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Background: Delayed recognition of decompensation and failure-to-rescue on surgical wards are major
sources of preventable harm. This review assimilates and critically evaluates available evidence and
identifies opportunities to improve surgical ward safety.
Data sources: Fifty-eight articles from Cochrane Library, EMBASE, and PubMed databases were included.
Conclusions: Only 15—20% of patients suffering ward arrest survive. In most cases, subtle signs of
instability often occur prior to critical illness and arrest, and underlying pathology is reversible. Coarse
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Ward depends on time-consuming manual review of health records, infrequent patient assessments, predic-
tion models that lack accuracy and autonomy, and biased, error-prone decision-making. Streaming
electronic heath record data, wearable continuous monitors, and recent advances in deep learning and
reinforcement learning can promote efficient and accurate risk assessments, earlier recognition of
instability, and better decisions regarding diagnosis and treatment of reversible underlying pathology.
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Introduction

Following surgery, traumatic injury, or the onset of a surgical
disease, patients who are not critically ill but are too ill for
discharge home are admitted to surgical wards. Their recovery may
be complicated by hemorrhage, respiratory failure, opiate toxicity,
sepsis, and other life-threatening conditions. On surgical wards,
infrequent patient assessments may lead to unrecognized decom-
pensation and progression to cardiac arrest. Only 15—20% of pa-
tients suffering ward arrest survive and survivors often require
prolonged hospitalization and rehabilitation."

Some patients remain stable until suffering an acute event—like
myocardial infarction and pulmonary embolism—where immedi-
ate recognition and rescue are the only paths to survival. In cases of
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gradual deterioration, subtle signs of physiologic instability often
occur prior to organ failure and cardiac arrest, representing op-
portunities for prevention.>* When risk for decompensation and
arrest are underestimated, high-risk patients may be under-triaged
to a ward rather than an intensive care unit (ICU).” Traditional ward
monitoring involves time-consuming, manual review of health
records, infrequent patient assessments, high patient-to-provider
ratios, outdated prediction models that lack accuracy and auton-
omy, and biased, error-prone decision-making.®~'° Surgical ward
patients continue to incur preventable harm from unrecognized
decompensation, resulting in failure-to-rescue.'"'> Machine
learning systems and emerging technologies have the potential to
address weaknesses inherent to traditional approaches and
improve surgical ward safety, but have not yet gained widespread
recognition or clinical adoption.

The purpose of this article is to promote deeper understanding
of problems and potential solutions associated with surgical ward
safety. The objectives of this article are to (1) summarize available
evidence regarding the epidemiology of hospital ward decom-
pensation and arrest, unique aspects of surgical ward patients, and
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weaknesses inherent to traditional ward monitoring, and (2) pro-
pose a framework in which machine learning and emerging tech-
nologies address these weaknesses, while emphasizing the
importance of bedside assessment and human intuition in recog-
nizing and managing a decompensating patient.

Methods

Cochrane Library, EMBASE, and PubMed databases were
searched from their inception to December 2018, using keywords
and terms defined in Supplementary Fig. 1. Three authors with
medical degrees screened articles by reviewing abstracts for the
following criteria: (1) published in English and (2) primary litera-
ture or a review article, including the following study types: cross-
sectional study, Delphi consensus, observational study, prospective
observational study, prospective randomized trial, retrospective
study, review article, and systematic review. Ninety-three articles
were excluded by these criteria. Articles were selected for inclusion
by manually reviewing abstracts and full texts for the following
criteria: (1) topical relevance, (2) methodological strength, and (3)
novel or meritorious contribution to existing literature describing
the epidemiology of ward decompensation, traditional approaches
to ward monitoring, new technologies that address the deficits of
traditional approaches, and the importance of integrating bedside
assessment and human intuition with prediction models. One
hundred and thirty-one articles were excluded by these criteria.
The screening and selection process was unblinded. Due to het-
erogeneity among study populations, methods, and results from
published literature, the authors assessed topical relevance,
methodological strength, and novelty by subjective means. Un-
published articles and abstracts without an accompanying full text
were not eligible for inclusion. The authors also performed a
manual review of articles cited by articles identified in the initial
search using the same selection criteria. Eight articles were
included by these criteria. Therefore, fifty-eight studies were
included and manually synthesized into categories pertinent to
study objectives, which were determined a priori by the authors.
The design, population, sample size, major findings pertinent to
this review, sources of funding, and conflicts of interest for all
included studies are listed in Table 1.

Results
Definitions and epidemiology

Definitions of decompensation in published literature are het-
erogeneous and often subjective. An increase in the sequential or-
gan failure assessment (SOFA) score by two or more can be used to
identify the onset of organ dysfunction and critical illness, signi-
fying decompensation.”> Cardiac arrest is defined as resuscitation
requiring chest compressions andjor cardiac defibrillation.'*
Failure-to-rescue is defined as the death of a patient following a
complication.'

Approximately 41% of all in-hospital cardiac arrests occur on
wards at a rate of 0.1 per 1,000 bed-days.'® On hospital wards, vital
sign measurements and nursing assessments are often performed
every 4 h."'%!7 This monitoring strategy may fail to identify early
signs of physiologic deterioration, which often occur hours before
arrest.’ In a review of 263 ward arrests, 86% were preceded by signs
and symptoms of decompensation. The underlying disease pro-
cess is often reversible.!

In an audit of unexpected ward deaths at a teaching hospital,
almost two-thirds followed gradual decompensation.'! In a review
of surgical ward decompensation requiring unplanned ICU transfer,
nearly one in three episodes were characterized by delayed

recognition of critical illness.'”> When decompensation progresses
to arrest, failure-to-rescue is the most likely outcome. In-hospital
cardiac arrest occurring outside of the ICU is associated with
80—85% mortality."” Rates of failure-to-rescue for surgical patients
following a complication is highly variable across US hospitals,
suggesting that system-level factors contribute.'>'” Although pre-
venting complications is a laudable goal, decreasing failure-to-
rescue may have a greater impact on mortality rates. In a recent
analysis of Medicare beneficiary data, hospitals that performed well
in reducing mortality after major surgery accomplished these re-
ductions primarily by reducing failure-to-rescue rates rather than
complications.?°

Unique characteristics of surgical patients contributing to
decompensation and arrest

Surgical patients are uniquely vulnerable to postoperative
hemorrhage, respiratory failure, opiate toxicity, and sepsis.'>*">?
These conditions impart a second physiologic insult following
surgery, traumatic injury, or acute illness requiring hospitalization.
Traumatic injury and major surgery increase risk for the interval
development of brisk hemorrhage. Up to 20% of all circulating blood
may be lost before compensatory tachycardia is evident and up to
one-third of all circulating blood may be lost before hypotension
develops. When vital signs are measured every 4 h, a patient may
progress to hemorrhagic shock and organ dysfunction between
assessments.”>

Postoperative patients are susceptible to respiratory failure,
especially following general anesthesia and painful thoracic and
abdominal procedures. General anesthesia is associated with
decreased functional residual capacity, alveolar macrophage dys-
regulation, increased alveolar capillary permeability, and increased
tissue plasminogen activator (tPA) inhibitor levels. These factors
predispose patients to atelectasis, pneumonia, deep vein throm-
bosis, and pulmonary embolism.>*~% In addition, painful thoracic
and abdominal procedures impair patients’ ability to take deep
breaths, cough, clear secretions, and participate in respiratory
therapy exercises. In a review of surgical patients requiring un-
planned ICU transfer, respiratory events accounted for 69% of all
alerts.'” Respiratory depression, and eventual failure, among
postoperative patients may be exacerbated by opiate consumption.
Hospitalized surgical patients consume more opiates than hospi-
talized medical patients.”’*” Patients with severe postoperative
pain may receive high concentrations of opiates that saturate mu
receptors and degradative enzymes, leading to dose-dependent
respiratory depression.??

Surgical ward patients are also vulnerable to sepsis, which ac-
counts for one in four deaths following elective surgery.>’ In a
landmark 2006 study by Kumar et al.>! only half of all patients with
septic shock received antibiotics within 6 h of sepsis onset; each 1-
h delay in antibiotic administration beyond 6 h was associated with
an 8% increase in mortality. Early diagnosis of postoperative sepsis
may be confounded by difficulties in differentiating between sepsis
and sterile inflammation. Vigilance and careful patient assessment
are necessary to not only facilitate early recognition of post-
operative sepsis but also avoid unnecessary intravenous fluid and
antibiotic administration.

Factors contributing to failure-to-rescue

Limitations on nursing and physician staffing

Low staffing levels on surgical wards are associated with failure-
to-rescue. Nurses spend more time at the bedside than physicians
and their intuitive sense of impending decompensation can pre-
cede objective signs of decompensation.>” This advantage may be
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Table 1

Summary of included studies.
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Primary Study Design Population Sample Size Major Findings Pertinent to this Scoping Review Sources of Funding and Conflicts of Interest
Author
Antink® Observational Arrhythmia alarms n = 1250  Machine learning techniques and multimodal rhythmicity None reported
estimation created a 95% TPR and 78% TNR for arrhythmia
alarms
Arkin® Retrospective Aortic valve n = 410,157 Higher nurse-to-patient ratios were protective against AHRQ
replacements preventable complications (OR 0.94, 95% CI 0.90—0.99)
Bartkowiak?’ Retrospective Ward patients n = 32,537 Validation of the superiority of eCART vs. MEWS and NHLBI, Philips Healthcare, Early Sense,
NEWS; maximum respiratory rate was the most predictive Quant HC
vital sign for severe adverse events (AUC 0.67)
Bechara’' Cross- Patients with n=16 In healthy individuals, activation of covert biases precedes None reported
Sectional prefrontal cortex overt reasoning, possibly reflecting unconscious access to
damage, healthy previous experiences
controls
Berlot* Retrospective In-hospital arrests n = 263 86% of in-hospital arrests had recognizable anticipating  None reported
events, survival without neurologic sequelae was 5%
Brown?>® Retrospective Ward admissions n = 7,643 Continuous monitoring was associated with shorter EarlySense
hospital LOS, ICU LOS, and fewer respiratory events
Chen®” Retrospective Hours of non- n = 179,157 ML models can be taught to discriminate clinically relevant NINR, NHLBI, NSF
invasive vital sign changes in vital signs from artifacts (AUC>0.87)
monitoring
Churpek*® Retrospective Ward admissions n = 269,999 The eCART early warning score was more accurate than the NHLBI, NIA, Philips Healthcare, AHA, Laerdal
MEWS for predicting cardiac arrest, ICU transfer, and death Medical, EarlySense
Churpek®! Retrospective Ward patients n=3,789 A >6 hinterval between onset of critical illness and ICU  NHLBI, Philips Healthcare, AHA, ownership
transfer was associated with increased mortality (33 vs.  interest in Quant HC
25%)
DeVita®? Retrospective Rapid response team n = 3,269  Rapid response team adoption was associated with fewer None reported
activations ward arrests (5.4 vs. 6.5 per 1,000 admissions)
DeVita®* Consensus Experts n=27 Vital sign aberrations can be used to predict risk of AHA, AHRQ, CHEST, AACN, Italian
Conference decompensation and improved monitoring may impact  Resuscitation Council, Unilink, Delmarva
outcome, however the burden and characteristics of Foundation, VA, The Learning Clinic,
intensive monitoring system have yet to adequately Patientrack, Philips Medical systems
studied
Douw>? Systematic  Articles about n=18 Qualitative, intuitional assessment of a patient’s condition None reported
Review clinical signs can trigger concern prior to changes in vital signs
triggering nursing
concern
Dybowski® Retrospective ICU patients n = 258 An artificial neural network outperformed a regression  Special Trustees for St. Thomas’ Hospital
model in predicting in-hospital mortality (AUC 0.86 vs.
0.75)
Eerikainen®>  Observational Dysrhythmias n = 1,250 Simultaneous use of ECG, arterial BP, and PPG signals, along None reported
with Random Forest models, increases TPR and TNR for
dysrhythmia alarms
Fernando”® Prospective ~ Ward patients n=>5995 Older patients decompensating on wards were more likely None reported
to have delayed rapid response team activation and worse
outcomes
Franklin® Retrospective Hospital admissions n = 21,505 66% of ward arrests were preceded by documented None reported
decompensation
Fry*° Retrospective Patients undergoing n = 702,268 Decreased failure-to-rescue rates explained 64% of NIH, AHRQ, ArborMetrix, PCORI
major surgery improvement in hospital mortality, a decrease in surgical
complications accounted for 5%
Ghaferi'® Retrospective Major surgeries n = 107,899 Failure-to-rescue ranged from 6.8% for the top 20% AHRQ, NCI
of hospitals to 16.7% for the bottom 20% of hospitals
Ghaferi'® Retrospective Pancreatectomies n = 16,900 Failure-to-rescue ranged from 6.4% for the top 20% AHRQ, NCI, Robert Wood Johnson Clinical
of hospitals to 40.0% for the bottom 20% of hospitals Scholars Program
Griffiths*> Retrospective Ward admissions n = 138,133 The average patient-to-nurse ratio was 5.5, temporary NIHR
staffing was associated with increased mortality
Hassen®* Delphi Experts n=27 100% agreement that inadequate staffing negatively NIHR
Consensus impacts surgical ward safety
Heller”® Retrospective Ward patients n = 3,827 Automated EWS paging system implementation was Philips Healthcare
associated with fewer ward arrests (2.1 vs. 5.3 per 1,000
admissions)
Helling'? Retrospective Unexpected ICU n=111 Multiple physician notifications were required prior to 29% None reported
transfers of all unexpected ICU transfers
Karpman®® Retrospective Ward patients n = 20,745 Rapid response team implementation was associated with None reported
more ICU admissions and no change in outcomes of
transferred patients
Kim’ Retrospective ICU admissions n = 38,474 Machine learning algorithms were as good as APACHE Il in NCRR
predicting ICU mortality
Komorowski® Retrospective Septic ICU patients n = 96,156 A reinforcement learning model recommending Orion Pharma, Amomed Pharma, Ferring
intravenous fluid and vasopressor strategies outperformed Pharma, Tenax Therapeutics, Baxter
human clinicians Healthcare, Bristol-Myers Squibb, GSK, HCA
International
Kumar®' Retrospective n=2731

(continued on next page)

Please cite this article as: Loftus T] et al., Opportunities for machine learning to improve surgical ward safety, The American Journal of Surgery,
https://doi.org/10.1016/j.amjsurg.2020.02.037




4 TJ. Loftus et al. / The American Journal of Surgery xxx (XXXx) xxx

Table 1 (continued )

Primary Study Design Population Sample Size Major Findings Pertinent to this Scoping Review Sources of Funding and Conflicts of Interest
Author
Adult ICU patients Each hour of delay in antimicrobial administration Eli-Lilly, Pfizer, Merck, Astra-Zeneca, GSK,
with septic shock decreased survival by 7.6% Arginox, DeepBreeze, Minimitter, Edwards,
OrthoBioTech
Martin®® Review Validation Studies n =15 Wrist actigraphy can be used to estimate sleep parameters NIH, NIA, Cedars Siani Sleep Medicine
for Wrist Actigraphy and provide a useful adjunct to sleep diaries, Fellowship, VA GLAHS GRECC
polysomnography, and clinical interviews in sleep
disorders
McGaughey*® Systematic  Trials about rapid n =2 EWS and rapid response team adoption was not associated Ireland Cochrane Fellowship
review response teams with decreased mortality
McGinley*® Review - - Description of the National Early Warning Score and its  None reported
application
McGloin'! Retrospective Ward deaths and n =415 65% of all unexpected ward deaths followed gradual None reported
ICU transfers decompensation
McQuillan®’  Prospective  Unplanned ICU n =100 Pre-transfer care was suboptimal for 54/100 patients, 69% NHS Trust, Lilly Industries
transfers of this group had delayed transfer, and their mortality was
48%
Merchant'” Cross- Adult IHCA with n = 209 Incidence study demonstrating ~200,000 cardiac arrests  Philips Healthcare, Laerdal Medical, NIH,
sectional resuscitation million treated among US hospitalized patients annually Cardiac Science, NHLBI, Medivance, Doris
response Duke Foundation, AHA, Lifebridge
Medizintechnik, Gambro Renal
Mitchell*® Prospective ~ Ward admissions n=2,142 Implementation of a ward monitoring system was ACT Health
associated with fewer unexpected ICU transfers and deaths
Mohammed Retrospective Surgical ward n =100 The most common reason for rapid response team None reported
Iddrisu®® patients activation was hypotension (26%)
Pearse® Retrospective High-risk surgical n = 513,924 High-risk patients accounted for 84% of deaths but for only None reported
patients in the UK 12.5% of procedures; highest mortality (39%) occurred in

high-risk patients admitted to the ICU following initial
admission to a standard ward
Peberdy'* Retrospective In-hospital cardiac n = 14,720 44% of adult in-hospital cardiac arrest victims had ROSC; AHA

arrests 17% survived to hospital discharge; 86% of those with CPC-
1 at time of admission had post arrest CPC-1 at time of
discharge
Perman'® Retrospective In-hospital cardiac n = 85,201 41% of all in-hospital cardiac arrests occurred on wards  NIH, Philips Healthcare, EarlySense, Quant
arrests with a rate of 0.1 events per 1,000 bed-days HC, Physio-Control, Zoll Medical, Cardiac
Science
Prgomet*! Observational Clinical staff n=2384 Perceptions of hospital staff towards continuous NHMRC
monitoring is generally positive, but concerns remain for
inappropriate escalations of care and patient discomfort
Rothman*® Retrospective Hospitalized n = 148,985 Rothman Index predicted 24-h mortality with AUC 0.93 or Sarasota Memorial Healthcare Foundation,
patients greater Greenfield Foundation
Rothman*’ Retrospective Hospitalized n = 42,302 12 types of nursing assessments were significant Rothman Healthcare Corporation, Sarasota
patients predictors of mortality Memorial Healthcare Foundation,
Greenfield Foundation
Sandroni* Review Articles about in- n=79 In most studies, survival following in-hospital cardiac None reported
hospital arrest arrest ranges from 15 to 20%
Sanfey® Cross- Players of a classic n =19 fMRI imaging shows simultaneous heightened activity in None reported
Sectional economic test in emotion and cognition centers when deciding between fair
splitting sums of and unfair offers
money
Schein'® Prospective ~ Ward arrests n =64 The most common physiologic sign of decompensation ~ None reported
prior to arrest was respiratory (38%)
Shickel*® Retrospective ICU admissions n = 85,164 A deep learning model predicted in-hospital mortality NIGMS, NSF, UF CTSI, NCATS, ]J. Crayton
more accurately than traditional acuity score calculation Pruitt Family Department of Biomedical
Engineering, NVIDIA
Silber'® Retrospective Hospital admissions n = 403,679 Higher bed-to-nurse ratios were associated with increased NHLBI, Veterans Affairs Health Services
odds of failure-to-rescue Research and Development
Silver®! Observational Go boardgame - Deep reinforcement learning models provide high fidelity Google, Google DeepMind
victories against previous Go algorithms and human
experts
Skogvoll' Retrospective In-hospital deaths n =4,927  Survival after cardiopulmonary resuscitation outside of the None reported
ICU was 17%
Slight*® Retrospective Modeled ward n = 5,000 Costs and savings associated with a continuous ward EarlySense
admissions monitoring system demonstrated favorable return on
investment
Smith*? Systematic ~ Early warning n=33 AUC range for predicting adverse outcomes was 0.66—0.78 The Learning Clinic Ltd.
review systems
Subbe>® Review Articles about ward n = 37 Among high-risk ward patients, continuous monitoring ~ NHS Trust
decompensation may facilitate early detection of decompensation
Subbe** Prospective  Medical emergency n = 709 Higher EWS were associated with increased odds of death NHS Trust
admissions and ICU transfer
Taenzer®’ Prospective  Surgical ward n = 13,398 Continuous pulse oximetry was associated with fewer The Hitchcock Foundation, Masimo
admissions rescue events and unplanned ICU transfers Corporation
Van den Retrospective Primary care n=3,890 Clinician intuition identified patients with illness severity Research Foundation Flanders,
Bruel”* patients that was underrepresented by clinical parameters Eurogenerics, NIHR
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Table 1 (continued )

Primary Study Design Population Sample Size Major Findings Pertinent to this Scoping Review Sources of Funding and Conflicts of Interest

Author

Van den Systematic  Articles about n =30 Traditional clinical parameters associated with serious Health Technology Assessment, NIHR

Bruel”® review features of serious infection are often absent among patients with serious
infections infections
Watkinson®  Prospective ~ Ward patients n = 402 Major adverse events were similar between continuous  Oxford BioSignals, NHS Trust
randomized and standard monitoring groups

Weenk®? Prospective ~ Ward patients n=20 EWS calculated with data from wearable continuous Radboud University Medical Center
monitors were similar to EWS calculated from vitals
obtained by nurses

Wesnes>” Prospective  Surgical house n=10 House officers had impaired concentration and memory None reported

officers

after a weekend on call

AAA = Abdominal Aortic Aneurysm; AHA: American Heart Association; AHRQ: Agency for Healthcare Research and Quality; APACHE: Acute Physiology and Chronic Health
Evaluation; AUC: Area Under the Curve; CHEST: American College of Chest Physicians; AACN: American Association of Critical Care Nurses; CI: Confidence Interval; CPC:
Cerebral Performance Category; eCART: electronic Cardiac Arrest Triage; EWS: Early Warning System; GSK: GlaxoSmithKline; HCA: Hospital Corporation of America; ICU:
Intensive Care Unit; IHCA: In-hospital Cardiac Arrest; LOS: Length of Stay; MEWS: Modified Early Warning sSore; NCATS: National Center for Advancing Translational Science;
NCI: National Cancer Institute; NCRR: National Center for Research Resources; NEWS: National Early Warning Score; NHLBI: National Heart, Lung, and Blood Institute;
NHMRC: National Health and Medical Research Council; NHS: National Health Service; NIA: National Institute of Aging; NIGMS: National Institute for General Medical Sci-
ences; NIH: National Institute of Health; NIHR: National Institute for Health Research; NINR: National Institute of Nursing Research; NSF: National Science Foundation; OR:
Odds Ratio; PCORI: Patient-Centered Outcomes Research Institute; PPG: photoplethysmogram; TNR: True Negative Rate; TPR: True Positive Rate; UF CTSI: University of Florida
Clinical and Translational Science Institute; VA GLAHS GRECC: Veteran's Administration Greater Los Angeles Healthcare System Geriatric Research Education and Clinical

Center.

abrogated by higher patient-to-nurse ratios, which averaged 5.5 in
a review of over 138 thousand ward admissions.>* Higher patient-
to-nurse ratios are associated with significantly increased odds of
preventable postoperative complications and failure-to-rescue.”°
In a Delphi Consensus, there was 100% agreement that both inad-
equate staffing levels negatively impact patient safety on surgical
wards and access to doctors at night promotes patient safety.>*
However, the perceived benefits of access to doctors on call at
night may be abrogated when low physician staffing levels and long
hours on call negatively impact cognitive performance.>> When
staffing levels are low, early identification of physiologic instability
often depends on vital sign monitoring.

Continuous monitoring of vital signs

On hospital wards, vital signs are typically measured every 4 h.
Among high-risk ward patients, continuous monitoring may facil-
itate early detection of decompensation.*® Continuous pulse ox-
imetry has been associated with decreased frequency of rescue
events and unplanned ICU transfers.>” Continuous monitoring of
heart and respiratory rate has been associated with shorter hospital
length of stay, fewer ICU days, and fewer respiratory decompen-
sation events.’® Though continuous monitoring systems are
expensive, the return on investment may be favorable.>

However, level 1 evidence to support continuous monitoring is
lacking.’® Potential disadvantages of continuous monitoring
include distracting false-positive alarms, patient discomfort, and
impaired mobility.*! In addition, patient selection for continuous
monitoring often depends on crude risk estimations using admis-
sion vital signs, time-consuming manual review of medical records,
and initial impressions on clinical assessment. Current methods are
inadequate for identifying high-risk, outlier patients that may
benefit from close monitoring.>* The frequency of false alarms may
be partially attributable to data dimensionality. As the number of
vital sign data sources increases linearly, the combinations of alarm
parameters that may indicate instability increase exponentially.
Finally, reduced patient contact may be an unintended conse-
quence of continuous monitoring.*'

Early warning scores and clinical decision-support systems

Early warning scores facilitate identification of decompensating
patients by considering vital signs and patient assessments in
aggregate. Many early warning scores exist, but few perform well
on external validation.*>** Additive scores like the Modified Early

Warning Score (MEWS)** and the National Early Warning Score
(NEWS)® are easy to interpret and apply, but their accuracy is
hindered by use of static variable thresholds for a small number of
parameters. The electronic Cardiac Arrest Risk Triage (eCART) score
was developed using regression coefficients to identify cut-off
values for patient demographics, vital signs, and 18 laboratory
values.*® Notably, eCART outperformed MEWS and NEWS in a
retrospective analysis of 32,537 postoperative surgical inpatients.’

The Rothman Index uses vital signs, cardiac rhythms, laboratory
values, and nursing assessments for subtle signs of illness—like loss
of appetite and mild confusion—and accurately predicts death or
discharge to hospice within 24 h (AUC 0.93).“8° Blood oxygen
saturation is included, but the influence of supplemental oxygen is
not considered. Laboratory values are blended with a linear decay
function for 48 h and while this seems appropriate for daily labo-
ratory values, it is less useful for serum albumin or liver enzymes,
which are often measured infrequently. Parametric regression
modeling assumes linear relationships among variables. However,
relationships among variables are often complex and non-linear,
limiting the accuracy of regression models.®’

Decisions regarding ward patient management and ICU transfer
may be affected by several forms of bias.® The framing effect occurs
when outcome predictions are affected by contextual information.
A patient on a surgical ward who is mildly confused one day after
an elective abdominal surgery, but has had stable vital signs since
the operation, may be deemed appropriate for continued inter-
mittent monitoring on a surgical ward. However, in the context of
known liver dysfunction or history of crescendo transient ischemic
attacks, this same patient may benefit from assessment of hepatic
function, a focused neurologic exam, continuous monitoring, and
consideration of ICU transfer. Overconfidence and optimistic bias
occur when individuals perceive that things are better than they are
and that adverse events disproportionately affect others. A surgeon
may ignore signs that their patient is decompensating, and thus
delay ICU transfer, due to overconfidence and unwarranted opti-
mism in the likelihood of early recovery.

Anchoring bias, which occurs when outcome probability esti-
mations gravitate toward an initial baseline value, may exacerbate
the impact of overconfidence. A surgeon may observe that 95% of
their patients recover uneventfully, leading them to believe that
their next patient will also do well. However statistics mean
nothing to an individual patient who is actively decompensating
despite a 95% chance of uneventful recovery. Anchoring bias may be
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compounded when recent experiences have been positive, thus
promoting recall bias in which outcome probability estimations are
influenced by the ease with which prior experiences are recalled.
Confirmation bias occurs when outcomes are predicted using per-
sonal beliefs rather than evidence. In the absence of high-quality
evidence to guide surgical ward monitoring, personal beliefs may
play a prominent role.

Rapid response teams

When ward patients develop acute organ dysfunction and
decompensation, early ICU transfer is essential.’ In a review of
3,789 medical and surgical ward patients at five different hospitals,
the median interval between onset of critical illness and ICU
transfer was 5.4 h.>' Each additional 1-h delay in transfer was
associated with 3% increased mortality. Delay in transfer more than
6 h was also associated longer hospital length of stay among sur-
vivors (13 vs. 11 days, p = 0.01). Many hospitals employ rapid
response teams that receive alerts, travel to the bedside, and
facilitate early diagnosis and treatment, including ICU transfer if
necessary. Use of rapid response teams has been associated with
decreased incidence of cardiac arrest and unplanned ICU trans-
fers.”>>> However, rapid response teams are only as good as their
activation criteria, clinical judgement, and the quality of transitions
from hospital wards to the ICU.>*™° In a review of medical and
surgical patients with unplanned ICU admissions, pre-transfer care
was suboptimal for 54%.°7 Patients receiving suboptimal pre-
transfer care had 56% mortality, almost double that of patients
receiving appropriate care.

Future directions: preventing the need to rescue

By current methods, high-risk patients who would benefit from
close monitoring in an ICU may be under-triaged to a ward, where
care is compromised by time-consuming manual review of health
records, infrequent patient assessments, high patient-to-provider
ratios, prediction models that lack accuracy and autonomy, and
biased, error-prone decision-making (Fig. 1).>*!° Integrating new
technologies with human intuition and bedside assessment have
the potential to transform surgical ward monitoring.

Use of machine learning for phenotyping and decision support
Deep learning is an machine learning extension of regression-
based techniques that is adept at learning and representing
highly-dimensional data with non-linear functions.”® The initial
and final layers are inputs and outputs, respectively. The middle

Initial triage to

ward vs.
intensive care :
unitusing  Physiologic Intermittent
coarse risk data momtonng

assessment
\ )
.E- 42

layers contain hidden nodes. A multilayer perceptron is a standard
neural network with a single middle layer; deep models can have
hundreds or thousands of middle layers. Each link connecting two
nodes is assigned a weight that is influenced by previous layers and
affects the output from that node. Weights are continually updated
by an algorithm that optimizes the relationships between input and
output layers, allowing accurate representation of complex, non-
linear relationships among input variables. Deep models auto-
matically learn optimal feature representations from raw data: a
major advantage over models that require time-intensive, hand-
crafted feature engineering. However, deep learning is difficult to
interpret and is susceptible to overfitting and vanishing gradients
unless corrective measures—like dropout and rectified linear uni-
ts—are employed.

Deep models like the recurrent neural network—with its vari-
ants the Long Short-Term Memory (LSTM) and Gated Recurrent
Unit (GRU)—capitalize on the availability of vast amounts of
sequentially ordered, time-series vital sign data in electronic health
records (EHRs). Recurrent neural networks update weights ac-
cording to both the current inputs and previous states of each
hidden unit.”® GRU modeling has been used to predict in-hospital
mortality for ICU patients using SOFA score variables from the
electronic health record, and these models exhibit greater accuracy
than the SOFA score itself.>° A similar model could predict the onset
of critical illness, unplanned ICU transfer, and death among surgical
ward patients. Despite these capabilities, deep learning cannot
suggest a course of action for a given clinical scenario, but rein-
forcement learning can.

In reinforcement learning, an algorithm learns that certain
policies applied to given states lead to defined outcomes. This oc-
curs in the context of a Markov decision process (MDP). Consisting
of a finite set of states and actions, the MDP uses both the proba-
bility that a given action within a given state will lead to a new state
along with the reward that results from the new state. Reinforce-
ment learning derives a policy comparing the predicted utility of
different actions under certain circumstances, identifying the
choice or action with the highest probability of a defined outcome.

The Artificial Intelligence (AI) Clinician is a reinforcement
learning model capable of recommending fluid resuscitation and
vasopressor administration strategies among septic patients. This
model was built on an MDP framework trained on Medical Infor-
mation Mart for Intensive Care (MIMIC-III) data, and validated with
Philips eICU data, including 96,156 ICU admissions.®® Forty-eight
variables—including vital signs, laboratory values, and comorbidi-
ties—were tracked by 4-h increments over 72 h and clustered into
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Fig. 1. Traditional approaches to surgical ward monitoring have several pitfalls and opportunities for improvement.
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750 distinct states. The model was then trained to predict the
probability that, from any of the states, a given treatment would
result in transition to another state. To establish the reward prin-
ciple, positive scores were assigned to cases leading to survival. The
model then experimented with fluid resuscitation and vasopressor
administration strategies, learning which single strategy was
associated with the highest probability of survival in each state.
Mortality was lowest when actions taken by clinicians matched
actions recommended by Al Clinician.

Combining deep and reinforcement learning offers unique ad-
vantages for complex scenarios, as demonstrated in the gaming
industry.®' A similar approach could be used to augment surgical
ward monitoring (Fig. 2). Given the rarity of cardiac arrest on wards
and the inherent difficulties associated with expeditious recogni-
tion and appropriate management of ward arrest, it seems prudent
to seek prevention as a primary objective. Initial patient triage
presents an important opportunity to achieve this objective. Rather
than depending solely on the accuracy and reliability of triage de-
cisions made by clinicians in the emergency department, operating
room, or post-anesthesia care unit, deep models would identify
high-risk patients who are likely to benefit from initial triage to a
high level of care with continuous or frequent monitoring and
patient assessments, and offer recommendations to clinicians. The
same models could be used to avoid unnecessary over-triage of
low-risk patients to an ICU. Continuous vital sign, actigraphy data
from wearable devices, and live-streaming EHR data would fuel
real-time, deep learning predictions of impending critical illness
and in-hospital mortality with automated activation of rapid
response teams. Reinforcement learning models would augment
decisions regarding initial treatment of underlying pathology and
ICU transfer.

Pervasive sensing

The multi-billion dollar market for wearable fitness devices has
fostered interest in medical applications, including continuous
monitoring devices. Older wearable monitors used rigid, silicon-
based hardware; newer devices use lightweight, flexible plastics
and elastomers that interface well with human skin. Wearable
devices have the potential to transform continuous monitoring of
ward patients by streaming vital sign data to bedside and central
monitoring systems while simultaneously minimizing patient

discomfort and promoting mobility. Weenk et al.%? performed a

pilot study in which 20 ward patients wore one of two devices. Vital
sign measurements from the wearable devices were consistent
with manual vital sign measurements by nurses. Data was missing
or invalid 13—16% of the time, usually due to wireless connection
failure and loss of skin contact. Data artifact can be mitigated by
machine learning algorithms.?6°

Modern physical activity and functional status assessments
often rely on questionnaire-based evaluations along with daily in-
teractions with nurses and physical and occupational therapists.
Physical activity can also be monitored with non-invasive actig-
raphy devices that continuously collect activity data over long pe-
riods of time.®® Beyond guiding mobilization interventions, these
data could be used in concert with other vital sign and clinical
assessments to identify patients at increased risk for decompen-
sation and arrest.®”%% In addition, incorporating data from oper-
ating room monitors may improve model accuracy by capturing
important intraoperative events and physiologic changes.

Barriers to implementation

Machine learning models are only as good as the quality and
quantity of data used to train them.”® Poorly trained models could
provide a false sense of security, promote over-triage, or recom-
mend ineffective or harmful treatments. Any of these scenarios
could occur on a large scale. A clinician makes mistakes one patient
atatime, but an errant model could harm hundreds or thousands of
patients all over the world in a short period of time.

Traditional early warning scores, like the MEWS and NEWS, are
easy to interpret by simple calculations using defined cut-off val-
ues.**~%6 Deep learning models provide limited insight regarding
the relative importance of model inputs in determining model
outputs. In discussing end-of-life care with patients and their
caregivers, it would be inadequate to explain that the likelihood of
functional recovery is low according to a computer, and that it is
unclear why the computer reached this conclusion.

A deep reinforcement learning platform requires information
technology infrastructure and expertise. These resources are not
available in many clinical settings. Careful analysis of costs and
savings would be necessary to determine whether this platform
could be broadly applied.

Human intuition
Bedside evaluation by an astute clinician is the most important
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Fig. 2. Wearable monitors, streaming electronic health record data, and machine learning can improve surgical ward monitoring.
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element of patient assessment. Face-to-face interactions elicit signs
and symptoms of worsening clinical status like diaphoresis,
confusion, malaise, pain, and tenderness. Computer programs can
also elicit some signs and symptoms of illness and their ability to do
so will improve over time. However, human interactions will
remain essential because they incite one of the greatest assets in
surgical decision-making: human intuition, which appears to
emerge from predictions made by flexible limbic system dopami-
nergic neurons that adjust their connections in response to positive
and negative stimuli.®%”°

Purely rational, evidence-based decision-making which uses a
limitless supply of infallible data would be well suited to deep
reinforcement learning. However, data and evidence are often
lacking, particularly for surgical emergencies. In addition, optimal
decision-making occurs under the influence of human intuition, as
evident in decisions regarding card games, fight or flight survival
responses, and naval warfare.”' 73 Intuition can also identify pa-
tients with severe, life-threatening conditions that would other-
wise remain unrecognized by traditional clinical parameters.”*’>
Among ward patients, nursing intuition of imminent decompen-
sation may precede objective signs of decompensation.>?

Conclusions

Early warning scores, continuous monitoring of high-risk pa-
tients, rapid response teams, and clinical decision-support systems
promote early identification and appropriate management of
decompensating surgical ward patients. Despite these advances,
patients continue to incur preventable harm from delayed recog-
nition of worsening clinical status, suboptimal decision-making,
and failure-to-rescue. There is an urgent need for workflow-
integrated decision-support tools to 1) ensure that high-risk pa-
tients are triaged to an ICU or continuously monitored on a ward, 2)
predict decompensation prior to organ failure and arrest, and 3)
recommend treatments for underlying pathology and ICU transfer
for decompensating patients. Live-streaming EHR data, wearable
continuous monitoring devices, and machine learning models have
the potential to transform ward monitoring by providing accurate,
autonomous, real-time patient assessments to augment these
error-prone tasks and decision-making processes. The limitations
of machine learning and the importance of human intuition should
be emphasized throughout the clinical adoption process.

Summary

Delayed recognition of decompensation and failure-to-rescue
on surgical wards are major sources of preventable harm. Ward
safety is compromised by coarse risk assessments leading to under-
triage of high-risk postoperative patients to wards, where under-
staffed providers make infrequent patient assessments and use
cognitive shortcuts, leading to bias and error-prone decision-
making. Streaming electronic heath record data, wearable contin-
uous monitors, and recent machine learning advances can promote
efficient and accurate risk assessments, earlier recognition of
instability, and better decisions regarding diagnosis and treatment
of reversible underlying pathology.
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