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S urgeons make complex, high-stakes decisions when offer-
ing an operation, addressing modifiable risk factors, man-
aging complications and optimizing resource use, and con-

ducting an operation. Diagnostic and judgment errors are the
second most common cause of preventable harm incurred by sur-
gical patients.1 Surgeons report that lapses in judgment are the
most common cause of their major errors.2 Surgical decision-
making is dominated by hypothetical deductive reasoning and
individual judgment, which are highly variable and ill-suited to
remedy these errors. Traditional clinical decision support tools,
such as the National Surgical Quality Improvement Program
(NSQIP) Surgical Risk Calculator, can reduce variability and miti-
gate risks, but their clinical adoption is hindered by suboptimal
accuracy and time-consuming manual data acquisition and entry
requirements.3-8

Although decision-making is one of the most difficult and
important tasks that surgeons perform, there is a relative paucity
of research investigating surgical decision-making and strategies
to improve it. The objectives of this review are to describe chal-
lenges in surgical decision-making, review traditional clinical
decision-support systems and their weaknesses, and propose that
artificial intelligence models fed with live-streaming electronic
health record data (EHR) would obviate these weaknesses and
should be integrated with bedside assessment and human intu-
ition to augment surgical decision-making.

Methods

PubMed and Cochrane Library databases were searched from
their inception to February 2019 (eFigure in the Supplement).
Articles were screened by reviewing their abstracts for the follow-
ing criteria: (1) published in English, (2) published in a peer-
reviewed journal, and (3) primary literature or a review article.
Articles were selected for inclusion by manually reviewing
abstracts and full texts for these criteria: (1) topical relevance,
(2) methodologic strength, and (3) novel or meritorious contribu-
tion to existing literature. Articles of interest cited by articles
identified in the initial search were reviewed using the same crite-
ria. Forty-nine articles were included and assimilated into relevant
categories (Table 1).1-49

Observations
The quality of surgical decision-making is influenced by patient val-
ues and emotions, patient-surgeon interactions, decision-making
volume and complexity, time constraints, uncertainty, hypothetical
deductive reasoning, and individual judgment. There are effective and
ineffective methods for dealing with each of these factors, which lead
to positive and negative outcomes, respectively (Figure 1).

IMPORTANCE Surgeons make complex, high-stakes decisions under time constraints
and uncertainty, with significant effect on patient outcomes. This review describes the
weaknesses of traditional clinical decision-support systems and proposes that artificial
intelligence should be used to augment surgical decision-making.

OBSERVATIONS Surgical decision-making is dominated by hypothetical-deductive reasoning,
individual judgment, and heuristics. These factors can lead to bias, error, and preventable
harm. Traditional predictive analytics and clinical decision-support systems are intended
to augment surgical decision-making, but their clinical utility is compromised by
time-consuming manual data management and suboptimal accuracy. These challenges can
be overcome by automated artificial intelligence models fed by livestreaming electronic
health record data with mobile device outputs. This approach would require data
standardization, advances in model interpretability, careful implementation and monitoring,
attention to ethical challenges involving algorithm bias and accountability for errors, and
preservation of bedside assessment and human intuition in the decision-making process.

CONCLUSIONS AND RELEVANCE Integration of artificial intelligence with surgical
decision-making has the potential to transform care by augmenting the decision to operate,
informed consent process, identification and mitigation of modifiable risk factors, decisions
regarding postoperative management, and shared decisions regarding resource use.
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Table 1. Summary of Included Studies

Source Study Design Population
Sample
Size

Major Findings Pertinent
to This Scoping Review

Sources of Funding;
Conflicts of Interest

Adhikari et al9 Retrospective Patients undergoing
inpatient surgery

2911 A machine learning algorithm accurately
predicted postoperative acute kidney injury
using preoperative and intraoperative data

NIGMS, University of Florida
CTSI; NCATS; I Heerman
Anesthesia Foundation;
SCCM Vision Grant

Artis et al10 Observational Trainee ICU
presentations

157 Potentially important data were omitted
from 157 of 157 presentations; missing an
average 42% of all data elements

AHRQ

Bagnall et al11 Retrospective Patients who had
colorectal surgery

1380 Six traditional risk models used to predict
postoperative morbidity and mortality had
weak accuracy with AUC, 0.46-0.61

St Mark’s Hospital
Foundation

Bechara et al12 Observational Healthy volunteers
and participants with
prefrontal cortex
damage

16 Participants began to decide advantageously
before they could consciously explain what
they were doing or why they were doing it

National Institute of
Neurological Diseases and
Stroke

Bertrand et al13 Prospective ICU patients and
attending surgeons

419 Clinicians thought 45% of all patients had
decision-making capacity; a minimental
status examination found that 17% had
decision-making capacity

Pfizer, Fisher & Paykel; Pfizer;
Alexion; Gilead; Jazz Pharma;
Baxter; Astellas

Bertsimas et al14 Retrospective Emergency surgery
patients

382 960 A app-based machine learning model
accurately predicted mortality and 18
postoperative complications (AUC, 0.92)

None reported

Bihorac et al15 Retrospective Patients undergoing
major surgery

51 457 A machine learning algorithm using
automated EHR data predicted 8
postoperative complications (AUC,
0.82-0.94) and predicted mortality at 1, 3,
6, 12, and 24 mo (AUC, 0.77-0.83)

NIGMS; NCATS

Blumenthal-Barby
et al16

Review Articles about
heuristics in medical
decision-making

213 Among studies investigating bias and
heuristics among medical personnel, 80%
identified evidence of bias and heuristics

Greenwall Foundation; Pfizer

Brennan et al17 Prospective Physicians 20 A machine learning algorithm was
significantly more accurate than physicians in
predicting postoperative complications (AUC,
0.73-0.85 vs AUC, 0.47-0.69)

NIGMS, University of Florida
CTSI; NCATS

Che et al18 Retrospective Pediatric ICU
patients

398 A gradient boosting trees method allowed for
quantification of the relative importance of
deep model inputs in determining model
outputs

NSF; Coulter Translational
Research Program

Chen-Ying et al19 Retrospective Clinic patients 840 487 A deep model predicted 5-y stroke
occurrence with greater sensitivity (0.85 vs
0.82) and specificity (0.87 vs 0.86) than
logistic regression

None reported

Christie et al20 Retrospective Trauma patients 28 212 A machine learning ensemble accurately
predicted mortality among trauma patients
in the United States, South Africa, and
Cameroon with AUC ≥0.90 in all settings

NIH

Clark et al4 Retrospective Surgical patients 885 502 The ACS Surgical Risk Calculator accurately
predicted mortality (AUC, 0.94) and
morbidity (AUC, 0.83)

None reported

Cohen et al6 Retrospective Studies assessing
the ACS Surgical
Risk Calculator

3 External validation studies assessing ACS
Surgical Risk Calculator performance may
have been compromised by small sample size,
case-mix heterogeneity, and use of data from
a small number of institutions

None reported

Delahanty et al21 Retrospective ICU patients 237 173 A machine learning algorithm accurately
predicted inpatient death (AUC, 0.94)

Alesky Belcher; Intensix,
Advanced ICU

Dybowski et al22 Retrospective ICU patients 258 An artificial neural network predicted
in-hospital mortality more accurately than
logistic regression (AUC 0.86 vs 0.75)

Special Trustees for
St Thomas’ Hospital

Ellis et al23 Prospective Volunteers 1948 Induction of fear and anger had unique and
significant influences on decisions to take
hypothetical medications

NCI

Gage et al24 Prospective Patients with
atrial fibrillation

2580 Models commonly used to predict risk of
stroke were moderately accurate with AUC
ranging from 0.58-0.70

AHA, NIH, Danish and
Netherlands Heart
Foundations, Zorg Onderzoek
Nederland Prevention Fund,
Bayer, UK Stroke Association

Gijsberts et al25 Retrospective Patients with
no baseline
cardiovascular
disease

60 211 Associations between risk factors and
development of atherosclerotic
cardiovascular disease were different across
racial and ethnic groups

Netherlands Organization for
Health Research and
Development, NIH

Hao et al26 Retrospective ICU patients 15 647 Deep learning models predicted 28-d
mortality with 84%-86% accuracy

None reported

(continued)

Artificial Intelligence and Surgical Decision-making Review Clinical Review & Education

jamasurgery.com (Reprinted) JAMA Surgery February 2020 Volume 155, Number 2 149

© 2019 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ by a University of Florida User  on 03/26/2020

http://www.jamasurgery.com/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamasurg.2019.4917


Table 1. Summary of Included Studies (continued)

Source Study Design Population
Sample
Size

Major Findings Pertinent
to This Scoping Review

Sources of Funding;
Conflicts of Interest

Healey et al1 Retrospective Surgical inpatients 4658 Behind technical errors, diagnostic and
judgment errors were the second most
common cause of preventable harm

None reported

Henry et al27 Retrospective ICU patients 16 234 A machine learning early warning score
accurately predicted the onset of septic
shock (AUC 0.83), identifying approximately
two-thirds of all cases prior to the onset
of organ dysfunction

NSF; Google Research,
Gordon and Betty Moore
Foundation

Hubbard et al28 Prospective Trauma patients 980 A machine learning ensemble predicted
mortality more accurately than logistic
regression (5% gain)

US Army Medical Research
and Materiel Command, NIH

Hyde et al7 Prospective Patients undergoing
colorectal resections

288 The likelihood of a serious complication was
underestimated by the ACS Surgical Risk
Calculator (AUC, 0.69), but the calculator
accurately predicted postoperative mortality
(AUC, 0.97)

None reported

Kim et al29 Retrospective ICU admissions 38 474 A decision tree model predicted in-hospital
mortality more accurately than APACHE III
(AUC, 0.89 vs 0.87)

NCRR

Knops et al30 Systematic
review

Studies about decision
aids in surgery

17 Decision aid use was associated with more
knowledge regarding treatment options and
preference for less invasive treatment
options with no observable differences in
anxiety, quality of life, or complications

None reported

Komorowski et al31 Retrospective Septic ICU patients 96 156 A reinforcement learning model
recommending intravenous fluid and
vasopressor strategies outperformed human
clinicians; mortality was lowest when
decisions made by clinicians matched
recommendations from the reinforcement
learning model

Orion Pharma, Amomed
Pharma, Ferring Pharma,
Tenax Therapeutics; Baxter
Healthcare; Bristol-Myers
Squibb; GSK; HCA
International

Koyner et al32 Retrospective Hospital admissions 121 158 A machine learning algorithm accurately
predicted development of acute kidney injury
within 24 h (AUC, 0.90) and 48 h (AUC, 0.87)

Satellite Healthcare; Philips
Healthcare; EarlySense;
Quant HC

Leeds et al8 Observational Surgery residents 124 Residents reported that lack of electronic and
clinical workflow integration were major
barriers to routine use of risk communication
frameworks

NCI; ASCRS; AHRQ

Légaré et al33 Systematic
review

Studies about shared
decision-making

38 Time constraints impair the shared
decision-making process among providers,
patients, and caregivers

Tier 2 Canada Research Chair

Loftus et al34 Retrospective Patients with lower
intestinal bleeding

147 An artificial neural network predicted severe
lower intestinal bleeding more accurately
than a traditional clinical prediction rule
(AUC, 0.98 vs 0.66)

NIGMS, NCATS

Lubitz et al5 Retrospective Patients undergoing
colorectal surgery

150 The ACS Surgical Risk Calculator accurately
predicted morbidity and mortality for
elective surgery but underestimated risk for
emergent surgery

None reported

Ludolph et al35 Systematic
review

Articles about
debiasing in
health care

68 Many debiasing strategies targeting health
care clinicians effectively decrease the effect
of bias on decision-making

University of Lugano
Institute of Communication
and Health

Lundgren-Laine
et al36

Observational Academic
intensivists

8 Academic intensivists made approximately
56 ad hoc patient care and resource use
decisions per day

Finnish Funding Agency for
Technology and Innovation;
Tekes; Finnish Cultural
Foundation

Morris et al37 Interviews Academic surgeons 20 Younger surgeons felt uncomfortable
defining futility and felt pressured to perform
operations that were likely futile

AHRQ

Pirracchio et al38 Retrospective ICU patients 24 508 A machine learning ensemble predicted
in-hospital mortality (AUC, 0.85) more
accurately than SAPS-II (AUC, 0.78) and
SOFA (AUC, 0.71)

Fulbright Foundation; Doris
Duke Clinical Scientist
Development Award; NIH

Pirracchio et al39 Observational Simulated data sets 1000 A machine learning ensemble predicted
propensity scores more accurately than
logistic regression and individual machine
learning algorithms

Fulbright Foundation;
Assistance
Publique–Hôpitaux de Paris;
NIH

Raymond et al3 Prospective Preoperative
clinic patients

150 After reviewing ACS Surgical Risk Calculator
results, 70% would participate in
prehabilitation and 40% would delay surgery
for prehabilitation

GE Foundation; Edwards
Lifesciences; Cheetah
Medical
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Challenges in Surgical Decision-making
Complexity
In the hypothetical-deductive decision-making model that domi-
nates surgical decision-making, initial patient presentations are as-
sessed to develop a list of possible diagnoses that are differenti-
ated by diagnostic testing or response to empirical therapy. This
depends on the surgeon’s ability to form a complete list of all likely
diagnoses, all life-threatening diagnoses, and all unlikely diagnoses
that may be considered if the initial workup excludes other causes.
It also requires recognition of strengths and limitations of available
tests. Once the diagnosis is established, the surgeon must recom-
mend a plan using sound judgment. Each step introduces variabil-
ity and opportunities for error.40

Values and Emotions
Patient values are individualized by nature, precluding the creation
of a criterion standard of optimal decision-making. Understanding

and incorporating these values is essential to an effective shared
decision-making process.50 This may be accomplished by simply ask-
ing patients and caregivers about their goals of care and what they
value most in life. Shared decision-making improves patient satis-
faction and compliance and may reduce costs associated with
undesired tests and treatments. However, patients, caregivers, and
clinicians often misunderstand one another, their goals may differ,
and patients and caregivers are often expected to make decisions
with limited background knowledge and no medical training.13,33,50

Surgical diseases may evoke fear and anger, which influence per-
ceptions of risks and benefits.23,51 Emotions surrounding an acute
surgical condition may also create a sense of urgency and pressure
on surgeons to perform futile operations.37

Time Constraints and Uncertainty
Surgical decision-making is often hindered by uncertainty owing to
missing or incomplete data. This occurs when decisions regarding

Table 1. Summary of Included Studies (continued)

Source Study Design Population
Sample
Size

Major Findings Pertinent
to This Scoping Review

Sources of Funding;
Conflicts of Interest

Sacks et al40 Observational Surgeons 767 Facing clinical vignettes for urgent and
emergent surgical diseases; surgeons
exhibited wide variability in the decision
to operate (49%-85%)

Robert Wood
Johnson/Veterans Affairs
Clinical Scholars program

Schuetz et al41 Retrospective Clinical encounters
in an EHR

32 787 A deep model predicted the onset of heart
failure more accurately than logistic
regression (AUC, 0.78 vs AUC, 0.75)

NSF; NHLBI

Shanafelt et al2 Observational Members of the ACS 7905 Nine percent of all surgeons reported making
a major medical error in the last 3 mo, and
lapses in judgment were the most common
cause (32%)

None reported

Shickel et al42 Retrospective ICU admissions 36 216 A deep model using SOFA variables predicted
in-hospital mortality with greater accuracy
than the traditional SOFA score (AUC 0.90
vs 0.85)

NIGMS; NSF, University of
Florida CTSI; NCATS;
J Crayton Pruitt Family
Department of Biomedical
Engineering; Nvidia

Singh et al43 Systematic
review

Articles about CRP
to predict leak after
colorectal surgery

7 The positive predictive value of serum
C-reactive protein 3-5 d after surgery was
21%-23%

Auckland Medical Research
Foundation, New Zealand
Health Research Council

Stacey et al44 Systematic
review

Randomized trials
about decision aids

105 Participants exposed to decision aids felt that
they were more knowledgeable, informed,
and clear about their values and played a
more active role in the shared
decision-making process

Foundation for Informed
Medical Decision Making,
Healthwise

Strate et al45 Prospective Patients with acute
lower intestinal
bleeding

275 A bedside clinical prediction rule using
simple cutoff values predicted severe lower
intestinal bleeding (AUC, 0.75)

American College of
Gastroenterology, National
Research Service Award,
American Society for
Gastrointestinal Endoscopy

Sun et al46 Observational Simulated type 1
diabetics

100 A reinforcement learning model performed as
well as standard intermittent self-monitoring
and continuous glucose monitoring methods,
but with fewer episodes of hypoglycemia

Swiss Commission of
Technology and Innovation

Van den Bruel
et al47

Retrospective Primary care patients 3890 Clinician intuition identified patients with
illness severity that was underrepresented
by traditional clinical parameters

Research Foundation
Flanders, Eurogenerics, NIHR

Van den Bruel
et al48

Systematic
review

Articles about clinical
parameters for serious
infections

30 Traditional clinical parameters associated
with serious infection were often absent
among patients with serious infections

Health Technology
Assessment, NIHR

Vohs et al49 Observational Undergraduate
students

34 Higher decision-making volume was
associated with decreased physical stamina,
persistence, quality and quantity of
mathematic calculations, and more
procrastination

NIH, Social Sciences and
Humanities Research Council,
Canada Research Chair
Council, McKnight
Land-Grant

Abbreviations: ACS, American College of Surgeons; AHA, American Heart Association;
AHRQ, Agency for Healthcare Research and Quality; ASCRS, American Society of
Colon and Rectal Surgeons; AUC, area under the curve; CRP, C-reactive protein;
CTSI, Clinical and Translational Sciences Institute; EHR, electronic health record;
GSK, GlaxoSmithKline; ICU, intensive care unit; NCATS, National Center for Advancing
Translational Sciences; NCI, National Cancer Institute; NCRR, National Center for

Research Resources, Acute Physiology, and Chronic Health Evaluation;
NHLBI, National Heart, Lung, and Blood Institute; NIGMS, National Institute of
General Medical Sciences; NIH, National Institutes of Health; NIHR, National Institute
for Health Research; NSF, National Science Foundation; SAPS, Simplified Acute
Physiology Score; SCCM, Society of Critical Care Medicine; SOFA, Sequential Organ
Failure Assessment.

Artificial Intelligence and Surgical Decision-making Review Clinical Review & Education

jamasurgery.com (Reprinted) JAMA Surgery February 2020 Volume 155, Number 2 151

© 2019 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ by a University of Florida User  on 03/26/2020

http://www.jamasurgery.com/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamasurg.2019.4917


an urgent or emergent condition must be made before all relevant
data can be gathered and analyzed. Nonurgent decisions may be hin-
dered by time constraints and uncertainty owing to sheer decision-
making volume, the time-consuming nature of manual data ac-
quisition, and team dynamics. Academic intensivists make
approximately 56 patient care and resource use decisions per day.36

In an assessment of medical student and resident intensive care unit
(ICU) patient presentations, potentially important data were omit-
ted from 157 of 157 presentations.10 Even when data collection and
analysis are complete, high decision-making volume begets deci-
sion fatigue, manifesting as procrastination, less persistence when
facing adversity, decreased physical stamina, and lower quality and
quantity of mathematic calculations.49 These impairments are ex-
acerbated by acute and chronic sleep deprivation, which occurs in
as many as two-thirds of all acute care surgeons taking in-house
call.52,53 For a surgical oncologist with a busy outpatient clinic, au-
tomated production of prognostic data from artificial intelligence

models could improve efficiency and preserve face-to-face patient-
surgeon interactions by obviating manual data acquisition and en-
try into prognostic models.

Heuristics and Bias
When facing time constraints and uncertainty, decision-making may
be influenced by heuristics or cognitive shortcuts.54,55 Heuristics
may lead to bias or predictable and systematic cognitive errors, as
described in Table 2.16,35

Traditional Predictive Analytics
and Clinical Decision Support
Decision Aids
Decision aids provide specific patient populations with back-
ground information, options for diagnosis and treatment, risks and
benefits for each option, and outcome probabilities. In a system-
atic review44 including 31 043 patients facing screening or treat-
ment decisions, patients exposed to decision aids felt more knowl-
edgeable and played a more active role in the decision-making
process. In a systematic review of 17 studies investigating decisions
made by surgical patients, decision aids were associated with more
knowledge regarding treatment options, preference for less inva-
sive treatments, and no observable differences in anxiety, quality
of life, morbidity, or mortality.30 However, because decision aids ap-
ply to heterogeneous patient populations with 1 common clinical
presentation or choice, they do not consider individual patient
physiology and risk factors.

Prognostic Scoring Systems
Traditional prognostic scoring systems use regression modeling on
aggregate patient populations to identify static variable risk factor
thresholds, which are applied to individual patients. For example,
elevated serum levels of C-reactive protein (CRP) are associated
with anastomotic leak after colorectal surgery. A meta-analysis43

Table 2. Sources of Bias in Surgical Decision-making

Source of Bias Examples

Framing effect A clinician presents a clinical scenario to a surgeon
in different context than the surgeon would have
perceived during an independent assessment

Overconfidence bias A surgeon falsely perceives that weaknesses and
failures disproportionately affect their peers

Commission bias A surgeon tends toward action when inaction may
be preferable, especially in the context of
overconfidence bias

Anchoring bias Patients are informed of expected outcomes using
data from aggregate patient populations without
adjusting for their personalized risk profile

Recall bias Recent experiences with a certain patient
population or operation disproportionately
affect surgical decision-making relative to
remote experiences

Confirmation bias Outcomes are predicted using personal beliefs
rather than evidence-based guidelines

Figure 1. Surgical Decision-making Paradigm

Negative outcomes Ineffective methods Aspects of surgical
decision-making Effective methods Positive outcomes

Pressure to perform
futile operations
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found that the optimal postoperative day 3 CRP cutoff value was
172 mg/L (to convert to nanomoles per liter, multiply by 9.524).
This is easy to apply at the bedside but does not accurately reflect
pathophysiology. Serum CRP has a relatively constant half-life, and
its production is directly associated with with inflammation along a
continuum.56 If 4 different patients have CRP levels of 10 mg/L,
171 mg/L, 173 mg/L, and 1000 mg/L 3 days after a colectomy, few
clinicians would group these patients according to the 172 mg/L
cutoff. The negative predictive value was 97%, such that a
low value usually indicates no leak, but the positive predictive
value was 21%.

Most diseases are not driven by a single physiologic param-
eter; therefore, prognostic scoring systems often incorporate mul-
tiple parameters for tasks such as measuring illness severity and
predicting stroke and severe gastrointestinal bleeding.24,45,57

Parametric regression prognostic scoring systems assume that
relationships among input variables are linear.22,29 When the
relationships are nonlinear, the scoring system is similar to a
coin toss.11

To facilitate clinical adoption, prognostic scoring systems have
been implemented as online risk calculators. The NSQIP Surgical Risk
Calculator is a prominent example. Calculator use may increase the
likelihood that patients will participate in risk-reduction strategies
such as prehabilitation.3 However, input variables must be entered

manually, and its predictive accuracy is suboptimal, especially
for nonelective operations, representing opportunities for
improvement.4-7

Artificial Intelligence Predictive Analytics
and Augmented Decision-making
In 1970, William B. Schwartz published a Special Article in the New
England Journal of Medicine stating, “Computing science will prob-
ably exert its major effects by augmenting and, in some cases, largely
replacing the intellectual functions of the physician.”58 Despite ex-
traordinary advances in computer technology, this vision has not
been realized. Several factors may contribute. Traditional clinical
decision-support systems require time-consuming manual data ac-
quisition and entry, which impairs their adoption.8,33 Even the most
successful and widely used static variable cutoff values do not ac-
curately represent individual patient pathophysiology, as reflected
by their suboptimal accuracy.34,43,56 Parametric regression equa-
tions also fail to represent the complex, nonlinear associations among
input variables, further limiting the accuracy of traditional multivari-
able regression models.22,29 The weaknesses of traditional ap-
proaches may be overcome by artificial intelligence models fed
with livestreaming intraoperative and EHR data to augment surgi-
cal decision-making through preoperative, intraoperative, and post-
operative phases of care (Figure 2).

Figure 2. Optimal and Suboptimal Approaches to Surgical Decision-making

Su
bo

pt
im

al
 s

ur
gi

ca
l

de
ci

si
on

-m
ak

in
g

O
pt

im
al

 s
ur

gi
ca

l
de

ci
si

on
-m

ak
in

g
Pa

ti
en

t c
ar

e 
ph

as
es

 a
nd

ap
pl

ic
at

io
ns

EHR data Additive model

A few data elements manually
feed coarse models with

suboptimal accuracy 

EHR data AI model

Livestreaming vital signs, laboratory results,
waveforms, and images feed accurate,

autonomous models 

Personalized risk
assessment and

optimization 

Preoperative phase

Patient-specific
resuscitation

strategies 

Intraoperative phase 

Early detection and
treatment

of complications 

Postoperative phase 

• Low patient compliance
 and satisfaction

• Decision fatigue

• Bias, error, and
 preventable harm

• Patient-surgeon synergy

• Efficient and accurate
 assessments

• Better outcomes

AI indicates artificial intelligence;
EHR, electronic health record.

Artificial Intelligence and Surgical Decision-making Review Clinical Review & Education

jamasurgery.com (Reprinted) JAMA Surgery February 2020 Volume 155, Number 2 153

© 2019 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ by a University of Florida User  on 03/26/2020

http://www.jamasurgery.com/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamasurg.2019.4917


Artificial intelligence refers to computer systems that mimic
human cognitive functions such as learning and problem-solving. In
the broadest sense, a computer program using simple decision tree
functions can mimic human intelligence. However, artificial intelli-
gence usually refers to computer systems that learn from raw data
with some degree of autonomy, as occurs with machine learning,
deep learning, and reinforcement learning (Figure 3). Whereas
traditional clinical decision-support systems use rules to generate
codes and algorithms, artificial intelligence models learn from ex-
amples. Herein lies the strength of artificial intelligence for predic-
tive analytics in medicine: human disease is simply too broad and
complex to be explained and interpreted by rules.59,60

Machine Learning
Machine learning is a subfield of artificial intelligence in which a
computer system performs a task without explicit instructions.
Supervised machine learning models require human domain
expertise and computer engineering to design handcrafted feature
extractors capable of transforming raw data into desired represen-
tations. The algorithm learns associations between input data
and prescribed output categories. Once trained, a supervised
model is capable of classifying new unseen input data. With unsu-
pervised techniques, input data have no corresponding annotated
output categories; the algorithm creates its own output categories
according to the structure and distribution of the input data. This
approach allows discovery of patterns and phenotypes that were
unrecognized prior to model development.

Machine learning has been used to accurately predict sepsis, in-
hospital mortality, and acute kidney injury using intraoperative time-
series data.9,21,27,32 Each machine learning algorithm has distinct ad-
vantages and disadvantages for different tasks such that performance
depends on fit between algorithm and task. To capitalize on this phe-
nomenon, SuperLearner ranks a set of candidate algorithms20,28,38,39

by their performance and applies an optimal weight to each, creat-
ing ensemble algorithms that can accurately predict transfusion
requirements and mortality among trauma patients.20,28,38,39 Super-
vised and unsupervised machine learning input features must be
handcrafted using domain knowledge. In deep learning, features are
extracted by the model itself.

Deep Learning
Deep learning is a subfield of machine learning in which computer
systems learn and represent highly dimensional data by adjusting
weighted associations among input variables across a layered hier-
archy of neurons or artificial neural network. Early warning systems
that alert clinicians to unstable vital signs illustrate data dimension-

ality. As the number of vital sign data sources increases linearly, the
combinations of alarm parameters that trigger early warning sys-
tem alarms increase exponentially, resulting in frequent false
alarms. Even without a corresponding exponential increase in
observations, data are highly dimensional when many variables are
used to represent a single patient or event, especially when the
number of patients or events in the data set is relatively low, pro-
ducing unique and rare mixtures of data. Prediction models are less
effective when classifying mixtures of data that are rare or absent
in the development or training data set. The ability of deep models
to represent highly dimensional data is important to their applica-
tion to surgical decision-making.

In deep models, the initial input and final output layers are con-
nected by hidden layers containing hidden nodes. Each hidden node
is assigned a weight that is influenced by previous layers, affects the
output from that neuron, and has the potential to affect the out-
come classification of the entire network. An algorithm optimizes
and updates weights as the model is trained to achieve the stron-
gest possible association between input and output layers. This
structure allows accurate representation of chaotic and nonlinear
yet meaningful relationships among input features. Deep models
automatically learn optimal feature representations from raw data
without handcrafted feature engineering, providing a logistical ad-
vantage over machine learning models that require time-intensive
feature engineering.61 Automatic feature extraction also promotes
discovery of novel patterns and phenotypes that may have been
overlooked by handcrafted feature selection techniques.

Clinical applications of deep learning benefit from the ability to
include multiple different types and sources of data as inputs for a
single model, including wearable sensors and cameras capturing
patient movements and facial expressions with computer vision,
an artificial intelligence subfield in which deep models use pixels
from images and videos as inputs.60,62,63 Deep models have suc-
cessfully performed patient phenotyping, disease prediction, and
mortality prediction tasks.19,26,41,64 When applied to the same vari-
able set used to calculate SOFA scores, deep models outperform
traditional SOFA modeling in predicting in-hospital mortality for
ICU patients.42 Preliminary data suggest that deep models are
theoretically capable of accurately predicting risk for perioperative
and postoperative complications and augmenting recommenda-
tions for operative management and the informed consent pro-
cess. Despite their utility for predictive analytics, deep learning only
provides outcome probabilities that loosely correspond to specific
decisions and actions. In contrast, reinforcement learning is well
suited to support specific decisions made by patients, caregivers,
and surgeons.

Figure 3. Summary of Artificial Intelligence Techniques

Artificial intelligence: computer systems that mimic human cognitive functions such as learning and problem-solving using
algorithms and decision trees 

Supervised machine learning: computer systems learn to map input data to prescribed output categories using
handcrafted feature extractors designed by human domain experts 

Unsupervised machine learning: computer systems create their own output categories according
to the structure and distribution of the input data 

Deep learning: computer systems represent 
data by adjusting weights across a layered
network of neurons 

Reinforcement learning: computer systems
identify actions yielding the highest probability
of a given outcome 
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Reinforcement Learning
Reinforcement learning is an artificial intelligence subfield in which
computer systems identify actions yielding the highest probability
of an outcome. Reinforcement models can be trained by series of
trial and error scenarios, exposing the model to expert demonstra-
tions, or a combination of these strategies. This occurs in a Markov
decision process framework, consisting of a set of states, a set of
actions, the probability that a certain action in a certain state will
lead to a new state, and the reward that results from the new
state. Using this framework, the system creates a policy that iden-
tifies the choice or action with the highest probability of a desired
outcome, assessing total rewards attributable to multiple actions
performed over time and the relative importance of present and
future rewards, facilitating application of reinforcement learning
to clinical scenarios that evolve over time.

Reinforcement learning has been used to recommend optimal
fluid resuscitation and vasopressor administration strategies for
patients with sepsis.31 Ninety-day mortality was lowest when care
provided by clinicians was concordant with model recommenda-
tions. Reinforcement learning has also been used to recommend
basal and bolus insulin administration for virtual type 1 diabetics.46

The algorithm performed as well as standard intermittent self-
monitoring and continuous glucose monitoring methods, but with
fewer episodes of hypoglycemia. Similar methods could be
applied to augment the decision to operate.

Implementation
Automated Electronic Health Record Data
The Health Information Technology for Economic and Clinical Health
Act of 2009 incentivized adoption of EHR systems.65 Within 6 years,
more than 4 of 5 US hospitals adopted EHRs.66 The volume of data
generated by EHRs is staggering and will likely increase over time.
Approximately 153 billion GB of data were generated in 2013, with
projected growth of 48% per year.67 This data volume is ideal for
artificial intelligence models, which thrive on large data sets.

Because EHRs are continuously updated as patient data
become available, artificial intelligence models can provide real-
time predictions and recommendations. Works published within
the last year demonstrate the feasibility of this approach. The
MySurgeryRisk platform uses EHR data for 285 variables to predict
8 postoperative complications with an area under the curve (AUC)
of 0.82-0.94 and to predict mortality at 1, 3, 6, 12, and 24 months
with an AUC of 0.77-0.83.15 Electronic health record data feed the
algorithm automatically, obviating manual data search and entry
and overcoming a major obstacle to clinical adoption. In a prospec-
tive study, the algorithm predicted postoperative complications
with greater accuracy than physicians.17

Mobile Device Outputs
To optimize clinical utility and facilitate adoption, automated model
outputs could be provided to mobile devices. This would require sev-
eral elements that communicate with one another reliably and ef-
ficiently, including robust quality filters, a public key infrastructure,
and encryption that can only be deciphered by the intended
receiver.68 Model outputs could be provided to mobile devices
equipped with the appropriate RestAPI client-server relationship and
security clearance or through Google Cloud Messaging. To our knowl-
edge, automated surgical risk predictions with mobile device out-

puts have not yet been reported. However, efforts to use manual
data entry to feed machine learning models for surgical risk predic-
tion on mobile devices have been successful.14

Human Intuition
Human intuition seems to arise from dopaminergic limbic system
neurons that modify their connections with one another when a
certain pattern or situation leads to a reward or penalty such as
pleasure or pain.69,70 Subsequently, similar patterns or situations
evoke positive and negative emotions, or gut feelings, which are
powerful and effective decision-making tools. In a sentinel
investigation12 of intuitive decision-making, participants drew
cards from 1 of 4 decks for a cash reward. Two decks were rigged to
be advantageous and 2 were rigged to be disadvantageous. Partici-
pants could explain differences between decks after drawing 80
cards, but demonstrated measurable anxiety and perspiration
when reaching for a disadvantageous deck after drawing 10 cards
and began to favor the advantageous deck after 50 cards before
they could consciously explain what they were doing or why they
were doing it. Similar phenomena occur in fight-or-flight survival
responses, naval warfare, and financial decision-making.71,72

Intuition can also identify patients with life-threatening conditions
that would be underappreciated by traditional clinical parameters
alone.47,48

Challenges to Adoption
Data Standardization and Technology Infrastructure
To produce models that may be integrated with any EHR in any set-
ting, data must be standardized. The Fast Healthcare Interoperabil-
ity Resources framework establishes standards for health informa-
tion exchange using a set of universal components assembled into
systems that facilitate data sharing across EHRs and cloud-based
communications. In addition, the Epic EHR that dominates the
market has exclusive rights to develop new functions. To avoid
legal conflicts, virtual models can live outside the EHR.15 However,
this requires technology infrastructure that is not currently avail-
able in all clinical settings.

Interpretability
Diligent clinicians and informed patients will want to know why a
computer program made a certain prediction or recommendation.
Several techniques address this challenge, including attention
mechanisms that reveal periods during which model inputs con-
tributed disproportionately to the output, plotting pairwise simi-
larities between data points to display phenotypic clusters, and
training models on labeled patient data and then a linear gradient-
boosting tree so that the model will assign relative importance to
patient data input features.18,42,73

Safety and Monitoring
If model inputs are flawed or model outputs are not carefully moni-
tored by data scientists and interpreted by astute clinicians, many
patients could be harmed in a short time frame. Artificial intelli-
gence models trained on erroneous or misrepresentative data are
likely to obscure the truth. Because studies with positive results are
more likely to be submitted and published, artificial intelligence lit-
erature may be overly optimistic. Prior to clinical implementation,
machine and deep learning models must be rigorously analyzed in a
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retrospective fashion and externally validated to ensure general-
izability. Performing a stress test of artificial intelligence models by
simulating erroneous and rare model inputs and assessing how the
model responds may allow clinicians to better understand how and
why failures occur. Initial prospective implementation should occur
on a small scale under close monitoring, similar to phase 1 and 2
clinical trials for experimental medications, with analysis of how
decision-support tools affect decisions across populations and
among individual patients.74 In cooperation with the International
Medical Device Regulators Forum, the US Food and Drug Adminis-
tration created the Software as Medical Device category and devel-
oped a voluntary Software Precertification Program to aid health
care software developers in creating, testing, and implementing
Software as Medical Device. Medicolegal regulation of Software as
Medical Device is not rigidly defined.

Ethical Challenges
When algorithms are trained on data sets that are influenced by
bias, algorithm outputs will likely reflect similar bias. In 1 prominent
example, a model designed to augment judicial decision-making by
predicting the likelihood of crime recidivism demonstrated predi-
lection for racial/ethnic discrimination.75 When data used to train
an algorithm are predominantly derived from patient populations
with different demographics than the patient for whom the algo-
rithm is applied, accuracy may suffer. For example, the Framingham
heart study primarily included white participants. A model trained
on this data may reflect racial and ethnic bias because associations
between cardiovascular risk factors and events differ by race and

ethnicity.25 Accountability for errors poses another challenge. Our
justice system is well-equipped to address scenarios in which an
individual clinician is responsible for making an errant decision, but
it may prove difficult to assign blame to a computer program and
its developers.

Conclusions
Surgical decision-making is impaired by time constraints, uncer-
tainty, complexity, decision fatigue, hypothetical-deductive reason-
ing, and bias, leading to preventable harm. Traditional decision-
support systems are compromised by time-consuming manual data
entry and suboptimal accuracy. Automated artificial intelligence
models fed with livestreaming EHR data can address these weak-
nesses. Successful integration of artificial intelligence with surgical
decision-making would require data standardization, advances in
model interpretability, careful implementation and monitoring,
attention to ethical challenges, and preservation of bedside assess-
ment and human intuition in the decision-making process. Artificial
intelligence models must be rigorously analyzed in a retrospective
fashion with robust external validation prior to prospective clinical
application under the close scrutiny of astute clinicians and data sci-
entists. Properly applied, artificial intelligence has the potential to
transform surgical care by augmenting the decision to operate, the
informed consent process, identification and mitigation of modifi-
able risk factors, recognition and management of complications,
and shared decisions regarding resource use.
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