®

Check for
updates

Simplifying Game-Based Definitions

Indistinguishability up to Correctness
and Its Application to Stateful AE

Phillip Rogaway®™) and Yusi Zhang

Computer Science Department, University of California Davis,
One Shields Avenue, Davis, USA
rogaway@cs.ucdavis.edu

Abstract. Often the simplest way of specifying game-based crypto-
graphic definitions is apparently barred because the adversary would
have some trivial win. Disallowing or invalidating these wins can lead to
complex or unconvincing definitions. We suggest a generic way around
this difficulty. We call it indistinguishability up to correctness, or IND|C.
Given games G and H and a correctness condition C we define an
advantage measure Advié‘fiic wherein G/H distinguishing attacks are
effaced to the extent that they are inevitable due to C. We formalize
this in the language of oracle silencing, an alternative to exclusion-style
and penalty-style definitions. We apply our ideas to a domain where
game-based definitions have been cumbersome: stateful authenticated-
encryption (sAE). We rework existing sAE notions and encompass new
ones, like replay-free AE permitting a specified degree of out-of-order
message delivery.

Keywords: Indistinguishability - Oracle silencing - Provable security
Stateful authenticated encryption

1 Introduction

This paper addresses a common difficulty one encounters in giving game-based
cryptographic definitions: the need to ensure that adversaries don’t get credit
for trivial wins. But what exactly is a trivial win? Sometimes answering this
is not trivial. Our simple but previously unexplored idea is to use a scheme’s
correctness requirement to automatically determine if a win should or shouldn’t
count. We believe that this can lead to simpler and more compelling definitions.

Correctness requirements—for example, that a decryption algorithm properly
reverses the corresponding encryption algorithm—are normally understood as
demands on functionality, not security. Yet we will use correctness to help define
security. More specifically, a correctness condition will be used to map a pair of
games that an adversary can trivially distinguish into a pair of games that it can’t
trivially distinguish. The modified games are identical to the original ones apart
from eliminating wins that exploit generic checks on correctness. The adversary’s

© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10992, pp. 3-32, 2018.
https://doi.org/10.1007/978-3-319-96881-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96881-0_1&domain=pdf

4 P. Rogaway and Y. Zhang

advantage in distinguishing the modified games is elevated to a definition for
indistinguishability up to correctness, or IND|C. In our main elaboration of this,
responses to oracle queries are silenced when the correctness requirement renders
a response fized. A response is fixed when the answer depends only on the query
history and the correctness constraint. Once silenced, an oracle will stay so.

Besides developing the idea above, this paper is also about an illustrative appli-
cation of it. The problem we look at, significant in its own right, is how to find a
clean and general treatment for stateful authenticated-encryption (sAE). A sender
transmits a sequence of encrypted messages to a receiver. The communication
channel might be reliable or not, and the parties might or might not maintain
state (stateful AE should encompass conventional AE). If the decrypting party
does maintain state, it might have a little or a lot. We seek a metaphorical “knob”
with which one can specify precise expectations regarding replays, omissions, and
out-of-order delivery. Our definition for SAE security does this. Given a set L spec-
ifying exactly which message reorderings are considered permissible, we define a
matching correctness condition. From it and a pair of simple games, which do not
depend on L, one inherits a security notion, courtesy of IND|C. By appropriately
setting L we encompass old sAF notions and significant new ones, like SAE per-
mitting reorderings up to a specified lag in message delivery.

INDISTINGUISHABILITY UP TO CORRECTNESS. In somewhat greater detail, the
methodology we suggest works as follows. To define a cryptographic goal one
designs a pair of utopian games G and H that an adversary must try to dis-
tinguish. Game G surfaces the real behavior of some underlying protocol I,
while game H surfaces the ideal behavior one might wish for. We call the games
utopian because there is some simple adversarial attack to distinguish them. For
example, if we aim to treat public-key encryption (PKE) secure against chosen-
ciphertext attack (CCA), then game G might let the adversary encrypt and
decrypt with the underlying encryption scheme II, while H properly answers
decryption queries, but answers encryption queries by encrypting zero bits.

The cryptographer next pins down when a scheme is correct. Correctness is
a validity requirement, not a security requirement. It captures what needs to
happen in the absence of an adversary. In our PKE example, correctness for
a scheme IT = (K, &, D) says that (pk,sk) « K(k) and ¢ «— E(pk, m) implies
D(sk,c) = m. Formally, saying that a scheme IT is correct just means that it
belongs to some class C of correct schemes: for us, a correctness condition is a
class of scheme.

We generalize conventional indistinguishability (IND) to the notion we call
indistinguishability up to correctness (IND|C). The idea is this. Suppose that
the adversary is interacting with a “real” game G that depends on some under-
lying cryptographic scheme II. What it wants is to distinguish G from some
“ideal” game H (which might also depend on IT). Suppose, at some point in the
adversary’s attack, it asks an oracle query z;. It previously asked x1,...,2;_1
and got answers y1,...,y;—1. If given this query history ¢ there is only one pos-
sible reply y across all correct schemes IT € C and all internal coins r that G
might use, then we say the oracle’s response is fized. The games we denote G[t]

Simplifying Game-Based Definitions 5

and H[¢)] behave like G and H except that asking a query that is fixed turns
off the oracle: it answers ¢ from that point on. The symbol ¢ in the brackets
following G and H denotes the silencing function, and we just described defining
it by way of fixedness. Correctness-directed oracle silencing is the automatic
adjustment of games (G, H) to modified games (G[+/], H[¢]). Using this method,
we generalize the IND advantage Advléf}dH (A) = Pr[AY —1] — Pr[A" - 1] to the
INDC-advantage Adv S o(A) = Adviy) gy (A)-

There is one more needed element: the adversary needs to know if an oracle
query is going to be silenced—we need 9 to be efficiently computable. One must
show that it is. If it’s not, the intuition that the adversary shouldn’t ask a
question because it trivially knows the answer completely falls apart.

APPLICATION: PKE. As a first and simple application of IND|C, we revisit the
standard IND-CCA security notion for PKE. We provide a utopian pair of games,
G1 and H1, and a correctness class C1, thereby obtaining a security notion
PKE.new defined by Adviélfle’Cl. We show, unsurprisingly, that PKE.new is
equivalent to PKE.old, the customary definition for IND-CCA secure PKE.
But wait: just what definition is it that we call customary? Bellare, Hofheinz,
and Kiltz (BHK) describe four variants of IND-CCA secure PKE, which they
denote with suffixes SE, SP, BE, and BP [1]. They explain that researchers
haven’t always been clear as to what version they intend. And they show that
it does make a difference: while the SE and SP notions are equivalent, all other
pairs are inequivalent. BHK suggest that the SE/SP notion is the right defini-
tional variant [1, p. 34 & p. 39], implying that the other two notions are wrong.
We agree. But how can one convincingly justify such a claim? The most convinc-
ing response, in our view, is to say that the SE/SP notion coincides with what
one gets by invalidating all and only the adversarial wins that one must invali-
date because of correctness. The BE and BP notions inappropriately invalidate
additional wins. This is the response that our work formalizes. Similar reasoning
can be used to justify definitional choices that might otherwise seem arbitrary.

APPLICATION: SAE. Our second application of IND|C is more involved: we
consider the stateful-AE (SAE) problem, first formalized by Bellare, Kohno, and
Namprempre (BKN) [2]. BKN adjust the customary definition of AE to make
the decryption process stateful. Trying to model the kind of AE achieved by
SSL, they want that ciphertext replays, reorderings, and omissions, as well as
forgeries, will all be flagged as invalid. Formalizing this requires care.

Building on the above, Kohno, Palacio, and Black (KPB) describe five types
of sAE [11], these ranging from a version that forgives all replays, omissions,
and reorderings, to one that demands authentication to fail if any of these trans-
gressions occur. Boyd, Hale, Mjglsnes, and Stebila (BHMS) [4] rework the KPB
taxonomy, defining four levels of SAE. While the games they give are not terri-
bly long, it is not easy to understand their technical constraints [4, Fig.2]. And
perhaps it was not easy for the authors, either, who made a technical adjust-
ment in one of the four definitions about a year after their first publication [5,
Recv line 4]. And if one wanted to consider some new sAE variant—and we

6 P. Rogaway and Y. Zhang

will explain soon why one might—one would need to start from scratch. The
resulting definition might be hard to verify and easy to get wrong.

In our view, sAE is in a muddy state. The BKN, KPB, and BHMS papers
use different syntax, making rigorous comparisons problematic. And they live in
a sea of disparate and often complex related notions, including UC treatments
of secure channels [6,7,12], the ACCE definition of Jager, Kohlar, Schige, and
Schwenk [10], and the notion for stream-based channels from Fischlin, Giinther,
Marson, and Paterson [8,9].

We go back to the basics for sAE, specifying a scheme’s syntax and an
extremely simple pair of games for the goal, G2 and H2, which the adversary
will be able to easily distinguish them. We then “cancel” the trivial wins via
IND|C. Given a set L that describes the required level of channel fidelity, we
define a corresponding class of correct schemes C2(L). The above induces a
security notion sAE[L] via IND|C. The flavors of sAE from BKN, KPB, and
BHMS correspond to sAE[L] for specific choices of L. Many further choices are
possible. In particular, the set we call L{ bans forgeries and replays, but allows
omissions and reordering up to some specified lag £. The level we denote L§ bans
forgeries, replays, and reordering, but allows omissions of up to £ messages. The
related levels from KPB and BHMS place no limits on ¢ (i.e., £ = c0). Achieving
that aim would normally be impractical, as the decrypting party would need to
maintain unlimited state, using it to record every nonce received.

Besides defining sAE[L] security, we show that the natural way to achieve it
from nonce-based AE does in fact work. We discuss when this scheme is efficient,
and describe efficiency and security improvements that are possible for some L.

ALTERNATIVES. The way we have chosen to define IND|C security is not the
only way possible: there are a variety of natural variants. For each, one uses
the correctness condition C to automatically edit utopian games G and H to
new games G’ and H'. Oracle-editing generalizes oracle-silencing. We look at
about half a dozen definitional variants, and evidence the robustness of IND|C
by arguing that, under anticipated side conditions, all but one alternative is
equivalent to our original formulation. For that final variant, meant to deal with
left-or-right style games, we do not know how to prove or disprove equivalence.

2 Indistinguishability up to Correctness

GAMES. We recall the notion of games from Bellare and Rogaway [3], making
some minor adjustments. See Fig. 1.

A game G is an always-halting algorithm given by code. It has entry points
Initialize, Oracle, and Finalize. The code can obtain successive coin tosses from a
uniformly random string r < {0,1}°°. One runs G with an adversary A, which
can likewise see coins p «— {0,1}°°. Both the adversary and game maintain
persistent states. A game may depend on an underlying scheme II: {0,1}* —
{0,1}*. We may write Gy to emphasize G’s dependence on IT. Normally this
dependence is in the form of black-box access to a II oracle. A game G may also
call out to an arbitrary function v whose definition need not be in code.

Simplifying Game-Based Definitions 7

k

\
@ Initialize GH
z; Uy
i | |
A Yi Oracle G v; 17
Finalize
\ j
z v

w

Fig.1l. An adversary interacting with a game. A game G may depend on a
cryptographic scheme I7: {0,1}* — {0,1}*. The game G and adversary A are both
provided an initial value k. Adversarial and game randomness are provided by random
strings p and r. Pairs z;,y; and uj,v; represent sequences of queries, indexed from 1.
The adversary’s output is z and the game’s outcome is w.

To execute G with A, the game’s Initialize procedure is first run, passing it an
initial value k. This is normally assumed to be a number, the security parameter,
and presented in unary. Nothing is returned. Next, the adversary A is run, again
invoking it on k. The adversary will make a sequence of Oracle calls (oracle
queries) z1, ..., x4 obtaining corresponding responses y1, ..., y,. The number of
queries ¢ is up to the adversary. When the adversary has asked all the queries
it wants to ask, it halts with an output z. The game’s Finalize procedure is
then called with z. It returns the game outcome w. Specifying a game entails
specifying Initialize, Oracle, and Finalize. If the first is omitted, there is only the
default initialization of game variables: 0 for numbers, false for booleans, ¢ for
strings, and the empty vector A = () for vectors. If Finalize is omitted, it is the
algorithm that outputs its input, making the game’s outcome the adversary’s
output. The number Pr[A%(k) — 1] is the probability that A outputs 1 after
interacting with game G given the initial input k. The Finalize procedure is
irrelevant. The number Pr[G? (k) — 1] is the probability that G (it’s Finalize
procedure) outputs 1 after an interaction with A on k.

We can regard Gy as a function, with y; = G (k,z1,...,z;,r) the value
returned by the oracle query when the initial value is k, the queries asked are
Z1,...,%;, and the coins are r; while w = Gy (k,z1,...,24,2,7) is similarly

construed, employing encoding conventions such that the Finalize call is clear.
If we omit r from the arguments then Gy becomes a randomized function. We
omit k£ whenever the Initialize procedure does not depend on it.

8 P. Rogaway and Y. Zhang

As an adversary A interacts with a game G, oracle calls and responses can
be recorded in a transcript, which is a vector of strings. Query-terminated tran-
scripts (21,y1,Z2,¥2 . .., x;) have an odd number of strings; response-terminated
transcripts (x1,y1,Z2,Y2 - .., %, ¥;) have an even number of strings.

DiscussioN. There is no loss of generality in regarding the underlying cryp-
tographic scheme IT as a function from strings to strings; suitable encoding
conventions allow any scheme of interest to be so encoded. Similarly, games are
routinely described as supporting different types of queries, like “Enc” and “Dec”
queries. This is handled by regarding each query z as encoding a vector whose
first component, z[1], is a label drawn from a specified set.

An oracle query = might be intended only to adjust the game’s internal state,
not to elicit any response. Such queries are called declarative. All other queries
are tnvestigative. We do not adopt any special syntax to differentiate declarative
and investigative queries, but the designer of a game is always free to adopt some
convention to serve this purpose.

CORRECTNESS. What does it mean to say that a scheme I is correct? The
simplest answer is to say II belongs to some class of schemes C, which are those
deemed correct. That is what we will do; for us a correctness class is a set C of
functions from strings to strings, and defining correctness means specifying C.
Graded notions of correctness, where a scheme is (1 — ¢)-correct if some bad
event happens with probability at most ¢, are outside the scope of our definitions.

SILENCING. Given a correctness class C and a game G we define a predicate on
response-terminated transcripts

Validc ¢ (x1,y1, ..., 25,y;) =3I € C)(3k € {0,1}")(Fr € {0,1}>°)(Vi € [1..5])
[Gr(k,z1,22,...,257) =y;].

In English, a response-terminated transcript is valid if there exists a scheme in
the specified class that could give rise to it. Since adversaries can ask anything
they please, we say that a query-terminated transcript is valid when its longest
proper prefix is: Validc g(%1,%1,---,%;,Yy;,¢) = Validc,g(z1,y1, .-, %, Y;)-

Building on the notion of validity, we define a boolean function on query-
terminated transcripts

ijedC,G(xlayla' .. 7xjayj7w) = (EI' y) Va]idC,G(xlaylv oo ,l’j,yj,x,y) .

Here (3'y)P(y) means (3y)P(y) A (Vy1)(Vy2)((P(y1) A P(y2)) = y1 =y2). In
English, a query-terminated transcript is fixed if the last indicated query has
exactly one valid response. Note that when the transcript ¢ is invalid then
Fixedc,c(t) is false, since (3 y)P(y) = (Jy)P(y).

Finally, given a correctness class C and game G, we define our preferred
silencing function for this pair by

Silencec,g(x1,y1,...,25) = \/ Fixedc,c(z1,y15 .-, Ti) -
1<i<j

Simplifying Game-Based Definitions 9

k—
procedure G[¢].Initialize(k)
G[] 1 < 0; G.Initialize(k)
Initialize return
z; — Uj
Vi i | |Omde G 2 | procedure G[¢].Oracle(z)
¢ Finalize i1+l Tz
Wb yi < G.Oracle(x)
if ¢(x1,y1,22,92,...,2;) then
y) return ¢
w return y;

Fig. 2. Oracle silencing. Left: Given a game G and a function : {0,1}"* — {0,1}
we define the silenced game G[¢] by silencing the oracle once the boolean value
Y(z1,y1,...,x;) becomes true. Right: The formal definition for the game Gt]. The
game’s Finalize procedure is irrelevant.

That is, we silence an oracle response that terminates a transcript t if that
response is now fixed, or was previously. We call this silence-then-shut-down.

IND|C SECURITY. Given a game G and a boolean function ¢, which we call a
silencing function, we define the silenced game G[¢] in Fig. 2. In that game, oracle
responses are adjusted according to t: when v applied to the y;-terminated
transcript is true, we return ¢ instead of y;.

Now given games G and H and a silencing function v, let Advg’fﬁw(A, k)=
Pr[ASIH(k) = 1] — Pr[ATY](k) —1]. _

Finally, given games G and H and a correctness class C, let Advgfﬁc (A k) =
Pr[ASI (k) — 1] — Pr[AM¥](k) — 1] where ¢ = Silencec,g. We call this notion
INDC security, or, perhaps more pretty, IND|C security. (The vertical bar is
meant to suggest conditioning.) Note that the silencing that is applied to the
ideal game H is determined by the real game G.

For an asymptotic notion of INDC security, we assert that games G and H
are indistinguishable up to C if Adv’élfi}ic(A, k) is negligible for any probabilis-
tic polynomial-time (PPT) adversary A. As usual, (k) is negligible if for any
polynomial p there exists a number N such that (k) < 1/p(k) for all k > N.

Remember that games G = G; and H = Hj; may depend on some underlying
scheme II. A cryptographer who specifies G, H and C has specified a security
measure on protocols II € C defined by Adv (4, k) = Advlélic’Hn’c(A, k).

COMPUTABILITY OF FIXEDNESS. There is no a priori reason to believe that
Fixedc g or Silencec,g will be computable, let alone efficiently. Yet for IND|C
security to be meaningful, we need Fixedc c to be efficiently computable: if
the adversary doesn’t know that the response to its query is determined by the
correctness constraint, then the query is not trivial, and making it should not be
disqualifying. The most straightforward way of capturing the stated expectation
is to demand that Fixedc,g be polynomial-time (PT) computable (if one is in the

10 P. Rogaway and Y. Zhang

asymptotic setting). This is overkill, however, insofar as the only transcripts t
to which Fixedg, g will ever be applied are those that are legitimate—those that
can arise in an interaction between A and G or between A and H.

Based on this, we say that fizedness is efficiently computable for (C,G,H)
if there exists a PT-computable function ¢ such that ¢(t) = Fixedc (t) for all
query-terminated transcripts ¢ satisfying Validec g (t) V Validc u(t). Taking this
a step further, we say that fizedness is efficiently computable for (C,G,H,q) if
there exists a PT-computable function ¢ such that ¢(t) = Fixedc (t) for all
query-terminated transcripts ¢ satisfying Validc g(t) V Validc u(t) and || < 2g.
The last part says that ¢ involves at most ¢ queries (where |t| is the number of
components in t). For positive results, we must verify that fixedness is efficiently
computable for (C, G,H), or for (C,G,H, q) with ¢(k) adequately large.

Further relaxations for efficient computability of fixedness are possible. Since
it is safe to silence too little, it is enough to find an efficiently computable
function ¢ satistying ¢(t) = Silencec,g(t) when Validc g (t) V Valide u(t). Our
examples won’t need this relaxation.

DiscussioN. We have spoken about the efficient computability of Fixed, but we
could as well have spoken of the efficient computability of Silence. The former is
the more basic object, and simpler to think about. In fact, we not only anticipate
that the boolean Fixed should be efficiently computable, but also the string-
valued function fixedg,c that specifies the real-oracle’s response when it is in
fact fixed (or indicates, alternatively, that it is not). See Sect. 5.

The silencing function ¢ used in defining IND|C was not Fixed but the
logical-or of it applied to all transcript prefixes. Once an oracle is silenced, it stays
silenced. An alternative approach, silence-then-forgive, is essentially equivalent;
see Sect. 5. It is to simplify the description of silence-then-forgive that, in Fig. 2,
when a response y; is silenced, we let the growing “transcript” retain the original
(unsilenced) value. This choice is irrelevant for silence-then-shut-down.

As already explained, if fixedness is not efficiently computable the intuition
underlying oracle silencing breaks down, and IND|C becomes meaningless. It
could even happen that silenced games are harder to distinguish than the utopian
ones. For example, given a one-way permutation F' with hardcore bit B, game G
is constructed to select random values xy and x; and, on a first oracle query,
provide F(xg) and F(z1). A second oracle query selects b «— {0,1} and returns
B(zp). Now whether or not this query is silenced provides information that the
adversary cannot compute. The idea can be elaborated to create indistinguish-
able games whose silenced versions are distinguishable.

The usual notion of indistinguishability, Adviélfh(A, k) = Pr[A%(k) — 1] —
Pr[A% (k) — 1], coincides with Adviél%iw (A, k) when ¢ (t) = false. Of course IND-
security is symmetric: AdviélfiH(A, k)= Adviﬁ‘% (A, k). This is not true of INDC:
it may be that Advi(gfﬁc(A, k) # Adviﬁdé’c (A, k). The asymmetry stems from
the fact that we silence based on the real game, listed first in the subscripts.

Oracle silencing provides an alternative to penalty-style and exclusion-style
definitions [1]. We wrap up our discussion by observing that IND|C security
could have been defined using those alternatives, too.

Simplifying Game-Based Definitions 11

procedure G[¢].Initialize(k)
g < 0; G.Initialize(k)
return

procedure G[¢].Oracle(x)
g—q+1l xg—x
return y, < G.Oracle(x)

procedure G[¢].Finalize(z)
if Y (z1,y1,22,¥2,...,24) then return 0
return z

Fig. 3. Penalty-style oracle editing. Oracle queries are answered as usual, but if
the final transcript triggers v, the game’s outcome is set to zero.

PENALTY-STYLE ALTERNATIVE. Instead of turning off an adversary’s oracle
when it asks an offending question, we could answer the query as usual but,
at the end of the game, declare it forfeit. This is what Bellare, Hofheinz, and
Kiltz call a penalty-style definition [1]. We formalize what is needed in Fig. 3,
mapping a game G and a function 1 to a corresponding game G[¢)]. An alter-
native version of indistinguishability up to correctness, INDCO, is then defined
by saying that Adv{@Gi(A k) = Pr[(G[¥])4 (k) — 1] — Pr[(H[¥])* (k) — 1]
where 1) = Silencec . In effect, the adversary’s output z has been replaced by
Z A /\j —Fixedc,q(x1,91,...,%;). For an asymptotic notion of INDCO security,
we say that games G and H are penalty-style indistinguishable up to C if for
any PPT adversary A, the function Advgfiﬁ?c (A, k) is negligible.

What is the relationship between oracle-silencing IND|C and penalty-style
INDCO0? Assuming fixedness is efficiently computable, the two ways of adjusting
games are equivalent. For concision, we give an asymptotic version of the result.
The proof, which is easy, is in Appendix A.1.

Theorem 1. Let G and H be games and let C be a correctness class. Assume
fizedness is efficiently computable for (G, H, C). Then G and H are indistinguish-
able up to C'iff they are penalty-style indistinguishable up to C.

The above might be interpreted as saying that oracle silencing is new language
for something that doesn’t need it. That misses the point, that oracle-silencing
grounds the natural explanation how and why one edits the utopian games.

EXCLUSION-STYLE ALTERNATIVE. And what of exclusion-style definitions [1],
where one limits consideration to adversaries that are “well-behaved”? It is pos-
sible, although awkward, to describe IND|C in this way. After defining games Gy
and Hj;7 and the correctness class C, we restrict attention from all adversaries U
to the subset A that, when interacting with G or Hy7, never create a transcript ¢
such that Fixedg c(t) is true. One attends only to adversaries in A.

The above description might sound problematic because there is no way to
inspect an adversary’s description and know if it’s in A. It doesn’t matter. As
long as fixedness is efficiently computable for (G, H, C), one can take an adversary

12 P. Rogaway and Y. Zhang

A € U and put a “wrapper” around it so that it conforms with A. The wrapped
adversary behaves like A unless it is about to ask a query that would make
Fixedg m,c(t) true, in which case it outputs 0 and halts. In this way one names
a class of adversaries A such that the ind-advantage among adversaries in it
coincides with the indc-advantage over adversaries in U. So security notions that
can be described by oracle silencing can be described exclusion-style. Not that
doing so is wise. Exclusion-style definitions compel consideration of adversary
classes. They disqualify adversaries that only rarely misbehave. They ignore
whether or not an adversary can “know” it has misbehaved. And they promote
ambiguity, as the relevant restrictions are not expressed in game code.

FURTHER VARIANTS. Beyond penalty-style and exclusion-style formulations of
IND|C, more alternatives are possible. See Sect. 5 for some interesting ones.

3 Public-Key Encryption

Let us consider the well-known IND-CCA security notion for a public-key encryp-
tion (PKE) scheme. We first review the syntax. A PKE scheme IT is a tuple
of algorithms IT = (K, &, D) where probabilistic algorithm K takes in a secu-
rity parameter k, encoded in unary, and generates a public key pk and a secret
key sk; probabilistic algorithm £ takes in a public key pk and a plaintext m, and
returns a ciphertext ¢; and deterministic decryption algorithm D takes in a secret
key sk and a ciphertext ¢, and returns a message m. For simplicity, we assume a
message space of {0,1}*. An appropriate encoding of the component algorithms
is implicitly assumed whenever we regard IT as a map I7: {0,1}* — {0,1}*.

To apply our techniques, the first step is to specify the class of correct
PKE schemes. This is easily done, letting

Cl={Il = (K,&,D)|(Vk)(Vm) [(pk,sk) « K(k); c « E(pk,m): D(sk,c) = m]}

denote the schemes we consider correct. The condition is absolute: decryption of
¢ +— E(k,m) must always return m, which is the customary requirement.

The second step is to write down the utopian real and ideal games. For this,
we ask the adversary to distinguish between a game that encrypts a message m
of the adversary’s choice and a game that encrypts an equal length string of zero-
bits. For both games, the adversary can request the public key and has access
to a proper decryption oracle. See Fig. 4. Those games only allow the adversary
a single Enc query. This restriction is unnecessary, but including it reduces the
gap between our new notion and the traditional one for IND-CCA that we use.

The games are indeed utopian: if the adversary queries Enc(1), getting back c,
then queries Dec(c), getting back m, it will earn advantage 1 by returning m.
Naturally this is where oracle silencing comes into play: if Dec is queried with
the response ¢ returned by a previous Enc query then Fixedci,gi will almost
always be true, resulting in the query being silenced. Why do we say almost
always, and not always? The answer is closely related to how one can efficiently
compute Fixedci,gi-

Simplifying Game-Based Definitions 13

procedure Initialize (k) procedure Initialize (k)
(pk, sk) «— K(k) (pk, sk) «— K(k)
procedure Key procedure Key
return pk return pk
procedure Enc (m) procedure Enc (m)
if asked return L if asked return L
asked « true asked « true
return &£(pk,m) return £(pk, 0™
procedure Dec (c) procedure Dec (c)
return D(sk, c) return D(sk, c)

Fig. 4. Utopian games used to define PKE.new. The games are easily distin-
guished in the ind-sense. The problem is fixed by switching to indc-advantage.

COMPUTING FIXEDNESS. As just indicated, even if a transcript ¢ has a Dec(c)
follow an Enc(m) that returns c, it is not always the case that Fixedci,q1(t) =
true. At issue is the fact that there are some peculiar transcripts that can arise
in the ideal setting but would never arise in the real setting. Recall that our
formalization demands that we do not silence a query ending a transcript t that
could never arise in the “real” setting. One such counterexample is a Dec(c) query
that returns m, followed by an Enc(m’) query that returns ¢, where m # m/.
This can’t happen in the “real” game, since it would violate correctness. Since
we only silence valid transcripts, once such an invalid event takes place, in a
run with H, we never silence any further queries—even for a Dec(c) following
some Enc(m) query that returns c.

The code of Fig. 5 attends to such subtleties. There we write out a formula for
a candidate function ¢ that efficiently computes fixedness for (C1, G1,H1). Func-
tion ¢ makes sure the mentioned counterexample does not occur (first line), and
it also checks for the “usual” concern: a decryption query that asks to decrypt
the challenge ciphertext (second line). But there are still some additional, naive
queries to deal with (the last three lines). These are: a Key query subsequent
to the first such query; an Enc query subsequent to the first such query; and a
repeating Dec(c) query, for some value c¢. The responses to any of those queries
will be silenced. Our result on the computability of fixedness is as follows.

Theorem 2. There is a PT algorithm that computes fixedness for (C1, G1, HI).
In fact, the algorithm of Fig. 5 computes it.

For a proof, see Appendix A.2.
To define the security of a PKE scheme against IND-CCA attack, we let
Advg’jke“new(A7 k) = Advg‘f[cn]’Hl[H]’Cl(A, k) for the games and correctness class

described. We say that a PKE scheme IT is PKE.new-secure if AdvPre"" (4, k)

14 P. Rogaway and Y. Zhang

procedure ¢(z1,y1,...,Tt)
return ((i,5) z; = (Dec,y;) Az;[1] = Enc A z;[2] # yi) A
((Hj) (z;[1] = Enc A z; = (Dec,y;)) V

37) (x;[1] = Key A z:[1] = Key) Vv

33) (x;[1] = Enc A a4[1] = Enc) v

(
(
(3, ¢) (z; =z = (Dec, c)))

Fig. 5. Formula for computing fixedness for PKE.new. Line 201 is the validity
check, while line 202—-205 are the fixedness checks.

procedure Initialize (k) procedure Initialize (k)
(pk, sk) < K (k) (pk, sk) < K (k)
procedure Key procedure Key
return pk return pk
procedure Test (m1,m2) procedure Test (m1,m2)
if tested return L if tested return L
tested < true tested « true
¢« E(pk,m1) ¢« E(pk,m2)
return c* return c*
procedure Dec (c) procedure Dec (c)
if ¢ = ¢* then return L if ¢ = ¢* then return L
return D(sk, c) return D(sk, c)

Fig. 6. The PKE.old notion for IND-CCA secure public-key encryption. The
formulation is equivalent to the SE and SP notions from BHK [1].

is negligible for all PPT adversaries A. We have already shown that fixedness is
efficiently computable for (C1,G1,H1).

How does our PKE.new notion compare with “standard” IND-CCA security
for a public-key encryption scheme? By the latter we mean the (equivalent)
IND-CCA-SE and IND-CCA-SP notions of BHK [1]. We define it using the GO
and HO games of Fig. 6. Let Adv2r'Y(A k) = Advi(;“&HO(A,k) and define IT

as PKE.old-secure if AdvP*°'4(A4, k) is negligible for any PPT A.

The new and old PKE security notions are equivalent. Equivalence isn’t quite
obvious, because the silencing criteria not only includes adversaries querying
a Dec on the challenge ciphertext—the sole criterion for PKE.old—but, also,
adversaries not having triggered any “invalid” events. Less significantly, we're
also looking at a real-vs-ideal game, rather than a left-or-right style one. Still,
one can show that the notions are equivalent.

Simplifying Game-Based Definitions 15

Theorem 3. A PKFE scheme is PKE.new-secure iff it is PKE.old-secure.

The proof is in Appendix A.3.

Theorem 3 supports the idea that the (equivalent) SE and SP notions of
BHK are right, while the other two notions are not [1]. One of the uses of IND|C
security is to justify or call into question an existing definition by, in effect,
looking at what the correctness condition itself has to say.

The structure of the proof of Theorem 3 can be generalized. We observe
that Fixed can always be decomposed into a validity check and a fizedness check:

Fixed(x1,41,...,%q) =Valid(z1,y1, ..., Tg—1, Yg—1) (validity)
A ((qu, y;) Valid(z1,y1, - Tqs Yq) A
Valid(z1,y1, ..., %q,Yy) = Yg = Yo (fixedness)

A recapitulation of the proof with the decomposition above allows us to draw
the following conclusion: as long as both validity and fixedness checks are effi-
ciently computable, the removal of validity checks will give us an equivalent
indistinguishability notion. Related discussions can be found in Sect. 5.

4 Stateful AE

SYNTAX. A scheme for stateful AE (sAE) is a tuple of algorithms IT = (K, €, D)
where key-generation algorithm IC is a probabilistic algorithm that returns a
string, while encryption algorithm £: X x A x M x § — (€U {L}) x 8§ and
decryption algorithm D: X x A x € x § = (MU {L}) x 8 are deterministic. We
call K, M, C, A, and S the key space, message space, ciphertext space, associated-
data (AD) space, and state space, respectively. We assume that X contains the
support of K, and that there’s a constant 7, the ciphertext expansion, such that
(¢,s') = E(k,a,m,s) and ¢ # L implies |¢| = |m| + 7. For simplicity, we regard
the ciphertext expansion of SAE schemes as a fixed and universal constant (e.g.,
7 = 128), referring to 7 without tying it to any specific scheme.

LEVEL SETS. Suppose a party encrypts messages 1,2,...,100, sending them,
encrypted and in order, to some receiver. Due to an active adversary or an unre-
liable transport, that receiver might recover the sequence of messages (1, 3, 2),
or maybe (1,10), or perhaps (1,2,2,3). In each case, should an authentication
error be generated? The answer depends on multiple factors: the anticipated
properties of the communication channel; your willingness to have the decrypt-
ing party maintain state; how much state you think that party should maintain;
and the damage you anticipate from omissions, insertions, and reorderings.

16 P. Rogaway and Y. Zhang

Level | Definition and description

Lo N*. This level-set deems all orderings permissible, regardless of omissions,
replays, or reorderings. A receiver for this level-set can be stateless. This is
the level-set that corresponds to conventional (stateless) AE.

LY [{neN*:i#j=n; #n; and |nj —maxo<i<;n;| < £+ 1 for all 1< 5<|n|}.
Here we do not permit replays, but do allow omissions and reorderings up
to the specified lag. When ¢ = oo there is no limit on the lag and the notion
roughly corresponds to level-2 in Kohno et al. [11] and Boyd et al. [4].

Ly |{ineN":1<n—ni—1 <{+1forall1<i<|n|}. This level-set does
not permit replays or reorderings, but allows omissions up to ¢ lost packets.
When ¢ = oo there is no limit on permissible gaps and the notion roughly
corresponds to level-3 in Kohno et al. [11] and Boyd et al. [4]

Lz |{n € N*:n; =i forall 1 <¢< |n|}. This is the strictest level-set: the only
permissible receipt order is sending order. This matches the notion for sAE
put forward by Bellare et al. [2], level-5 in Kohno et al. [11], and level-4 in
Boyd et al. [4]. It is what one expects to achieve over a reliable transport.

Fig. 7. Basic level-sets for sAE. The value ¢ > 0, the maximal lag, is a number or
the value co. The named sets impose increasingly stringent requirements for rejecting
replays, omissions, and out-of-order delivery. Throughout, n = (n1,...,ng) and ng = 0.

How might one specify the targeted level of channel fidelity? It can be done
by giving a level-set, a set L C N* (where N = {1,2,3,...} excludes 0). An
element n € L is called a permissible ordering. The intended semantics of n =
(n1,...,ng) being in L is that if the sender transmits a sequence of messages
1,2,..., and the receiver recovers, in order, messages n1,...,ng, then this is an
acceptable degree of fidelity if and only if n € L. To make sense, we require of
any level-set L that n € L implies n’ € L for any prefix n’ of n.

Examples of significant level-sets are given in Fig.7. We call the level-sets
named there the basic level-sets. Due to the superscript ¢, there are infinitely
many basic level-sets. The goals associated to levels Lo, L°, L3 and Lz = LY =
LY are described in prior work [4,11], while the L{ and L% goals, for £ € N,
have not been formalized, although they would seem to be targeted by secure
messaging apps like Signal [13].

To apply oracle silencing we need to specify a class of correct SAE schemes.
That class will depend on the level-set L. Intuitively, a correct SAE scheme for
level-L should satisfy the following condition. Suppose you encrypt a sequence
of plaintexts to create ciphertexts we number 1,2, 3, ..., and then you decrypt,
in order, the ciphertexts numbered nq,ng,...,ng. If (n1,...,ng) € L then you
must get back the correct sequence of plaintexts. Correctness places no demands
on what happens for sequences outside of L. Nor does it levy demands once £
declines to encrypt a string. The correctness class C2(L) associated to level-set
L is formalized at the top of Fig. 8.

UTOPIAN SETTING. We specify the utopian games for sAE in the bottom of
Fig. 8, which defines games G2 and H2. The only thing peculiar in the code

Simplifying Game-Based Definitions 17

[soHs; ro < &; o < max(ni, ..

C2(L) is the set of all SAE schemes IT = (K, £, D) that satisfy:

(Vk € ZK) (V(al, m1), (a2, m2),... € A X M) (V(na, ...

-ng);

for i — 1 to a do (¢i, 8i) «— E(k,ai, mi, si—1);

for i — 1 to 8 do (mj,7;) < D(k,an;,Cn;,Ti—1):
(Vi € [1a]) (e # 1)) = (% € [1.8]) (m} = mn,))]

,n@) S L)

procedure Initialize
k«—IK

procedure Enc(a, m)
(¢, 8) «=E(k,a,m, s)
return c

procedure Dec(a,c, o)
(m,r) — D(k,a,c,r)

procedure Initialize
k«— K

procedure Enc(a, m)
(¢, 5) «= E(k,a,0s)
return c

procedure Dec(a,c, o)
if o then return b« {0,1}

if o then return b« {0,1} return |

return m

Fig. 8. Top: Correctness classes for sAE. The function maps a level-set L to a
correctness class C2(L). Bottom: The utopian real and ideal games for sAE.
The games depend on an underlying sAE scheme IT = (K, &, D).

is the boolean flag o provided to Dec queries. When set, only a random bit is
returned by the game. This is a way for the adversary to mark a declarative query
(p- 6), meaning an oracle call in which the adversary is not seeking information,
but only trying to side-effect the game’s internal state. Returning a random bit
is just an idiom to exempt a declarative query from getting silenced (as Fixed
will never be true). Without supporting such an ability, our adversary would
effectively be unable to ask a decryption query that it knows the answer to, even
if asking such a query would help set the oracle to a state in which the adversary
could subsequently cause damage. We call o the declarative flag.

Given an sAE protocol II and a level-set L, we define AdvsgC[L] (A) as
AdvgngLHg[m)CQ(L)(A). Informally, scheme IT is sAE[L]-secure if Advsﬁe[L] (A)
is small for any reasonable adversary A. Following prevailing traditions in sym-
metric cryptography, our notion is concrete, not asymptotic, although one could
always provide I with a security parameter and support an asymptotic notion.

COMPUTING FIXEDNESS. It would be nice to give an efficiently computable
formula for Fixedco(r),q2, hereinafter abbreviated as Fixedy, for an arbitrary
level-set L. But this is not possible—there is no such algorithm—Dbecause, in
our treatment, level-sets can be arbitrarily bizarre. So we content ourselves with
showing efficient computability of fixedness for the basic level-sets. We believe
that any “natural” level-set L will have the same property, but stating a sufficient
condition on L seems to get rather technical.

18 P. Rogaway and Y. Zhang

Theorem 4. For any basic level-set L the fizedness function is efficiently com-
putable for (C2(L), G2, H2,2™ — 3).

See Appendix A.4 for the proof.

N2S CONSTRUCTION. We now give a simple construction for making an sAE
scheme out of a classical nonce-based AE scheme (an nAE scheme) [14]. First
we review the syntax and security notions for nonce-based AE.

An nAE scheme IT = (K,&,D) consists of a probabilistic key-generation
algorithm that draws a key from the key space X; a deterministic encryption
algorithm £: K XN x A XM — C that takes in a key k € K, anoncen € N, an AD
a € A and a message m € M and outputs a ciphertext ¢ € C; and a deterministic
decryption algorithm D: KX x N x A x € — MU {L} that takes in a key k € X,
anonce n € N, an AD a € A and a ciphertext ¢ € € and either outputs a
decrypted message m € M or a failure symbol L. Correctness is defined in the
natural way: for all (k,n,a,m) € X x N x A x M and ¢ + E(k,n,a, m) it holds
that D(k,n,a,c) = m. We also assume that for all (k,n,a,m) € KX x N x A x M,
the expansion T = |E(k,n,a, m)| — |m| is a constant.

For the nAE security definition, let $(,-,-) be an oracle that takes in n € N
and a € A and m € M and returns a fresh random string of |m| + 7 bits; and
let L(+,-,-) be an oracle that takes in n € N and a € A and ¢ € € and always
returns L. The advantage of an adversary A against an nAE scheme [T is then
defined as

Advie(A) = Pr [k € K: AE(k) Dlkss) %1} —Pr [A$("'*')’L(""') *)1] :

We require that A never asks (n, a, ¢) of its right oracle if some previous left oracle
query (n,a,m) returned ¢; and that A does not repeat nonces when asking its
left oracle. (The first condition could itself be recovered via IND|C.) Informally,
an nAE scheme IT is secure if for all such adversaries with reasonable resources,
the advantage Adv};¢(A) is small.

Construction N2S turns an nAE scheme I with key space K C {0, 1}*, nonce
space N = {0,1}", AD space A C {0,1}* and message space M C {0,1}* and
ciphertext expansion 7 into an sAE scheme IT = (K,&,D) with the same key
space, AD space, and message space. Given an nAE scheme IT and a level-set L,
the sAE scheme IT = N2S(II, L) is defined and illustrated in Fig. 9.

The construction is quite simple. For encryption, the state is maintained as
a counter n that gets incremented with each message sent. When n is used as
a string, it is encoded into n bits. The ciphertext is formed by concatenating n
and the ciphertext returned by the nAE scheme. For decryption, the state is the
vector n of nonces received so far. The decryption algorithm outputs failure if
either the underlying nAE scheme says so or the received nonce, when appended
to the list of prior ones, does not comprise a permissible ordering in L. We have
the following result for the security of N2S:

Theorem 5. Let IT = (K,£,D) be an nAE scheme with nonce length 1 and
ciphertext expansion 7. Let L be a level-set and let A an adversary that asks

Simplifying Game-Based Definitions 19

procedure C procedure D(k,a, nc, n)
return k «— K if n = 1 then return (L, 1)
n||c< nc;n<nj|n
procedure &(k,a,m,n) if n ¢ L then return (L, 1)
if n =2" — 1 then return (L,n) m < D(k,n,a,c)
n<n+1 if m=_1 thenn <+ L
¢ E(k,n,a,m) return (m,n)
return (n||c,n)

Fig. 9. Top: Definition of the N2S construction. For II = (K,&,D) an nAE
scheme with n-bit nonces and L a level-set, we construct the sAE scheme N2S(I1, L) =
(K, &, D). Bottom: Illustration of the N2S construction. Messages can be rejected
because D calls for this or because the provided nonce, once concatenated to the prior
ones received, is not in L. Various optimizations are possible, depending on L.

g < min{2", 27 — 3} queries. Then there exists an adversary B, generically
described in the proof of this theorem, such that

Advi(B) > Advisid (A) .

Adversary B is efficient if A is efficient and L is a basic level-set.

The efficiency referred to in the theorem statement is made more concrete by
the theorem’s proof, which is in Appendix A.5.

DiscussioN. While the decrypting party must, in general, maintain an unbound-
edly long state vector n, for many level-sets this is unnecessary: the decryption
algorithm will be able to make the decision it needs to make, at line 633, by
retaining a finite amount of state. In particular, level-set Ly needs no retained
state; level-set L¢ needs the last £ 4 1 nonces; and level-sets L§ and Lz need the
last nonce received.

20 P. Rogaway and Y. Zhang

Our N2S construction includes in the ciphertext the nonce used for the under-
lying nAE encryption. This is the usual way to use an nAE scheme, and the choice
keeps our construction simple. But it has downsides, both for security and effi-
ciency. The presence of the nonce reveals information that one might wish to
hide. It might identify which user a message was sent by (as when one user has
sent many messages, and another user has sent few). The presence of the nonces
excludes the possibility of achieving IND$-security, meaning indistinguishability
from random bits; it is, in fact, the reason we defined sAE security using the
weaker notion of indistinguishability from the encryption of zero-bits (line 522 of
Fig. 8). As for efficiency, N2S increases the ciphertext expansion from the nAE
scheme’s 7 bits to n + 7 bits, which may be unnecessary.

Addressing the efficiency complaint first, we note that if one is targeting
SAE level L3 (a reliable channel), the nonce n need not be included with the
ciphertext, for the receiver will know what it must be if the ciphertext is to
be valid. For levels L{ and L}, with £ € N, we can also reduce the ciphertext
length. Instead of including the entire nonce n in the ciphertext, it is sufficient to
include n mod (2¢+2) for L{ or n mod (¢+1) for L. From this the receiver can
reconstruct the only possible value of n for a valid message. In practical settings,
one would expect this information to fit in a single byte. Thus L{ and L§ are
nicer than L$°® and L3° not only for capping the state of the decrypting party
but, also, for reducing ciphertext expansion.

As for security, what change to N2S is needed to achieve the stronger IND$
definition? (For that, change line 522 to replace ¢ by |m| 4+ 7 many uniformly
random bits.) Perhaps the most obvious approach is to include in the ciphertext
the enciphered nonce, rather than the nonce itself. One would use a blockcipher
and a separate key. If n is small, like 32 or 96, one would need a blockcipher with
an unusual block length. And the IND$ security would now degrade, unpleas-
antly, with ¢2/2". So a better construction, perhaps, is to append the nonce n
to the plaintext and encrypt using a zero-nonce MRAE scheme [15], rather than
a conventional nAE scheme like we used for N2S. This avoids the quantitative
security loss and works for any level-set L. For L{ and L one can use the trick
from the last paragraph and include only n mod ¢ within the scope of what is
MRAE-encrypted. It is tempting to try to eliminate this too, using the nonce as
the AD value and have the decrypting party employ trial decryptions. But this
scheme is problematic because it does not achieve perfect correctness, which is
required in our treatment of IND|C.

While it is beyond the scope of this paper to formalize and prove all of the
claims made in the last couple of paragraphs, it is our contention that all of
them are straightforward to establish within the framework of IND|C.

5 Variants

Formalizations of IND|C are quite robust with respect to definitional adjust-
ments. In this section we describe three IND|C variants and explain in what
sense each is equivalent. The three variants are: (1) whether or not to silence

Simplifying Game-Based Definitions 21

oracle responses from the “ideal” game that are invalid in the “real” game;
(2) whether to silence-then-shut-down or silence-then-forgive, the latter mean-
ing that oracle responses after silencing will still be returned to the adversary;
and (3) whether to silence ideal-side responses, as we have done throughout, or
to replace them with the real-side values.

At the end of Sect.2 we described further alternatives, (0) a penalty-style
version of IND|C, and (0') an exclusion-style variant. One concludes from these
examples that many of the definitional choices we have made are not significant.

We go on to look at a more distant alternative to INDC, which we call
symmetric INDC. Meant to deal with left-or-right games instead of real-or-ideal
ones, this variant silences oracle responses whenever the correctness condition
dictates fixed but distinct responses from the two sides. We suspect that this
approach is, once again, as expressive as our other treatments of IND|C.

Before we describe our IND|C variants, let us clarify what it means to say
that one way of defining advantage is equivalent to another. Suppose first that
one has defined security measures Advy;™(A) and Adv};¥(A). Then we may
regard them as equivalent if any adversary A can be generically converted into
an almost-as-efficient adversary B for which Adv};”(B) is nearly as high as
Advi7*(A); and the other way around.

Now, for our more abstract setting, suppose we have two ways of associ-
ating an advantage measure to a primitive I1, a class C containing it, and a
pair of II-dependent games (G,H). Call these Adv{)) i, ¢ and AdvgY) o
Then these approaches for defining security are equivalently expressive, or just
equivalent, if there’s a generic method to construct from (G, H) a pair (G',H’)
such that AdvE) i, ¢ and Advgg)H,H (¢ are equivalent (in the sense of the last

paragraph); and, also, the other way around.

(1) SILENCING INVALID TRANSCRIPTS. Recall that the formula we’ve been using
for Fixedg c(x1,y1,-..,2;) is (3'y;) Valide,c(z1,v1, - - -, Ti, y;) where the sym-
bol 3! means there exists one and only one. This choice implies that an adversary,
when interacting with the ideal game H, will receive responses y; (in not yet
silenced games) for which the y;-ending transcript could not occur with the real
game—that is, when Validg c(21,91,...,%,y;) = false. The rationale behind
this choice is that the adversary should be given a chance to win the distinguish-
ing game by observing that a response is invalid—that it could not occur with
the “real” oracle—but that determination should still fall on the adversary.

Yet a natural variant is to silence invalid replies, effectively marking tran-
scripts where the ideal oracle has failed to provide a plausible response. The new
silencing condition would define F ixedé’c(xl, Y1, -, &) aS

(vy7y/) (Va‘]idG,C(Ihyla cee 7':Ci7y) A Va]jdG,C(xlvylv cee 7%‘73/) = Yy = y/)

and would silence by

. 1 ol
Silenceg; (%1, Y15 ---,T5) = \/ Fixedg o(@1, Y15 - -+ T4)-
1<i<

22 P. Rogaway and Y. Zhang

In words, we silence whenever there is at most one valid response, rather than
demanding that there be eractly one valid response. We denote the advan-
tage of adversary A under this new silencing condition by Adv'&f’f{{c(A) =
Advg’ﬁ/‘f]’H[w]’c where ¢ = SilencelG’c. We call the notion INDC1 security.

We argue that when Validg c is efficiently computable, this alteration is
irrelevant. Given an INDC adversary A, one can construct an INDC1 adver-
sary A’ that behaves as A does except when it sees a response y; for which
Validg c(z1,y1, ..., %i,y:) is false. When this happens, adversary A’ halts with
a return value of 0. The constructed adversary is about as efficient as the origi-
nal one (if Validg ¢ is easily computed) and has advantage no smaller than A’s.
Conversely, the exact same reduction turns an INDC1 adversary A’ to an INDC
adversary A of comparable efficiency and undiminished advantage.

(2) SILENCE-THEN-FORGIVE. Our INDC formalization effectively punishes the
adversary for triggering silencing: once silencing happens, the oracle shuts down
and becomes useless. One might argue that this is overly punitive—that there is
no reason to do anything other than silence just the offending query. We call this
alternative silence-then-forgive. We explain that, when the silencing function is
efficiently computable, the difference is inconsequential.

The silence-then-forgive notion is easy to formalize. We use the same Valid
and Fixed predicates as defined in Sect. 2, but for the silencing function, instead
of using the logical-or of Fixed applied to transcript prefixes, we use Fixed
directly. That is, we let Silence? = Fixed and define

AdvI (A) = Pr{ASY] = 1] — Pr[ATY] 5]

where ¢ = Silence?, ;. We call this the INDC2 advantage of adversary A.

Given an INDC adversary A differentiating G and H, an INDC2 adversary A’
can simply execute A in a black-box manner and whenever A asks a query that
will be silenced according to 1, adversary A’ would stop its own interaction and
continue simulating the ¢ response to A. Conversely, given an INDC2 adver-
sary A’, an INDC adversary A can simply execute A’ and whenever it asks a
query that will be silenced according to v, adversary A would ask the same
query, but setting the declarative flag. It then returns a ¢ response to A’. Since
setting the declarative flag guarantees the response would not be silenced, adver-
sary A would never trigger silencing. The simulation is perfect. The argument
implies that the two silencing notions are equally expressive.

(3) IDEAL-SIDE EDITING. So far, all of our INDC variants silence both the real
and ideal sides. Consider the following alternative to oracle silencing: the real
game G is never changed, while the ideal game H, instead of being silenced when
a response is fixed according to G, returns that fixed response.

Simplifying Game-Based Definitions 23

To formalize this, we change the boolean predicate Fixed into a function
fixed that returns the unique string-valued response that is determined when
the original predicate returns true, and returns * (for “not-fixed”) otherwise:

hen (3'y) Valid c T,
fixedc (21, Y1, -+, Ti) = yomnen (y) Valide (w1, 91, %i:9)
* otherwise
We then extend the notion G[¢] to include the case where 1) is a string-or-*-
valued function. Specifically, the Oracle procedure of G[i] behaves as below.

procedure G[i].Oracle(x)

i+ i+ 1; z; + x; y; + G.Oracle(z)

if Y(x1,y1,...,2;) # * then y; + ¥(x1,y1,...,2;)
return y;

Finally, we define INDC3 advantage by Adviél:iﬁ?’c(A) = AdviélfiHM (A) where
Y = fixedc,g. We call this INDC variant ideal-side editing.

We argue that INDC3 is equivalent to INDC assuming fixedg,c is effi-
ciently computable. Let A be an INDC adversary differentiating a real game G
and an ideal game H, where C is the underlying class. One can construct an
INDC3 adversary A’ executing A in a black-box manner. Whenever A asks a
query z; such that the history so far, when applied to fixedg c, results in a
string response y;, then A’ stops its own interaction and provides the silencing
mark O to A. Conversely, with A’ an INDC3 adversary we can construct an
INDC adversary A executing A’ in a black-box manner. Whenever A’ first asks
a query z; such that fixedg c(x1,y1,...,%;) = Y; # *, adversary A would for-
ward x; to its own game, but would set a declarative flag so that silencing is not
triggered. It then returns y; to A’. Both reductions are perfect in simulating the
game interaction.

(4) SYMMETRIC SILENCING. Our last form of game-editing is meant to deal with
left-or-right style games instead of real-or-ideal style games. A typical example
was given in Sect. 3, the treatment of CCA-secure PKE in which an oracle accepts
two equal-length plaintexts and encrypts either the left or the right one of them.
Can one directly use our INDC definition in such a setting?

One can, but doing so doesn’t make sense. A real game is different from an

ideal one, and its privileged position makes it reasonable that Advg’fﬁc is not

Advﬁ%’c. But a left game and a right game ought not be treated differently: it
should be the case that the order of naming them doesn’t matter.

Although the rationale just stated is a philosophical one, we have found that
trying to apply IND|C to the LR-style games of Sect. 3 just doesn’t work.

Here is a way to realize symmetric silencing: silence when the responses of
the games are distinct fixed strings. Namely, let

Fixedd y o(t) = (fixedc g (t) # fixedc u(t) A fixede,(t) # = A fixedo,u(t) # *) .

24 P. Rogaway and Y. Zhang

Note that the predicate is symmetric: Fixedéﬂ,c = Fixedé,qc. Define the
silencing function Silenceé’H’C(t) as the logical-or of FixedéyH’C(t’) applied to
all prefixes ¢’ of t. The INDC-SYM advantage of an adversary A is then defined
as Advglfﬁ:éym(A) = Advgﬁb],H[w] (A) where ¢ = SﬂenceéH,C.

We use the games in Sect. 3 to give an example. Let G and H be the left and
right games in Fig. 6 with line 317 and line 327 removed, and let C be the class
of correct PKE schemes. We remove the two lines so that the decryption does
not, exclude challenged ciphertext and thus the games become “utopian.” The
Fixedéymc predicate, in this case, evaluates to true if (1) no two encryptions of
the same-side but distinct plaintexts return identical ciphertexts (validity condi-
tion); and (2) a decryption of ¢ is asked while there was a previous ENC(mq, mz2)
oracle returning ¢ and m; # ma (fixedness condition). Therefore, apart from the
explicit checking of an additional validity condition, the INDC-SYM notion again
coincides with the conventional IND-CCA one.

6 Conclusions

Definitions in cryptography often vary in subtle ways, and deciding among them
can seem rather subjective. The IND|C framework may help lessen this sub-
jectivity. It embodies a thesis that a definition is “right” when it attends to
the limits imposed by correctness, but goes no further than that in restricting
adversarial behavior.

We suspect there are many cryptographers who have written definitions with
an implicit view that what they aim to do is to disallow all and only the adver-
sarial behaviors that some correctness condition dictates. The challenge of this
work has been in figuring out how to make this vague conception real.

The IND|C approach is rather abstract. Definitions one gets out of it may
require significant investigation to concretely characterize or understand. For
this reason, one might claim that IND|C doesn’t banish complexity so much as
hide it. At least with a complicated game, the argument might go, you can see
the complexity before your eyes.

We regard the critique as mostly off-base. Most fundamentally, it is unreal-
istic to think that complex cryptographic goals admit simple formulations when
described in low-level terms. A more realistic aim is to find abstraction bound-
aries that help modularize definitions and enhance intuition.

The situation is reminiscent of UC [6], where an ideal functionality can be
simply specified, a definition inherited from it, but it may be quite unclear what
that notion means. Yet the hidden complexity behind IND|C isn’t remotely
at the level of UC. Nor, in our simpler setting, is there much difficulty with
rigor. Perhaps IND|C may come to serve as an alternative to UC, for some
cryptographic problems, the utopian game H corresponding to the specification
of the ideal functionality.

Acknowledgments. Many thanks to anonymous reviewers of this paper, whose ques-
tions motivated the addition of Sect.5. Thanks to the NSF, which provided funding
for this work under grants CNS 1314885 and CNS 1717542.

Simplifying Game-Based Definitions 25

References

1.

10.

11.

12.

13.

14.

Bellare, M., Hofheinz, D., Kiltz, E.: Subtleties in the definition of IND-CCA:
when and how should challenge decryption be disallowed? J. Cryptol. 28(1), 29-48
(2015). 5, 10, 11, 14, 15

Bellare, M., Kohno, T., Namprempre, C.: Breaking and provably repairing the
SSH authenticated encryption scheme: a case study of the encode-then-encrypt-
and-MAC paradigm. ACM Trans. Inf. Syst. Secur. 7(2), 206-241 (2004). https://
doi.acm.org/10.1145/996943.996945. 5, 16

Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409-426. Springer, Heidelberg (2006). https://doi.org/
10.1007/11761679-25. 6

Boyd, C., Hale, B., Mjglsnes, S.F., Stebila, D.: From stateless to stateful: generic
authentication and authenticated encryption constructions with application to
TLS. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 55-71. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-29485-8_4. 5, 16

Boyd, C., Hale, B., Mjglsnes, S.F., Stebila, D.: From stateless to stateful: generic
authentication and authenticated encryption constructions with application to
TLS. Cryptology ePrint Archive, Report 2015/1150, revision 20160919:152253
(2016). https://eprint.iacr.org/2015/1150. 5

Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067 (2000). http://eprint.iacr.
org/2000/067. 6, 24

Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453-474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6_28. 6

Fischlin, M., Giinther, F., Marson, G.A., Paterson, K.G.: Data is a stream: security
of stream-based channels. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 545-564. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48000-7_27. 6

Fischlin, M., Gnther, F., Marson, G.A., Paterson, K.G.: Data is a stream: security
of stream-based channels. Cryptology ePrint Archive, Report 2017/1191 (2017).
https://eprint.iacr.org/2017/1191. 6

Jager, T., Kohlar, F., Schége, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 273-293. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32009-5_17. 6

Kohno, T., Palacio, A., Black, J.: Building secure cryptographic transforms, or
how to encrypt and MAC. Cryptology ePrint Archive, Report 2003/177 (2003).
http://eprint.iacr.org/2003/177. 5, 16

Namprempre, C.: Secure channels based on authenticated encryption schemes: a
simple characterization. In: Zheng, Y. (ed.) ASTACRYPT 2002. LNCS, vol. 2501,
pp. 515-532. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-
2.32. 6

Perrin, T., Marlinspike, M.: The double ratchet algorithm. Open Whisper Systems
(2016). https://signal.org/docs/specifications/doubleratchet/. 16

Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)
ACM CCS 2002: 9th Conference on Computer and Communications Security,
18-22 November 2002, pp. 98-107. ACM Press, Washington D.C. (2002). 18

https://doi.acm.org/10.1145/996943.996945
https://doi.acm.org/10.1145/996943.996945
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-319-29485-8_4
https://eprint.iacr.org/2015/1150
http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2000/067
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/978-3-662-48000-7_27
https://doi.org/10.1007/978-3-662-48000-7_27
https://eprint.iacr.org/2017/1191
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-642-32009-5_17
http://eprint.iacr.org/2003/177
https://doi.org/10.1007/3-540-36178-2_32
https://doi.org/10.1007/3-540-36178-2_32
https://signal.org/docs/specifications/doubleratchet/

26 P. Rogaway and Y. Zhang

15. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373-390.
Springer, Heidelberg (2006). https://doi.org/10.1007/11761679-23. 20

A Proofs

A.1 Proof of Theorem 1

It suffices to give mutual reductions between INDC and INDCO adversaries.
Since fixedness is efficiently computable for (G, H, C) we know there exists a PT
algorithm ¢ that computes Fixedc,g for all valid transcripts. In the following
we give the two reductions.

Let A be an INDC adversary. We construct an INDCO adversary B that does
the following: it runs A as a black-box and forwards every query made by A.
Before forwarding a query x;, however, it appends x; to the recorded transcript
and computes ¢ on it. If ¢ returns true then B stops forwarding and from then
on keeps returning ¢ to A. Clearly B is PPT when A is. In addition, adversary B
never triggers the penalty in Finalize, and it perfectly simulates the INDC game
for A.

Conversely, let B be an INDCO adversary. We construct A that does the
following: it runs B as a black-box and forwards every query made by B. But A
gives up and returns 0 whenever it sees { returned by the game. When B is PPT
then so is A. For the advantage, let badg and bady denote the events that A sees
a ¢ response when interacting with G and H, then we have Adv‘(’;,d}ic(A, k) =
Pr[AGI] — 1] — Pr[AUY] - 1] = Pr[ASM] — 1 1 —badg] — Pr[A"¥] — 10
—bady] = Pr[G[¢]” —1] - Pr[H[¢]” —1] = Advié‘fiﬁ:?c(B, k), and the reduction
is complete. l

A.2 Proof of Theorem 2

First note that the formula ¢ in Fig.5 is PT-computable. We must show that
Validci ci1(z1,y1,- -, @) V Valider mi (T1, Y1, - - -, 2¢) implies ¢(x1,y1,...,2¢) =
Fixedcici1(x1,v1,- - -,).

Fix such a transcript. We claim that Validci g1 (1,91, - -, Zi—1,%—1) if and
only if line 201 in Fig.5 is true. The only-if direction is straightforward: the
negation of line 201 violates correctness required by the scheme class C1. For
the if direction, consider the artificial scheme IT = (K, &, D), whose definition
depends on the transcript, with the following behavior:

— K(k): regardless of k, if there is any (x;,y;) = (Key, pk) then output pk.
Otherwise output an arbitrary string.
— E(pk,m): output ¢ «— T'[m] where T'[m] C {0,1}* are sets of strings, indexed
by m € {0,1}*, which satisfy:
e if there is an (z;,y;) = ((Enc,m), c) then ¢ € T'[m)].
o (m#m')= (T'm|NT[m] =2).

https://doi.org/10.1007/11761679_23

Simplifying Game-Based Definitions 27

e if thereis an (z;,¥;) = ((Dec, ¢), m): when m is not the challenge plaintext
then ¢ ¢ T[m/] for all m’ € {0, 1}*; otherwise ¢ € T'[m]. (By the challenge
plaintext we mean the input to the first Enc query in the transcript, if it
exists.)

— D(sk,c): if (3m) ¢ € T[m], then output m; else if there exists some (x;,y;) =
((Dec, ¢), m) then output m; else output an arbitrary string.

It is straightforward to verify that IT as constructed above is correct and can
generate the given transcript. It remains to show well-definedness, namely, the
existence of indexed sets T'[m] for m € {0,1}*. Note the only possible contradic-
tion in the construction of T" is between the first bullet and the third bullet in the
description of £. However, such a contradiction can only take place when there
is an (z;,y;) = ((Enc,m),c) and an (z;,y;) = ((Dec, c),m’) such that m # m/,
exactly the case excluded by line 201 in Fig. 5. The if direction is thus proved.

If ¢(x1,y1,--.,2¢) is true then one of the lines 202-205 is true. From the code
of G1 and the definition of C1, it is straightforward to verify that whichever
line in 202-205 is true, the values recorded in the transcript determine the
value of Gly(k,z1,...,2s,r). Additionally, since the above claim says when-
ever line 201 is true then the transcript is valid, we conclude that the value
of ijedCI,Gl(xla Yiy- - ,l‘t) is true.

Conversely, if ¢(x1,y1,...,2:) is false then either line 201 or the disjunction
of line 202-205 is false. In the former case, our claim implies the falseness of
Validci gi1(z1,y1, - - -, @), so Fixedcy g1 (21, Y1, - - -, 2¢) is also false. In the latter
case, consider the artificial scheme we just constructed. Since such a scheme
can always generate the given history as long as the indexed set T satisfies the
required properties, it suffices to give two instantiations of IT which generate
distinct responses for ;. A routine check of the code of G1 concludes that: for
all transcripts not falling in the four cases of line 202-205, such instantiations
can indeed be given. We conclude that Fixedci,c1(®1,y1,-..,2:) in this case, is
also false.

A.3 Proof of Theorem 3

We give reductions for both directions. First, let A be a PPT IND-CCA adversary
attacking I1. We construct an INDC-adversary B that does the following. For
all Dec queries and Key queries asked by A, forward them to its own game if ¥
evaluates to false for the current transcript; otherwise simulate the answers by
itself without forwarding (which could be done by an inspection of the code of the
four games (G1, H1, G0, HO)). For the first Test query (mq, ms) queried by A, we
let B draw a random coin b«—{0, 1} and query Enc(my,). Now Advi(]g‘li)cHl)C1 (B) =
Advi4(A4)/2, and B is also PPT.

Next, let B be a PPT IND|C adversary, we construct an IND-CCA adver-
sary A that does the following: forward all Dec queries and Key queries; for the
Enc query m, let A query Test(m, 0|m|). In addition A will also silence queries
made by B by computing 1. This reduction simulates perfectly except for one
problematic case: when B triggered an invalid event (the negation of line 201

28 P. Rogaway and Y. Zhang

in Fig. 5) and asks for a decryption of the challenged ciphertext, by the formula
of 1 he should see an unsilenced response, but the IND-CCA adversary A can-
not simulate such a response for him. However, since an invalid event necessarily
implies that A is in the ideal world, we could simply let A return 0. Therefore,
the advantage of B is preserved.

A.4 Proof of Theorem 4

We introduce some notation first. Given n € N* and a vector X, we define X[n]
recursively by X[0] = 0§ and X[n||i] = X[n]||X; if 1 < i < |X]|, while
X[n] otherwise. For n = [i,i + 1,...,j] we may write X[i..j] instead of X[n].
We use t = (x1,41,...,24) to denote a query-terminated transcript that
is Validco(r),q2(t) V Validco(ry e (t) and satisfies ¢ < 27 — 3.

Our proof strategy is as follows. We first give the pseudocode of a function ¢,
for a general level-set L, and then prove its efficient computability when L is a
basic level-set. See Fig. 10 for the code of ¢ .

procedure ¢ (t)

(T1,Y1y. .. mq) — T

fori«— 1toqg—1do
if z;[1] = Enc then e — e + 1; (ac, Mme, ce) — (x:[2], (3], yi)

for i — 1 to ¢ then
if z;[1] = Dec then d — d + 1; (ay, my, cy) — (z:[2], yi, z:[3])

if (3i)(3n € L) (a'[1..4],'[1..9]) = (a[n], c[n]) Amj = L then return false

if (3n,n’ € L) (n #n’ A (m[n] # m[n']) A (a[n], c¢[n]) = (a[n], c[n']))
then return false

return z,[1] = Dec A z4[4] = false A (3n € L) (da’,¢") = (a[n], ¢[n])

Fig. 10. Computing fixedness for sAE.

We claim ¢, indeed computes fixedness. Let ¢ be such a transcript that satis-
fies the stated condition in the above, we use (a1, ¢1), ..., (ae,) and (af,), ...,
(al,c);) to denote its encryption history and decryption history, defined as
in Fig.10. Given a decryption query (al,c;), we say it is n-honest if n €
LA(a'[1..4],d[1..i]) = (a[n], ¢[n]); and it is honest if it is n-honest for some n € L.
We use h to denote the largest index of honest decryption queries in the decryp-
tion history, namely h = max{i: (a},c}) is honest}.

We try to define an artificial scheme IT € C2(L), out of two functions F':
NxAxM — CU{L} and G: Nx A x € — MU {L}. We require for all
(n,a) € NxA, the projected F,, 4(-), apart from its possible mapping to L, is an
injection with ciphertext expansion 7: We accordingly write F,; l(c) to denote
the unique m € M such that F,, ,(m) = cor L if such m does not exist. Basically,

the behavior of F' has some restrictions that depend on the given transcript ¢,

Simplifying Game-Based Definitions 29

procedure K r «—r+1; return (G(r,a,c),r)
return 0 if r =¢ then r — {A}
r'e— g
procedure E(k,a,m, s) for n € r do
if s=cthens—0 for n € {n:n||n € L} do
s—s+1 if F,;i(c) # L then
return (Fsq.(m),s) m «— F, L(c)
r'—r'U{n||n}
procedure D(k,a,c,r) if 7’ = @ then return (G(0, a,c),0)
if isNum(r) then return (m,r’)

Conditions on F for IT € C2(L) and II being able to generate the history:
(Vg)(Vaq,...,aq € A)(Ver,...,cq € C)(Vn,n' € L)
[For i+ 1toqdo (mimj) — (Fynla, (Ci)’Fn_ﬁa,' (e:)):
(%) i # L Ami £ L) = (%) ms = mh)] A
(Vie{l,...,e}) Fiq,(mi)=ci AN(VieN) ¢}, ¢ Range(FL‘,a;L“)

Fig. 11. Code of the artificial SAE scheme.

and such restriction serves its best to make sure II can generate t. Ultimately,
we expect II to have the following properties:

If the validity check is passed (both the if conditions in line 716 and 717
are false) then IT is well-defined, correct, and can generate ¢. On top of
that, if the fixedness check does not pass (line 719 returns false), then
there are multiple instantiations of IT that generate distinct responses for
the last query in .

We call these two properties the existence property and the multiplicity property.
The code of IT is given in Fig.11. We first make two observations about it:

— When F satisfies line 842-843, the variable m assigned in line 831 is identical
across iterations for each decryption in a correctness experiment as shown in
Fig.8, and IT € C2(L). This can be proved by an induction on the number
of decryption queries in a correctness experiment. The inductive argument
is: after the first ¢ decryptions (ai,c¢1), (ag,¢2),...,(a;,¢;) in a correctness
experiment, all vectors n in the receiver state are reorderings in L, and for
each m let (my,...,my) < (F, Y, (c1),... F, %, () then (#i) m; = L and
the vector m is identical for all n in the receiver state.

— When F satisfies all lines 842-844, the scheme II can generate the encryp-
tion history. What’s more, as long as the if condition in line 716 in Fig. 10
evaluates to false, then II, with some instantiation of G, can generate
the decryption history as well. The generation of the encryption history
is obvious by line 844. For the generation of the decryption history, note
that Validco(r),q2(t) V Validco(r), iz (t) implies that an n-honest decryption

30 P. Rogaway and Y. Zhang

L, ch) must have a response either equal to my,, (in the real world)
or L (in the ideal world). Since the falseness of the if condition in line 716
of Fig. 10 excludes the latter case, the correctness of II thus ensures those
honest decryption queries’ responses can be generated. For those post-honest
decryption queries, since line 844 implies that the first of those queries ¢}, |,
is not in the range of Fiya;&l(-) for any 4, the updated receiver state r’ will
be set to @ and from this point the decryption will depend only on G. With
the help of the additive state, by simply assigning G(i — h — 1,a},c;) < m/
for all ¢ > h, we can make I generate the given decryption history as well.

query (a}, ¢/

Based on the above two observations, we first prove the existence property.
For a number ¢ € N, let num2str; (i) be the binary representation of ¢ with j bits
(leading 0 padded when i < 27). Suppose t is such that both the if conditions
in line 716 and 717 evaluate to false then consider the following F:

¢ if a =a; Am=m;;
Fio(m)=q H(i,m) elseifi<e;
1 otherwise,

where H: {1,2,...,q} x M — C satisfies

H(i,-) is an injection for all ¢ with ciphertext expansion 7;
i # j = Range(H(i,-)) N Range(H(j,")) = &;

t.c; ¢ Range(H(i,-)) for all 4;

t.cj,,, ¢ Range(H (i,-)) for all 4.

Ll s

It’s easy to see such an H really exists by the condition ¢ < 27 — 3. We
claim that this instantiation satisfies the three conditions in Fig. 11, which would
imply the existence property. Indeed, line 844 is obvious. For line 841-843, let
(a1,a2,...,aq), (c1,¢2,...,¢4), n and n’ be as quantified, then ((Vi) m; # L A
m} # L) implies that for all i, either ¢; € Range(H (n;,-)) N Range(H (n},-)),
or ¢; is equal to t.c; for some j (We use the notation t.c; to differentiate the ¢;
being quantified in the statement of line 841-843 and the ¢; recorded in the
transcript ¢). In the former case, by the second property of H above we have
n; = nj, hence m; = m}. In the latter case, suppose for contradiction that
m; # m) and let ¢ be the minimal such index. Since by the instantiation of F,
for j < ¢ either n; = n! (the case we just analyzed) or (a;, ¢;) = (t.a[n;], t.c[n;]) =
(t.a[n}], t.c[n}]), we conclude (t.a[n],t.c[n]) = (t.a[n’],t.c[n’]). The assumption
m; # m/, therefore contradicts with the condition that line 717 in Fig. 10 returns
false.

We next show the multiplicity property. There are three cases of t.z; to
consider. They are: (1) Dec query with the declarative flag set to true; (2) Dec
query that is not honest; (3) Enc query. The first case is trivial. For the second
case, since our construction depends on an arbitrary function G after a dishonest
decryption, there are always multiple ways of specifying different G so as z, will
have distinct outputs. For the third case, it suffices to extend the instantiation
of F' by H in the above with e replaced by e+ 1. By the condition ¢ < 27 — 3, the

Simplifying Game-Based Definitions 31

procedure ¢ (t)
(x1,y1,...,2q) — 1
if z4[1] # Dec V x4[4] # false then return false
fori—1toqg—1do
if z;[1] = Enc then
e — e+ 1; (ae, Me, ce) — (:i[2], zi[3], vs);
ac2ifae, ce] — ac2ifac,cc] U {e}
if j =0 then
for i — 1 to e do
if ac2mlac, cc] # O and ac2mlae, c.] # me then return false
ac2mlae, ce] < me
else
queue «— ((/1, /1))
while (ni1,ns) < pop(queue) do
for (ni,m2) € Next(L5,n1,e) x Next(L5, n2,e) do
if (a[n1], c[n1]) = (a[nz], c[n2]) then
if m[ni] # mn2] then return false
push(queue, (n1 || n1,n2 || n2))
for i — 1 to ¢ do
if z;[1] = Dec then
d—d+1 (aiia Tnilv Cil) - (wl[z]vylvxl[g])
N — {A}
for i <+ 1 to d do
for n € N do
for n € ac2ila;, ¢;] do
if n||n € L} then
N «— N U{n||n}
if m; = 1 then return false
N—N;N «—g
return N # &

Fig. 12. Pseudocode of algorithms computing fixedness for sAE. The algo-
rithm qzﬁﬁ computes fixedness for (C2(L§),G2,H2,2T — 3) where 7 is the ciphertext
expansion for SAE schemes. The only dependences on level-sets are in line 924 and
line 935, where Next(L,n,e) = {n € {1,...,e}: n||n € L}. The value Next(L,-,-) is
efficiently computable for all L € {Lo, L{, LS, Ls}.

four conditions can still be satisfied by a proper choice of H, and all successive
logic thus follows. The different way of instantiating H(e + 1,-) thus guarantees
multiplicity property.

To complete the proof, we need to write pseudocode of efficient algorithms
for the procedure ¢; where L is a basic level set. See Fig. 12 for the concrete
code of these algorithms that instantiate ¢y .

32 P. Rogaway and Y. Zhang

A.5 Proof of Theorem 5

We describe the code of B in terms of A. See Fig. 13. We claim that this reduction
achieves perfect simulation. To see why, note that the only bad event which
semantically differs from an otherwise perfect simulation is line 1032, which
causes digression from the semantics of H2 but not that of G2, hence it suffices
to show in an execution between B and the ideal side, line 1032 is never reached.
Suppose for contradiction that it is reached, then by the code semantics, oracle
silencing has not taken place, and the nonces in the nc input for Dec queries so
far form a reorder n € L. Consider the first Dec query of which nc = (nq,¢) for
some c¢. Due to the monotonicity of silencing and the event n = 1, at the point
of the query, line 1029 is reached and the if conditions there can be either true or
false. If it is true, then in the ideal world H2 we must have m assigned as 1, and
accordingly n gets assigned to L, contradicting to the assumption that line 1032
is reached later. If it is false, then at this query the vector n; already forms a
valid reorder of the encryption history at the time, so this query should already
have been silenced at line 1024, a contradiction again.

When A queries Enc(a, m)
if silenced return ¢
t — t|| (Enc, a,m)
if 91 (t) then
silenced < true; return ¢

if n=_1 thenm «— L
else
n||c« nc;n—nj|n
if n¢ L thenm «— L
else if

1
T Y —.
o then m « Dec(n, a, c)
t—tl|lc

else m «— m’
if m=_1 thenn «— L
t—tllm
return m

return n||c

When A queries Dec(a, nc)
if silenced return ¢
t — t|| (Dec,a,c)
if ¢ (t) then
silenced < true; return ¢

When A outputs b
Output b

Fig.13. Construction of an nAE adversary out of an sAE adversary. The
reduction simulates perfectly since the only bad event in line 1032 never takes place in
the ideal setting.

We conclude that B simulates for A a perfect execution of the silenced
(G2n2s(17,1), H2Nn2s(17,1)) games. Adversary B is efficient when A is and the proof
is complete.

	Simplifying Game-Based Definitions
	1 Introduction
	2 Indistinguishability up to Correctness
	3 Public-Key Encryption
	4 Stateful AE
	5 Variants
	6 Conclusions
	References
	A Proofs
	A.1 Proof of Theorem 1
	A.2 Proof of Theorem 2
	A.3 Proof of Theorem 3
	A.4 Proof of Theorem 4
	A.5 Proof of Theorem 5

