148

Clinical Review & Education

JAMA Surgery | Review

Artificial Intelligence and Surgical Decision-making

Tyler J. Loftus, MD; Patrick J. Tighe, MD, MS; Amanda C. Filiberto, MD; Philip A. Efron, MD;

Scott C. Brakenridge, MD; Alicia M. Mohr, MD; Parisa Rashidi, PhD;
Gilbert R. Upchurch Jr, MD; Azra Bihorac, MD, MS

IMPORTANCE Surgeons make complex, high-stakes decisions under time constraints
and uncertainty, with significant effect on patient outcomes. This review describes the
weaknesses of traditional clinical decision-support systems and proposes that artificial
intelligence should be used to augment surgical decision-making.

OBSERVATIONS Surgical decision-making is dominated by hypothetical-deductive reasoning,
individual judgment, and heuristics. These factors can lead to bias, error, and preventable
harm. Traditional predictive analytics and clinical decision-support systems are intended

to augment surgical decision-making, but their clinical utility is compromised by
time-consuming manual data management and suboptimal accuracy. These challenges can
be overcome by automated artificial intelligence models fed by livestreaming electronic
health record data with mobile device outputs. This approach would require data
standardization, advances in model interpretability, careful implementation and monitoring,
attention to ethical challenges involving algorithm bias and accountability for errors, and
preservation of bedside assessment and human intuition in the decision-making process.

CONCLUSIONS AND RELEVANCE Integration of artificial intelligence with surgical
decision-making has the potential to transform care by augmenting the decision to operate,
informed consent process, identification and mitigation of modifiable risk factors, decisions
regarding postoperative management, and shared decisions regarding resource use.
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urgeons make complex, high-stakes decisions when offer-
ing an operation, addressing modifiable risk factors, man-
aging complications and optimizing resource use, and con-
ducting an operation. Diagnostic and judgment errors are the
second most common cause of preventable harm incurred by sur-
gical patients.! Surgeons report that lapses in judgment are the
most common cause of their major errors.? Surgical decision-
making is dominated by hypothetical deductive reasoning and
individual judgment, which are highly variable and ill-suited to
remedy these errors. Traditional clinical decision support tools,
such as the National Surgical Quality Improvement Program
(NSQIP) Surgical Risk Calculator, can reduce variability and miti-
gate risks, but their clinical adoption is hindered by suboptimal
accuracy and time-consuming manual data acquisition and entry
requirements.8
Although decision-making is one of the most difficult and
important tasks that surgeons perform, there is a relative paucity
of research investigating surgical decision-making and strategies
to improve it. The objectives of this review are to describe chal-
lenges in surgical decision-making, review traditional clinical
decision-support systems and their weaknesses, and propose that
artificial intelligence models fed with live-streaming electronic
health record data (EHR) would obviate these weaknesses and
should be integrated with bedside assessment and human intu-
ition to augment surgical decision-making.
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Methods

PubMed and Cochrane Library databases were searched from
their inception to February 2019 (eFigure in the Supplement).
Articles were screened by reviewing their abstracts for the follow-
ing criteria: (1) published in English, (2) published in a peer-
reviewed journal, and (3) primary literature or a review article.
Articles were selected for inclusion by manually reviewing
abstracts and full texts for these criteria: (1) topical relevance,
(2) methodologic strength, and (3) novel or meritorious contribu-
tion to existing literature. Articles of interest cited by articles
identified in the initial search were reviewed using the same crite-
ria. Forty-nine articles were included and assimilated into relevant
categories (Table 1)."4°

. |
Observations

The quality of surgical decision-making is influenced by patient val-
ues and emotions, patient-surgeon interactions, decision-making
volume and complexity, time constraints, uncertainty, hypothetical
deductive reasoning, and individual judgment. There are effective and
ineffective methods for dealing with each of these factors, which lead
to positive and negative outcomes, respectively (Figure 1).
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Table 1. Summary of Included Studies

Sample Major Findings Pertinent Sources of Funding;
Source Study Design Population Size to This Scoping Review Conflicts of Interest
Adhikari et al® Retrospective Patients undergoing 2911 A machine learning algorithm accurately NIGMS, University of Florida
inpatient surgery predicted postoperative acute kidney injury CTSI; NCATS; | Heerman
using preoperative and intraoperative data Anesthesia Foundation;
SCCM Vision Grant
Artis et al*® Observational Trainee ICU 157 Potentially important data were omitted AHRQ
presentations from 157 of 157 presentations; missing an
average 42% of all data elements
Bagnall et al'* Retrospective Patients who had 1380 Six traditional risk models used to predict St Mark’s Hospital
colorectal surgery postoperative morbidity and mortality had Foundation
weak accuracy with AUC, 0.46-0.61
Bechara et al'? Observational Healthy volunteers 16 Participants began to decide advantageously  National Institute of
and participants with before they could consciously explain what Neurological Diseases and
prefrontal cortex they were doing or why they were doing it Stroke
damage
Bertrand et al'® Prospective ICU patients and 419 Clinicians thought 45% of all patients had Pfizer, Fisher & Paykel; Pfizer;
attending surgeons decision-making capacity; a minimental Alexion; Gilead; Jazz Pharma;
status examination found that 17% had Baxter; Astellas
decision-making capacity
Bertsimas et al'# Retrospective Emergency surgery 382960 A app-based machine learning model None reported
patients accurately predicted mortality and 18
postoperative complications (AUC, 0.92)
Bihorac et al® Retrospective Patients undergoing 51457 A machine learning algorithm using NIGMS; NCATS
major surgery automated EHR data predicted 8
postoperative complications (AUC,
0.82-0.94) and predicted mortality at 1, 3,
6, 12, and 24 mo (AUC, 0.77-0.83)
Blumenthal-Barby Review Articles about 213 Among studies investigating bias and Greenwall Foundation; Pfizer
etal'® heuristics in medical heuristics among medical personnel, 80%
decision-making identified evidence of bias and heuristics
Brennan et al'’ Prospective Physicians 20 A machine learning algorithm was NIGMS, University of Florida
significantly more accurate than physiciansin  CTSI; NCATS
predicting postoperative complications (AUC,
0.73-0.85 vs AUC, 0.47-0.69)
Che et al'® Retrospective Pediatric ICU 398 A gradient boosting trees method allowed for  NSF; Coulter Translational
patients quantification of the relative importance of Research Program
deep model inputs in determining model
outputs
Chen-Ying et al*® Retrospective Clinic patients 840487 A deep model predicted 5-y stroke None reported
occurrence with greater sensitivity (0.85 vs
0.82) and specificity (0.87 vs 0.86) than
logistic regression
Christie et al*® Retrospective Trauma patients 28212 A machine learning ensemble accurately NIH
predicted mortality among trauma patients
in the United States, South Africa, and
Cameroon with AUC 20.90 in all settings
Clark et al* Retrospective Surgical patients 885502 The ACS Surgical Risk Calculator accurately None reported
predicted mortality (AUC, 0.94) and
morbidity (AUC, 0.83)
Cohen et al® Retrospective Studies assessing 3 External validation studies assessing ACS None reported
the ACS Surgical Surgical Risk Calculator performance may
Risk Calculator have been compromised by small sample size,
case-mix heterogeneity, and use of data from
a small number of institutions
Delahanty et al** Retrospective ICU patients 237173 A machine learning algorithm accurately Alesky Belcher; Intensix,
predicted inpatient death (AUC, 0.94) Advanced ICU
Dybowski et al?2 Retrospective ICU patients 258 An artificial neural network predicted Special Trustees for
in-hospital mortality more accurately than St Thomas' Hospital
logistic regression (AUC 0.86 vs 0.75)
Ellis et al?3 Prospective Volunteers 1948 Induction of fear and anger had unique and NCI
significant influences on decisions to take
hypothetical medications
Gage et al?* Prospective Patients with 2580 Models commonly used to predict risk of AHA, NIH, Danish and
atrial fibrillation stroke were moderately accurate with AUC Netherlands Heart
ranging from 0.58-0.70 Foundations, Zorg Onderzoek
Nederland Prevention Fund,
Bayer, UK Stroke Association
Gijsberts et al*® Retrospective Patients with 60211 Associations between risk factors and Netherlands Organization for
no baseline development of atherosclerotic Health Research and
cardiovascular cardiovascular disease were different across ~ Development, NIH
disease racial and ethnic groups
Hao et al2® Retrospective ICU patients 15647 Deep learning models predicted 28-d None reported
mortality with 84%-86% accuracy
(continued)
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Table 1. Summary of Included Studies (continued)

Sample Major Findings Pertinent Sources of Funding;
Source Study Design Population Size to This Scoping Review Conflicts of Interest
Healey et al* Retrospective Surgical inpatients 4658 Behind technical errors, diagnostic and None reported

judgment errors were the second most
common cause of preventable harm

Henry et al?” Retrospective ICU patients 16234 A machine learning early warning score NSF; Google Research,
accurately predicted the onset of septic Gordon and Betty Moore
shock (AUC 0.83), identifying approximately ~ Foundation
two-thirds of all cases prior to the onset
of organ dysfunction

Hubbard et al?® Prospective Trauma patients 980 A machine learning ensemble predicted US Army Medical Research
mortality more accurately than logistic and Materiel Command, NIH
regression (5% gain)

Hyde et al’ Prospective Patients undergoing 288 The likelihood of a serious complication was ~ None reported

colorectal resections underestimated by the ACS Surgical Risk

Calculator (AUC, 0.69), but the calculator
accurately predicted postoperative mortality
(AUC, 0.97)

Kim et al?° Retrospective ICU admissions 38474 A decision tree model predicted in-hospital NCRR
mortality more accurately than APACHE 111
(AUC, 0.89vs0.87)

Knops et al*° Systematic Studies about decision 17 Decision aid use was associated with more None reported
review aids in surgery knowledge regarding treatment options and
preference for less invasive treatment
options with no observable differences in
anxiety, quality of life, or complications

Komorowski et al>*  Retrospective Septic ICU patients 96 156 A reinforcement learning model Orion Pharma, Amomed
recommending intravenous fluid and Pharma, Ferring Pharma,
vasopressor strategies outperformed human  Tenax Therapeutics; Baxter
clinicians; mortality was lowest when Healthcare; Bristol-Myers
decisions made by clinicians matched Squibb; GSK; HCA
recommendations from the reinforcement International
learning model

Koyner et al>? Retrospective Hospital admissions 121158 A machine learning algorithm accurately Satellite Healthcare; Philips

predicted development of acute kidney injury  Healthcare; EarlySense;
within 24 h (AUC, 0.90) and 48 h (AUC, 0.87) Quant HC

Leeds et al® Observational Surgery residents 124 Residents reported that lack of electronic and NCI; ASCRS; AHRQ
clinical workflow integration were major
barriers to routine use of risk communication

frameworks
Légaré et al>3 Systematic Studies about shared 38 Time constraints impair the shared Tier 2 Canada Research Chair
review decision-making decision-making process among providers,
patients, and caregivers
Loftus et al>* Retrospective Patients with lower 147 An artificial neural network predicted severe  NIGMS, NCATS
intestinal bleeding lower intestinal bleeding more accurately

than a traditional clinical prediction rule
(AUC, 0.98 vs 0.66)

Lubitz et al® Retrospective Patients undergoing 150 The ACS Surgical Risk Calculator accurately None reported
colorectal surgery predicted morbidity and mortality for
elective surgery but underestimated risk for
emergent surgery
Ludolph et al3® Systematic Articles about 68 Many debiasing strategies targeting health University of Lugano
review debiasing in care clinicians effectively decrease the effect Institute of Communication
health care of bias on decision-making and Health
Lundgren-Laine Observational Academic 8 Academic intensivists made approximately Finnish Funding Agency for
etal3® intensivists 56 ad hoc patient care and resource use Technology and Innovation;
decisions per day Tekes; Finnish Cultural
Foundation
Morris et al>” Interviews Academic surgeons 20 Younger surgeons felt uncomfortable AHRQ

defining futility and felt pressured to perform
operations that were likely futile

Pirracchio et al® Retrospective ICU patients 24508 A machine learning ensemble predicted Fulbright Foundation; Doris
in-hospital mortality (AUC, 0.85) more Duke Clinical Scientist
accurately than SAPS-II (AUC, 0.78) and Development Award; NIH
SOFA (AUC, 0.71)

Pirracchio et al° Observational Simulated data sets 1000 A machine learning ensemble predicted Fulbright Foundation;
propensity scores more accurately than Assistance
logistic regression and individual machine Publique-Hdpitaux de Paris;
learning algorithms NIH

Raymond et al® Prospective Preoperative 150 After reviewing ACS Surgical Risk Calculator ~ GE Foundation; Edwards

clinic patients results, 70% would participate in Lifesciences; Cheetah

prehabilitation and 40% would delay surgery ~ Medical
for prehabilitation

(continued)
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Table 1. Summary of Included Studies (continued)

Sample Major Findings Pertinent Sources of Funding;
Source Study Design Population Size to This Scoping Review Conflicts of Interest
Sacks et al*® Observational Surgeons 767 Facing clinical vignettes for urgent and Robert Wood
emergent surgical diseases; surgeons Johnson/Veterans Affairs
exhibited wide variability in the decision Clinical Scholars program
to operate (49%-85%)
Schuetz et al** Retrospective Clinical encounters 32787 A deep model predicted the onset of heart NSF; NHLBI
inan EHR failure more accurately than logistic
regression (AUC, 0.78 vs AUC, 0.75)
Shanafelt et al? Observational Members of the ACS 7905 Nine percent of all surgeons reported making  None reported

Shickel et al*? Retrospective ICU admissions 36216

Singh et al*? Systematic Articles about CRP 7
review to predict leak after
colorectal surgery
Stacey et al** Systematic Randomized trials 105
review about decision aids

Strate et al*® Patients with acute 275
lower intestinal

bleeding

Prospective

Sun et al*® Observational Simulated type 1 100

diabetics

Van den Bruel Retrospective Primary care patients 3890

etal*’

Van den Bruel Systematic Articles about clinical 30

etal*® review parameters for serious
infections

Vohs et al*°® Observational Undergraduate 34
students

a major medical error in the last 3 mo, and
lapses in judgment were the most common
cause (32%)

A deep model using SOFA variables predicted
in-hospital mortality with greater accuracy
than the traditional SOFA score (AUC 0.90
vs 0.85)

NIGMS; NSF, University of
Florida CTSI; NCATS;

J Crayton Pruitt Family
Department of Biomedical
Engineering; Nvidia

Auckland Medical Research
Foundation, New Zealand
Health Research Council

The positive predictive value of serum
C-reactive protein 3-5 d after surgery was
21%-23%

Participants exposed to decision aids felt that
they were more knowledgeable, informed,
and clear about their values and played a
more active role in the shared
decision-making process

Foundation for Informed
Medical Decision Making,
Healthwise

A bedside clinical prediction rule using
simple cutoff values predicted severe lower
intestinal bleeding (AUC, 0.75)

American College of
Gastroenterology, National
Research Service Award,
American Society for
Gastrointestinal Endoscopy

A reinforcement learning model performed as  Swiss Commission of

well as standard intermittent self-monitoring Technology and Innovation
and continuous glucose monitoring methods,

but with fewer episodes of hypoglycemia

Clinician intuition identified patients with
illness severity that was underrepresented
by traditional clinical parameters

Traditional clinical parameters associated
with serious infection were often absent
among patients with serious infections

Higher decision-making volume was
associated with decreased physical stamina,
persistence, quality and quantity of
mathematic calculations, and more
procrastination

Research Foundation
Flanders, Eurogenerics, NIHR

Health Technology
Assessment, NIHR

NIH, Social Sciences and
Humanities Research Council,
Canada Research Chair
Council, McKnight
Land-Grant

Abbreviations: ACS, American College of Surgeons; AHA, American Heart Association;
AHRQ, Agency for Healthcare Research and Quality; ASCRS, American Society of
Colon and Rectal Surgeons; AUC, area under the curve; CRP, C-reactive protein;
CTSI, Clinical and Translational Sciences Institute; EHR, electronic health record;
GSK, GlaxoSmithKline; ICU, intensive care unit; NCATS, National Center for Advancing
Translational Sciences; NCI, National Cancer Institute; NCRR, National Center for

Research Resources, Acute Physiology, and Chronic Health Evaluation;

NHLBI, National Heart, Lung, and Blood Institute; NIGMS, National Institute of
General Medical Sciences; NIH, National Institutes of Health; NIHR, National Institute
for Health Research; NSF, National Science Foundation; SAPS, Simplified Acute
Physiology Score; SCCM, Society of Critical Care Medicine; SOFA, Sequential Organ
Failure Assessment.

Challenges in Surgical Decision-making

Complexity

In the hypothetical-deductive decision-making model that domi-
nates surgical decision-making, initial patient presentations are as-
sessed to develop a list of possible diagnoses that are differenti-
ated by diagnostic testing or response to empirical therapy. This
depends on the surgeon’s ability to form a complete list of all likely
diagnoses, all life-threatening diagnoses, and all unlikely diagnoses
that may be considered if the initial workup excludes other causes.
It also requires recognition of strengths and limitations of available
tests. Once the diagnosis is established, the surgeon must recom-
mend a plan using sound judgment. Each step introduces variabil-
ity and opportunities for error.*©

Values and Emotions
Patient values are individualized by nature, precluding the creation

of a criterion standard of optimal decision-making. Understanding

jamasurgery.com

and incorporating these values is essential to an effective shared
decision-making process.>° This may be accomplished by simply ask-
ing patients and caregivers about their goals of care and what they
value most in life. Shared decision-making improves patient satis-
faction and compliance and may reduce costs associated with
undesired tests and treatments. However, patients, caregivers, and
clinicians often misunderstand one another, their goals may differ,
and patients and caregivers are often expected to make decisions
with limited background knowledge and no medical training.™33°
Surgical diseases may evoke fear and anger, which influence per-
ceptions of risks and benefits.2>>' Emotions surrounding an acute
surgical condition may also create a sense of urgency and pressure
on surgeons to perform futile operations.>”

Time Constraints and Uncertainty
Surgical decision-making is often hindered by uncertainty owing to

missing or incomplete data. This occurs when decisions regarding
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Figure 1. Surgical Decision-making Paradigm
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Table 2. Sources of Bias in Surgical Decision-making

Source of Bias Examples

Framing effect A clinician presents a clinical scenario to a surgeon
in different context than the surgeon would have

perceived during an independent assessment

Overconfidence bias A surgeon falsely perceives that weaknesses and

failures disproportionately affect their peers

Commission bias A surgeon tends toward action when inaction may
be preferable, especially in the context of

overconfidence bias

Anchoring bias Patients are informed of expected outcomes using
data from aggregate patient populations without

adjusting for their personalized risk profile

Recall bias Recent experiences with a certain patient
population or operation disproportionately
affect surgical decision-making relative to

remote experiences

Confirmation bias Outcomes are predicted using personal beliefs

rather than evidence-based guidelines

an urgent or emergent condition must be made before all relevant
data can be gathered and analyzed. Nonurgent decisions may be hin-
dered by time constraints and uncertainty owing to sheer decision-
making volume, the time-consuming nature of manual data ac-
quisition, and team dynamics. Academic intensivists make
approximately 56 patient care and resource use decisions per day.>®
Inan assessment of medical student and resident intensive care unit
(ICU) patient presentations, potentially important data were omit-
ted from 157 of 157 presentations.'® Even when data collection and
analysis are complete, high decision-making volume begets deci-
sion fatigue, manifesting as procrastination, less persistence when
facing adversity, decreased physical stamina, and lower quality and
quantity of mathematic calculations.*® These impairments are ex-
acerbated by acute and chronic sleep deprivation, which occurs in
as many as two-thirds of all acute care surgeons taking in-house
call.>>3 For a surgical oncologist with a busy outpatient clinic, au-
tomated production of prognostic data from artificial intelligence

JAMA Surgery February 2020 Volume 155, Number 2

models could improve efficiency and preserve face-to-face patient-
surgeon interactions by obviating manual data acquisition and en-
try into prognostic models.

Heuristics and Bias

When facing time constraints and uncertainty, decision-making may
be influenced by heuristics or cognitive shortcuts.>*>> Heuristics
may lead to bias or predictable and systematic cognitive errors, as
described in Table 2.'6-3

Traditional Predictive Analytics

and Clinical Decision Support

Decision Aids

Decision aids provide specific patient populations with back-
ground information, options for diagnosis and treatment, risks and
benefits for each option, and outcome probabilities. In a system-
atic review** including 31043 patients facing screening or treat-
ment decisions, patients exposed to decision aids felt more knowl-
edgeable and played a more active role in the decision-making
process. In a systematic review of 17 studies investigating decisions
made by surgical patients, decision aids were associated with more
knowledge regarding treatment options, preference for less inva-
sive treatments, and no observable differences in anxiety, quality
of life, morbidity, or mortality.3© However, because decision aids ap-
ply to heterogeneous patient populations with 1 common clinical
presentation or choice, they do not consider individual patient
physiology and risk factors.

Prognostic Scoring Systems

Traditional prognostic scoring systems use regression modeling on
aggregate patient populations to identify static variable risk factor
thresholds, which are applied to individual patients. For example,
elevated serum levels of C-reactive protein (CRP) are associated
with anastomotic leak after colorectal surgery. A meta-analysis**

jamasurgery.com
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Figure 2. Optimal and Suboptimal Approaches to Surgical Decision-making
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found that the optimal postoperative day 3 CRP cutoff value was
172 mg/L (to convert to nanomoles per liter, multiply by 9.524).
This is easy to apply at the bedside but does not accurately reflect
pathophysiology. Serum CRP has a relatively constant half-life, and
its production is directly associated with with inflammation along a
continuum.”® If 4 different patients have CRP levels of 10 mg/L,
171 mg/L, 173 mg/L, and 1000 mg/L 3 days after a colectomy, few
clinicians would group these patients according to the 172 mg/L
cutoff. The negative predictive value was 97%, such that a
low value usually indicates no leak, but the positive predictive
value was 21%.

Most diseases are not driven by a single physiologic param-
eter; therefore, prognostic scoring systems often incorporate mul-
tiple parameters for tasks such as measuring illness severity and
predicting stroke and severe gastrointestinal bleeding.?+4>->”
Parametric regression prognostic scoring systems assume that
relationships among input variables are linear.?22° When the
relationships are nonlinear, the scoring system is similar to a
coin toss."

To facilitate clinical adoption, prognostic scoring systems have
beenimplemented as online risk calculators. The NSQIP Surgical Risk
Calculator is a prominent example. Calculator use may increase the
likelihood that patients will participate in risk-reduction strategies
such as prehabilitation.® However, input variables must be entered

jamasurgery.com

manually, and its predictive accuracy is suboptimal, especially
for nonelective operations, representing opportunities for
improvement.*”

Artificial Intelligence Predictive Analytics

and Augmented Decision-making

In 1970, William B. Schwartz published a Special Article in the New
England Journal of Medicine stating, "Computing science will prob-
ably exert its major effects by augmenting and, in some cases, largely
replacing the intellectual functions of the physician.">® Despite ex-
traordinary advances in computer technology, this vision has not
been realized. Several factors may contribute. Traditional clinical
decision-support systems require time-consuming manual data ac-
quisition and entry, which impairs their adoption.®>3 Even the most
successful and widely used static variable cutoff values do not ac-
curately represent individual patient pathophysiology, as reflected
by their suboptimal accuracy.>+#*>6 Parametric regression equa-
tions also fail to represent the complex, nonlinear associations among
input variables, further limiting the accuracy of traditional multivari-
able regression models.?>?° The weaknesses of traditional ap-
proaches may be overcome by artificial intelligence models fed
with livestreaming intraoperative and EHR data to augment surgi-
cal decision-making through preoperative, intraoperative, and post-
operative phases of care (Figure 2).
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Figure 3. Summary of Artificial Intelligence Techniques

Artificial intelligence: computer systems that mimic human cognitive functions such as learning and problem-solving using

algorithms and decision trees

Supervised machine learning: computer systems learn to map input data to prescribed output categories using

handcrafted feature extractors designed by human domain experts

Unsupervised machine learning: computer systems create their own output categories according
to the structure and distribution of the input data

Deep learning: computer systems represent
data by adjusting weights across a layered
network of neurons

Reinforcement learning: computer systems
identify actions yielding the highest probability
of a given outcome

Artificial intelligence refers to computer systems that mimic
human cognitive functions such as learning and problem-solving. In
the broadest sense, acomputer program using simple decision tree
functions can mimic human intelligence. However, artificial intelli-
gence usually refers to computer systems that learn from raw data
with some degree of autonomy, as occurs with machine learning,
deep learning, and reinforcement learning (Figure 3). Whereas
traditional clinical decision-support systems use rules to generate
codes and algorithms, artificial intelligence models learn from ex-
amples. Herein lies the strength of artificial intelligence for predic-
tive analytics in medicine: human disease is simply too broad and
complex to be explained and interpreted by rules.>®¢°

Machine Learning

Machine learning is a subfield of artificial intelligence in which a
computer system performs a task without explicit instructions.
Supervised machine learning models require human domain
expertise and computer engineering to design handcrafted feature
extractors capable of transforming raw data into desired represen-
tations. The algorithm learns associations between input data
and prescribed output categories. Once trained, a supervised
model is capable of classifying new unseen input data. With unsu-
pervised techniques, input data have no corresponding annotated
output categories; the algorithm creates its own output categories
according to the structure and distribution of the input data. This
approach allows discovery of patterns and phenotypes that were
unrecognized prior to model development.

Machine learning has been used to accurately predict sepsis, in-
hospital mortality, and acute kidney injury using intraoperative time-
series data.®2"?”32 Each machine learning algorithm has distinct ad-
vantages and disadvantages for different tasks such that performance
depends on fit between algorithm and task. To capitalize on this phe-
nomenon, SuperLearner ranks aset of candidate algorithms2©-28-38.39
by their performance and applies an optimal weight to each, creat-
ing ensemble algorithms that can accurately predict transfusion
requirements and mortality among trauma patients. 22283839 Syper-
vised and unsupervised machine learning input features must be
handcrafted using domain knowledge. In deep learning, features are
extracted by the model itself.

Deep Learning

Deep learning is a subfield of machine learning in which computer
systems learn and represent highly dimensional data by adjusting
weighted associations among input variables across a layered hier-
archy of neurons or artificial neural network. Early warning systems
that alert clinicians to unstable vital signs illustrate data dimension-
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ality. As the number of vital sign data sources increases linearly, the
combinations of alarm parameters that trigger early warning sys-
tem alarms increase exponentially, resulting in frequent false
alarms. Even without a corresponding exponential increase in
observations, data are highly dimensional when many variables are
used to represent a single patient or event, especially when the
number of patients or events in the data set is relatively low, pro-
ducing unique and rare mixtures of data. Prediction models are less
effective when classifying mixtures of data that are rare or absent
in the development or training data set. The ability of deep models
to represent highly dimensional data is important to their applica-
tion to surgical decision-making.

In deep models, the initial input and final output layers are con-
nected by hidden layers containing hidden nodes. Each hidden node
is assigned a weight that is influenced by previous layers, affects the
output from that neuron, and has the potential to affect the out-
come classification of the entire network. An algorithm optimizes
and updates weights as the model is trained to achieve the stron-
gest possible association between input and output layers. This
structure allows accurate representation of chaotic and nonlinear
yet meaningful relationships among input features. Deep models
automatically learn optimal feature representations from raw data
without handcrafted feature engineering, providing a logistical ad-
vantage over machine learning models that require time-intensive
feature engineering.®' Automatic feature extraction also promotes
discovery of novel patterns and phenotypes that may have been
overlooked by handcrafted feature selection techniques.

Clinical applications of deep learning benefit from the ability to
include multiple different types and sources of data as inputs for a
single model, including wearable sensors and cameras capturing
patient movements and facial expressions with computer vision,
an artificial intelligence subfield in which deep models use pixels
from images and videos as inputs.®°-6263 Deep models have suc-
cessfully performed patient phenotyping, disease prediction, and
mortality prediction tasks.'®254"6* When applied to the same vari-
able set used to calculate SOFA scores, deep models outperform
traditional SOFA modeling in predicting in-hospital mortality for
ICU patients.*? Preliminary data suggest that deep models are
theoretically capable of accurately predicting risk for perioperative
and postoperative complications and augmenting recommenda-
tions for operative management and the informed consent pro-
cess. Despite their utility for predictive analytics, deep learning only
provides outcome probabilities that loosely correspond to specific
decisions and actions. In contrast, reinforcement learning is well
suited to support specific decisions made by patients, caregivers,
and surgeons.
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Reinforcement Learning

Reinforcement learning is an artificial intelligence subfield in which
computer systems identify actions yielding the highest probability
of an outcome. Reinforcement models can be trained by series of
trial and error scenarios, exposing the model to expert demonstra-
tions, or a combination of these strategies. This occurs in a Markov
decision process framework, consisting of a set of states, a set of
actions, the probability that a certain action in a certain state will
lead to a new state, and the reward that results from the new
state. Using this framework, the system creates a policy that iden-
tifies the choice or action with the highest probability of a desired
outcome, assessing total rewards attributable to multiple actions
performed over time and the relative importance of present and
future rewards, facilitating application of reinforcement learning
to clinical scenarios that evolve over time.

Reinforcement learning has been used to recommend optimal
fluid resuscitation and vasopressor administration strategies for
patients with sepsis.3' Ninety-day mortality was lowest when care
provided by clinicians was concordant with model recommenda-
tions. Reinforcement learning has also been used to recommend
basal and bolus insulin administration for virtual type 1diabetics.*®
The algorithm performed as well as standard intermittent self-
monitoring and continuous glucose monitoring methods, but with
fewer episodes of hypoglycemia. Similar methods could be
applied to augment the decision to operate.

Implementation
Automated Electronic Health Record Data
The Health Information Technology for Economic and Clinical Health
Act of 2009 incentivized adoption of EHR systems.®® Within 6 years,
more than 4 of 5 US hospitals adopted EHRs.® The volume of data
generated by EHRs is staggering and will likely increase over time.
Approximately 153 billion GB of data were generated in 2013, with
projected growth of 48% per year.®” This data volume is ideal for
artificial intelligence models, which thrive on large data sets.
Because EHRs are continuously updated as patient data
become available, artificial intelligence models can provide real-
time predictions and recommendations. Works published within
the last year demonstrate the feasibility of this approach. The
MySurgeryRisk platform uses EHR data for 285 variables to predict
8 postoperative complications with an area under the curve (AUC)
of 0.82-0.94 and to predict mortality at 1, 3, 6, 12, and 24 months
with an AUC of 0.77-0.83." Electronic health record data feed the
algorithm automatically, obviating manual data search and entry
and overcoming a major obstacle to clinical adoption. In a prospec-
tive study, the algorithm predicted postoperative complications
with greater accuracy than physicians."”

Mobile Device Outputs

To optimize clinical utility and facilitate adoption, automated model
outputs could be provided to mobile devices. This would require sev-
eral elements that communicate with one another reliably and ef-
ficiently, including robust quality filters, a public key infrastructure,
and encryption that can only be deciphered by the intended
receiver.®® Model outputs could be provided to mobile devices
equipped with the appropriate RestAPI client-server relationship and
security clearance or through Google Cloud Messaging. To our know!-
edge, automated surgical risk predictions with mobile device out-
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puts have not yet been reported. However, efforts to use manual
data entry to feed machine learning models for surgical risk predic-
tion on mobile devices have been successful.'*

Human Intuition

Human intuition seems to arise from dopaminergic limbic system
neurons that modify their connections with one another when a
certain pattern or situation leads to a reward or penalty such as
pleasure or pain.®®7° Subsequently, similar patterns or situations
evoke positive and negative emotions, or gut feelings, which are
powerful and effective decision-making tools. In a sentinel
investigation'? of intuitive decision-making, participants drew
cards from 1of 4 decks for a cash reward. Two decks were rigged to
be advantageous and 2 were rigged to be disadvantageous. Partici-
pants could explain differences between decks after drawing 80
cards, but demonstrated measurable anxiety and perspiration
when reaching for a disadvantageous deck after drawing 10 cards
and began to favor the advantageous deck after 50 cards before
they could consciously explain what they were doing or why they
were doing it. Similar phenomena occur in fight-or-flight survival
responses, naval warfare, and financial decision-making.”"”2
Intuition can also identify patients with life-threatening conditions
that would be underappreciated by traditional clinical parameters
alone.#748

Challenges to Adoption

Data Standardization and Technology Infrastructure

To produce models that may be integrated with any EHR in any set-
ting, data must be standardized. The Fast Healthcare Interoperabil-
ity Resources framework establishes standards for health informa-
tion exchange using a set of universal components assembled into
systems that facilitate data sharing across EHRs and cloud-based
communications. In addition, the Epic EHR that dominates the
market has exclusive rights to develop new functions. To avoid
legal conflicts, virtual models can live outside the EHR.™ However,
this requires technology infrastructure that is not currently avail-
ablein all clinical settings.

Interpretability

Diligent clinicians and informed patients will want to know why a
computer program made a certain prediction or recommendation.
Several techniques address this challenge, including attention
mechanisms that reveal periods during which model inputs con-
tributed disproportionately to the output, plotting pairwise simi-
larities between data points to display phenotypic clusters, and
training models on labeled patient data and then a linear gradient-
boosting tree so that the model will assign relative importance to
patient data input features.'®4273

Safety and Monitoring

If model inputs are flawed or model outputs are not carefully moni-
tored by data scientists and interpreted by astute clinicians, many
patients could be harmed in a short time frame. Artificial intelli-
gence models trained on erroneous or misrepresentative data are
likely to obscure the truth. Because studies with positive results are
more likely to be submitted and published, artificial intelligence lit-
erature may be overly optimistic. Prior to clinical implementation,
machine and deep learning models must be rigorously analyzed in a
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retrospective fashion and externally validated to ensure general-
izability. Performing a stress test of artificial intelligence models by
simulating erroneous and rare model inputs and assessing how the
model responds may allow clinicians to better understand how and
why failures occur. Initial prospective implementation should occur
on a small scale under close monitoring, similar to phase 1and 2
clinical trials for experimental medications, with analysis of how
decision-support tools affect decisions across populations and
among individual patients.” In cooperation with the International
Medical Device Regulators Forum, the US Food and Drug Adminis-
tration created the Software as Medical Device category and devel-
oped a voluntary Software Precertification Program to aid health
care software developers in creating, testing, and implementing
Software as Medical Device. Medicolegal regulation of Software as
Medical Device is not rigidly defined.

Ethical Challenges

When algorithms are trained on data sets that are influenced by
bias, algorithm outputs will likely reflect similar bias. In 1 prominent
example, a model designed to augment judicial decision-making by
predicting the likelihood of crime recidivism demonstrated predi-
lection for racial/ethnic discrimination.” When data used to train
an algorithm are predominantly derived from patient populations
with different demographics than the patient for whom the algo-
rithm is applied, accuracy may suffer. For example, the Framingham
heart study primarily included white participants. A model trained
on this data may reflect racial and ethnic bias because associations
between cardiovascular risk factors and events differ by race and

Artificial Intelligence and Surgical Decision-making

ethnicity.?> Accountability for errors poses another challenge. Our
justice system is well-equipped to address scenarios in which an
individual clinician is responsible for making an errant decision, but
it may prove difficult to assign blame to a computer program and
its developers.

|
Conclusions

Surgical decision-making is impaired by time constraints, uncer-
tainty, complexity, decision fatigue, hypothetical-deductive reason-
ing, and bias, leading to preventable harm. Traditional decision-
support systems are compromised by time-consuming manual data
entry and suboptimal accuracy. Automated artificial intelligence
models fed with livestreaming EHR data can address these weak-
nesses. Successful integration of artificial intelligence with surgical
decision-making would require data standardization, advances in
model interpretability, careful implementation and monitoring,
attention to ethical challenges, and preservation of bedside assess-
ment and human intuition in the decision-making process. Artificial
intelligence models must be rigorously analyzed in a retrospective
fashion with robust external validation prior to prospective clinical
application under the close scrutiny of astute clinicians and data sci-
entists. Properly applied, artificial intelligence has the potential to
transform surgical care by augmenting the decision to operate, the
informed consent process, identification and mitigation of modifi-
able risk factors, recognition and management of complications,
and shared decisions regarding resource use.
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