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Life is filled with puzzles and mysteries, and we often fail to recognize the difference. As described
by Gregory Treverton and Malcolm Gladwell, puzzles are solved by gathering and assimilating all
relevant data in a logical, linear fashion, as in deciding which antibiotic to prescribe for an infection.
In contrast, mysteries remain unsolved until all relevant data are analyzed and interpreted in a
way that appreciates their depth and complexity, as in determining how to best modulate the host
immune response to infection. When investigating mysteries, we often fail to appreciate their depth
and complexity. Instead, we gather and assimilate more data, treating the mystery like a puzzle.
This strategy is often unsuccessful. Traditional approaches to predictive analytics and phenotyping
in surgery use this strategy.

WEAKNESSES INHERENT TO TRADITIONAL PREDICTIVE
ANALYTICS AND PHENOTYPING

Postoperatively, most patients recover along a clinical trajectory that can be predicted by
their physiologic reserve, the severity of the underlying disease process, and the physiologic
insult associated with the planned operation. These predictions augment the decision to offer
an operation and inform discussions with patients and their caregivers regarding treatment
options and prognosis. This process often relies on biased, error-prone individual judgement,
especially when decisions are made under time constraints and uncertainty, leading to preventable
harm. Decision-support tools are intended to augment this process. Unfortunately, traditional
decision-support tools regard postoperative trajectories as puzzles which may be solved by
gathering and assimilating relevant data in a logical, linear fashion with parametric regression
modeling. Some regression models predict dichotomous outcomes with accuracy similar to a coin
toss. For example, in applying six different regression-based prediction models to 1,380 patients
undergoing colorectal surgery, Bagnall et al. (2018) found that all six models performed poorly with
area under the receiver operating characteristic curve (AUROC) 0.46-0.61 (Bagnall et al., 2018). In
these cases, poor model accuracy is often attributed to stochastic, or random, risk.

STOCHASTIC RISK AND EPISTEMOLOGICAL MODESTY

For surgeons who are sometimes wrong but never in doubt, stochastic risk is an uncharacteristic
foray into epistemological modesty, or recognition that our knowledge and understanding are
limited. However, if what we call stochastic risk is instead risk that we have failed to predict because
we are treating mysteries like puzzles and using the wrong prediction tools, then we are exercising
ignorance and complacency, not epistemological modesty. Parametric regression models make
predictions with logical, linear rules expressed as algorithms; machine and deep learning artificial
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intelligence models accurately represent the complex, non-
linear associations among inputs and outputs by learning
from examples. Because pathophysiology does not consistently
conform to additive, linear rules, one might expect that artificial
intelligence models would be advantageous.

ADVANTAGES FOR ARTIFICIAL
INTELLIGENCE IN PREDICTIVE
ANALYTICS AND PHENOTYPING

For some tasks, like predicting mortality among heart failure
patients, logistic regression can perform as well or better
than certain machine learning methods like regression tree
analysis (Austin et al., 2010). For complex tasks like predicting
several postoperative complications, artificial intelligence models
outperform regression-based techniques and clinician judgement
(Bertsimas et al., 2018; Bihorac et al.,, 2018; Brennan et al.,
2019). Bertsimas et al. (2018) developed an Optimal Classification
Trees machine learning model to predict mortality and 18
complications following emergency surgery, demonstrating
superior accuracy compared with the ACS NSQIP calculator
(AUROC 0.92 vs. 0.90). The online and phone application
asks users 4-11 questions that are generated in response
to prior answers. Manual data entry requires more time
and input from providers than an automated model, but
obviates requirements for data security and encryption of
protected health information from electronic health records
(EHR). Bihorac et al. (2018) developed and validated the
MySurgeryRisk platform with automated EHR data linked to
US Census data regarding neighborhood characteristics, using
285 variables to predict eight postoperative complications
with AUROC 0.82-0.94 (Bihorac et al., 2018). EHR data
feeds the algorithm automatically, obviating manual data
search and entry, and overcoming a major obstacle to
clinical adoption. In a prospective usability study, algorithm
accuracy was significantly greater than physician accuracy
in predicting postoperative complications (Brennan et al,
2019). These observations have profound implications for the
complex, high-stakes decisions surgeons make when offering
an operation and addressing modifiable risk factors, tasks
that are currently supported by the National Surgical Quality
Improvement Program (NSQIP) Surgical Risk Calculator. If
machine learning methods consistently outperform the NSQIP
calculator and individual surgeon judgement, then surgeons
will face a professional and moral imperative to integrate
machine learning in the shared decision-making process of
informed consent.

Risk assessments and predictive analytics depend on
phenotyping to accurately identify and classify patients, diseases,
and complications. Phenotyping is also critically important
for identifying candidates for emerging treatments and clinical
trial enrollment and standardizing definitions for clinical and
research applications. Similar to traditional predictive analytics,
traditional phenotyping uses rules expressed as algorithms,
gathering data into additive and parametric models, treating

classification tasks as puzzles. Results from this approach
are highly variable, particularly for complex conditions like
frailty. Flaatten and Clegg (2018) demonstrated that frailty
phenotyping is highly variable among critically ill patients
from different institutions—even when applying a single,
validated instrument to each individual cohort—with the
incidence of frailty ranging from 13 to 53%, without discernable
trends relating frailty to chronological age. Surgeons and
their patients need accurate frailty phenotyping to inform the
decision to operate, identify patients who may benefit from
prehabilitation prior to major elective surgery, and predict
the likelihood of postoperative complications and recovery
(Barberan-Garcia et al, 2018). Emerging evidence suggests
that even relatively common and highly morbid conditions
with established international consensus definitions like the
acute respiratory distress syndrome (ARDS) have subtypes
that impact management strategies and outcomes, but are
often unrecognized. Sinha and Calfee (2019) found that
combining clinical and biological data can identify hyper-
and hypo-inflammatory ARDS phenotypes that have different
responses to mechanical ventilation strategies, intravenous
fluid management, and medications. Notably, suboptimal
identification and classification of ARDS may portend failure to
rescue postoperative patients (Ghaferi et al., 2009).

As an alternative to traditional phenotyping methods, deep
learning models can autonomously and accurately phenotype
according to established definitions. In addition to performing
predictive analytics, facilitating clinical trial enrollment, and
standardizing definitions for clinical and research applications,
deep learning can solve phenotyping mysteries. Unsupervised
models learn relationships and concepts from data and identify
patterns and clusters, promoting the discovery of new clinically
relevant phenotypes. Artificial intelligence has the potential
to revolutionize oncologic phenotyping and prognostication.
Among patients with pancreatic cancer, circulating tumor cell
histopathology independently predicts the timing of disease
recurrence as well as overall survival when adjusting for
margin status and tumor grade (Poruk et al, 2016). The
clinical utility of this observation is subject to the time-
consuming and resource-intense nature of performing and
interpreting immunohistochemistry. Alternatively, computer
vision programs are adept at performing similar tasks, like
recognizing skin cancer with greater accuracy than board-
certified Dermatologists, producing results in moments (Esteva
et al, 2017). This approach could be used to inform
decisions regarding systemic therapies for cancer patients.
Kather et al. (2019) demonstrated that deep learning can
accurately detect tumor (AUC < 0.99) and predict microsatellite
instability on hematoxylin and eosin-stained slides (AUC 0.77-
0.84), identifying patients who are likely to benefit from
immunotherapy. By learning from examples and representing
complex, non-linear pathophysiology, machine learning has
the potential to augment clinical reasoning in surgery by
performing predictive analytics, and disease phenotyping, and
decision analysis tasks that are beyond the reach of traditional
methods (Figure 1).
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FIGURE 1 | Comparison of traditional and machine learning approaches to
predictive analytics, disease phenotyping, and decision analysis for
augmented clinical reasoning. Blue region: predictive analytics and disease
phenotyping are important tasks in patient-centered decision-making. Red
region: traditional rule-based approaches are adequate for representing
simple, linear pathophysiology, and solving puzzles, e.g., deciding which
antibiotic to prescribe for an infection. Green region: machine learning
techniques that learn from examples are preferable for representing complex,
non-linear pathophysiology, and solving mysteries, e.g., determining how to
best modulate the host immune response to infection.

CHALLENGES AND SOLUTIONS FOR
ARTIFICIAL INTELLIGENCE
APPLICATIONS IN SURGERY

Despite these advantages, machine learning models have several
limitations that must be addressed prior to widespread clinical
adoption. Clinicians may be unfamiliar with methods for
interpreting machine learning outputs. Conventional methods
like Random Forest variants are relatively transparent and easy to
interpret, and emerging techniques improve the interpretability
of deep learning models, but it remains difficult to ascertain the
relative importance of individual model inputs in determining
outputs. To improve output interpretability, model self-attention
mechanisms can reveal periods during which inputs make
significant contributions to outputs, and models can be trained
on labeled patient data and then a linear gradient boosting tree
so that the model will assign relative importance to patient data
input features (Che et al., 2016; Shickel et al., 2019). However,
many clinicians also have difficulty interpreting regression
outputs like odds ratios, relative risk values, and even simple p-
values, suggesting that improving statistical fluency is a global

objective that is not unique to artificial intelligence modeling
(Anderson et al., 2013; Krouss et al., 2016).

Machine and deep learning models perform well, but like
regression models, they are fallible. When they fail, they
could impact a large number of patients in a short period
of time. Therefore, careful monitoring of model outputs
and interpretation by astute clinicians is critically important.
Artificial intelligence models are capable of providing a proxy
measure of how confident they are that their output is accurate,
which can alert clinicians to situations in which outputs should
not be trusted. This confidence level can be approximated using
an activation function on the final layer of a machine learning
model with a softmax function that maps network activations
to (0,1), with lower values suggesting lower confidence that
predicted probabilities match true probabilities, and higher
values suggesting higher confidence. Notably, a model may
be uncertain of its predictions even when the softmax output
is high (Gal, 2016). Alternatively, the predicted probabilities
of machine learning models may be calibrated with reliability
curves, producing confidence scores rather than distributions of
possible outputs (Guo et al., 2017).

In addition, ethical challenges may arise when models fail
and liability is distributed among computer programs, their
developers, and the clinicians using the programs. Surgeons,
data scientists, informatics experts, and ethicists must work
together to address these challenges by improving model
transparency, optimizing model accuracy, and establishing
a framework to assign liability for errors. Initial prospective
implementation of artifical intelligence models in surgery should
occur on a small scale under close monitoring, consistent with
guidelines regarding the Software as Medical Device (SaMD)
category created by the US Food and Drug Administration
and the International Medical Device Regulators Forum. As
technologies continue to improve over time and involved
parties commit to thoughtful and sober implementation
of these technologies, the safety and efficacy of artificial
intelligence healthcare applications will continue on an
upward trajectory.

Finally, it seems unlikely that capitalizing on these advantages
will be as simple as switching from basic regression-based
to machine learning models. Clinical integration of machine
learning will require not only extensive medical domain
knowledge founded in basic and translational research, but
also informatics expertise, multidisciplinary collaboration, and
skillful application of implementation science.

CONCLUSIONS

True epistemological modesty recognizes that continued
reliance on individual judgement and traditional predictive
analytics and phenotyping may lead to preventable harm.
It is irresponsible to attribute these failings to mysterious
pathophysiology and stochastic processes without deploying new
technologies that capture the depth and complexity of underlying
pathophysiology and improve phenotyping and predictive
accuracy. Thoughtful clinical integration of artificial intelligence
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has the potential to transform surgical care by augmenting the
decision to operate, informing discussions with patients and
their caregivers regarding treatment options and prognosis,
predicting treatment response to emerging and experimental
treatments, and addressing other unsolved mysteries
in surgery.
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