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A B S T R A C T

Humans tend to be inaccurate and inconsistent when estimating a large number of objects. Furthermore, we
modify our estimates when feedback or a reference array is provided, indicating that the mappings between
perceived numerosity and their corresponding numerals are largely malleable in response to calibration.
However, there is great variability in response to calibration across individuals. Using uncalibrated and cali-
brated numerosity estimation conditions, the current study explored the factors underlying individual differ-
ences in the extent and nature of the malleability of numerosity estimation performance as a result of calibration
in a sample of 71 undergraduate students. We found that individual differences in performance were reliable
across conditions, and participants' responses to calibration varied greatly. Participants who were less consistent
or had more proportionally spaced (i.e., linear) estimates before calibration tended to shift the distributions of
their estimates to a greater extent. Higher calculation competence also predicted an increase in how linear
participants' estimates were after calibration. Moreover, the effect of calibration was not continuous across
numerosities within participants. This suggests that the mechanisms underlying numeral-numerosity mappings
may be less systematic than previously thought and likely depend on cognitive mechanisms beyond re-
presentation of numerosities. Taken together, the mappings between numerosities and numerical symbols may
not be stable and direct, but transient and mediated by task-related (e.g., strategic) mechanisms. Rather than
estimation skills being foundational for math competence, math competence may also influence estimation
skills. Therefore, numerosity estimation tasks are not a pure measure of number representations.

Magnitude estimation is an essential skill in a variety of contexts,
including computation (e.g., how much to tip for service), measurement
(e.g., how far away), and numerosity (i.e., how many) judgments
(Booth & Siegler, 2006; Hogan & Brezinski, 2003). However, adults
who have experience with a wide range of numerical and non-numer-
ical magnitudes tend to be very inaccurate even on the most basic of
these skills – numerosity estimation. Specifically, in a typical numer-
osity estimation task (e.g., providing an estimate of how many dots
there are in an array; hereafter “numerosity-to-numeral mappings”),
individuals tend to systematically underestimate, particularly for rela-
tively large numerosities (e.g., Crollen, Castronovo, & Seron, 2011;
Izard & Dehaene, 2008; Krueger, 1984; Minturn & Reese, 1951) or
magnitudes in general such as mass (Stevens, 1957). In addition to
being inaccurate, responses between and within individuals are often
highly variable (Cordes, Gelman, Gallistel, & Whalen, 2001; Izard &
Dehaene, 2008; Whalen, Gallistel, & Gelman, 1999). However,

estimation skills can be improved when individuals are provided with
calibration for their estimates, providing a window into the processes
involved in numerical estimation. The current study investigates the
factors underlying individual differences in the extent and nature of the
malleability of numerosity estimation performance as a result of cali-
bration.

1. Local-to-global calibration

Several studies have demonstrated that when children and adults
are given some form of calibration before a task (e.g., showing 30 dots
and labeling it as “30”) or feedback during the actual task (e.g., pro-
viding the correct number of dots after an estimate is made), partici-
pants modify their subsequent estimates, suggesting that the mappings
between numerals and numerosities are malleable (Izard & Dehaene,
2008; Krueger, 1984; Price, Clement, & Wright, 2014). To further
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investigate the nature and extent of the malleability of estimation
performance, researchers have begun exploring the use of misleading
calibration. These studies found that accuracy of the calibration did not
matter as even adults lack certainty about how large each set actually is
(Izard & Dehaene, 2008; Sullivan & Barner, 2013). Hence, by em-
ploying different calibration values within the same participants, me-
chanisms underlying the numerosity-to-numeral mappings have been
proposed (Izard & Dehaene, 2008). For example, Izard and Dehaene
(2008) had adults estimate the numerosity of a series of dot arrays, after
being presented with an explicitly mislabeled set of dots as an inducer
(e.g., 25 dots labeled as “30” being an “overestimating inducer”, or 39
dots labeled as “30” being an “underestimating inducer”). Relative to
the veridical numerosity-to-numeral mappings, they found that parti-
cipants' calibrated estimates were in the direction of the inducer (i.e.,
larger for the “overestimating inducer”, and smaller for the “under-
estimating inducer”), not only locally for the calibrated numerosity (30)
but also extended to the entire range of numerosities (9–100) tested.
This phenomenon in which information about a single numerosity ex-
tends to the entire range of numerosities tested will be referred to here as
“local-to-global” calibration, and suggests that numerosity-to-numeral
mappings are not only malleable, but are also highly interdependent.

Izard and Dehaene (2008) postulated that mechanisms underlying
local-to-global calibration for large numerosities may result from a
mixture of unintentional “automatic learning process” (p. 1234) and
conscious, strategic modification that may involve approximate ar-
ithmetic (as their participants had indicated via self-report). They
proposed a response-grid model of numerosity estimation that com-
prises two stages (Fig. 1): (a) Encoding stage: A logarithmically scaled
“mental number line” is divided into several segments, each of which
corresponds to a different verbal label (e.g., 10's, 20's, 30's …), defining
a veridical “response grid”. This response grid thus serves as an interface
between the analog mental number line and the symbolic number
system. An encoded numerosity activates a point on the number line,
which is translated into a verbal label; (b) Response selection stage:
Individuals rarely possess a veridical response grid, but an idiosyncratic
affine-transformed (i.e., stretched or compressed, and/or shifted glob-
ally) version of it. In the absence of an external calibration, a sponta-
neous (i.e., internally or self-calibrated) response grid is employed. In

the presence of an external calibration, an externally calibrated response
grid is employed. These transformations may or may not be conscious
and strategic in either scenario (for more details of the model, see Izard
& Dehaene, 2008). Crucially, their data also suggest that the calibration
likely takes place during the process of response selection (i.e., via a
bias in symbolic labelling), rather than during the perceptual encoding
and discrimination of numerosities (Izard & Dehaene, 2008). The re-
latively stable discrimination sensitivity is a potential mechanism for
constraining an individual's estimation performance across conditions.

However, small numerosities are less influenced by calibration than
large numerosities (Alvarez et al., 2017; Sullivan & Barner, 2013,
2014). Sullivan and Barner (2013) had participants first complete an
uncalibrated estimation task assessing numerosities sparsely sampled
from 8 to 350. Then, they told participants that the largest set of dots
they would see in a subsequent estimation task was 75, 375 or 750
when in fact the largest set they saw was still 350. Their results showed
that the misleading upper bounds (a local calibration) induced a global
shift in participants' estimates across the range of numerosities (8–350)
tested in the direction of the inducers in a majority of their participants,
replicating Izard and Dehaene's (2008) findings even with mere sug-
gestions of an upper bound for the to-be-estimated numerosities. Yet,
the calibration did not have as much of an impact on numerosities 8
and 12 as on numerosities larger than or equal to 20 (Sullivan & Barner,
2013). This led them to propose a distinction between small and large
numerosities in the way symbolic and nonsymbolic representations of
numerosity are mapped. Specifically, they suggest that numerosity-to-
numeral mappings generally occur at a system level due to their ana-
logous ordinal structures, rendering the mappings interdependent or
“structurally mapped”, consistent with the response-grid model. How-
ever, small numerosities tend to be more “associatively mapped” to
numerals as a result of experience (Dehaene & Mehler, 1992; Lipton &
Spelke, 2005; Verguts & Fias, 2004) and are more reliably and in-
dependently mapped to their true symbolic labels than larger numer-
osities. Hence, small numerosities were observed to be more resistant to
calibration than larger numerosities (Fig. 1). Sullivan and Barner
(2013) do not view “associative mapping” and “structural mapping” as
mutually exclusive for a particular numerosity, and it is the relative
strengths of each type of mapping that determines the susceptibility of a

Fig. 1. A summary schematic of the response-grid model of numerosity estimation proposed by Izard and Dehaene (2008) and the associative mapping – structural
mapping distinction proposed by Sullivan and Barner (2013), (a) without and (b) with an external calibration. The mental activations modeled as Gaussian curves are
shown individually (solid curves) for the associative mapping range, and averaged across a range of possible numerosities (dotted curves) that could be mapped to a
particular segment (e.g., 10's, 20's, 30's) of the response grid for the structural mapping range (e.g., see Revkin, Piazza, Izard, Cohen, & Dehaene, 2008). The
employed response grids are idiosyncratic, and the ones illustrated here are for a hypothetical individual. Without an external calibration, participants have a general
tendency to underestimate larger quantities (e.g., an array of 30 dots as “25”). Calibration likely takes place during the response selection stage rather than the
encoding stage. Small numerosities (e.g., 8) are hypothesized to be more resistant to an internally (spontaneous) or externally induced (e.g., an array of 35 dots
associated with “40”) calibration than large numerosities (e.g., 30) are.
Adapted from Izard and Dehaene (2008), Calibrating the mental number line, Cognition, 106(3), 1221–1247, with permission from Elsevier.
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particular numerosity to calibration. Using the same paradigm, this
associative mapping–structural mapping distinction has been replicated
in 4- to 7-year-old children (Alvarez et al., 2017; Sullivan & Barner,
2014).

In sum, previous research suggests that while small numerosities
appear to be relatively resistant to calibration, larger numerosities are
subject to local-to-global calibration effects and such effects seem ro-
bust across paradigms and age groups.

2. Individual differences in local-to-global calibration

Despite the studies above demonstrating that calibration has robust
global effects in both children and adults at the group level, there are
large individual differences in participants' responses to calibration. For
instance, Sullivan and Barner (2013) reported that response to cali-
bration was observed in 70–90% of adults. Similarly, other studies that
used the same paradigm reported calibration effects in only 47–60% of
4- to 7-year-old children (Alvarez et al., 2017; Sullivan & Barner, 2014).
Moreover, the smallest numerosity affected by calibration varied
greatly across adults (ranging from 8 to 180; Sullivan & Barner, 2013)
and 5- to 7-year-old children (ranging from 6 to 32; Sullivan & Barner,
2014). Using the smallest numerosity affected by calibration at the
individual level as a metric of estimation malleability assumes that
subsequent numerosities are also affected by calibration, but there is as
yet no evidence supporting such continuity. It is possible that there
exist relatively strong associative mappings for larger numerosities at
the individual level that may be acquired through experience and may
serve as idiosyncratic anchors (e.g., Dehaene & Mehler, 1992). None-
theless, existing findings suggest large individual differences in the
relative strengths of associative versus structural mapping across nu-
merosities, and that the distinction between associative mapping and
structural mapping may not be purely a function of set size.

Furthermore, individual differences in the calibration effect may be
sensitive to the order of calibration. In Izard and Dehaene's (2008)
study, every participant underwent two sessions of estimation, each
with a different inducer, but showed varied responses to the second
inducer. Those who saw a smaller inducer followed by a larger inducer
(i.e., 25 dots labeled as “30” followed by 30 dots labeled as “30”, or 30
dots labeled as “30” followed by 39 dots labeled as “30”) reduced their
estimates in the second session, whereas those who saw a larger inducer
followed by a smaller inducer were unaffected by the second inducer.
Nevertheless, individual differences in the extent of the responses to
calibration (translation and scaling parameters of the response grid)
were highly correlated between the two sessions across participants
(Izard & Dehaene, 2008).

Taken together, although numeral-numerosity mappings are mal-
leable, estimation performance can be resistant to calibration in some
individuals and under certain contexts, and highly reliable across
conditions in most individuals. This suggests that while an individual's
performance across conditions (e.g., uncalibrated versus calibrated, or
between two calibrated conditions) might be constrained by similar
cognitive mechanisms, there are other cognitive mechanisms which
contribute to meaningful individual differences in both the nature and
extent of response to calibration.

More recently, Alvarez et al. (2017) provided evidence that 4- and
5-year-old preschoolers' domain-general conceptual analogical skills
(e.g., “fish goes with fishbowl just like dog goes with…”) were pre-
dictive of the likelihood that a child was affected by calibration or not.
They also found that domain-specific numerical analogical skills (e.g.,
“2 goes with 4 just like 20 goes with…”) predicted how proportionally
spaced (i.e., linear) a child's uncalibrated estimates were (Alvarez et al.,
2017). Crucially, if affine transformation of a response grid is the me-
chanism underlying the change between uncalibrated and calibrated
verbal estimates, we hypothesize that the transformation of the re-
sponse grid should manifest as a change in linearity of estimates upon
calibration (i.e., estimates may become more proportionally spaced

relative to one another). Further, it is plausible that this transformation
relies on a combination of prerequisite arithmetic knowledge (e.g.,
Castronovo & Göbel, 2012), proportional reasoning (e.g., Barth et al.,
2016; Barth & Paladino, 2011), and analogical reasoning (e.g., Alvarez
et al., 2017; Thompson & Opfer, 2010). Indeed, this hypothesis is
consistent with a number of studies that found a relation between math
competence and linearity of numerosity estimates in children (Alvarez
et al., 2017; Wong, Ho, & Tang, 2016a, 2016b) and adults (Chesney,
Bjalkebring, & Peters, 2015). Although most prior work has been cor-
relational, the relations between estimation performance and math
competence have typically been interpreted as providing support for a
foundational role of stable numerosity-numeral mapping ability in
math competence. To the best of our knowledge, no study has examined
whether the extent of the calibration effect itself (i.e., changes in esti-
mation performance upon calibration) is associated with math compe-
tence, as the response-grid model would suggest, so it is unclear whe-
ther the associations between estimation performance and math
competence observed were driven by cognitive processes related to
calibration (e.g., practice trials with feedback). In summary, math
competence may be associated with spontaneous or externally induced
local-to-global calibration, possibly more so than numerosity dis-
crimination itself. Such a finding would challenge the relevance of es-
timation performance measures as predictors of math competence.
Moreover, it is unknown whether the initial, uncalibrated estimation
performance plays a role in its malleability, and what aspects of per-
formance it might impact. A better understanding of the factors that
might facilitate or hinder students' learning and refinement of their
estimation skills is critical for designing instruction that can address
those factors optimally for each and every student.

3. Current study

The aims of the current study were to test three predictions stem-
ming from the response-grid model by Izard and Dehaene (2008), and
the associative mapping – structural mapping model proposed by
Sullivan and Barner (2013). Specifically, we set out to investigate (1)
the continuity of calibration effects across the numerosities tested at the
individual level; (2) the reliability of estimation performance across
uncalibrated and calibrated conditions using aggregate performance
measures such as accuracy, variability, and linearity of estimates; and
(3) to elucidate the factors underlying individual differences in the
extent and nature of numerical estimation calibration. To address these
questions, we used Sullivan and Barner's (2013) miscalibration para-
digm with an “overestimating inducer”. We chose this specific para-
digm as it is the only calibration paradigm to our knowledge that has
been used to demonstrate the associative and structural mapping me-
chanisms (Alvarez et al., 2017; Sullivan & Barner, 2013, 2014).

3.1. Hypotheses

3.1.1. Continuity of calibration effects
If the distinction between associative mapping and structural

mapping is purely a function of set size and estimates are typically
made relative to prior estimates or retrieved directly from a trans-
formed response grid, calibration effects (or the lack thereof) should be
reliably continuous across the tested range in most, if not all, partici-
pants.

3.1.2. Reliable individual differences in performance across conditions
If estimation performance across calibration conditions is con-

strained by similar cognitive mechanisms (e.g., discrimination sensi-
tivity, or idiosyncratic but reliable affine transformations of the re-
sponse grids), we expected that participants' accuracy, variability, and
linearity would be correlated across the uncalibrated and calibrated
estimation tasks.
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3.1.3. Factors underlying participants' responses to calibration
Firstly, the extent to which participants can accurately label quan-

tities with numerals may influence response to calibration. As it is
theoretically unclear whether accurate estimators, underestimators, or
overestimators during the uncalibrated estimation task may be more or
less responsive to the specific calibration used, no prediction seems
possible. Secondly, regardless of mapping accuracy, participants with
less consistent mappings from trial to trial may be more responsive to
calibration as the explicit upper bound may help constrain their esti-
mates. Hence, participants who were initially less consistent in their
estimates during the uncalibrated estimation task would shift their es-
timates to a greater extent (i.e., greater changes in accuracy), or show
greater improvements in estimation performance (i.e., reduced varia-
bility and/or increased linearity). Thirdly, it is possible that the accu-
racy and consistency of single numeral-numerosity mappings may not
be as critical as the structural coherence and interdependency of
mappings across the whole range of numerosities tested (Alvarez et al.,
2017). Hence, participants with greater linear structure across their
estimates during the uncalibrated estimation task may be more re-
sponsive to calibration as they would have demonstrated better spon-
taneous rescaling of the response grid before calibration. These parti-
cipants would likely show greater changes in accuracy, reduced
variability, or increased linearity.

Moreover, if calibration involves affine transformation of the re-
sponse grid, math competence may be a potential factor affecting the
extent of calibration. Specifically, participants with higher math com-
petence may be better supported in performing the affine transforma-
tions of the response grids, and show a greater calibration effect, spe-
cifically an increase in linearity of the estimates across the numerosities
tested. The response-grid model and the use of a misleading calibration
do not allow us to make meaningful predictions of the relation between
math competence and the calibration effects on variability and accu-
racy.

4. Methods

4.1. Participants

Seventy-two undergraduate students (50 female) participated in the
study for course credit. The experimental protocol was approved by our
Institutional Review Board. All participants provided written informed
consent. Data from one participant was excluded due to extreme out-
lying estimates during the uncalibrated estimation task (see Data
Management for further details). Demographic information and the
standard scores of standardized math and reading measures of the re-
maining 71 participants (49 female) are presented in Table 1.

4.2. Procedure

The experiment was conducted during a single session in a quiet
room. All participants completed the uncalibrated estimation task,
followed by the calibrated estimation task. Each task was self-paced and
took approximately 30min on average. The stimuli for the estimation
task were presented using E-Prime 2.0 (Psychology Software Tools,
Pittsburgh, PA) on a 21.5″ monitor driven at a refresh rate of 60 Hz and

a resolution of 1920×1080 pixels. The 47.7× 26.8 cm screen sub-
tended a 43.4°× 25.2° visual angle with an approximate viewing dis-
tance of 60 cm. Standardized reading and mathematical tests were ad-
ministered after the estimation tasks. Finally, a brief questionnaire was
administered verbally and informally to ensure that any participant
who may have been suspicious about the intentional miscalibration
could be identified. Responses were transcribed verbatim.

4.2.1. Uncalibrated estimation task
Our estimation paradigm was adapted from that reported by

Sullivan and Barner (2013). Participants saw a randomly ordered series
of blue dot arrays presented at the center of a grey circular background
(diameter of 23 cm) against a black screen. Each array was
1000×1000 pixels, which covered a visual angle of 21.7°× 21.7°, and
the diameter of each dot subtended a visual angle of 0.19° (0.2 cm) to
0.48° (0.5 cm). On each trial, the dot arrays were presented for 500
milliseconds (ms), followed by a circular grey mask prompting for an
estimate. We opted for a short presentation duration to prevent parti-
cipants from counting. Previous adult studies have employed pre-
sentation times as short as 100ms (e.g., Izard & Dehaene, 2008) to as
long as 1500ms (e.g., Chesney & Matthews, 2018). Participants were
given no information about the range of numerosities they would see
and were instructed to estimate the number of dots and record their
estimates using the numeric keypad on a computer keyboard as quickly
and as accurately as possible. Confirmation of each estimate was made
by pressing the spacebar key, upon which a central fixation cross within
a circular grey background was then presented for 1500ms before the
next set of dots were presented. Participants were allowed to amend
their estimates before confirmation by using the backspace key when-
ever necessary. Response latencies (measured from the onset of the
response screen to the confirmation of their estimates) ranged from
0.29 to 32.2 s (s) (Mean=2.6 s, SD=1.6 s). As response latencies were
not a pure measure of numerosity encoding, we did not analyze them
further. There were no practice trials, and no feedback was given
throughout the task.

Fifteen numerosities were presented: 8, 12, 20, 35, 60, 80, 95, 120,
150, 180, 200, 240, 275, 300, and 350 (see Sullivan & Barner, 2013).
We deliberately excluded numerosities below 8 to avoid subitizing and
minimize counting potential. Each numerosity was presented 18 times,
resulting in a total of 270 trials per task. To minimize the use of non-
numerical visual cues, each numerosity was matched with every other
numerosity on dot size for half the trials, and on total occupied area for
the other half (Dehaene, Izard, & Piazza, 2005).

4.2.2. Calibrated estimation task
The stimuli and instructions were identical to those in the un-

calibrated estimation task, except that participants were told once,
verbally, at the beginning of the task that the largest set they would see
was 750. This was chosen based on the findings of Sullivan and Barner
(2013): In the uncalibrated condition, the mean estimates were up to
about 220. When participants were calibrated to 375 (close to the
veridical upper bound of 350), their mean estimates were surprisingly
lower (up to about 170). When participants were calibrated to 750,
their mean estimates were higher (up to about 260; hence, the “over-
estimating inducer” of 750 seems appropriate for increasing the accu-
racy of the estimates in the sampled range. Response latencies ranged
from 0.24 to 29.4 s (Mean=2.2 s, SD=1.4 s).

4.2.3. Mathematical and reading competencies
Mathematical competence was assessed using the Math Fluency and

Calculation subtests of the Woodcock-Johnson III Tests of Achievement
(WCJ-III; Woodcock, McGrew, & Mather, 2001). The Math Fluency
subtest requires participants to solve simple addition, subtraction, and
multiplication problems with numerals 0 to 10 as quickly as possible
within three minutes. The Calculation subtest is an untimed test in-
cluding arithmetic (with natural and rational numbers), algebra,

Table 1
Demographic information and standardized test measures (N=71).

Measure Mean SD Range

Age (years) 19.63 1.03 18.08–22.17
WCJ-III Calculation 120.77 12.51 89–148
WCJ-III Math Fluency 112.23 13.26 81–151
WCJ-III Reading Fluency 117.82 11.27 89–147

Note. WCJ-III: Woodcock-Johnson III Tests of Achievement.
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trigonometry, and calculus. While the Math Fluency subtest primarily
assesses fluency of arithmetic fact retrieval, Calculation subtest assesses
a broader scope of calculation competence comprising conceptual and
procedural knowledge. Examining these subtest scores separately al-
lowed us to examine the adequacy of arithmetic fact retrieval in sup-
porting calibration.

To assess the specificity of the relation between numerical estima-
tion performance and mathematical competence, reading competence
was assessed using the Reading Fluency subtest of the WCJ-III Tests of
Achievement. It requires participants to read a series of sentences as
quickly as possible and indicate whether the sentence is true or false
within 3min. Reading Fluency not only serves as a proxy for general
cognitive ability, but also a measure of the ability to infer symbol-re-
ferent associations fluently. Age-normed standard scores were used for
all analyses. Table 1 shows that the sample has a wide and re-
presentative range of math and reading scores. All the standardized
measures were normally distributed (Shapiro-Wilk; all ps > .23). Cal-
culation and Math Fluency subtests scores were moderately correlated
[r(69)= .438, p < .001, BF10= 185.4], but neither was correlated
with Reading Fluency [r(69)= .124, p= .304, BF10= 0.25, and r
(69)= .191, p= .111, BF10= 0.52, respectively].

4.2.4. Manipulation check
A “funnel debriefing” (Bargh & Chartrand, 2000) was administered

to assess participants' suspicions of the miscalibration. The procedure
began with an abstract, open-ended question about the purpose of the
study, followed by more specific questions to probe participants'
awareness and suspicion of the miscalibration (e.g., “Did you notice
anything unusual about the tasks?”). Participants' responses to the
verbally administered survey were transcribed verbatim, and then
coded by the first two authors independently. Inter-rater reliability was
high (Cohen's κ= .85). Any discrepancies in coding were resolved
through discussion. The questions, coding scheme for response cate-
gories, proportions for the response categories, and examples of re-
sponses can be found in Supplemental Materials.

4.3. Analyses

4.3.1. Data management
Following previous studies that employed similar paradigms

(Alvarez et al., 2017; Sullivan & Barner, 2013, 2014) and to replicate
their key group-level findings, we adopted the same criteria for data
exclusion. Specifically, we excluded null responses (uncalibrated:
N=49/19,440 trials; calibrated: N=70/19,440), responses of “0” and
“1” (uncalibrated: N=7/19,440; calibrated: N=21/19,440), and re-
sponses that were likely to be typing errors, specifically more than or
equal to ten times as large (10x), and less than or equal to ten times as
small as the numerosity (x) presented (x/10) (uncalibrated: N=207/
19,440; calibrated: N=161/19,440). Within each condition, we fur-
ther excluded outlying estimates that were more than three standard
deviations from the mean of each participant's estimates of each nu-
merosity presented (uncalibrated: N=163/19,440; calibrated:
N=188/19,440). We also visually inspected participants' estimates to
assess for any outlying estimates that might have been missed by the
trimming procedure described above. For one participant, we excluded
two “750” responses in the calibrated task for the second largest nu-
merosity (300). The estimates for that participant did not exceed 200
across both conditions, and those two estimates possibly reflected an
occasional need to adhere to the calibrated task instructions, rather
than being genuinely representative of the participants' estimates.
These two responses also artificially inflated the variability of this
participant's estimates for 300, such that its standard deviation was 6.4
times as large as the next largest standard deviation, which was for the
largest target numerosity (350). Across the whole sample, 97.81% and
97.74% of the uncalibrated and calibrated data points respectively were
retained for further analyses. Even though all participants completed

the uncalibrated task followed by the calibrated task, there were no
apparent indications that data from the calibrated task contained more
errors or outlying data points that may have been attributable to fa-
tigue.

All participants were compliant with the instruction to formulate
their estimates based on numerosity as indicated by a significant pre-
diction of their estimates from the target numerosities and typical be-
havioral signatures expected in numerosity estimation tasks (e.g., scalar
variability; see Supplemental Materials). So, no participants were ex-
cluded based on this criterion. In the uncalibrated condition, one par-
ticipant showed an extreme overestimation across the entire range of
numerosities (e.g., “3000” in response to 350 dots), resulting in a mean
absolute error rate that was more than seven standard deviations from
the sample's mean. Hence, we excluded data from this participant from
all analyses.

Two other participants had estimates in the calibrated task that
were>750 (N=12/19,940 trials), suggesting that participants did not
respond as anticipated to the calibration by lowering their estimates
within the given range. However, many other participants did not
substantially increase their largest estimates to 750 either (see Fig. S1),
which also suggested that participants neither associate the largest
array seen in the uncalibrated condition with 750, nor uncritically re-
spond with 750 whenever they see a large array. Given the general
resistance to what the upper bound truly was (which we will address in
our discussion) and that the aim of this study was to examine individual
differences in the degree of calibration when presented with the same
set of instructions, we did not exclude any other trials or participants
based on apparent adoption of, or resistance to, the calibration.
Relatedly, we did not find any compelling evidence that participants'
suspicions about the misleading calibration would invalidate their data
(see Manipulation Check subsection of the Results and Supplemental
Materials), hence, we did not exclude participants based on their post-
experiment reports.

4.3.2. Estimation metrics
We computed participants' accuracy, variability, and linearity of the

estimates for the uncalibrated and calibrated tasks separately (Table 2).

4.3.2.1. Accuracy of estimates. Accuracy was measured by computing
the absolute error rate for each data point (AER = Estimate – Numerosity

Numerosity
).

We then used the mean AER across all trials as a measure of each
participant's overall AER (e.g., Alvarez et al., 2017). Taking the
absolute value avoids potential reciprocal cancellation between
under- and over-estimation during the computation of its mean. A
smaller AER thus reflects greater accuracy, regardless of under- or over-
estimation.

Table 2
Descriptive statistics of pre-transformed accuracy, variability, and linearity
indices (N=71)

Measure Mean Median SD Range Skewness Kurtosis

Uncalibrated AER 0.46 0.46 0.11 0.26–0.75 0.16 −0.58
Calibrated AER 0.50 0.47 0.24 0.26–1.56 3.08 11.09
Uncalibrated CV 0.31 0.29 0.11 0.17–0.83 2.66 10.23
Calibrated CV 0.32 0.29 0.12 0.15–0.77 1.56 3.62
Uncalibrated Rlin2 0.70 0.70 0.10 0.27–0.83 −1.77 5.33
Calibrated Rlin2 0.68 0.70 0.12 0.28–0.86 −1.29 1.55
AER calibration effect 0.04 −0.002 0.20 −0.18–0.96 3.40 12.83
ER calibration effect 0.19 0.11 0.21 0.02–1.04 2.53 6.88
CV calibration effect 0.01 0.02 0.06 −0.16–0.22 0.24 1.37
Rlin2 calibration effect −0.02 −0.02 0.08 −0.24–0.16 −0.44 1.13

Note. (A)ER: (Absolute) error rate. CV: Coefficient of variation. Calibration
effect = Estimation IndexCalibrated− Estimation IndexUncalibrated.
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4.3.2.2. Variability of estimates. Variability was measured by computing
the coefficient of variation per numerosity (CV = Standard deviation of estimates

Mean estimate
)

and taking the mean CV across the range of target numerosities. A
smaller CV reflects more consistent estimates on the whole.

4.3.2.3. Linearity of estimates. Linearity (Rlin2) was computed by fitting
a simple linear regression model to each participants' trial-level
estimates regressed on numerosity as a continuous variable (e.g.,
Alvarez et al., 2017; Sullivan, Frank, & Barner, 2016). Rlin2 reflects
the proportion of the variance in a participant's estimates that can be
predicted by accurate knowledge of the number of dots in an array. It
thus provides a measure of how the estimates are proportionally spaced
relative to one another. Given that all participants gave responses that
increased with numerosity within each condition (see Supplemental
Materials), a larger Rlin2 reflects better internal, ordinal consistency in
their estimates across the numerosity range tested. Although we
expected Rlin2 to correlate with CV based on the ordinary least
squares approach, it should be noted that it measures more than just
variability. For instance, responses with low variability that do not
increase with numerosity will yield a small Rlin2.

4.3.3. Measures of calibration effect
Calibration effects were examined for the three indices separately

instead of an overall calibration effect, because it is possible that cali-
bration may impact one index (e.g., accuracy), but not another (e.g.,
variability). We obtained measures of the effect of calibration on each
measure using the formula: Calibration effect = Estimation
IndexCalibrated− Estimation IndexUncalibrated. A positive AER calibration
effect indicates an increase in absolute deviation from the target nu-
merosities upon calibration. A positive CV calibration effect indicates
an increase in variability. A positive Rlin2 calibration effect indicates an
increase in linearity.

As the AERs did not allow us to account for switches between under-
estimation and over-estimation (e.g., |-0.2| to |0.2| would result in a
null AER calibration effect), and we were interested in the extent par-
ticipants shifted their estimates in response to the calibration, we
computed an additional effect of calibration on accuracy using a dif-
ferent approach. We computed the absolute difference between the
mean signed error rates (ER) per numerosity
(|ERCalibrated− ERUncalibrated|) to capture switches between any under-
and over-estimation, and then computed the mean across all numer-
osities. For instance, a change in ER from −0.2 to 0.2, or 0.2 to −0.2,
will constitute an ER calibration effect of 0.4, indicating a 40% change
in the deviation from the target numerosity.

Lastly, as most of these indices were not normally distributed (see
Table 2; Shapiro-Wilk; all ps < .039), with the exception of the cali-
bration effects on CV (Shapiro-Wilk; p= .258) and Rlin2 (Shapiro-Wilk;
p= .051), we performed a rank-based inverse normal (RIN) transfor-
mation on all the non-normal indices. RIN transformation has been
found to be the optimal procedure for correlational analyses of non-
normal data in terms of controlling for Type I error and improving
power over other methods (e.g., nonparametric Spearman's rank-based
correlation with untransformed data) (Bishara & Hittner, 2012, 2015).
All parametric correlational and regression analyses were conducted on
RIN-transformed estimation indices, with the exception of the calibra-
tion effects on CV and Rlin2.

4.3.4. Frequentist and Bayesian analyses
Unless otherwise stated, all frequentist analyses presented herein

were based on a significance threshold of p < .05 (two-tailed). To as-
sess whether the impact of calibration was moderated by numerosity at
the group level, and to account for non-independence in the data for the
Numerosity (8–350)×Condition (uncalibrated vs. calibrated) re-
peated-measures design, we used the nlme package (Pinheiro, Bates,
DebRoy, Sarkar, & R Core Team, 2017) for R (R Core Team, 2016) to
analyze trial-level data using a linear mixed model (LMM). A null (no

predictor) by-participant random-intercept model yielded an intraclass
correlation coefficient of .262, indicating that about 26% of the total
variance in the trial-level estimates could be accounted for by differ-
ences among participants, and that a mixed-effects model is appropriate
for analyzing the data. Unless otherwise stated, numerosity was treated
as a continuous predictor. All planned and post-hoc pairwise compar-
isons were conducted using the R packages multcomp (Hothorn, Bretz, &
Westfall, 2008) and emmeans (Lenth, 2018).

For individual subject analyses on the interaction between calibra-
tion and numerosity, we used both ordinary least squares regression
and ANOVA, depending on whether numerosity was modeled as a
continuous or categorical variable. For all subject-level fixed-effects
models, we assumed unequal variances across numerosities and con-
ditions, and used heteroscedasticity-robust standard errors to make
statistical inferences (using R packages lmtest (Zeileis & Hothorn, 2002)
and Car (Fox & Weisberg, 2011)). For all planned pairwise comparisons
for each participant (i.e., difference in mean estimates between condi-
tions for each numerosity), the underlying distributions of estimates for
each numerosity can be assumed to be normal (Izard & Dehaene, 2008).
However, due to the varied trimming of data points for each numerosity
per condition, we employed Welch's t-tests (Delacre, Lakens, & Leys,
2017; Ruxton, 2006) to account for any unequal number of data points
and unequal variances. To account for any potentially non-normal
distributions, we also conducted a non-parametric version of the Wel-
ch's t-test on ranked data (Zimmerman & Zumbo, 1993). This is similar
to the Mann-Whitney U test, but is less sensitive to unequal variances
and sample sizes, although the use of ranked data confers less power
when the underlying distributions are indeed normal (Zimmerman &
Zumbo, 1993). As we are primarily interested in the continuity of the
calibration effects among participants whom we classified as “cali-
brators”, we opted not to correct for multiple comparisons to avoid any
apparent discontinuities that may arise from false negatives (i.e., in-
ferring a lack of calibration effect when they exist).

To examine individual differences in participants' responses to ca-
libration, we used aggregate measures as computed above and per-
formed correlational and regression analyses. To control for false po-
sitives in our correlational analyses we used Benjamini and Hochberg's
(1995) FDR procedure to adjust for multiple comparisons. Uncorrected
p-values are reported, and whenever applicable, non-significant corre-
lations upon correction are noted. Targeted comparisons of correlation
coefficients were analyzed using the R package cocor (Diedenhofen &
Musch, 2015).

Additionally, to better understand the relative strengths of the re-
lations among the estimation indices as well as math measures, and to
provide measurable evidence in support of both positive and null
findings, we conducted complementary Bayesian t-tests, correlational
and regression analyses using JASP 0.8.5 (JASP Team, 2018), jamovi
0.8.1.18 (jamovi project, 2018), and the R package BayesMed 1.0.1
(Nuijten, Wetzels, Matzke, Dolan, & Wagenmakers, 2015), and their
default “objective” priors (Cauchy distribution scaling factor r=0.707
for t-tests, r=0.354 for regression, stretched beta prior width=1 for
correlation). Whenever possible, we report the Bayes Factor (BF10),
which indicates the likelihood that the evidence is in favor of the al-
ternative hypothesis relative to the null hypothesis (Wagenmakers
et al., 2017; Wagenmakers et al., 2017). For instance, a BF10 of 3 sug-
gests that the data were three times more likely to occur under the
alternative than the null hypothesis. BFs> 3, 10, 30, and 100 are
considered “moderate”, “strong”, “very strong”, and “extreme” evi-
dence in support of the alternative hypothesis (Jeffreys, 1961; Lee &
Wagenmakers, 2013; Wagenmakers, Love, et al., 2017).

5. Results

We first report findings of the manipulation check to assess the
extent to which our findings might be influenced by participants'
awareness of the miscalibration (see Supplemental Materials for
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detailed results). Next, we report the results replicating Sullivan and
Barner's (2013) group-level distinction between associative and struc-
tural mapping to validate the intended calibration manipulation, and to
further characterize individual differences in the associative map-
ping–structural mapping distinction. Finally, we report the results ad-
dressing the reliability of estimation performance across conditions and
the predictors of response to calibration. A complete characterization of
the performance of each task, demonstrating their validity in eliciting
the signature behaviors of numerosity estimation tasks, can be found in
the Supplemental Materials.

5.1. Manipulation check

We considered the calibration manipulation a failure for an in-
dividual participant if they correctly identified the miscalibration as the
purpose of the study. It was unlikely for any participant to know defi-
nitively that the largest set presented was 350 dots, and that the cali-
bration was incorrect. Indeed, although 22.1% of the participants
mentioned that one of the purposes of the study was to investigate how
the calibration instructions would affect their estimates, no participant
pointed out that the calibration was intentionally wrong to mislead
them (see Supplemental Materials for examples of their responses and
further analyses of questions specific to the miscalibration). This sug-
gests that the miscalibration per se was not salient within the context of
the whole experimental session. To preview, we did not find strong
evidence that any participant was certain about the miscalibration and
ignored the calibration as a result. Hence, the calibration manipulation
was effective in eliciting the intended effects, and we had no compelling
reason to exclude any participant from subsequent analyses.

5.2. Associative versus structural mapping, and their continuity in
individuals

5.2.1. Group-level analyses
A linear mixed model (LMM) was fit to predict participants' trial-

level estimates from the target numerosity, calibration condition (un-
calibrated vs. calibrated) and the interaction between numerosity and
calibration as fixed factors, and participant as a random factor. We
modeled the maximal random effects structure possible (Barr, Levy,
Scheepers, & Tily, 2013) by specifying by-participant random intercepts
to account for individual differences in estimation baseline as well as
random slopes to account for individual differences in the main effects
of numerosity and calibration and their interaction. Across both con-
ditions, participants' estimates increased with the target numerosity [F
(1,37,449)= 217.96, p < .0001]. While there was no main effect of
calibration [F(1,37,449)= 2.84, p= .092], there was a calibration by
numerosity interaction [F(1,37,449)= 22.34, p < .001]. Post-hoc tests
revealed an effect of calibration for numerosities 12 through 350
(ps < .046), but no effect of calibration for numerosity 8 (p= .132;
Fig. 2). As there was heteroscedasticity in the residuals (i.e., the re-
siduals increased with numerosity), which might lead to biased stan-
dard errors and inferences made from hypothesis testing, we re-ana-
lyzed the LMM with log-transformed estimates (i.e., criterion) and
numerosity (i.e., predictor) that met the assumption of residual
homoscedasticity (e.g., Crollen et al., 2011; Crollen & Seron, 2012;
Izard & Dehaene, 2008). A significant, but weaker calibration by nu-
merosity interaction was still observed with log-transformed data, with
an effect of calibration even for numerosity 8, albeit of a smaller
magnitude relative to that for numerosities 12 and above (ps < .001)
(see Supplemental Materials, Fig. S3).

To rule out the explanation that calibration could have had a greater
effect on large numerosities than on small ones because estimates of
large numerosities are less accurate and more variable, we computed a
normalized calibration effect measure for each target numerosity
(Mean Estimate Mean Estimate

Mean Estimate
Calibrated Uncalibrated

Uncalibrated
), identical to that employed by

Sullivan and Barner (2013). This measure captures the proportional
rather than the absolute change for each numerosity. To assess the
largest numerosity that was unaffected by calibration, we performed a
Dunnett's test on the mean normalized calibration effect for each nu-
merosity against a value of zero (see Sullivan & Barner, 2013). Similar
to our findings above, there was an effect of calibration for numerosities
12 through 350 (ps < .001, Fig. S4), but no effect of calibration for
numerosity 8 (p= .463). Taken together, these findings were consistent
with those of Sullivan and Barner (2013), in that participants appeared
to be more influenced by the misleading upper bound for the larger
numerosities than for the smaller numerosities.

5.2.2. Individual-level analyses
To characterize the calibration effect at the individual level, we first

fit a simple linear regression model to each participant's data to predict
the trial-level estimates from the target numerosity, calibration condi-
tion, and the calibration by numerosity interaction (see Sullivan &
Barner, 2013). Using p < .05 as our classification criterion, all parti-
cipants showed a main effect of numerosity, 48 (67.6%) showed a main
effect of calibration, 49 (69.0%) showed a calibration by numerosity
interaction, 59 (83.1%) showed either a main effect of calibration or a
calibration by numerosity interaction (hereafter referred to as “cali-
brators” (e.g., Alvarez et al., 2017; Sullivan & Barner, 2014); see Fig. S1
for plots of calibrators versus non-calibrators). Of the 59 calibrators, 38
(53.5% of the sample) showed both main effect of calibration and a
calibration by numerosity interaction, and the remaining 21 showed
either only a main effect of calibration or only an interaction. All pro-
portions reported above were significantly above chance (chance= .05
for each independent main effect, .1 for either main effect or interac-
tion, and .025 for both main effect and interaction), one-sided binomial
p < .001.

Finally, we examined the smallest numerosity that was affected by
the calibration at the individual level among the calibrators, and
whether the effects of calibration were continuous up to the largest
numerosity presented. Based on the definition of structural mapping,
we defined continuity in the calibration effects as pairwise differences
between conditions that extend continuously from the smallest nu-
merosity affected by calibration up to numerosity 350. Hence, if a
participant showed pairwise differences between conditions for nu-
merosities 240, 300, and 350, but not for 275, we considered that as
discontinuous calibration effects. To avoid assuming that the effects of
calibration should follow a continuous trend across the numerosities
sampled, which is typically assumed in a linear regression framework in
previous studies, we modeled numerosity as a categorical variable (e.g.,
Castronovo & Göbel, 2012; Izard & Dehaene, 2008). To assess the
continuity of the calibration effects, for each participant, we conducted
a 2 (Condition: Uncalibrated vs. Calibrated)× 15 (Numerosity: 8–350)
Analysis of Variance, followed by planned pairwise comparisons be-
tween the mean uncalibrated and calibrated estimates for each nu-
merosity using Welch's t-test (dfs= 15.19–34). As a result of modeling
numerosity as a categorical predictor instead of a continuous one, four
participants switched from being calibrators to non-calibrators, and
four vice versa. For the next set of analyses, we focused on the 55
participants who were classified as calibrators regardless of whether
numerosity was a categorical or continuous predictor. The smallest
numerosity affected by calibration ranged from 8 to 200. Among the
calibrators, more of them showed discontinuous calibration effects
(82%) than continuous ones (18%) (chance= .5, one-sided binomial
p < .001). Overall classifications were highly similar with a non-
parametric version of the Welch's t-test using ranked estimates (dis-
continuous calibration effects: 82%, continuous calibration effects:
18%) (dfs= 16–34). Fig. 3 illustrates the nature and extent of dis-
continuity in calibration effects in four representative calibrators (see
Fig. S5 for similar plots for all other participants). To provide additional
information about data insensitivity or noise in these analyses, Bayes
factors are also plotted in Figs. 3 and S5. BF10 approaching 1 is
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indicative of data insensitivity rather than conclusive evidence of a
calibration effect (BF10 > 3) or lack thereof (BF10 < 1/3) (Dienes,
2014). In summary, regardless of the statistical procedure used, our
findings demonstrated discontinuity in calibration effects, and that the
effects were not consistently and primarily a function of set size.

5.3. Reliability of individual differences in estimation performance

Table 3 shows the zero-order correlations of all the estimation

indices, controlled for multiple comparisons. Firstly, as hypothesized,
participants' accuracy, variability, and linearity were positively and
highly correlated between the uncalibrated and calibrated conditions
(rs > .67) (Table 3). Secondly, the effects of calibration on accuracy,
variability, and linearity were positively correlated with most of the
corresponding measures of the calibrated task, but not with the corre-
sponding measures of the uncalibrated task. In other words, a perfor-
mance index's response to calibration did not seem to depend on that
index's uncalibrated state. However, larger absolute changes in

Fig. 2. Predicted estimates (with bands reflecting standard errors of the mean) as a function of numerosity and condition (uncalibrated vs. calibrated) fit by a linear
mixed model on trial-level estimates. Data points represent the grand mean as a function of numerosity and condition. Black dashed line represents the veridical
estimates.

Fig. 3. Examples of continuous and discontinuous calibration effects in four representative participants who showed a calibration by numerosity interaction effect.
(a) Raw estimates per condition. (b) Green step-plots reflect binary coding of “1” for significant pairwise difference between conditions per numerosity and “0” for
non-significant pairwise difference at p < .05, uncorrected) for the corresponding plots above. Orange data points represent the Bayes factors artificially bounded
between 0 and 4. Bayes factors> 3 and<1/3 (dashed lines) reflect evidence in favor of a calibration effect and lack thereof respectively. Bayes factors close to 1
(dotted line) reflect data insensitivity in distinguishing the null and alternative hypotheses. The continuity of the calibration effects for all 71 participants are shown
in Fig. S5. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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accuracy were associated with larger uncalibrated variability, sug-
gesting the possibility of cross-index relations. Lastly, in both un-
calibrated and calibrated tasks, as well as the effect of calibration, ac-
curacy was neither associated with variability, nor with linearity, but
linearity was negatively correlated with variability. This was expected
given that Rlin2 was computed based on the sum of squares of residuals
between the observed and predicted data points.

5.4. Predictors of response to calibration

Shown in Table 4, each calibration effect was regressed on the un-
calibrated estimation indices, Calculation and Math Fluency, control-
ling for Reading Fluency. We also report Bayes Factors that provide
information of the extent to which the data support the inclusion of a
specific predictor of interest, taking into account all possible model
combinations with versus without that predictor (Wagenmakers, Love,
et al., 2017). Given that variability and linearity were highly correlated,
we confirmed that our findings below were not severely affected by
collinearity between the variability and linearity indices (variance in-
flation factors ≤2.63, which were within the commonly used threshold
of 10, or even 4; O'Brien, 2007).

5.4.1. Accuracy calibration effect
There were no significant unique predictors for the AER calibration

effect. For the ER calibration effect (accounting for cross-sign shifts in
ERs upon calibration), the less consistent or more linear participants'
uncalibrated estimates were, the more the means of the estimates were
shifted upon calibration. However, it should be noted that the bivariate
correlation between uncalibrated linearity and ER calibration effect was
negative and non-significant (r=−.122, BF10= 0.25), whereas un-
calibrated linearity was a positive and significant predictor (β= .457,
BF10= 15.18) in the multiple regression analysis. This change in di-
rection and significance of the contribution of uncalibrated linearity to
the ER calibration effect could possibly reflect the unique contribution
of linearity upon controlling for the collinearity between variability and
linearity. Taken together, uncalibrated variability seemed to play a key
and consistent role in the extent of directional changes in accuracy.
Linearity may also play a unique role in the overall directional changes
in accuracy.

5.4.2. Variability calibration effect
Although Calculation was a significant predictor of a change in

variability upon calibration, the full model was not significant. Further
analyses showed that the overall model was significant only with
Calculation (β=−.272, t=−2.35, p= .02, BF10= 2.48) as a sole
predictor, F(1,69)= 5.52, p= .02, but not when Reading Fluency and
any other predictors were entered. As the F-test of overall significance
assesses and controls for multiple coefficients being simultaneously
compared, these suggest that the statistical significance of Calculation
should be interpreted with caution.

5.4.3. Linearity calibration effect
Participants with higher Calculation scores showed greater increase

in linearity upon calibration. Math Fluency, however, did not predict
the response of linearity to calibration. To test the specificity of the
relation between Calculation and the change in linearity, we ran a se-
parate model with all other predictors except Calculation in the first
step. Calculation was still uniquely predictive of the change in linearity
(β= .422, p= .001, BF10= 27.47) over and above all other predictors
in the null model (ΔR2= .137, p= .001). As the calibration effects on
variability and linearity were highly correlated, we further controlled
for CV calibration effect in the null model. Calculation was still un-
iquely predictive of the change in linearity (β= .212, p= .015,
BF10= 3.68) even after further controlling for CV calibration effect
(ΔR2= .032, p= .015).

5.4.4. Math competence as predictors of linearity of uncalibrated and
calibrated estimates

Finally, we asked whether Calculation scores were associated not
only with the change in linearity, but also with the initial (uncalibrated)
and final (calibrated) linearity of the estimates. This addressed whether
associations between linearity of estimates and math competence ob-
served in previous studies might have been driven by cognitive pro-
cesses related to some explicit or implicit calibration. To this end, we
computed partial correlations between Calculation scores and the lin-
earity indices for the uncalibrated and calibrated conditions, control-
ling for Reading Fluency scores. Calculation scores correlated positively
with linearity of the calibrated estimates [r(68)= .282, p= .018,
BF10= 2.31], but not with linearity of uncalibrated estimates [r
(68)= .129, p= .287, BF10= 0.25]. These correlations were

Table 3
Zero-order correlation coefficients of estimation indices (N=71).

Measure 1 2 3 4 5 6 7 8 9 10

1. Uncalibrated AER – .013 −.201 .675⁎⁎⁎ −.014 −.266⁎ −.183 −.216 −.072 −.148
BF10 (0.15) (0.59) (1.10×108) (0.15) (1.75) (0.46) (0.74) (0.18) (0.31)
2. Uncalibrated CV – −.761⁎⁎⁎ .210 .815⁎⁎⁎ −.592⁎⁎⁎ .313⁎⁎ .451⁎⁎⁎ .000 .058
BF10 (5.93×1011) (0.68) (1.10×1015) (2.94×105) (4.67) (307.12) (0.15) (0.17)
3. Uncalibrated Rlin2 – −.308⁎⁎ −.650⁎⁎⁎ .745⁎⁎⁎ −.227 −.122 −.068 −.063
BF10 (4.20) (1.49×107) (9.11×1010) (0.87) (0.25) (0.17) (0.17)
4. Calibrated AER – .079 −.241⁎ .521⁎⁎⁎ −.063 −.125 .053
BF10 (0.18) (1.11) (6.25×103) (0.17) (0.25) (0.16)
5. Calibrated CV – −.754⁎⁎⁎ .131 .533⁎⁎⁎ .500⁎⁎⁎ −.336⁎⁎

BF10 (2.56×1011) (0.27) (1.10×104) (2.34×103) (8.24)
6. Calibrated Rlin2 – −.065 −.120 −.452⁎⁎⁎ .541⁎⁎⁎

BF10 (0.17) (0.24) (321.12) (1.63×104)
7. AER calibration effect .165 −.177 .272⁎

BF10 (0.37) (0.43) (1.96)
8. ER calibration effect – .224 −.050
BF10 (0.84) (0.16)
9. CV calibration effect – −.735⁎⁎⁎

BF10 (3.18×1010)
10. Rlin2 calibration effect –
BF10

Note. AER: Absolute error rate. CV: Coefficient of variation. Calibration effect = Estimation IndexCalibrated− Estimation IndexUncalibrated.
⁎ p < .05. ⁎⁎ p < .01. ⁎⁎⁎ p < .001. Correlation coefficients in bold remained significant after correction for multiple comparisons using Benjamini and Hochberg's
(1995) FDR procedure. BF10=Bayes Factor (Alternative/Null hypotheses). Evidence levels: Moderate: BF10 > 3; Strong: BF10 > 10; Very strong: BF10 > 30;
Extreme: BF10 > 100.
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statistically different based on a suite of nine statistical comparisons
(cocor in R, Diedenhofen & Musch, 2015), all ps≤ .0352 (one-sided)
with the exception of 95% confidence interval tests by Zou (2007)
[−.011, .315] and Meng, Rosenthal, and Rubin (1992) [−.013, .334].
To assess the specificity of Calculation, we performed identical analyses
with Math Fluency. Math Fluency scores were not associated with ei-
ther initial or final linearity of the estimates [r(68)= .031, p= .801,
BF10= 0.15; r(68)= .144, p= .234, BF10= 0.29, respectively]. In
sum, Calculation scores specifically were associated with the change in
and final linearity of the estimates, but not with initial linearity.

6. Discussion

It is common to incorporate calibration in instruction to initialize or
improve estimation skills in research (e.g., Barth et al., 2016; Kucian
et al., 2011; Opfer & Siegler, 2007; Opfer & Thompson, 2008; Peeters,
Sekeris, Verschaffel, & Luwel, 2017; Peeters, Verschaffel, & Luwel,
2017; Piazza, Pinel, Le Bihan, & Dehaene, 2007; Revkin et al., 2008;
Thompson & Opfer, 2008, 2010) and classroom settings (e.g., Crites,

1993; Joram, Subrahmanyam, & Gelman, 1998; Siegel, Goldsmith, &
Madson, 1982; Van de Walle & Thompson, 1985). However, individuals
vary greatly in their responses to calibration during numerosity esti-
mation tasks, and little is known about the mechanisms underlying the
nature and extent of calibration across individuals. The current study
examined these individual differences and explored their underlying
factors, with a focus on the roles of estimation-specific factors (i.e.,
uncalibrated accuracy, variability, and linearity) and math competence.
This study thus provides the first step in understanding why some
students may not be able to acquire and apply estimation strategies as
optimally and as quickly as others.

6.1. Individual differences in calibration continuity

Although the distinction of mapping types as a function of set size
was clearly observed at the group level, replicating previous studies
(Alvarez et al., 2017; Sullivan & Barner, 2013, 2014), individual-level
analyses revealed that it was not set size dependent. In particular, the
effects of calibration did not extend continuously beyond the smallest
affected numerosity across most participants, contrary to the notions of
“global calibration” and “structural mapping”, as well as the response-
grid model. In fact, discontinuity appeared to be the more common
phenomenon. Such discontinuities could be due to relatively strong
associative mappings for large numbers, which can be observed in the
natural environment (Dehaene & Mehler, 1992), as well as in studies
that trained participants to associate large numerosities with novel
shapes (Lyons & Ansari, 2009; Lyons & Beilock, 2009; Malone, Heron-
delaney, Burgoyne, & Hulme, 2019; Merkley & Scerif, 2015; Merkley,
Shimi, & Scerif, 2016; Zhao et al., 2012). Alternatively, discontinuities
may arise from trial-to-trial strategy variation (e.g., Crites, 1992;
Gandini, Ardiale, & Lemaire, 2010; Gandini, Lemaire, & Dufau, 2008;
Luwel, Lemaire, & Verschaffel, 2005). Although it is possible that the
observed discontinuities may be due to noisy data at the numerosity
level, Bayesian analyses provided evidence that noise does not fully
account for all discontinuities. The existence of noise amidst strong
calibration effects suffices to call into question the continuity assump-
tion of “structural mapping” as well as the response-grid model.

Hence, these findings suggest a reconsideration of the very concept
of stable and direct mappings between symbolic and nonsymbolic nu-
merosity representations (Dehaene, 2007; Piazza, 2010; Piazza & Eger,
2016; Stoianov, 2014). In fact, the response-grid model already sug-
gests that the mappings are malleable in the presence of an external
calibration. Perhaps the spontaneous response grid is relatively stable,
but to our knowledge, test-retest stability of uncalibrated estimation
performance has not be empirically demonstrated. In any case, the
model falls short of accounting for the discontinuity in calibration ef-
fects, and does not take into account the possibility of strategic varia-
tion as observed in numerous studies. Other cognitive strategies may
play a role in supporting on-the-fly item-by-item as opposed to system-
level mappings. For instance, Chesney and Matthews (2018) propose an
item-level “relational” mechanism in that a perceptual sense of pro-
portion between two sets (e.g., if 25 dots ≈ “20”, then 50 dots ≈ “40”)
may facilitate more accurate numeral assignment for unfamiliar large
sets than relying on a direct mapping between one set and its corre-
sponding numeral (see also Alvarez et al., 2017). This is supported by
the highly linear and accurate performances on a ratio estimation task
(estimate the ratio instantiated by a pair of dot sets) and a nonsymbolic
version of a number-line estimation task (estimate the relative position
of a dot set on a line bounded by two dot sets as anchors), relative to a
severe underestimation in an uncalibrated numerosity estimation task
(Chesney & Matthews, 2018).

6.2. Reliability of individual differences in performance

Participants' accuracy, variability, and linearity of their estimates
were highly correlated across conditions. This suggests that similar

Table 4
Hierarchical regression analyses predicting the calibration effects on accuracy,
variability, and linearity from uncalibrated estimation indices, Math Fluency
and Calculation, controlling for Reading Fluency (N=71).

Dependent
measure/Step

Predictors β R2 ΔR2 BF10 (Inclusion)

AER calibration effect
Step 1 Reading Fluency .083 .007 0.30
Step 2 .162 .155⁎ 1.17

Reading Fluency .094
Uncalibrated AER −.187 1.30
Uncalibrated CV .280 3.13
Uncalibrated Rlin2 −.073 0.69
Math Fluency −.021 0.42
Calculation .138 0.70

ER calibration effect
Step 1 Reading Fluency .059 .003 0.27
Step 2 .345⁎⁎⁎ .341⁎⁎⁎ 842.92

Reading Fluency .045
Uncalibrated AER −.129 0.69
Uncalibrated CV .808⁎⁎⁎ 3231.54
Uncalibrated Rlin2 .457⁎⁎ 15.18
Math Fluency .057 0.39
Calculation .033 0.38

CV calibration effect
Step 1 Reading Fluency .036 .001 0.25
Step 2 .121 .120 0.43

Reading Fluency .107
Uncalibrated AER −.179 0.67
Uncalibrated CV −.217 0.49
Uncalibrated Rlin2 −.233 0.51
Math Fluency −.061 0.55
Calculation −.290⁎ 3.20

Rlin2 calibration effect
Step 1 Reading Fluency .090 .008 0.31
Step 2 .214⁎ .206⁎⁎ 5.81

Reading Fluency .051
Uncalibrated AER −.102 0.47
Uncalibrated CV .031 0.51
Uncalibrated Rlin2 −.119 0.55
Math Fluency .013 0.37
Calculation .422⁎⁎ 71.09

Note. (A)ER: (Absolute) error rate. CV: Coefficient of variation.
⁎ p < .05. ⁎⁎ p < .01. ⁎⁎⁎ p < .001.
The Bayes Factors reported for the individual predictors were averaged across
all possible candidate models that included the specific predictor of interest
versus all other models that omitted the predictor of interest (Wagenmakers,
Love, et al., 2017). The null Bayesian model in Step 2 includes Reading Fluency.
BF10 = Bayes Factor (Alternative/Null hypotheses). Evidence levels: Moderate:
BF10>3; Strong: BF10>10; Very strong: BF10> 30; Extreme: BF10> 100.
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cognitive mechanisms may be driving and constraining performance on
both the uncalibrated and calibrated estimation tasks. One candidate
mechanism could be the perceptual encoding and discrimination of
numerosities (i.e., encoding stage in Fig. 1). In having participants
complete the same estimation task with two different calibration in-
ducers (e.g., 25 dots labeled as “30” followed by 30 dots labeled as
“30”), Izard and Dehaene (2008) observed that the internal Weber
fraction – a measure of the amount of noise inherent to the mental
representations of numerosities – remained stable across two calibrated
conditions (R2= .61) and was unaffected by the nature of the cali-
bration inducers. By definition, the Weber fraction should be compar-
able to the coefficient of variation (CV) as they are both measures of the
noise of a given numerosity representation that is proportional to the
numerosity itself (Chesney et al., 2015; Guillaume, Gevers, & Content,
2016). Indeed, we observed a strong correlation (r= .8) between the
CVs of the uncalibrated and calibrated conditions. Although CV is ty-
pically correlated with the Weber fraction (Castronovo & Göbel, 2012;
Libertus, Odic, Feigenson, & Halberda, 2016; Pinheiro-Chagas et al.,
2014; Wong et al., 2016b), CV from any estimation task involving nu-
merals is not a pure measure of the acuity of the mental number line
(Ebersbach, Luwel, & Verschaffel, 2013) as it also encompasses the
response biases (i.e., shifting and scaling) in symbolic labeling, and may
not even correlate with Weber fraction in some instances (Guillaume
et al., 2016).

If a response grid exists, another mechanism driving estimation
performance may involve the affine transformations supporting the
generation of calibrated response grids from the spontaneous response
grid (i.e., response selection stage in Fig. 1). Izard and Dehaene (2008)
found that regardless of whether the calibration was spontaneous or
externally induced, participants tended to stretch or compress, and
translate to similar relative extents. In the current study, it is possible
that the influence of both of these mechanisms manifested in reliable
differences in estimation performance across conditions.

6.3. Roles of uncalibrated variability and linearity of estimates in changes in
accuracy

We found that participants with less variable numerosity-to-nu-
meral mappings were less likely to shift the distributions of their esti-
mates. A possible explanation for this behavior is that the lower
variability could reflect stronger “associative mappings” and direct
memory retrieval across a wide range of numerosities, possibly due to
more distinctive mental representations of the numerosities. These
stronger associative mappings would therefore be less susceptible to
calibration. An alternative explanation is that the variability of parti-
cipants' numeral-numerosity mappings may reflect their confidence in
their overall estimation abilities (Halberda & Odic, 2015; Libertus et al.,
2016), and greater confidence would lead to lower susceptibility to
external calibration. It would be informative for future studies to ex-
amine these non-mutually exclusive hypotheses, possibly using mea-
sures of trial-level strategies and confidence ratings.

Additionally, we found that participants with higher uncalibrated
linearity (i.e., more proportionally spaced the estimates were relative to
one another) shifted the distribution of their estimates to a greater
extent. A possible explanation for this is that participants with a more
internally coherent structure could modify their estimates systematically
across the entire range as compared to participants with a less internally
coherent structure, leading to a greater effect of calibration across the
entire range of numerosities. Taken together, the extent to which par-
ticipants responded to the calibration by shifting the distributions of
their estimates may depend on how variable or linear their uncalibrated
estimates were.

6.4. Role of calculation competence in changes in linearity

Consistent with both the response grid model (Izard & Dehaene,

2008) and an analogy-based “structural mapping” (e.g., ::: is to :::::: as 6
is to…?) (Alvarez et al., 2017), we found that participants with higher
calculation competence showed a greater increase in the linearity of
their estimates. Notably, fluency of arithmetic fact retrieval did not
seem as critical as broad calculation competence. Moreover, although
individual differences in linearity of estimates were highly reliable
across the uncalibrated and calibrated conditions, suggesting that they
may tap into the same underlying representations, their relation to
calculation competence differed significantly. It is therefore possible
that the associations found between estimation performance and math
competence observed in previous studies might have been partly driven
by participants' ability to calibrate their estimates spontaneously or
with an external calibration, rather than participants' representations of
numerosities per se. Considering that calibration effects may not be
reliably continuous at the individual level, it is possible that the role of
calculation competence may not be targeted at the system level (i.e.,
entire response grid), but at a more regional level (e.g., discontinuous
segments of a response grid) or trial level.

More broadly, the calibration-specific association between changes
in linearity and calculation competence is also consistent with the re-
cent debate on whether different cognitive constructs are measured by
bounded (e.g., 0–1000) and unbounded (e.g., 0–?) number-line esti-
mation tasks (in which participants are typically asked to mark a po-
sition on a line based on a given numeral, or to assign a numeral given a
position marked on a line) (Chesney & Matthews, 2018; Cohen & Blanc-
Goldhammer, 2011; Cohen & Sarnecka, 2014; Ebersbach et al., 2013;
Ebersbach, Luwel, & Verschaffel, 2015; Kim & Opfer, 2017; Link,
Huber, Nuerk, & Moeller, 2014; Link, Nuerk, & Moeller, 2014; Reinert,
Huber, Nuerk, & Moeller, 2015; see Schneider et al., 2018, for a meta-
analysis). In particular, Cohen and Sarnecka (2014) found age-related
changes in children's performance on a bounded number-line task, but
not on an unbounded version. Their findings suggest that the changes in
bounded-estimation performance may reflect the growth of task-spe-
cific measurement skills rather than changes in representations of nu-
merosity (Cohen & Sarnecka, 2014). Several studies (Chesney &
Matthews, 2013; Huber, Moeller, & Nuerk, 2014) also found that adults
can be easily manipulated to produce estimates on a number-line task
that readily fit various linear and non-linear functions, suggesting that
number-line estimation may measure transient rather than stable
mental representations of numerosity. The current findings also support
the notion of transient mental representations of numerosity being
measured in the presence of an external calibration and provide evi-
dence that the calibration process may be supported by other cognitive
factors such as calculation competence.

In sum, our findings suggest that math competence supports esti-
mation ability rather than, or in addition to, estimation ability (and the
underlying mental representations of numerosity) being foundational
for math competence (see also Castronovo & Göbel, 2012). Researchers
should be aware of prevailing concerns regarding the constructs that
uncalibrated and calibrated tasks actually measure. Particularly, our
findings highlight that interpreting estimation performance solely as a
measure of mental representations of numerosity, without considering
strategies and other factors influencing estimation behaviors, may be
too restrictive.

7. Limitations

One limitation of the current study is the validity and general-
izability of the use of a misleading calibration. In the current study, we
are particularly interested in understanding the proposed associative
and structural mechanisms underlying the numerosity-to-numeral
mappings and to induce calibration in as many participants as possible
to examine individual differences. It was therefore critical to find an
ideal inducer value that is sufficiently deviant to dissociate mappings
that are resistant to calibration from those that are not. Although par-
ticipants tend to underestimate large numerosities, many are not aware
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of such underestimating tendencies and the severity of their own un-
derestimation; yet, they readily calibrate their estimates when an ex-
ternal calibration is available, regardless of its accuracy. For instance,
Izard and Dehaene (2008) reported that the calibrated participants
“consciously corrected their responses to match the inducer, but when
[the experimenters] told [the calibrated participants] that non-cali-
brated participants had estimated the maximum numerosity at 50 in-
stead of 100, they did not admit that their spontaneous responses would
have been that inaccurate” (p. 1234). Moreover, the extent of under-
estimation, confidence in one's estimates, and awareness of such un-
derestimating tendencies after being told the upper bound are largely
idiosyncratic. Hence, while one calibration inducer value would work
for one participant, it may not work for another. The inducer used here
deviated from the actual numerosity by a factor of about 2 (750 vs.
350), but it is not uncommon for adults' uncalibrated estimates to de-
viate by as large as a factor of 4 (Minturn & Reese, 1951). In the current
study (excluding the outlying participant), the deviation of participants'
uncalibrated estimates for numerosity 350 ranged from a factor of 1 to
6.4 (mean=2.1, median=1.75). Moreover, using an accurate inducer
value does not necessarily guarantee the intended calibration (see
Supplemental Materials for additional discussion of findings by Izard &
Dehaene, 2008, and Sullivan & Barner, 2013). Although 22% of the
participants mentioned that the purpose of the study was related to how
well they responded to the calibration instruction, none of them spe-
cifically noted that the calibration was intentionally wrong. Analyses of
the post-experiment questionnaire responses revealed that some parti-
cipants acknowledged that they “realized” the miscalibration at some
point during the experiment, but their acknowledgements tended to be
due to the leading nature of the questions or to hindsight bias (see
Supplemental Materials).

Previous studies using the same paradigm had success rates of eli-
citing calibration effects ranging from 47 to 60% in children (Alvarez
et al., 2017; Sullivan & Barner, 2014) to 70–90% in adults (Sullivan &
Barner, 2013), and the current study has a success rate of 83%. Taken
together with our manipulation checks, this indicates that the paradigm
is effective, at least in adults. Even though calibration was not induced
in 17% of our participants, they still provide valuable data for analyses
of individual differences, which is a broad aim of the current study. In
particular, our findings provide preliminary insights into the factors
that might underlie a lack of calibration effect on various aspects of
estimation performance.

Related to the concern above, because participants' response to ca-
libration likely depends in part on the calibration inducer value relative
to the range of numerosities tested, the calibrated estimation task was
likely measuring a state rather than the trait of a participant. Yet, as the
performance on the uncalibrated and calibrated tasks were highly
correlated, the calibrated task possibly involved both trait and state
influences, which Izard and Dehaene (2008) have previously shown.
We believe that the present findings are still informative regarding in-
dividual differences in the malleability of estimation performance. Fu-
ture research should use multiple calibration inducer values to examine
the intra-subject reliability, and malleability or stability of estimation
performance.

Finally, it is possible that calibration effects might not reflect cali-
bration per se, but could reflect practice- or learning-related effects. The
current study, however, lacked a no-calibration control group to rule
this out. The main aims of this study were not to establish a group-level
calibration effect (which was for replication of previous findings), but
to examine the effects at the individual level. A control group was
therefore not critical for our individual differences analyses.
Nonetheless, if there were such practice effects, estimates should be-
come more accurate over time within each condition rather than show
an abrupt change in accuracy upon calibration. However, the pre-
valence of such practice effects was very low (see Supplemental
Materials). Hence, the changes in performance between conditions
were likely to be abruptly induced by the calibration rather than

gradually induced by practice or learning. The relative small influence
of practice effects has also been observed in tasks that tap into very
similar mechanisms (e.g., numerosity comparison tasks such as in
DeWind & Brannon, 2012). Taken together, our study has high success
of calibration manipulation, but we acknowledge the limitations and
challenges of existing estimation paradigms involving calibration.

8. Conclusions

The current study explored the factors underlying individual dif-
ferences in the extent and nature of the malleability of numerosity es-
timation performance. By having participants complete both un-
calibrated and calibrated estimation tasks, we observed large, but
reliable individual differences in performance across conditions, sug-
gesting that an individual's estimation performance might be con-
sistently constrained by cognitive mechanisms shared across calibration
conditions. Contrary to previous findings, discontinuous calibration
effects across a range of numerosities were more commonly observed
than continuous calibration effects, suggesting that a systemic calibra-
tion is more nuanced than previously thought. We also found that the
more variable or proportionally spaced (i.e., more linear) participants'
uncalibrated estimates were, the greater they shifted the distributions
of their estimates upon calibration. Importantly, higher calculation
competence, but not fluency in arithmetic fact retrieval, was uniquely
associated with an increase in linearity of participants' estimates upon
calibration. This finding, and the discontinuity in calibration effects,
support the growing evidence that the mappings between numerical
symbols and nonsymbolic numerosity representations may not be stable
and direct, but transient and mediated by other mechanisms. Moreover,
numerosity estimation tasks should not be used as a pure measure of
number representations. Taken together, both estimation-specific fac-
tors and calculation competence may underlie individuals' responses to
calibration, which provide us with insights into individual differences
in the relation between estimation and calculation skills.
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