a median of only 430 other genes. GO terms assigned to genes identified 

using only GLM GWAS were assigned to a median of 514 other genes. This difference 

in the number of genes that a given GO term is assigned does not appear to explain the 

differences observed in the enrichment or purification (Supplemental Figure 3). Rather, 

the large differences observed here are consistent with GWAS identifying a more 

random subset of annotated genes as being associated with phenotypic variation than 

did GPWAS.

Molecular, Structural, and Evolutionary Features of Genes Identified 

Using GPWAS

Genes identified using the GPWAS algorithm differed from the overall population of 

annotated maize gene models in a number of characteristics, as well as from the 

populations of genes identified using conventional GWAS. In many cases, the 

properties of genes identified using GPWAS appeared more similar to the population of 

genes with validated loss-of-function phenotypes (Schnable and Freeling, 2011). 

Slightly less than half of all annotated maize genes were expressed to a level above 1 

fragment per kilobase of transcript per million mapped reads (FPKM) on the average of 

the 92 tissues/time points assayed (Schnable and Freeling, 2011; Stelpflug et al., 2016). 

Among genes identified using any of the three conventional GWAS algorithms, more 

than 2/3rds had average expression levels >1 FPKM. Among genes identified using the 

GPWAS algorithm and among genes with validated loss of function phenotypes, more 

than 3/4th had average expression levels >1 FPKM (Figure 5A; Supplemental Data 1B). 

Genes identified using GLM GWAS, MLM GWAS, FarmCPU GWAS, GPWAS, and the 

classical mutants all exhibited greater breadths of expression across tissues, larger 
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numbers of genes with observed evidence of translation, and greater gene lengths than 

the population of annotated genes as a whole (Supplemental Data 1B). The number of 

associated SNPs was positively correlated with the log-transformed inverse p-value 

assigned to genes using both GWAS (r = 0.566) and GPWAS (r = 0.625) (Supplemental 

Figure 4; Supplemental Data 1G). However, this association declined dramatically in the 

permuted data for GPWAS (median permuted r = 0.155), but remained high for GWAS 

(median permuted r = 0.626) (Supplemental Data 1H). This suggests that the high 

number of SNPs per gene for GPWAS (median: 43 SNPs, mean: 47.3 SNPs) relative to 

the overall gene set (median: 12 SNPs, mean: 17.4 SNPs) is a biological property of the 

genes controlling phenotypic variation in this population, rather than reflecting a bias in 

the GPWAS algorithm. 

    On a population and comparative genomics level, genes identified using the GPWAS 

algorithm also differed from the overall population of annotated maize gene models, and 

looked more like genes with validated loss-of-function phenotypes. Genes identified 

using both the conventional GWAS and GPWAS algorithms were significantly less likely 

to exhibit PAV in the maize populations (Figure 5B) than the overall population of maize 

gene models. The reduction in PAV frequency for genes identified using GPWAS (7.0%) 

was significantly greater than for genes identified only using GWAS (10.4%) (p=0.0015; 

Chi-squared test; two-sided), and not statistically significantly different from low level of 

presence absence variation observed for maize genes with validated loss of function 

phenotypes genes (4.1%) (p=0.36; Chi-squared test; two-sided) (Supplemental Data 1I). 

Genes identified using either conventional GWAS and GPWAS algorithms were 

significantly more likely to be conserved at syntenic orthologous locations in sorghum 

than the overall set of maize gene models (Figure 5C). Genes uniquely identified using 

GPWAS were more likely to be conserved at syntenic locations in the genome of 

sorghum (Sorghum bicolor) (91.8%) than those uniquely identified using GWAS (74-

85%; see Supplemental Data 1I). This difference was statistically significant in 

comparison to all three GWAS algorithms tested and was comparable to the likelihood 

of syntenic conservation for maize genes with known loss of function mutant 

phenotypes (93.9%) (Supplemental Data 1I).

    The genes identified as being associated with phenotypic variation using GPWAS 

also appeared to be under stronger purifying selection than either the overall population 
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of maize gene models or those identified using any of the three conventional GWAS 

algorithms (Figure 5D; Supplemental Data 1I). This analysis was constrained to the 

subset of gene models with conserved orthologs in sorghum (Sorghum bicolor), and 

foxtail millet (Setaria italica). Among these genes, those uniquely identified using 

GPWAS showed a reduced ratio of nonsynonymous substitution rate to synonymous 

substitution rate (Ka/Ks) (median: 0.168-0.169; mean 0.208-0.210), relative to the 

overall population of syntenically conserved maize gene models (median: 0.200; mean: 

0.246), while those uniquely identified using GWAS showed elevated rates (median: 

0.202-0.233; mean: 0.251-0.261) relative to the same overall population (Supplemental 

Data 1I). Among the maize genes with characterized loss-of-function phenotypes, this 

ratio declined even further (median: 0.144; mean: 0.177). In short, the typical annotated 

gene appears to experience notably less purifying selection than those associated with 

organismal-level phenotypic variation based on either characterized loss-of-function 

mutant phenotypes or those identified using the GPWAS, but not a GWAS, algorithm.

Genes identified using GPWAS in A. thaliana are enriched in reported 

loss of function phenotypes

Genotype and phenotype data were curated from a subset of the Arabidopsis 1001 

Genomes Project (https://1001genomes.org/data/GMI-MPI/releases/v3.1/) and four 

independent publications reporting multiple phenotypic datasets (Atwell et al., 2010; 

Exposito-Alonso et al., 2019; Julkowska et al., 2017; Li et al., 2010) deposited in 

AraPheno, respectively. After excluding lines absent from the resequencing dataset and 

those phenotyped for an insufficient number of traits, a final dataset of 158 traits scored 

for 164 A. thaliana genotypes was obtained, alongside a set of 208,236 SNP markers 

assigned to A. thaliana gene models. Data were analyzed as described above, resulting 

in the identification of 131 genes associated with trait variation in A. thaliana using the 

GPWAS algorithm and the same permutation based statistical significance cutoff 

employed for maize data. The difference in the number of genes confidently identified 

using GPWAS algorithm at a permutation estimated FDR < 1.00e-3 between maize and 

A. thaliana may reflect differences in the phenotypes scored in each dataset or 

differences genetic architecture, but the simplest and most likely explanation is that the 

large difference simply results from the smaller number of individuals and traits 

available in the A. thaliana dataset. Within the set of 131 genes identified as showing 
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significant association with trait variation in A. thaliana using the GPWAS algorithm, 21 

genes (16%) belonged to a set of A. thaliana genes with reported loss of function 

phenotypes  (Lloyd and Meinke, 2012). This is approximately 2x the frequency of genes 

with reported loss of function phenotypes in the A. thaliana genome as a whole (7%). It 

is also higher than the frequency of genes with loss of function phenotypes in the 131 

most significantly associated genes identified using either GLM based GWAS (10%) or 

FarmCPU based GWAS (11%). The difference in the frequency of genes with reported 

loss of function phenotypes in the set of genes identified using the GPWAS algorithm 

and the background set is statistically significant (p=0.00026; Chi-Square Test). 

    The total number of genes identified using these A. thaliana datasets was much 

smaller than the number of genes identified using the same algorithm in maize 

(approximately 1/10 as many genes). Similarly, the number of genes identified using 

conventional GWAS algorithms was also lower in the Arabidopsis dataset than the 

maize dataset. Eight-hundred-thirty-five genes showed statistically significant 

associations with at least one phenotype using the GLM GWAS model, 326 genes using 

the FarmCPU model, and eight genes using the MLM GWAS model. We speculate that 

this is a result of only having data for a smaller number of phenotypes scored across a 

smaller number of unique genotypes. Neither GLM GWAS nor FarmCPU GWAS model 

was significantly more likely to identify genes with validated loss of function phenotypes 

phenotypes than the background population. The MLM GWAS gene set was too small 

to test. Genes with validated loss of function phenotypes share many properties 

between maize and Arabidopsis, including higher expression, greater syntenic 

conservation, and lower Ka/Ks ratios (Schnable, 2019).  More detailed comparisons 

between maize and A. thaliana must await datasets with more phenotypes scored over 

more A. thaliana genotypes, and the identification of larger sets of A. thaliana genes 

associated with phenomic variation.

Discussion

Complex datasets can contain scores for dozens or hundreds of traits across the same 

populations. The prevalence of these datasets and the challenges and opportunities 

they present is expected to grow in the coming years. Here, we developed an approach 

for identifying genotype-phenotype associations that can scale to the analysis of 
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datasets containing hundreds, or potentially even thousands, of traits. The set of genes 

identified by this GPWAS algorithm showed significant differences from the overall 

population of gene models for a range of features. However, these differences do not 

appear to be results of biases within the GPWAS algorithm itself. They may instead 

reflect biological differences between genes associated with phenotypic variation and 

other annotated gene models in the genome.

    The statistical tests upon which the GPWAS approach is built become unstable once 

the number of traits exceeds the number of individuals scored, therefore, scaling to high 

numbers of traits would require the use of larger association populations than many of 

the most general used plant populations today (Flint-Garcia et al., 2005; Atwell et al., 

2010; Huang et al., 2010; Morris et al., 2013). Multicollinearity in either the predictor or 

response variables can make the statistical estimation and inference procedures we 

employed unstable (Rencher and Schaalje, 2008). In cases where the number of 

measured traits exceeds the number of environments, it would be advisable to employ 

alternative approaches to reduce the dimensionality of the trait dataset, whether that be 

an ad hoc approach such as selecting a subset of representative traits from highly 

correlated blocks, or dimensional reduction analyses such as principal component 

analysis or multidimensional scaling. The automatic application of variable selection 

and/or dimensional reduction in such scenarios could be incorporated into future 

GPWAS implementations. The selection of the number of principal components to 

include in quantitative genetic tests is a matter of ongoing debate. Including too few PCs 

results in false positive associations driven by population structure, while including too 

many overcontrols population structure and dramatically reduces the power. A plot of 

the cumulative variance of the proportion of genetic variation in the maize 282 panel did 

not show a clear "elbow" and less than 40% of total genetic variation was explained 

when 30 PCs were included (Supplemental Figure 5A). While we chose to employ three 

PCs in the primary results presented here, a parallel analyses employing 20 PCs to 

control population structure for both GPWAS and GWAS algorithms recovered the same 

distinguishing signatures of genes associated with phenotypic variation relative to the 

overall set of gene models (Supplemental Figure 5B-E), although with substantially 

reduced numbers of total positive genes for all algorithms. This suggests that the 

pattern reported here is not an artifact of particular parameter selection decisions. Both 

multivariate tests of genotype phenotype association and multi-marker based tests have 
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been previously explored (Trégouët et al., 2009). Conventional approaches to 

multivariate GWAS analysis require that the set of traits being tested simultaneously be 

correlated (Turley et al., 2018; Pitchers et al., 2019). These algorithms cannot scale 

efficiently to testing associations with hundreds of traits simultaneously on a genome-

wide scale, as adding more traits in multivariate GWAS leads to exponential increases 

in computational cost (Korte et al., 2012). GPWAS can iteratively search through large 

sets of correlated and uncorrelated traits, allowing it to utilize datasets, such as the one 

discussed here, which it is not possible to analyze using conventional multi-trait GWAS 

methods. While this provides advantages in terms of scalability, it does come at some 

cost. Firstly, as presently implemented, GPWAS cannot estimate marker/gene effects as 

is possible with many conventional GWAS algorithms. Secondly, as a result of the 

stepwise selection procedure, the set of traits identified as associated with a gene in a 

GPWAS analysis is unlikely to be exhaustive, particularly when multiple traits are 

closely correlated. For example, tassel spike length and tassel length are generally 

correlated including in this dataset. GPWAS identified variation in tassel length but not 

spike length as associated with an1. However, if tassel length is removed from the 

dataset, spike length becomes one of the phenotypes selected by the GPWAS model 

for an1. This manuscript is not intended to be an exhaustive comparison of methods for 

linking genotype and phenotype, but rather to highlight features associated with genes 

linked to phenomic variation which were either indetectable or less obvious using 

existing widely adopted methods. 

    A challenge for the present implementation of GPWAS is that it requires regions of 

interest to be defined across the genome. In this study, annotated gene models were 

used to define these regions, however, approximately 40% of the phenotypic variation in 

maize has been estimated to be explained by noncoding regulatory regions (Rodgers-

Melnick et al., 2016). These regions can be separated from the genes whose 

expression they control by many kilobases (Studer et al., 2011; Castelletti et al., 2014), 

while LD in maize generally decays within one to several kilobases (Remington et al., 

2001; Romay et al., 2013). Both sequence conservation and chromatin mark data could 

be used to define additional regions of interest likely to represent regulatory sequences 

(Zhang et al., 2012; Turco et al., 2013; Oka et al., 2017). Similar approaches could also 

be employed to identify currently unannotated regions of the genome with a high 

potential for containing cryptic genes, including functional long noncoding RNAs (Lloyd 
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et al., 2018). Finally, as presently implemented, GPWAS assumes the availability of 

multiple markers per gene -- or other region of interest -- genotyped across an 

association population. Presently this limits its applicability to a small number of species 

such as rice, Arabidopsis and maize. However the declining cost of obtaining high 

density genotypic data, via methods such as whole genome resequencing, genotyping 

by RNA-seq, or exom-seq means this barrier is likely to become less significant in the 

future. 

    The genes identified as linked to phenotypic variation in maize using the GPWAS 

algorithm shared many common features with the smaller set of maize genes with 

validated loss of function phenotypes. The smaller get of genes identified as linked to 

phenotypic variation in A. thaliana showed a statistically significant enrichment among 

the larger set of A. thaliana genes with validated loss of function phenotypes. Genes 

linked to variation individual phenotypes using GWAS in maize exhibited intermediate 

values between all gene models and GPWAS/classical mutants. And genes linked to 

variation in individual phenotypes using GWAS in A. thaliana exhibited an enrichment in 

genes with known loss of function phenotypes which was not statistically significant but 

was intermediate between the overall set of annotated genes and the significant 

enrichment among genes identified using the GPWAS algorithm. One potential 

explanation for this result is that mutant analysis and GPWAS may be more likely to 

identify genes with pleiotropic effects while conventional GWAS has greater strength to 

identify loci where functional variation influences only a small number of phenotypic 

outcomes. In this scenario the molecular and evolutionary signatures shared by 

classical mutants and genes identified using GPWAS may be associated with genes 

where functional variation is likely to have pleiotropic consequences. However, many of 

the signatures associated with reported loss of function phenotypes in both maize and 

Arabidopsis are consistently found at about the same strength in genes associated with 

lethal, non-lethal but constitutive, or environmentally conditional phenotypes (Schnable 

and Freeling, 2011; Schofield et al., 2012; Lamesch et al., 2012; Rhee and Mutwil, 

2014; Chong et al., 2015; Schnable, 2019). This would not be consistent with the 

signatures we identify among genes identified as linked to phenotypic variation in maize 

using the GPWAS algorithm being a marker for essentiality. A second potential 

explanation is that, because the GPWAS algorithm incorporates data from many traits 

collected in differing environments it may simply have a lower false positive rate than is 
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possible through the analyses of any single phenotype. In this scenario the molecular 

and evolutionary signatures shared by classical mutants and genes identified using 

GPWAS may be a marker of which gene models play a notable role in influencing plant 

phenotype. 

Methods

Genotype and Phenotype Sources, Filtering, and Imputation

Raw genotype calls from the resequencing of the maize 282 association panel 

(Bukowski et al., 2018) were retrieved from Panzea in AGPv4 coordinates. Missing 

genotypes were imputed using Beagle (version: 2018-06-10) (Browning and Browning, 

2016; Bukowski et al., 2018). Only biallelic SNPs with fewer than 20% missing data 

points were subjected to imputation. After imputation, SNPs with a minor allele 

frequency (MAF) of less than 0.05 or which were scored as heterozygous in more than 

10% of samples were discarded. A phenotype file (traitMatrix_maize282NAM_v15-

130212.txt) containing a total of 285 traits, corresponding to 57 unique types of 

phenotypes scored in 1 to 16 environments was downloaded from Panzea. A set of 277 

accessions with identical names in the HapMap3 data release and the Panzea trait data 

were employed for all downstream analyses. 

    Maize gene regions were extracted from AGPv4.39, which was downloaded from 

Ensembl. SNPs were clustered based on R2 > 0.8 and only one randomly selected SNP 

per cluster was retained. If, after collapsing the highly correlated clusters, the number of 

SNPs exceeded 138 (50% of the number of inbred lines scored), a random subsample 

of 138 SNPs was employed for the downstream analyses. Identical final SNP sets were 

employed for the GPWAS and GWAS analyses. 

    Of the 285 initial trait datasets, 25 were removed because the data file contained a 

recorded trait value for only one individual, leaving a total of 260 trait datasets. Using a 

Bayesian multiple-phenotype mixed model (Dahl et al., 2016), missing phenotypes were 

imputed based on a kinship matrix calculated from 1.24 million SNPs generated using 

GEMMA (version: 0.94.1) (Zhou and Stephens, 2012; Dahl et al., 2016). For those traits 

with a sufficient number of real observations to enable evaluation, the accuracy of the 

phenotypic imputation was assessed independently by masking 1% available records 
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for each trait and comparing the imputed and masked values. This process was 

repeated 10x for each trait.

Calculating Principal Component Scores Used in Both GPWAS and 

GWAS 

A subset of 1.24 million SNPs distributed across both intragenic and intergenic regions 

on all 10 chromosomes was used to perform PCA using the R prcomp function to 

provide controls for population structure. As the maize 282 panel exhibits relatively low 

population structure (Flint-Garcia et al., 2005), only the first three PCs were included in 

both GWAS and GPWAS analyses, however, comparable analyses could be run with 

different numbers of PCs included. In GPWAS, for analysis of the given gene on each 

chromosome, markers solely from the other 9 chromosomes were used to reduce the 

endogenous correlations between genes and principal components (Listgarten et al., 

2012; Rincent et al., 2014). In GWAS, principal components were calculated using all of 

1.24 million SNPs on 10 chromosomes.

GPWAS Analysis 

All the operations for the GPWAS analyses are detailed in the R source code used to 

conduct the analysis -- and associated documentation -- which has been made 

available online (https://github.com/shanwai1234/GPWAS). 

    Briefly, we employed a model selection approach to adaptively select the most 

significant phenotypes associated with each gene. A F-test (one-sided) was used to 

compare a model to explain variation in SNPs based solely on population and a model 

which incorporated both population structure and trait data. The significance in the 

difference of the goodness of fit between these two models was used to determine the 

significance of the association of individual genes with phenotypic variation in the 

dataset, the Reduced Model (RM) based solely on population structure and the 

Phenotype Incorporating Model (PM) which used stepwise selection to include both 

population structure and trait data within its model. It should be noted that the direction 

of a regression does not require an assertion about the direction of causality. A 

regression model can be used to predict the value of a cause from a measured effect, 

or to predict the outcome from a known cause.
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Reduced Model:

Let the subscripts k and i represent the kth individual and the ith gene. Let gk,i be the 

corresponding SNP values in that gene (g). 

    Here, gk,i is an m-dimensional vector of genotypes for SNPs where m is the number of 

distinct genetic markers associated with the gene after removal of SNPs in high linkage 

disequilibrium with each other.

    We considered the multiple responses regression model:

    (1) gk , i=∑
q=1

v pc

PCk , qβ iq+ε k, i

    where q denotes the qth principal component, and v pc is the number of the 

included principal components in (1). The regression coefficients β iq  and the errors 

ε k, j  are all m dimensional vectors.

Stepwise Selection:

    The final model begins with the initial model (1) and uses a stepwise selection 

procedure (Draper, N. R. and Smith, H., 1998) to add additional traits as explanatory 

variables. In each iteration, we consider the model:

    (2)gk , i=∑
q=1

v pc

PCk , qβ iq+∑
j

❑

Phek , j
c τ ij+εk , i

   where { Phek , j
c } are the currently selected, and τ ij  is the corresponding coefficient 

for the phenotype Phek , j
c  of the ith gene. The goodness of fit for each trait in the 

model (2) was assessed for all SNP markers in the ith gene jointly. 

   In detail, least square estimation was applied to fit the regression (2) and to obtain the 

residuals { ε̂ k, i }. Let Σ̂e, i = n−1Σ k=1
n ε̂ k, i  ^ε ' k ,i

❑ be the residual sample 

covariance. The association between the kth trait and all of the evaluated SNPs were 

jointly evaluated by comparing the determinants of residual sample covariances Σ̂e. i  

with and without that trait included in the model. The p-value of the association was 
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obtained from a F-test built on a likelihood ratio statistic widely used in multi-response 

regression (see Section 7.7 in (Draper, N. R. and Smith, H., 1998; Johnson, R. A. et al., 

2002). This F-test incorporated the dependence among the SNPs, and thus provided a 

more powerful test than the individual test of association for each single SNP by 

combining multiple signals across different SNPs.

    If at least one trait passed a set significance threshold -- here p < 0.01 was selected 

-- the single most significant trait among all traits significantly associated at p < 0.01 was 

added to the model (2); see Figure 1. The model itself was then rerun using all traits 

selected to that point. If any of the traits already incorporated into the model failed to 

meet the original cut-off value of p < 0.01 after the incorporation of the newest trait, the 

single least significantly associated trait was removed from the model Figure 1. The cut-

off value 0.01 is widely used for stepwise regression (Draper, N. R. and Smith, H., 

1998). Looser thresholds (.05 and 0.1) required significantly more iterations to 

converge, dramatically increasing computational cost. The protocol employed here 

focused on controlling false discovery at the level of the final phenome-wide association 

test (as described below), while accepting that, regardless of the p-value threshold 

within the stepwise regression both false positives and false negatives for individual 

phenotypes will occur.

    The process above constituted one iteration of the stepwise selection procedure. In 

the analyses presented in this manuscript, 35 sequential iterations of the stepwise 

selection procedure were performed per gene. With this dataset of genotypes and traits, 

every gene tested converged to a single stable model within less than 35 iterations 

(Supplemental Figure 6), however this assumption would need to be revisited when 

employing GPWAS on other datasets which might include either more individuals, more 

traits, or fewer traits with high pairwise correlation. 

Phenotype Incorporating Model:

    The final phenotype incorporating model (PM) can be represented as:

    (3)gk, i=∑
q=1

vpc

PC k, q βiq+∑
j=1

v i

Phek, j
¿ τ ij

¿
+ε k, i

    In the final model (3), there were v i  selected phenotypes for the ith gene, where 
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v i  ≤  260. The selected phenotypes { Phek , j
¿

} were a subset of the collection of 

all the phenotypes { Phek ,1 ,Phek ,2 , ..., Phek , 260 }, and τ ij
¿

was the corresponding 

coefficients for the selected phenotype Phek , j
¿

of the ith gene. Note that gk ,i , β iq , 

and τ ij
¿

 can be vectors corresponding to the multiple SNPs within the ith gene.

Model Comparison:

The final step was to evaluate how much the inclusion of trait data improved model fit 

(PM) relative to a purely population structure based model (RM). The statistical 

significance of the increase in goodness of fit of the two models was compared using a 

F-test (Johnson, R. A. and Wichern, D. W. et al., 2002) via comparing the residuals 

covariances of those models. The F-test takes into account all of the SNPs included 

from the target interval, as well as the degree of correlation between these SNPs. The 

filtering of highly linked SNPs described above satisfies the criteria of the F-tests that 

multiple response variables should not exhibit strong correlations with each other. 

    As adding more explanatory variables to a model will always tend to improve the 

goodness of fit, permutation based analyses were used to determine a threshold for a 

statistically significant increase in goodness of fit between the reduced model (RM) and 

the phenotype incorporating model (PM). Twenty permutations of the trait/genotype 

associations were conducted and GPWAS was run independently on each of these 

twenty permutations. Distributions of F-test PM/RM model comparisons from the 

permuted and unpermuted data were used to estimate false discovery rates at different 

cut off thresholds (Supplemental Figure 1). 

GWAS Analysis

GLM GWAS and MLM GWAS analyses were conducted using the algorithm defined by 

Price and coworkers (Price et al., 2006). The FarmCPU GWAS with conducted using 

the algorithm defined by Liu and colleagues (Price et al., 2006; Liu et al., 2016). All 

algorithms were run using the R-based software rMVP (MVP version 1.0.1) (A Memory-

efficient, Visualization-enhanced, and Parallel-accelerated Tool For Genome-Wide 

Association Study) (https://github.com/XiaoleiLiuBio/rMVP). FarmCPU analysis method 

was run using maxLoop = 10 and method.bin = "FaST-LMM" (Lippert et al., 2011). The 

first three principal components were considered to be additional covariates for the 
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population structure control in all analyses. The same kinship matrix used in the 

phenotype imputation was also used for controlling the genotype relationship in the 

MLM GWAS model, while the method for analyzing variance components (vc.method) 

was set to GEMMA (Zhou, 2017). To enable a comparison with the GPWAS results, 

each gene was assigned the p-value of the single most significant SNP among all the 

SNPs assigned to that gene across the 260 analyzed phenotypes in the GWAS model.

Comparison to Maize Classical Mutants

Maize classical loss of function mutant identities were taken from a previous study 

(Schnable and Freeling, 2011). To obtain an exhaustive list of reported mutant 

phenotypes, papers were mined from MaizeGDB loci pages, where both papers and 

conference abstracts that reference studies on individual maize genes, both cloned and 

uncloned, are captured by manual data curation (Schaeffer et al., 2011).

Nested Association Mapping Comparison in Maize

Published associations identified for 41 phenotypes scored across ∼ 5,000 maize 

recombinant inbred lines were  retrieved from Panzea 

(http://cbsusrv04.tc.cornell.edu/users/panzea/download.aspx?filegroupid=14) (Schaeffer 

et al., 2011; Wallace et al., 2014). Following the thresholding proposed in that paper, a 

SNP and CNV (copy number variant) hits with a resample model inclusion probability 

≥  0.05, which were either within the longest annotated transcript for each gene 

(AGPv2.16) or within 15kb upstream or downstream of the annotated transcription start 

or stop sites were assigned to that gene respectively. Gene models were converted 

from the B73 RefGenV2 to B73 RefGenV4 using a conversion list published on 

MaizeGDB (https://www.maizegdb.org/search/gene/download_gene_xrefs.php?

relative=v4).

Maize Gene Expression Analysis

Raw reads from a published maize expression atlas generated for the inbred line B73 

were downloaded from the NCBI Sequence Read Archive PRJNA171684 (Stelpflug et 

al., 2016). Reads were trimmed using Trimmomatic-0.38 with default setting parameters 

(Bolger et al., 2014; Stelpflug et al., 2016). Trimmed reads were aligned to the maize 
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B73 RefGenV4 reference genome using GSNAP version 2018-03-25 (Wu and Nacu, 

2010). Alignment results were converted to a sorted BAM file format using SAMtools 1.6 

(Li et al., 2009; Wu and Nacu, 2010), and the FPKM values were calculated for each 

gene in the AGPv4.39 maize gene models in each sample using Cufflinks v2.2 (Trapnell 

et al., 2012). Only annotated genes located on 10 maize pseudomolecules were used 

for downstream analyses and the visualization of the FPKM distribution.

Calculating Ka/Ks ratios for Maize Gene Models

For each gene listed in a public syntenic gene list (Schnable J.C., 2018), the coding 

sequence for the single longest transcript per locus was downloaded from Ensembl 

Plants. Their sequences were each aligned to the single longest transcript of genes 

annotated as syntenic orthologs in Sorghum bicolor v3.1 (McCormick et al., 2018) and 

Setaria italica v2.2 (Bennetzen et al., 2012), retrieved from Phytozome v12.0 using a 

codon-based alignment as described previously (Zhang et al., 2017). The calculation of 

the ratio of the number of nonsynonymous substitutions per non-synonymous site (Ka) 

to the number of synonymous substitutions per synonymous site (Ks) was automatically 

calculated using scripts which are provided on github 

(https://github.com/shanwai1234/Grass-KaKs). Genes with a synonymous substitution 

rate less than 0.05 on the branch leading to maize after the maize/sorghum split were 

excluded from the analyses, as these atypically low Ks values tended to produce 

extreme Ka/Ks ratios. Genes with multiple tandem duplicates were also excluded from 

the Ka/Ks calculations. The calculated Ka/Ks ratios of maize genes are provided in 

Supplemental Data 1J.

Analysis of Presence/Absence Variation (PAV) Patterns in Maize

PAV data were downloaded from a published data file (Brohammer et al., 2018). 

Following the thresholding proposed in that paper, a gene was considered to exhibit 

presence absence variance if at least one inbred line had a coverage of less than 0.2.

Gene Ontology Enrichment Analysis in Maize

All GO analyses used the maize-GAMER GO annotations for B73 RefGenV4 gene 

models (Brohammer et al., 2018; Wimalanathan et al., 2018b). Statistical tests for GO 
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term enrichment and purification were performed using the goatools software package 

(v0.8.12) (Klopfenstein et al., 2018), with support for a two-sided Fisher's exact test 

provided by the fisher_exact function in SciPy. To determine the median information 

content of the GO term, each was assigned a score based on the total number of gene 

models to which this GO term was assigned to in the maize-GAMER dataset. This 

analysis considered only gene models to which a GO term was specifically applied to in 

the dataset, but not gene models where the assignment of the GO term may have been 

implied by the assignment of a child GO term. Genes in B73 RefGenV4 Zm00001d.2 

that employed in maize-GAMER GO annotations ( ∼ 40,000 genes) were used as the 

background population. 

Evaluation of GPWAS and GWAS Power and FDR Using Simulated 

Data

SNP calls for the entire set of 1,210 individuals included in Maize HapMap3 were 

retrieved from Panzea (Bukowski et al., 2018), filtered, and assigned to genes as 

described above resulting in 1,648,398 SNPs assigned to annotated gene body regions 

in B73 RefGenV4. Two thousand genes, associated with 30,547 SNP markers were 

randomly sampled for downstream simulation. Independent phenotypes with known 

causal QTNs (Quantitative Trait Nucleotides) were simulated using the additive model in 

GCTA (v1.91.6) (Yang et al., 2011). Effect sizes for each QTN for each simulated 

phenotype in each permutation were drawn from a normal distribution centered on zero.

    The resulting simulated trait data and genuine genotype calls were analyzed using 

GLM GWAS, FarmCPU GWAS, and GPWAS as described above, with the exception 

that the population structure PCs were calculated using a sample (1% or 191,856 

SNPs) of the total SNPs remaining after filtering, rather than only using the subset of 

SNPs assigned to the 2,000 randomly selected genes included in this analysis. 

    For each analysis, the set of 2,000 genes was ranked from most to least statistically 

significant based on the significance of the most significantly associated SNP (for GLM 

and FarmCPU GWAS) or the significance of the overall model fit relative to a population 

structure only model (for GPWAS). The power evaluation for GPWAS was defined as 

the number of true positive genes relative to the total number of causal genes, and FDR 

was defined as the number of false positive genes relative to the total number of 
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positive genes. Power and FDR were calculated in a step of five genes starting with the 

five most significant genes and continuing to the 500 most significant genes (i.e. 

{5,10,...,495,500}).

    In each phenotype simulation, 100 genes (5%) were randomly selected as causal 

genes to simulate one phenotype. For each causal gene in each simulation, a causal 

SNP was selected to simulate the phenotypic effect. Each of 100 phenotypic traits with 

heritability as 0.5 were simulated using the same set of 100 genes. Total 100 simulated 

phenotypes were split into 1, 5, 10, 20, 50 and 100 subgroups for running GPWAS. 
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Figure Legends

Figure 1. GPWAS algorithm implementation. (A) Example of trait and genotype 

matrices employed for GPWAS. (B) Flow chart showing initial data processing and the 

forward selection process within the GPWAS algorithm.

Figure 2. Statistical association between the maize gene Zm00001d002175 and 

260 distinct phenotypes. Each diamond or triangle represents one specific phenotypic 

dataset. Symbol colors indicate the broad categories into which each specific phenotype 

falls. The specific identities of each phenotype ordered from left to right are given in 

Supplemental Data 1A. (A) The position of each diamond on the y-axis indicates the 

negative log10 p-value of the most statistically significant SNP assigned to that gene in a 

GLM GWAS analysis for that single trait. The dashed blue line indicates a p = 0.05 

cutoff after Bonferroni correction for multiple testing based on the number of statistical 

tests in a single GWAS analysis (8.96e-8). The solid line indicates a p = 0.05 cutoff after 

Bonferroni correction for multiple testing based on the number of statistical tests in 

GWAS for all 260 traits (3.45e-10). (B) The placement of each triangle on the y-axis 

indicates whether a given phenotype was included in (Sel.) or excluded from (Uns.) the 

final GPWAS model constructed for this gene. The complete list of phenotypes 

incorporated into the GPWAS model for Zm00001d002175 is as follows: days to silk 

(Summer 2006, Cayuga, NY; Summer 2007, Johnston, NC), days to tassel (Summer 

2007, Johnston, NC; Summer 2008, Cayuga, NY), GDD (Growing Degree Days) day to 

silk (Summer 2006, Cayuga, NY; Summer 2007, Johnston, NC), main spike length 

(Summer 2006, Johnston, NC), number of leaves (Summer 2008, Cayuga, NY), leaf 

width (Summer 2006, Champaign, IL), NIR (Near InfraRed)-measured protein (Summer 

2006, Johnston, NC) and ear weight (Summer 2006, Champaign, IL). (C) The panel 

indicates the pairwise Pearson correlation coefficient between each pair of measured 

phenotypes. Clustering based on phenotypic correlation was used to determine the 

ordering of phenotypes along the x-axis. Each tick mark on the x-axes of the top and 

middle panels indicates a distance of five phenotype datasets. 

Figure 3. Comparison of power to detect causal genes using either GWAS or 

GPWAS and either real and simulated data. (A) Proportion of genes linked to 

phenotypic variation in the Buckler-Goodman association panel using different statistical 
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methods which were also identified as linked to trait variation in a separate analysis of 

the maize Nested Association Mapping population (Wallace et al). The leftmost bar 

indicates the background rate among all maize gene models with 1:1 relationships 

between B73 RefGenV2 (used by Wallace et al) and B73 RefGenV4 (used in this 

study). *: p ≤ 0.05; ***: p ≤  1e-3 (Chi-Square Test). (B) Relationship between the 

total number of positive genes selected by each of the four quantitative genetics 

methods and the total number of positive genes which were also identified by Wallace et 

al. (C) Comparison of the performance of GPWAS and conventional GWAS methods in 

the identification of a prior candidate genes involved in vitamin A and E biosynthesis. 

Phenotypic data and published a priori candidate gene lists for vitamin A and vitamin E 

were taken from (Owens et al., 2014); (Diepenbrock et al., 2017). The methodology used 

here was otherwise identical to that employed for panel B. (D) Trade offs between 

power and FDR for GPWAS and FarmCPU GWAS when working with simulated data 

and different numbers of phenotypes. Each point indicates power and FDR calculated at 

a different step between the 5 and 500 most significantly associated genes, and derived 

from the 10 independent simulations. Error bars indicate standard errors for both FDR 

and power. The suffix -p# within the legend indicates the number of distinct phenotypes 

included in the analysis. FarmCPU provided the most favorable trade offs between 

power and FDR than the other two GWAS models at all steps. The results of the two 

other methods are omitted for readability. For simulation details see methods.

Figure 4. Evaluation of GLM GWAS, MLM GWAS, FarmCPU GWAS, single iteration 

single trait gene-trait association and GPWAS using known maize genes Anther 

ear1 (an1) (Zm00001d032961) and liguleless2 (lg2) (Zm00001d042777). (A) The 

dashed lines indicates a p-value corresponding to 0.05 after a Bonferroni correction for 

independent tests on 557,968 (SNPs). Solid lines indicate the stricter multiple testing 

corrected threshold, which considers both the number of SNPs and the number of 

phenotypes tested. In the GPWAS panel, Sel. and Uns. indicate traits that were 

selected and unselected respectively, in the model GPWAS fit for this particular gene. 

Phenotypes are ordered along the x-axis in the same order used for Figure 2, with each 

tick mark indicating a distance of five phenotypes. Phenotypes incorporated in the 

GPWAS model for an1 were as follows: germination count (Summer 2006, Johnston, 

NC), days to tassel (Summer 2007, Cayuga, NY), GDD days to silk (Summer 2007, 

Johnston, NC; Summer 2007, Champaign, IL; Winter 2006, Miami-Dade, FL), tassel 
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length (Summer 2007, Cayuga, NY), spikelets primary branch (Summer 2006, 

Champaign, IL), secondary branch number (Summer 2006, Boone, MO), plant height 

(Summer 2006, Cayuga, NY), NIR-measured protein (Summer 2006, Johnston, NC), 

NIR-measured oil (Summer 2006, Johnston, NC; Winter 2006, Miami-Dade, FL), cob 

weight (Summer 2007, Johnston, NC), ear diameter (Summer 2007, Johnston, NC) and 

total kernel volume (Summer 2006, Cayuga, NY). (B) Phenotypes incorporated in the 

GPWAS model for lg2 were as follows: days to silk (Summer 2006, Johnston, NC), days 

to tassel (Winter 2006, Ponce, PR), GDD days to tassel (Summer 2007, Champaign, 

IL), GDD anthesis-silking interval (Winter 2007, Miami-Dade, FL), main spike length 

(Summer 2006, Johnston, NC), leaf length (Summer 2006, Boone, MO), upper leaf 

angle (Summer 2006, Cayuga, NY), number of tillering plants (Summer 2007, Cayuga, 

NY), cob diameter (Winter 2006, Ponce, PR) and kernel weight (Summer 2007, 

Cayuga, NY).  (C) The potential correspondence between phenotypes selected using 

the GPWAS model for an1 using the GPWAS model and phenotypes either reported for 

loss of function an1 mutants or previous quantitative genetic analyses (Bensen et al., 

1995; Peng and Harberd, 2002; Landoni et al., 2007; Brown et al., 2011). (D) The 

potential correspondence between phenotypes selected by the GPWAS model for lg2, 

and phenotypes either reported for loss of function lg2 mutants or previous quantitative 

genetic analyses (Brink, 1933; Pendleton et al., 1968; Lambert and Johnson, 1978; 

Harper and Freeling, 1996; Walsh and Freeling, 1999; Tian et al., 2011).

Figure 5. Comparisons among four gene populations: Background, GWAS (Genes 

linked to phenotype by GWAS (GLM) but not by GPWAS), GPWAS (Genes linked 

to phenotype by GPWAS but not by GWAS (GLM)) and classical mutants with 

known loss of function phenotypes (Schnable and Freeling, 2011). (A) Proportion of 

genes within each of the four populations which express with average FPKM > 1 of 92 

assayed tissues/time points. (B) Proportion of genes within each of the four populations 

which exhibit presence absence variation (PAV) in maize. (C) Proportion of genes within 

each of the four populations which are conserved at syntenic orthologous locations in 

sorghum (Sorghum bicolor). (D) Distribution of Non-synonymous substitution 

rate/Synonymous substitution rate (Ka/Ks) for the subset of genes from each of the four 

populations with syntenic orthologs in both sorghum and foxtail millet (Setaria italica). A 

small number of individual genes with Ka/Ks ratios >1 are not show to aid readability 

(one gene in the GLM GWAS population, two in the GPWAS population). *:p value < 
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0.05; **: p value < 0.01; ***: p value < 1e-3 (Chi-Squared test employed for panels A-C; 

Mann–Whitney U employed for panel D.). GWAS, GPWAS, and classical mutant 

populations exhibited statistically significant differences from the background gene 

population for all four features shown. Comparable data for the other two GWAS 

algorithms evaluated as part of this study (MLM and FarmCPU), are provided in 

Supplemental Data.

Figure S1. Permutation testing based estimation of false discovery rates for GLM 

GWAS, FarmCPU, and GPWAS. For each panel, the dark curve shows the distribution 

of per gene p-values obtained from 20 permutations of genotype and trait data (see 

Methods), while the light curve indicates the distribution of per gene p-values obtained 

from the analysis of the non-permuted dataset. Red lines indicate the p-value analyses 

employed in these analysis, corresponding top p-value = 8.96e-8 for GLM and FarmCPU 

and an estimated FDR < 0.001 for GPWAS. Genes assigned p-values on the right side 

of each red line were employed for all downstream analyses in the main text. Panels A-

C show the entirety of the distributions, while panels D-F display a magnified view of the 

regions of the curve where the p-value threshold is employed. When these data were 

used to estimate the p-value cut off corresponding to an estimated FDR < 0.001 for 

GLM GWAS, this was found to correspond to an uncorrected p-value of approximately 

1e-14, resulting in 31 genes would remain statistically significantly associated with traits. 

For FarmCPU GWAS, the minimum FDR achieved was FDR <0.029 at a p-value 

threshold of 1e-15, resulting in 38 genes remaining statistically significantly associated 

with traits.

Figure S2. P-values assigned to the link between an1 and individual phenotypes 

when the multi-SNP GPWAS algorithm was run with a single iteration and 

provided with only a single trait per analysis. Essentially this eliminates the effects of 

the forward selection and the "multi-trait" components of the GPWAS algorithm, 

retaining only the "multi-marker" components. Traits are sorted from most significant 

single-trait GPWAS association to least. Stars indicate those phenotypes which were 

associated with an1 when all 260 phenotypes were analyzed together using the full 

GPWAS model.

Figure S3. Comparison of GO enrichment/purification among genes uniquely 

identified as being associated with phenotypic variation using different statistical 
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approaches. Each circle represents a single GO term in a single analysis. The position 

of each circle on the x axis indicates the total number of maize gene models which were 

assigned to this GO term in the maize GAMER dataset (Wimalanathan et al., 2018a). 

The position of each circle on the y-axis indicates the statistical significance of the 

enrichment or purification of this GO term in the given gene population relative to the 

background set of all annotated maize gene models. Red lines indicate the threshold for 

determining a significant GO term after a Bonferroni correction. (A) Comparison of the 

patterns of GO term enrichment/purification among genes either uniquely identified as 

being associated with phenotypic variation using a GLM GWAS analysis or uniquely 

identified as being associated with phenotypic variation in a GPWAS analysis. (B) As in 

panel A, but the comparison is between genes uniquely identified as being associated 

with phenotypic variation using a FarmCPU analysis or uniquely identified as being 

associated with phenotypic variation in a GPWAS analysis. Only the 706 genes uniquely 

identified using GPWAS with the strongest statistical signal were employed in panel b, 

to prevent any bias towards more significant p-values resulting from an analysis using a 

larger population of genes identified using GPWAS than those identified using 

FarmCPU.

Figure S4. Number of SNPs identified per gene and the p-value of genes identified 

using different models. (A) The number of SNPs assigned to genes uniquely identified 

using either GPWAS or GLM GWAS, as well as the total number of genes with identified 

SNPs. SNPs assigned to gene regions were filtered and employed in all analyses. The 

maximum remaining number of SNPs per gene was 138. The distributions of the genes 

uniquely identified using GLM GWAS or GPWAS were statistically significantly different, 

p < 2.2e–16 (Mann-Whitney U test; two-sided). (B) Correlations between the SNP number 

per gene and the –log10 p-value of the total number of genes identified using GPWAS on 

real phenotype data. (C) Correlations between the SNP number per gene and the –log10 

p-value of the total genes identified using GPWAS on randomly selected phenotype 

data from 20 permutations. (D) Correlations between the SNP number per gene and the 

–log10 p-value of the total genes identified using GLM GWAS on real phenotype data. 

(E) Correlations between the SNP number per gene and –log10 p-value of total genes 

identified using GLM GWAS on randomly selected phenotype data from 20 

permutations. Spearman correlation methods were employed for the correlation test 

between SNP number and –log10 transformed p-value for each gene. Full statistical 
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reports are presented in Supplemental Data 1H.

Figure S5. Variance explained by principal components and genes detected by 

association models with top 20 PCs as covariates. (A) Cumulative variance 

explained by principal components in maize 282 association panel. (B) Proportion of 

genes within each of the four populations which express with average FPKM > 1 of 92 

assayed tissues/time points. (C) Proportion of genes within each of the four populations 

which exhibit presence absence variation (PAV) in maize. (D) Proportion of genes within 

each of the four populations which are conserved at syntenic orthologous locations in 

sorghum (Sorghum bicolor). (E) Distribution of Non-synonymous substitution 

rate/Synonymous substitution rate (Ka/Ks) for the subset of genes from each of the four 

populations with syntenic orthologs in both sorghum and foxtail millet (Setaria italica). A 

small number of individual genes with Ka/Ks ratios > 1 are not show to aid readability 

(two genes in the GLM GWAS population). *:p value < 0.05; **: p value < 0.01 (Chi-

Squared test employed for panels B-D; Mann–Whitney U employed for panel E.). GLM 

model represents GWAS model in this figure. GWAS, GPWAS, and classical mutant 

populations exhibited statistically significant differences from the background gene 

population for all four features shown, except for the insignificant difference between 

GWAS and background in Ka/Ks ratio.

Figure S6. Estimating the number of iterations required for convergence of the 

forward selection model for GPWAS using the set of phenotypes and genotypic 

data for the maize 282 buckler goodman association panel employed here. (A) 

Distribution of the number of phenotypes incorporated into GPWAS models for the 

1,776 genes identified as significantly linked to maize phenomic variation in this study; 

(B) Change in the number of phenotypes incorporated into genetic models as the 

number of iterations employed for GPWAS increases. Data shown for the 10 genes with 

the largest total number of phenotypes incorporated into their models among the 1,776 

genes identified in this study.

Supplemental Information

Supplemental Data 1.
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