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Abstract
Numerosity estimation performance (e.g., how accurate, consistent, or proportionally spaced (linear) numerosity-numeral 
mappings are) has previously been associated with math competence. However, the specific mechanisms that underlie such 
a relation is unknown. One possible mechanism is the mapping process between numerical sets and symbolic numbers (e.g., 
Arabic numerals). The current study examined two hypothesized mechanisms of numerosity-numeral mappings (item-based 
“associative” and holistic “structural” mapping) and their roles in the estimation-and-math relation. Specifically, mappings 
for small numbers (e.g., 1–10) are thought to be associative and resistant to calibration (e.g., feedback on accuracy of esti-
mates), whereas holistic “structural” mapping for larger numbers (e.g., beyond 10) may be supported by flexibly aligning a 
numeral “response grid” (akin to a ruler) to an analog “mental number line” upon calibration. In 57 adults, we used pre- and 
post-calibration estimates to measure the range of continuous associative mappings among small numbers (e.g., a base range 
of associative mappings from 1 to 10), and obtained measures of math competence and delayed multiple-choice strategy 
reports. Consistent with previous research, uncalibrated estimation performance correlated with calculation competence, 
controlling for reading fluency and working memory. However, having a higher base range of associative mappings was not 
related to estimation performance or any math competence measures. Critically, discontinuity in calibration effects was typi-
cal at the individual level, which calls into question the nature of “holistic structural mapping”. A parsimonious explanation 
to integrate previous and current findings is that estimation performance is likely optimized by dynamically constructing 
numerosity-numeral mappings through the use of multiple strategies from trial to trial.

Introduction

Estimating the number of items in a set (i.e., numerical esti-
mation) is an efficient alternative to counting and its per-
formance is thought by many to either directly reflect the 
quality of the mappings between the encoded numerosity of 
a set (e.g., dot arrays) and symbolic estimates (i.e., verbal 
and Arabic numerals, such as “five” and “5”), or indirectly 

reflect the acuity of the encoded representations of the 
numerosities themselves (e.g., Brankaer, Ghesquière, & De 
Smedt, 2014; Ebersbach & Erz, 2014; Izard & Dehaene, 
2008; Jang & Cho, 2018; Libertus, Feigenson, Halberda, & 
Landau, 2014; Libertus, Odic, Feigenson, & Halberda, 2016; 
Lipton & Spelke, 2005; Mundy & Gilmore, 2009). Further-
more, the quality of those mappings is suggested to relate to 
math competence. Specifically, individuals who make more 
accurate, consistent, or proportionally spaced (i.e., linear) 
estimates tend to demonstrate higher math competence 
(Alvarez et al., 2017; Bartelet, Vaessen, Blomert, & Ansari, 
2014; Booth & Siegler, 2006; Castronovo & Göbel, 2012; 
Chesney, Bjalkebring, & Peters, 2015; Guillaume, Gevers, 
& Content, 2016; Libertus et al., 2016; Lyons, Price, Vaes-
sen, Blomert, & Ansari, 2014; Mazzocco, Feigenson, & Hal-
berda, 2011a; Mejias, Grégoire, & Noël, 2012; Mejias, Mus-
solin, Rousselle, Grégoire, & Noël, 2012; Mejias & Schiltz, 
2013; Pinheiro-Chagas et al., 2014; Wong, Ho, & Tang, 
2016a, b). However, the acuity of representations of numer-
osity and the quality of numeral-numerosity mappings are 
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not the only plausible explanations for the relation between 
estimation performance and math outcomes. The mapping 
processes between perceptual representations of numeros-
ity and symbolic estimates may also underlie the relation. 
For example, some numerosity-numeral mappings may have 
been acquired through item-to-item associations (Sullivan & 
Barner, 2013), and the direct retrieval of these acquired asso-
ciations between numerosities and symbolic numbers may 
be critical for both estimation and math. Alternatively, most 
mappings between a numeral and an unfamiliar numerosity 
are not stable (Izard & Dehaene, 2008), and their malleabil-
ity during estimation tasks may be supported by similar ordi-
nal relations in the discrete structure of symbolic numbers 
(e.g., “five” comes after “two”) and the analog structure of 
representations of numerosity (e.g., {●●●●●} > {●●}) (for a 
review, see Carey & Barner, 2019; Izard & Dehaene, 2008; 
Sullivan & Barner, 2013). This holistic structural mapping 
that is thought to underlie most numerosity-numeral map-
pings may also be important for both estimation and math. 
Therefore, at present, the cognitive mechanisms that underlie 
the relation between estimation performance and math com-
petence remain unknown. The current study addresses this 
gap by examining the roles of two hypothesized numeros-
ity-numeral mapping mechanisms—item-based associative 
mapping and holistic structural mapping—in the estima-
tion–math relation.

Associative mappings versus structural mappings 
as a function of set size

Mechanisms underlying numerosity-numeral mappings dur-
ing numerical estimation have primarily been investigated 
using external (i.e., experimenter-provided) calibration par-
adigms. In such paradigms, participants are typically first 
asked to make a series of spontaneous estimates of sets of 
objects (i.e., uncalibrated). Thereafter, participants are pro-
vided with opportunities to calibrate their estimates against 
an external reference before repeating or continuing with the 
rest of the task. They may be shown a visual reference (e.g., 
“there are n dots in this array”) (e.g., Krueger, 1984), given 
feedback after an estimate has been made (e.g., “there were 
actually n dots in the previous array”) (e.g., Price, Clement, 
& Wright, 2014), or provided with an upper bound without a 
visual reference (e.g., “the largest set of dots you will see is 
n dots”) (e.g., Sullivan & Barner, 2013). The change in par-
ticipants’ distribution of estimates for each tested numerosity 
before and after calibration (Sullivan & Barner, 2013, 2014), 
or between two calibration conditions (Izard & Dehaene, 
2008), is assessed and the susceptibility of the numerosity-
numeral mappings to calibration (hereafter, “calibration 
effects”) is used to make inferences about the underlying 
mechanisms. Based on such research, two distinct map-
ping mechanisms are suggested to co-exist—item-based 

“associative mapping” and holistic “structural mapping” 
(for a review, see Carey & Barner, 2019; Sullivan & Barner, 
2013, 2014).

Associative mappings are thought to be independent 
item-specific associations between particular numerals 
(e.g., “five” or “5”) and mental representations of numeros-
ity (e.g., fiveness in 5 crackers, 5 people, etc.) (Sullivan & 
Barner, 2013, 2014). However, such mappings may not be 
perfectly accurate and/or consistent due to the supposedly 
approximate nature of our mental representations of numer-
osity (Dehaene, 2007; Izard & Dehaene, 2008). A signa-
ture of strong associative mappings is that they are resistant 
to external calibration, presumably because they involve a 
direct retrieval of the item-specific associations (Sullivan 
& Barner, 2013, 2014). These associative mappings are 
thought to result from accumulated experience with pairings 
between certain numerals and perceptual representations of 
numerosity (Dehaene & Mehler, 1992; Lipton & Spelke, 
2005; Verguts & Fias, 2004), and are more likely to sup-
port the estimation of small numerosities than of larger ones 
(Sullivan & Barner, 2013, 2014). Such associative mappings 
are commonly observed to be a continuous extension of the 
subitizing range of 1 through about 4 (e.g., one through nine) 
(see Fig. 1). Hereafter, we refer to this continuous set of 
associative mappings the “base range of associative map-
pings”. It remains unclear whether true associative map-
pings for much larger numerosities (e.g., 50 or 100) are logi-
cally plausible. Consistent with this experience-dependent 
account, 5–7 year-olds have a smaller base range of associa-
tive mappings (up to about 6) (Sullivan & Barner, 2014) than 
adults (up to about 12) (Sullivan & Barner, 2013).

As it is logically impossible for an individual to have 
associative experience for every numeral-numerosity map-
ping, especially for large numbers (e.g., one thousand), the 
majority of numeral-numerosity mappings are thought to 
be inferred from those that are associatively experienced 
(Alvarez et al., 2017; Le Corre & Carey, 2007; Sullivan & 
Barner, 2013, 2014). Specifically, it has been proposed that 
the associative mappings involving small numbers, no mat-
ter how few, are essential for supporting the holistic link-
ing between an analog mental number line and the discrete 
system of numerals on the basis of their analogous ordinal 
structures (i.e., the numerosity/numeral that comes after is 
greater), which in turn enables the inferential processes for 
larger numbers without associative experiences (Carey & 
Barner, 2019; Carey, Shusterman, Haward, & Distefano, 
2017; Le Corre & Carey, 2007). These inferred mappings 
are referred to as structural mappings and are thought to 
be causally interdependent, such that the whole range of 
mappings can be influenced simultaneously by calibration 
even with a single-value feedback (Carey & Barner, 2019; 
Izard & Dehaene, 2008; Krueger, 1984; Minturn & Reese, 
1951; Sullivan & Barner, 2013, 2014). For instance, when 
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participants are provided with a particular numeral-numer-
osity mapping visually (e.g., an array of 30 dots as “30”), 
they tend not to only modify their subsequent estimates 
whenever they perceive 30 dots according to the learned 
mapping, but also estimates for all other numerosities (Izard 
& Dehaene, 2008).

How does such interdependency of mappings occur? 
Izard and Dehaene (2008) proposed that the analog num-
ber system or mental number line is divided into segments, 
and each segment is associated with a different numeral 
label (i.e., a “response grid”, which serves as an interface 
between the analog and discrete systems) (see Fig. 1). The 
response grid that is actually employed is typically not 
accurately aligned with the mental number line, with the 
exception of the base range of associative mappings. In 
other words, much of the “employed response grid” typi-
cally differs from the “veridical response grid”. However, 
the employed response grid can be readily transformed by 
means of a translation and/or a scaling parameter(s) with 
an internal (spontaneous) or external calibration (Izard & 
Dehaene, 2008). The employed response grid is also thought 
to remain stable throughout the course of a task requiring a 
series of estimates (Izard & Dehaene, 2008).

Hence, this response-grid model explicitly describes how 
the analog mental number line and the symbolic numeral 
system are holistically mapped, which in turn gives rise to 
the observed interdependency between numerosity-numeral 
mappings.

Once the numerosity is encoded, an association between 
a numerosity and a symbolic response is thought to be 
retrieved from a stably aligned, employed response grid 
(Izard & Dehaene, 2008). If numerosities are processed 
instantaneously and in parallel, as commonly assumed 
in most computational models of numerosity encoding 
(Dehaene, 2007; Dehaene & Changeux, 1993; Stoianov & 
Zorzi, 2012; Verguts & Fias, 2004), it is conceivable that the 
most efficient strategy for labeling larger numerosities is to 
retrieve a numeral-numerosity mapping from the response 
grid (e.g., it looked like there are about 20 or a little less, so 
I labeled it as “18”; i.e., “benchmarking” strategy) instead 
of enumerating serially (Gandini, Ardiale, & Lemaire, 2010; 
Gandini, Lemaire, & Dufau, 2008). Hence, a key predic-
tion pertaining to the effects of calibration is that if a set 
of 20 is calibrated to be assigned to “30”, then numerals to 
be assigned to sets of 18, 19, 21, or 22 should be adjusted 
accordingly, especially if they are processed instantaneously 
and in parallel as approximately 20 (e.g., Piazza, Pinel, Le 
Bihan, & Dehaene, 2007). In other words, the calibration 
effects ought to be continuous across the range tested. In 
sum, associative and structural mappings are recruited dur-
ing estimation as a function of set size, and the response-grid 
model strongly suggests that once mappings transition from 
associative to structural at a given numerosity, all subse-
quent numerosities should show a continuous set of struc-
tural mappings. Hence, a clear dissociation between a base 
range of associative mappings (resistant to calibration) and 

Fig. 1   A schematic summary of Izard and Dehaene’s (2008) 
response-grid model, and the associative mapping and structural 
mapping mechanisms proposed by Sullivan and Barner (2013) 
involved in numerical estimation in a hypothetical individual. Indi-
viduals typically spontaneously underestimate large quantities (e.g., 

assigning “20” to an array of 30 dots) (Izard & Dehaene, 2008), 
because the spontaneously employed response grid is typically not 
aligned accurately with the mental number line. An external calibra-
tion is thought to transform the employed response grid with the goal 
that it could be more like the veridical response grid
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continuous structural mappings (susceptible to calibration) 
is predicted. Such a set size-dependent dissociation holds 
true at the group level (Sullivan & Barner, 2013, 2014), 
although it may not at the individual level (Yeo, Wilkey, 
& Price, 2019). We found that 82% of 71 adults showed 
discontinuity in the effect of calibration across numerosi-
ties 8 through 350 (Yeo et al., 2019). However, because the 
numerosities were sparsely sampled in that previous study 
(i.e., 8, 12, 20, 35, 60, …, 350), there is a possibility that 
evidence for continuous structural mappings may be more 
apparent with a fine-grained sampling of a fairly large set of 
adjacent numbers (e.g., every number from 5 to 35).

Role of associative mappings in estimation 
and math competence

There is convergent evidence, across ages and numerical 
ranges tested, that higher accuracy (Bartelet et al., 2014; 
Booth & Siegler, 2006; Castronovo & Göbel, 2012; Guil-
laume et al., 2016; Lyons et al., 2014; Mejias, Grégoire, 
et al., 2012; Mejias, Mussolin, et al., 2012; Mejias & Schiltz, 
2013), consistency (Guillaume et al., 2016; Libertus et al., 
2016; Mazzocco et al., 2011a; Mejias, Grégoire, et al., 2012; 
Mejias, Mussolin, et al., 2012; Pinheiro-Chagas et al., 2014) 
and linearity (Alvarez et al., 2017; Booth & Siegler, 2006; 
Chesney et al., 2015; Wong et al., 2016a, b) of estimates are 
all related to higher math competence. These measures are 
thought to reflect the overall quality of numeral-numerosity 
mappings, but it remains unknown what cognitive mecha-
nisms support the quality of the mappings.

Here, we focus on assertions that associative mappings 
are cognitively and behaviorally important for structural 
mappings, and, by extension, estimation performance in 
general. For instance, Carey et al. (2017) claim that struc-
tural mappings cannot be acquired “without having mapped 
at least some small numbers to [analog number system] 
values” (p. 254). Hence, a higher base range of associative 
mappings may support a more effective initial alignment 
of a response grid and the analog number system, and the 
subsequent transformation of the response grid, such that 
it can be more accurately aligned with the analog number 
system. Alternatively, a higher range may also strengthen 
the integrity of the link between the two systems, such that 
they are less likely to be perturbed, thereby resulting in more 
accurate, consistent, and linear mappings. If the analog 
mental number line is indeed harnessed for manipulation of 
symbolic number representations during math, as is com-
monly thought (e.g., Dehaene, Spelke, Pinel, Stanescu, & 
Tsivkin, 1999; Mundy & Gilmore, 2009; Pinheiro-Chagas, 
Dotan, Piazza, & Dehaene, 2017; Stoianov, 2014), the higher 
integrity of the mapping between the systems will enable 
more efficient and effective access and manipulation of the 
mental number line from numerals. This may account for 

why higher range of associative mappings may relate to both 
estimation performance and math competence. Another rea-
son is that the range of the associative mappings may reflect 
higher acuity of the analog number representations, which 
have been proposed as a critical foundation for math com-
petence (Mazzocco, Feigenson, & Halberda, 2011b; Starr, 
Libertus, & Brannon, 2013). On the other hand, higher math 
competence may also refine the acuity of mental number 
representations (Lyons, Bugden, Zheng, De Jesus, & Ansari, 
2018; Mussolin, Nys, Content, & Leybaert, 2014; Suárez-
Pellicioni & Booth, 2018), which in turn may increase the 
strength and extent of associative mappings. In either case, 
a higher range of associative mappings may reflect more 
precise representations of numerical magnitudes.

Furthermore, a higher range of associative mappings may 
form the foundation for improved structural mappings on 
an ad-hoc basis, as opposed to holistically. It has been pro-
posed that structural mappings are supported by analogical 
reasoning (e.g., ::: is to ::::: as 6 is to…?) (Alvarez et al., 
2017). However, the analogy could either be made only once 
holistically (i.e., "a single analogical mapping between the 
structure of the verbal count list as a whole and a range of 
corresponding [analog number system] values", Carey & 
Barner, 2019, p. 4), or on an ad-hoc basis (i.e., with indi-
vidual analogous pairs, such as using sets of 5 to infer sets 
with multiples of 5). For instance, an individual with strong 
associative mapping only for five may be able to make ana-
logical comparisons using five, but less effective in doing so 
from six or seven; an individual with associative mappings 
for five through ten may be better able to make a richer set 
of analogical comparisons, resulting in more proportionally 
spaced estimates across an extended range. Hence, although 
structural mappings are the predominant type, they are nec-
essarily grounded in associative mappings insofar as base 
associations are a prerequisite for analogical inference. In 
sum, even with an analogy-based account that describes 
“structural mappings” in a more ad-hoc manner rather than 
a holistic manner, it is possible that a higher range of asso-
ciative mappings may be related to better estimation perfor-
mance and math competence.

In contrast, Sullivan and Barner (2014) argue that the role 
of associative mappings is fundamental but negligible given 
their scarcity even in adults (Sullivan & Barner, 2013), and 
suggest that it is “unlikely that those who are better at esti-
mating (and thus better at math) have a relatively richer set 
of [associative mappings]” (p. 1753). Nonetheless, Sullivan 
and Barner (2013, 2014) did not report direct measures of 
overall estimation performance and math competence to sup-
port that conclusion. Hence, the role of associative mappings 
in estimation-and-math competencies remains unknown.
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Current study

The aims of the current study were twofold. First, we 
aimed to examine whether individual differences in the 
base range of associative mappings are related to estima-
tion performance and math competence, and whether they 
underlie previously observed relations between estimation 
performance and math competence, while controlling for 
potential confounding factors (fluency of retrieving sym-
bol–referent associations and working memory). Hence, this 
study went beyond merely replicating a relation between 
math competence and a collection of commonly used indices 
of estimation performance (i.e., accuracy, consistency, and 
linearity of estimates), and examined whether the base range 
of associative mappings could underlie such relations. We 
hypothesized that a higher base range of associative map-
pings will be related to estimation performance as well as 
to math competence.

In previous studies, the onset of the range of structural 
mappings has been defined as the smallest numerosity that 
was influenced by calibration; correspondingly, the upper 
bound of the base range of associative mappings is defined 
as the largest numerosity that remained unaffected by cali-
bration (Alvarez et al., 2017; Sullivan & Barner, 2013, 2014; 
Yeo et al., 2019). However, in those studies, numerosities 
were sparsely sampled across a wide range (e.g., 8, 12, 20 
… 350) and individual differences in the associative map-
ping range could not be measured precisely. There is also a 
strong assumption that a participant who showed no calibra-
tion effects for 8 and 12 could not have shown calibration 
effects for 9 through 11. In other words, the effects of cali-
bration ought to be continuous. Moreover, the calibration 
protocols used in the majority of previous studies (Alvarez 
et al., 2017; Sullivan & Barner, 2013, 2014; Yeo et al., 2019) 
were implicit (i.e., “the largest set of dots you will see is n 
dots”) leaving it unclear as to how participants actually made 
use of the instruction to calibrate their subsequent estimates 
(i.e., whether they formed an association between n and 
their memory of the largest set which they saw during the 
uncalibrated condition, or whether they merely artificially 
restricted their estimates to within n). To address these con-
cerns, we employed a modified explicit calibration protocol 
and sampled every numerosity within a narrow range in 
an estimation task with uncalibrated and calibrated condi-
tions. The paradigm adopted is thus highly similar to that 
used by Izard and Dehaene (2008) in the development of 
the response-grid model, which not only allowed us to rule 
out the possibility that paradigm differences could explain 
any evidence of discontinuity in calibration effects, but also 
allowed us to measure the base range of associative map-
pings precisely in each individual.

Second, by assessing the continuity of calibration effects 
with a finer sampling resolution, and obtaining delayed mul-
tiple-choice strategy reports, we also aimed to extend our 
previous finding that estimation performance may not pri-
marily reflect the use of a single holistic structural mapping 
via a response grid. We hypothesized that, if the response 
grid is essential for numerosity estimation, and that associa-
tive mappings and holistic structural mappings are clearly a 
function of set size, (1) calibration effects should be continu-
ous after the onset of structural mapping, especially when 
numerosities are sampled without gaps, and (2) benchmark-
ing (directly retrieving numerosity-numeral mappings from 
a response grid upon an instantaneous and parallel enumera-
tion of items in a set) should be part of the strategy reper-
toire reported by most participants.

Methods

Participants

Fifty-seven undergraduate students (35 females; age range: 
18.42–22.33 years, M = 19.76, SD = 0.99) participated in 
the study for course credit. The experimental protocol was 
approved by our university’s Institutional Review Board 
and all participants provided written informed consent. 
Data from four additional participants were excluded due to 
incomplete or invalid data as a result of technical or experi-
menter error.

Procedure

The experiment was conducted one participant at a time, in 
a single session in a quiet room. All participants completed 
the tasks in the same order to minimize inter-individual dif-
ferences in performance that could stem from variation in 
task order: uncalibrated condition followed by the calibrated 
condition of the estimation task, online questionnaire, stand-
ardized reading and math achievement tests, and working 
memory tasks. Uncalibrated estimation was necessarily 
administered prior to the calibrated condition so as to cap-
ture true spontaneous estimation performance. The stimuli 
for the estimation and working memory tasks were presented 
using E-Prime 2.0 (Psychology Software Tools, Pittsburgh, 
PA, USA) on a 21.5″ monitor that subtends a 43.3° × 25.2° 
visual angle with an approximate viewing distance of 60 cm. 
All participants were debriefed about the aims and predic-
tions of the study at the end of the session. Due to schedul-
ing issues, one participant completed the working memory 
tasks in a separate session 5 days after all the other tasks 
were completed.
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Estimation task

The estimation task comprises three phases—a pre-cal-
ibration phase (hereafter, “uncalibrated”), a calibration 
manipulation phase, and a post-calibration phase (hereafter, 
“calibrated”).

Uncalibrated condition  Participants saw a series of blue-
dot arrays presented at the center of a grey circular back-
ground (diameter of 23 cm, which covered a visual angle 
of 21.7° × 21.7°; see Fig. 1 for example stimuli) against a 
black screen. On each test trial, the dot array was presented 
for 500 ms followed by a circular grey mask that prompted 
a response. The short presentation duration was chosen to 
prevent participants from serial counting of individual dots. 
Participants were given no information about the range of 
numerosities which they would see and were instructed to 
estimate the number of dots and enter their estimates using 
the numeric keypad on a computer keyboard as quickly 
and as accurately as possible. They were allowed to amend 
their estimates using the backspace key. After the entered 
response was confirmed by pressing the spacebar key, a 
central fixation cross within a circular grey background 
appeared for 1500 ms followed by the next set of dots. There 
were no practice trials and no feedback was given through-
out the task.

Thirty-one numerosities from 5 through 35 were used 
and each numerosity was presented ten times, resulting in a 
total of 310 trials. The lower bound of five was chosen based 
on the assumption that quantities in the subitizing range (a 
mean of about 4 in typical adults, Kaufman, Lord, Reese, & 
Volkmann, 1949; Piazza, Fumarola, Chinello, & Melcher, 
2011; Revkin, Piazza, Izard, Cohen, & Dehaene, 2008; Trick 
& Pylyshyn, 1994) are enumerated through a different pro-
cess than numbers outside that range (Burr, Turi, & Ano-
bile, 2010; Cutini, Scatturin, Basso Moro, & Zorzi, 2014; 
Hyde, 2011; Piazza et al., 2011; Pincham & Szucs, 2012; 
Revkin et al., 2008), and are, therefore, highly unlikely to be 
influenced by calibration. In other words, we assumed that 
numerosities one through four are associatively mapped and 
should not be influenced by calibration. The upper bound 
of 35 was based on the mode (8), mean (36), and median 
(20) of the smallest numerosity that was susceptible to cali-
bration across 71 adults in a previous study undertaken in 
our lab (Yeo et al., 2019). To avoid any random clustering 
of similar numerosities, we divided the 310 trials into five 
implicit phases of 62 trials (i.e., each phase cycles through 
all 31 numerosities in a random order with each numerosity 
presented twice). All trials were completed within a single 
block with no breaks to maximize the continuity of esti-
mates. The dots within each array were of the same size. 
To minimize the use of non-numerical visual cues such as 
occupied area and dot size, each numerosity was matched 

with every other numerosity on dot size and array density 
for half the trials (total occupied area and total luminance 
increase with numerosity), and on total occupied area for the 
other half (dot size decreases with numerosity and array den-
sity increases with numerosity) (Dehaene, Izard, & Piazza, 
2005). This task was self-paced and took about 20–30 min.

Calibrated condition  The calibrated condition had two 
phases, a calibration phase followed by a test phase. During 
the calibration phase, participants were shown arrays con-
sisting of 45, 60, or 75 dots, with each numerosity presented 
four times (half of the trials were matched with those used 
in the test phase and in the uncalibrated estimation task in 
terms of dot size, and the other half were matched in terms 
of total occupied area) and were given feedback immedi-
ately after they made an estimate. Each array was presented 
for 2 s and the feedback was presented for 3 s. This longer 
presentation time relative to that in the test trials was to facil-
itate learning of the associations between the numerosity 
and the subsequent feedback. To maximize the calibration 
effects, such that they are large enough to distinguish asso-
ciative mappings from structural mappings, we employed 
non-veridical feedback meant to induce an over-estimation 
(Alvarez et al., 2017; Izard & Dehaene, 2008; Sullivan & 
Barner, 2013, 2014). Through pilot testing, we established 
that a factor of 4/3 (i.e., 45 dots as “60”, 60 dots as “80”, 
and 75 dots as “100”) was optimal in eliciting significant 
calibration effects in most undergraduate participants with-
out raising strong suspicions about the feedback’s accuracy. 
We adapted the feedback protocol used by Opfer and Siegler 
(2007) and told participants, “After you estimate the num-
ber of dots in each group, we will tell you how many dots 
there were, so you can see how close you were.” During the 
feedback presentation, the dot array was not shown concur-
rently, so participants were made to calibrate their percep-
tual representations of numerosity based on the discrepancy 
between their estimates and the feedback. It is also crucial to 
note that we deliberately chose numerosities outside of the 
range in the test phase, so that any observed discontinuities 
in calibration effects within the tested range could not be 
attributed to the introduction of new associative mappings 
through the feedback given. The test phase comprising 310 
trials was identical in every aspect to the uncalibrated esti-
mation task, except that new arrangements of the dot sets 
were used to prevent the effects of configurational familiar-
ity. This task was also self-paced and took about 20–30 min.

Questionnaire

Following the estimation tasks, participants completed an 
online questionnaire administered and managed using RED-
Cap electronic data capture tools (Harris et al., 2009). Par-
ticipants were asked whether they noticed anything unusual 
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about the estimation tasks, were probed about the strategies 
which they used, when they used each strategy, and the con-
fidence in their estimates (see Appendix for the list of ques-
tions). To avoid the calibration manipulation influencing the 
strategy reports (or vice versa), delaying the strategy reports 
to the end of estimation tasks was necessary. As participants 
were only asked to report their strategies after both estima-
tion conditions rather than immediately after each condi-
tion or on a trial-by-trial basis, it was likely that they would 
under-report, such as providing only the most salient strat-
egy that came to mind. Hence, we opted for a semi close-
ended report by cueing them with commonly used strategies. 
To this end, participants were allowed to select from multi-
ple known strategies that were reported in previous studies 
(Gandini et al., 2010; Gandini, Lemaire, & Dufau, 2008). 
The four strategies included were: (a) Exact counting (e.g., 
I counted exactly in groups of X, and I am certain that there 
are X dots in each group.), (b) Approximate counting (e.g., I 
first saw one group of about X dots, a group of about Y dots, 
and another group of about Z dots. Therefore, there were 
about (X + Y + Z) dots.), (c) “Benchmarking”—retrieved a 
quantity from memory, and approximately added or sub-
tracted from it (e.g., I quickly looked at all the dots, thought 
it looked like there are about X or a little bit more, so I said 
slightly more than X.), (d) “Anchoring” (or “Decomposition/
Recomposition”, differences between them are subtle1 and 
were considered as a single strategy here; see Gandini et al. 
2010; Gandini, Lemaire, & Dufau, 2008)—Used a subset 
of the dots as an anchor (e.g., I counted exactly a group of 
X dots, or saw a group about X dots. Then, I estimated that 
there were six other similar groups, so I figured that there are 
7X dots.). We also included (e) instinctively knew each and 
every quantity from memory, (f) no particular strategy that 
I was aware of, and (g) others (with open-ended responses 
solicited), to capture other possibilities. Note that numeros-
ity-numeral mappings are referred to simply as “quantity/
quantities” in the strategy descriptions that participants read 
as they are more intuitively understood.

Mathematical competence

Mathematical competence was measured using the Math 
Fluency and Calculation subtests of the Woodcock-Johnson 
III Tests of Achievement (WCJ-III; Woodcock, McGrew, 
& Mather, 2001). The Math Fluency subtest requires par-
ticipants to solve 160 simple addition, subtraction, and 
multiplication problems with the numerals 0–10 as quickly 
as possible within 3 min (reliability = 0.92; Woodcock 
et al., 2001). Hence, this subtest primarily assesses fluency 
of arithmetic fact retrieval. The Calculation subtest is an 
untimed test including 45 items assessing arithmetic (with 
natural and rational numbers), algebra, trigonometry, and 
calculus (reliability = 0.89; Woodcock et al., 2001). Hence, it 
assesses a broader scope of calculation competence compris-
ing procedural and conceptual knowledge. As there is grow-
ing evidence that the relation between numerosity-numeral 
mappings and math competence depends on the type of math 
competence assessed (Jang & Cho, 2018; Libertus et al., 
2016; Yeo et al., 2019), the subtests scores were examined 
separately. Table 1 shows that the sample has a wide and rep-
resentative range of math achievement scores. Age-normed 
standard scores were used for all analyses.

Control measures

Domain-general factors including the fluency of retriev-
ing symbol–referent associations and working memory 
were also measured to assess the specificity of the relation 
between associative mapping mechanisms and mathemati-
cal competence. Participants’ competencies in employing 
estimation strategies that rely on working memory (Gandini, 
Lemaire, Anton, & Nazarian, 2008) may be related to the 
strength and extent of associative mappings.

Reading competence  The ability to infer non-numeri-
cal symbol–referent associations fluently was measured 
using the Reading Fluency subtest of the WCJ-III Tests of 
Achievement (reliability = 0.90; Woodcock et al., 2001). It 
requires participants to read a series of sentences and assess 
their truthfulness as quickly as possible within three min-
utes. Age-normed standard scores were used for all analyses.

Working memory  Working memory capacity was meas-
ured using the composite performance on three complex 
span tasks: operation span, symmetry span, and rotation 
span (Foster et al., 2015). A composite score from two or 
more tasks that captures the shared variance among them 
is preferred to a single task score that captures variance 
that may be unrelated to working memory capacity (e.g., 
task-specific variance) (Foster et al., 2015). A single block 
of each task was administered in the order as mentioned. 
Compared to the typical use of three blocks per task, Foster 

1  In Gandini, Lemaire, and Dufau’s (2008) study, “anchoring” was 
defined as “Participants enumerated several dots (via counting), visu-
ally estimated the remaining dots based on the first enumeration, and 
then added the enumerated result and the estimated result” (e.g., “I 
first counted 3 dots, then 4 dots, added 3 and 4 = 7. Then, I estimated 
that there remained approximately twice as many dots, so I figured 
that there are 7 + 14 = 21 dots”). “Decomposition/recomposition” was 
defined as “Participants spotted one group of few dots, up to about 
four or five items, estimated the number of analogous groups, and 
then multiplied the number of items primarily subtilized [sic] by the 
estimated number of groups.” (e.g., “I saw a group of 3 dots, and I 
estimated that there were six other similar groups; so I multiplied 7 
by 3, and thought there are approximately 21 dots”). In the current 
study, we focus on the fact that subgroups of dots were used to enu-
merate the whole collection, regardless of whether participants used 
counting or subitizing to enumerate the subgroups, or whether they 
used multiplication or addition strategies.
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et  al. (2015) found that a single block per task shortened 
the administration time by about 20  min, while not sub-
stantially reducing its predictive value of fluid intelligence 
(three blocks per task accounted for 51.1% of the variance in 
fluid intelligence, whereas one block per task still accounted 
for 46.5%). The reliabilities of the operation, symmetry, and 
rotation span tasks (1 block) are Cronbach’s α = 0.69, 0.61, 
and 0.66, respectively (Foster et al., 2015).

In each trial of the operation span task, participants had 
to remember a series of single letters and solve arithme-
tic problems (as distractors) that alternated with the to-be-
memorized letters. There were 3–7 letters to be memorized 
in each trial and participants had to recall the letters in the 
order which they were presented. The total number of letters 
recalled in their correct order over the whole task (known as 
the partial score) was used as a measure of working memory 
capacity (Conway et al., 2005). There was a total of 25 let-
ters to be remembered in a single block of the operation 
span task.

In each trial of the symmetry span task, participants had 
to remember a series of locations of single red squares in a 
4-by-4 grid and judge the symmetry of shapes that alternated 
with the to-be-memorized locations of the squares. There 
were two to five locations to be memorized in each trial and 
participants had to recall the locations in the order which 
they were presented. There was a total of 14 locations to be 
remembered in a single block of the symmetry span task that 
contributed to the partial score.

In each trial of the rotation span task, participants had to 
remember both the length (short or long) and direction (one 
of eight cardinal and intercardinal directions) of a series of 
single arrows, and judge whether a rotated letter was later-
ally flipped (i.e., mirror image) or not that alternated with 
the to-be-memorized arrows. There were 2–5 locations to 
be memorized in each trial and participants had to recall the 
arrows in the order which they were presented. There was 
a total of 14 arrows to be remembered in a single block of 
the rotation span task that contributed to the partial score.

The partial scores for each task were transformed into 
z scores and then averaged to form a composite working 
memory score (e.g., Gonthier, Thomassin, & Roulin, 2016).

Analyses

Data management

Criteria for data exclusion of the test trials of the estima-
tion task were adapted from previous studies that employed 
calibration paradigms (Alvarez et al., 2017; Sullivan & 
Barner, 2013, 2014; Yeo et al., 2019). Across 17,670 tri-
als pooled from all participants, we first excluded null 
responses (uncalibrated: N = 52 trials; calibrated: N = 40 
trials), and responses of “0” and “1” (uncalibrated: N = 28 

trials; calibrated: N = 63 trials). Next, we excluded responses 
that were likely to be typing errors that are independent of 
idiosyncratic estimation abilities, specifically more than or 
equal to ten times as large (10x), and less than or equal to 
ten times as small as the numerosity (x) presented (x/10) 
(uncalibrated: N = 33 trials; calibrated: N = 51 trials). Previ-
ous research suggest that typical adults deviate from the true 
numerosity by up to a factor of at most four (e.g., Minturn 
& Reese, 1951; Yeo et al., 2019). Within each condition, 
we also excluded outlying estimates that were more than 
three times the median absolute deviation (MAD) of each 
participant’s estimates of each numerosity presented (uncali-
brated: N = 891 trials; calibrated: N = 1021 trials). MAD was 
computed from the median of the absolute deviations from 
the median and scaled by a constant b = 1.4826 assuming an 
underlying normal distribution (Leys, Ley, Klein, Bernard, 
& Licata, 2013). It is a robust measure of dispersion and is 
preferred to the use of standard deviations from the mean, 
which are themselves highly sensitive to outliers and hence 
less effective in detecting outliers (Leys et al., 2013). How-
ever, when more than 50% of the data points are identical 
(e.g., [5, 5, 5, 5, 5, 6, 6, 6, 6, 5] for numerosity 5), MAD 
will be equal to 0 and any data point that is not equal to the 
median (e.g., 6 in the example) will be flagged as an outlier, 
leading to false positives. In such cases, we flagged for out-
liers with an alternative measure to MAD, which uses the 
mean of the absolute deviations from the median, scaled 
by constant b = 1.253314 (see IBM’s “modified z score”). 
Across the whole sample, 87.42–97.74% (M = 94.32%) and 
84.84–97.10% (M = 93.35%) of each individual’s uncali-
brated and calibrated data points, respectively, were retained 
for further analyses (see Fig. S1 for scatterplots of all 57 par-
ticipants). This resulted in a mean of 9.43 trials per numer-
osity (Mdn = 10, range = 5–10) for the uncalibrated condi-
tion, and a mean of 9.34 trials per numerosity (Mdn = 10, 
range = 5–10) for the calibrated condition.

Individual task‑level effects of calibration

We first characterized the extent to which the calibration 
feedback was effective in inducing changes in participants’ 
estimates. Following previous studies (Alvarez et al., 2017; 
Sullivan & Barner, 2013, 2014; Yeo et al., 2019), we deter-
mined whether each participant was influenced by calibra-
tion by regressing their estimates on numerosity (5–35; as 
a continuous variable), calibration condition (uncalibrated, 
calibrated), and the numerosity by calibration interaction 
using p < 0.05 based on the F test related to each effect. A 
participant was classified as a “calibrator” when there was 
either a significant main effect of calibration or an inter-
action between calibration and numerosity (Alvarez et al., 
2017; Sullivan & Barner, 2013, 2014; Yeo et al., 2019). 
We assumed unequal variances across numerosities and 
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conditions, used Type II sums of squares (Langsrud, 2003) 
and heteroscedasticity-robust standard errors to make statis-
tical inferences [using R packages lmtest (Zeileis & Hothorn, 
2002) and Car (Fox & Weisberg, 2011)].

Estimation indices

We computed participants’ accuracy, consistency, and lin-
earity of the uncalibrated and calibrated estimates separately, 
and estimated their base range of associative mappings 
(Table 1). We note that the computation of the accuracy, 
consistency, and linearity indices below are non-independent 
(rs = 0.58–0.79, Table 2). We considered all of them in the 
current study only because previous studies have used them 
to establish relations between estimation performance and 
math competence, and one of the aims of this study was to 
examine whether the base range of associative mappings 
could underlie these relations. Moreover, we are inter-
ested in estimation performance in general, rather than the 
unique relations associated with each performance index. 
We assessed their split-half reliabilities by computing each 
index from the first and second halves of the trials for each 
numerosity across all numerosities, and then performed a 
Spearman–Brown Prophecy correction to predict its full-
length reliability.

Accuracy of estimates  Accuracy was indexed by averaging 
the absolute error rates across all data points 
(AER = |Estimate - Numerosity|

Numerosity
 ) (e.g., Alvarez et  al., 2017). The 

absolute value avoids potential reciprocal cancelation 
between under- and over-estimation during averaging, and 
retains information about trial-level accuracy. A smaller 
AER thus reflects greater accuracy at the task level. Split-
half reliability was high in both the uncalibrated condition 
[Spearman’s rho, rs(55) = 0.80, p < 0.001, Spearman–
Brown = 0.89] and calibrated condition [rs(55) = 0.93, 
p < 0.001, Spearman–Brown = 0.96].

Consistency of  estimates  Consistency was indexed by 
computing the coefficient of variation per numerosity 
(CV = Standard deviation of estimates

Mean estimate
 ) and taking the mean CV 

across the range of target numerosities. A smaller CV 
reflects more consistent estimates at the task level. Split-
half reliability was high in both the uncalibrated condition 
[rs(55) = 0.77, p < 0.001, Spearman–Brown = 0.87] and 
calibrated condition [rs(55) = 0.90, p < 0.001, Spearman–
Brown = 0.94].

Linearity of  estimates  The extent to which participants’ 
estimates were proportionally spaced relative to one another 
was indexed by R2

lin
 of a simple linear regression model 

with participant’s trial-level estimates regressed on numer-

osity as a continuous variable (e.g., Alvarez et  al., 2017; 
Sullivan, Frank, & Barner, 2016). A higher R2

lin
 reflects 

more proportionally spaced estimates. Split-half reliability 
was high in both the uncalibrated condition [rs(55) = 0.70, 
p < 0.001, Spearman–Brown = 0.82] and calibrated condi-
tion [rs(55) = 0.74, p < 0.001, Spearman–Brown = 0.86].

Individual base range of  associative mappings  Using an 
approach employed by previous studies (Alvarez et  al., 
2017; Sullivan & Barner, 2013, 2014; Yeo et  al., 2019), 
sequential pairwise comparisons per numerosity were per-
formed and the smallest numerosity that was influenced by 
calibration was defined as the onset of structural mapping. 
Correspondingly, we defined the upper bound of the base 
range of associative mappings in each individual as one 
integer less than the smallest numerosity that was influenced 
by calibration (i.e., if numerosity 7 was the smallest numer-
osity that showed an effect of calibration using this sequen-
tial approach, numerosity 6 was the upper bound of the base 
range of associative mappings). To measure the base range 
of associative mappings, for each participant, we performed 
a series of Welch’s t tests on the estimates in the uncalibrated 
and calibrated conditions for each numerosity using p < 0.05 
as the statistical significance threshold. Welch’s t test does 
not require the assumption of equal variances between con-
ditions to hold, unlike Student’s t test (Delacre, Lakens, & 
Leys, 2017). As we were interested in the continuity of any 
statistically significant calibration effects, we did not correct 
for multiple comparisons, which may introduce discontinui-
ties when some small but true calibration effects are consid-
ered false positives. Using this approach, two participants 
showed an effect of calibration even for numerosity 5. As 
we assumed that participants should be able to subitize sets 
of four or less and that these sets are likely to be unaffected 
by calibration, we imputed “4” as the upper bound for these 
two participants. Results were qualitatively similar even 
if we excluded these two participants from analyses that 
involved the base range measure, rather than imputing the 
base range. Split-half reliability analysis with the base range 
of associative mappings computed from the first and sec-
ond halves of the data was close to acceptable, rs(53) = 0.53, 
p < 0.001, Spearman–Brown = 0.69.

To account for any potentially non-normal distributions 
resulting from the small number of data points in some 
cases, we also replicated the analyses using a non-parametric 
version of the Welch’s t test on ranked data (Zimmerman & 
Zumbo, 1993). As the estimated base range of associative 
mappings using both methods were almost perfectly corre-
lated [rs(55) = 0.99, p < 0.001] and the results were qualita-
tively similar, we only report the results using the raw data. 
This suggests high consistency in the base range of associa-
tive mappings regardless of parametric and non-parametric 
approaches.
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Univariate normality

Descriptive statistics of standardized math and reading 
measures, working memory measures, and estimation indi-
ces are presented in Table 1. Most key indices were normally 
distributed (see Table 1; Shapiro–Wilk; all ps > 0.052). For 
non-normal variables, we performed a rank-based inverse 
normal transformation (Bishara & Hittner, 2012, 2015) on 
them before performing any correlational analyses. All non-
normal variables became normally distributed upon transfor-
mation (Shapiro–Wilk; ps > 0.11, |skewness| < 0.14, |kurto-
sis|< 0.23). Regardless, the absolute skewness and kurtosis 
of all variables are within the acceptable ranges for standard 
parametric analyses (< 2 for skewness and < 7 for kurtosis) 
(Byrne, 2010; Hair Jr., Black, Babin, & Anderson, 2010; 
Kline, 2011).

Correlation analyses

To address whether individual differences in the base range 
of associative mappings were related to estimation perfor-
mance, as well as with math competence, we conducted 
zero-order and partial correlational analyses. Relations 
with performance indices for the calibrated estimates were 
not analyzed (other than with their uncalibrated counter-
parts), because they may be dependent on calibration value 
and method (i.e., they may not generalize to other studies), 
and are thus not of theoretical interest here. For each set of 
related tests addressing a specific question (i.e., appearing 
in separate sections of the results), we used Benjamini and 
Hochberg’s (1995) false discovery rate procedure to correct 
for multiple comparisons. Uncorrected p values are reported, 

and unless otherwise noted, all significant correlations 
reported remained significant after correction.

Analyses of questionnaire items

Our primary analyses focused on the quantitative analyses 
of frequencies of strategy choice using Chi-square and bino-
mial tests of proportions. For exploratory qualitative analy-
ses, participants’ responses were coded by the first author 
and the complete set of raw qualitative responses are pro-
vided in the Online Resource.

Bayesian analyses

To provide measurable evidence in support of positive, 
inconclusive, and null findings within this dataset (Dienes, 
2014), we conducted complementary Bayesian t tests, corre-
lational analyses, and frequency analyses using JASP 0.9.0.1 
(JASP Team, 2019), jamovi 0.9.2.3 (The jamovi project, 
2019) and their default “objective” priors (Cauchy distribu-
tion scaling factor r = 0.707 for t tests, stretched beta prior 
width = 1 for correlation tests, and beta priors = 1 for tests 
of frequencies/proportions). Whenever possible, we report 
the Bayes factor (BF10), which indicates the likelihood that 
the evidence is in favor of the alternative hypothesis relative 
to the null hypothesis (Wagenmakers, Love, et al., 2018; 
Wagenmakers, Marsman, et al., 2017). For instance, a BF10 
of 3 suggests that the data were three times more likely to 
occur under the alternative than the null hypothesis. BFs 
greater than 3, 10, 30, and 100 are considered “moder-
ate”, “strong”, “very strong”, and “extreme” evidence in 
support of the alternative hypothesis (Jeffreys, 1961; Lee 

Table 1   Descriptive statistics 
of pre-transformed standardized 
achievement, working memory, 
and estimation measures 
(N = 57)

WCJ-III Woodcock–Johnson III Tests of Achievement, AER absolute error rate, CV coefficient of variation
a Composite working memory scores are z scores
b These measures are not-normally distributed (Shapiro–Wilk; all ps < .006)

Measure Mean Median SD Range Skewness Kurtosis

WCJ-III Calculation 124.23 126 13.27 92 to 147 − 0.47 − 0.24
WCJ-III Math Fluency 114.21 115 12.18 91 to 146 0.20 − 0.11
WCJ-III Reading Fluency 118.72 120 12.37 92 to 147 − 0.03 − 0.19
Operation span 21.47 23 3.60 8 to 25 − 1.41 2.54
Symmetry span 10.54 11 2.66 4 to 14 − 0.76 − 0.10
Rotation span 9.68 9 3.00 4 to 14 − 0.20 − 0.93
Composite working memory 0a 0.12 0.73 − 1.95 to 1.24 − 0.54 − 0.34
Uncalibrated AER 0.18 0.17 0.05 0.08 to 0.31 0.74 0.52
Calibrated AERb 0.30 0.20 0.22 0.07 to 1.24 2.12 5.21
Uncalibrated CVb 0.14 0.14 0.04 0.07 to 0.25 0.88 1.58
Calibrated CVb 0.18 0.17 0.06 0.08 to 0.38 1.28 2.22
Uncalibrated R2

lin
0.76 0.76 0.08 0.53 to 0.91 − 0.47 0.06

Calibrated R2
lin

b 0.73 0.74 0.10 0.35 to 0.90 − 1.34 3.20
Base range of associative mappingsb 9 8 4.53 4 to 22 1.27 0.87
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& Wagenmakers, 2013; Wagenmakers et al., 2018). We 
adopted Dienes’ (2014) criteria of BFs greater than 3 or less 
than 1/3 as conclusive evidence in support of the alternative 
or null hypothesis, respectively, and BFs between 1/3 and 3 
(inclusive) as inconclusive evidence.

Results

Task‑level effects of numerosity and calibration, 
and manipulation success

The calibration manipulation was meant to induce an 
increase in a linear slope of the estimates by 0.33. The 
mean within-participant change in slope was + 0.39 
(Mdn = + 0.28). All 57 participants showed a main effect of 
numerosity, 55 (96.5%) showed a main effect of calibration, 
50 (87.7%) showed a calibration by numerosity interaction, 
56 (98.3%) showed either a main effect of calibration or 
a calibration by numerosity interaction [hereafter referred 
to as “calibrators” (e.g., Alvarez et al., 2017; Sullivan & 
Barner, 2014)], and 49 (86.0%) showed both main effect 
of calibration and a calibration by numerosity interaction 
(see Fig. S1 for individual plots). All proportions reported 
above were above chance (0.05 for each independent effect, 
0.1 for either main effect or interaction, and 0.025 for both 
main effect and interaction) [one-sided binomial ps < 0.001, 
all BFs > 3.73 × 1052].

Twenty-three participants (40.4%) reported that they 
noticed something unusual about the estimation tasks. A 
primary concern regarding manipulation failure was whether 
this subset of participants ignored the manipulation and 
showed no calibration effects. However, their noticing 
was largely independent of whether they were influenced 
by the manipulation as all but one participant was affected 
by the calibration (  2 = 0.69, df = 1,  = 0.110, p = 0.407, 
BF10 Poisson = 0.22; see Online Resource Table S1). More-
over, of those 23 participants, most participants merely 
expressed uncertainty about the calibration feedback relative 

to the perceived numerosity rather than the objective numer-
osity that was unbeknownst to them (e.g., “when told the 
correct number of dots, they seemed much higher than the 
amount of dots I saw”) and only four participants expressed 
with some certainty suspicions about the accuracy of the 
calibration feedback (i.e., “I believe the ‘correct’ numbers 
that I was given were wrong. They were way too high”) 
(see Online Resource). Taken together, there is no strong 
evidence that participants’ knowledge about the objective 
numerosity during the calibration phase affected how they 
made use of the feedback for the post-calibration phase.

Individual base range of associative mappings

There was considerable inter-individual variability in 
how high the base ranges of associative mappings were 
(range = 4–22) (Fig. 2 and Table 1). As shown in Fig. 2, the 
distribution was positively skewed with numerosity 5 as the 
modal upper bound.

Relation between uncalibrated estimation 
performance and math competence

Participants with higher Calculation scores had more accu-
rate [r(55) = − 0.40, p = 0.002, BF10 = 16.98] and more linear 
[r(55) = 0.43, p < 0.001, BF10 = 37.26] estimates. They also 
tended to have more consistent estimates [r(55) = − 0.32, 
p = 0.015, BF10 = 2.96], although the evidence is weaker 
compared to accuracy and linearity. There is, however, 
weak-to-moderate evidence that accuracy, consistency, and 
linearity of estimates were not related to Math Fluency [all 
ps > 0.13, all BFs < 0.49, Table 2].

Most of these findings held after controlling for Read-
ing Fluency and working memory. An exception is that 
consistency of estimates was correlated with Math Flu-
ency [r(53) = − 0.29, p = 0.030, BF10 = 1.66], even though 
it was not before controlling for these confound variables. 
Nonetheless, Bayesian analysis suggests that the evidence 
is weak.

Fig. 2   Distribution of partici-
pants’ base range of associative 
mappings (see Table 1)
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Relations involving base range of associative 
mappings

Individual differences in the base range of associative map-
pings were not related to estimation performance, calcula-
tion skills, and arithmetic fact retrieval fluency [all ps > 0.36, 
all BFs < 0.25, Table 2]. These findings remained unchanged 
after controlling for Reading Fluency and working memory 
[all ps > 0.16, all BFs < 0.45, Table 2].

Finally, in the relation between estimation performance 
and math competence, we further controlled for the base 
range of associative mappings to probe whether it functioned 
as a confounding third variable. Calculation remained corre-
lated with accuracy [r(52) = − 0.34, p = 0.012, BF10 = 3.55], 
consistency [r(52) = − 0.32, p = 0.017, BF10 = 2.67] and lin-
earity [r(52) = 0.40, p = 0.003, BF10 = 13.44] of estimates. 
Math Fluency also remained correlated with estimation con-
sistency [r(52) = − 0.30, p = 0.030, BF10 = 1.67], although 
the evidence is still weak and inconclusive.

In sum, estimation performance was related to Calcula-
tion (but not Math Fluency) over and above Reading Flu-
ency, working memory, and the base range of associative 
mappings. Importantly, there is evidence that the base range 
of associative mappings was not related to estimation per-
formance or any of the math competence measures, and is, 
therefore, unlikely to underlie the relation between estima-
tion performance and math competence.

Continuity of calibration effects

In previous studies, it was assumed that all numerosities 
beyond this upper bound would show calibration effects, 
and that these effects are a signature of the interdependency 
among structural mappings. In other words, it was assumed 
that once structural mapping was initiated, all subsequent 
numerosities would be structurally mapped and susceptible 
to calibration. However, when we extended the sequential 
tests beyond this upper bound to the largest numerosity pre-
sented (i.e., 35), calibration effects were notably discontinu-
ous (see Figs. 3 and S2). Only three participants showed 
continuity in calibration as predicted by the response-grid 
model. In other words, discontinuity in calibration effects 
(54 out of 57 participants, 94.7%) was very much the norm 
rather than an exception (chance = 0.5, one-sided binomial 
p < 0.001, BF10 = 1.70 × 1011).

We further examined the trends for standardized calibra-
tion effect sizes (Cohen’s d) in each participant. In Fig. S3 of 
the Online Resource, the distributions of effect sizes of the 
statistically significant and non-significant calibration effects 
did not seem to overlap substantially. Due to the huge imbal-
ance in significant and non-significant effects within most 
participants, we computed instead the participant-specific 
difference in median absolute effect sizes of the statistically 
significant and non-significant effects, and then assessed the 
difference in effect size distributions at the group level. The 

Table 2   Zero-order and partial correlation coefficients of estimation indices, standardized achievement test scores, and working memory 
(N = 57)

Upper triangle consists of zero-order correlations. Lower triangle consists of partial correlations controlling for reading fluency and working 
memory
AER absolute error rate, CV coefficient of variation
* p < 0.05. **p < 0.01. ***p < 0.001. BF10 = Bayes factor (alternative/null hypotheses)

Measure 1 2 3 4 5 6 7 8

1. Base range of associa-
tive mappings

– − 0.103 − 0.124 0.033 − 0.119 − 0.100 − 0.168 0.258

 BF10 (0.22) (0.25) (0.17) (0.24) (0.22) (0.35) (1.04)
2. Uncalibrated AER 0.012 – 0.575*** − 0.730*** − 0.400** − 0.105 0.014 − 0.431***

 BF10 (0.17) (7181.37) (1.02 × 108) (16.98) (0.22) (0.17) (38.33)
3. Uncalibrated CV − 0.054 – − 0.793*** − 0.321* − 0.200 0.182 − 0.168
 BF10 (0.18) (4.22 × 1010) (2.96) (0.49) (0.40) (0.35)

4. Uncalibrated R2
lin

− 0.043 0.429*** 0.0123 − 0.082 0.228
 BF10 (0.18) (37.26) (0.25) (0.20) (0.68)

5. Calculation − 0.193 − 0.334* − 0.306* 0.400** – 0.318* 0.046 0.255
 BF10 (0.44) (3.46) (2.07) (14.53) (2.79) (0.17) (0.98)

6. Math Fluency − 0.037 − 0.153 − 0.292* 0.175 – 0.326* − 0.045
 BF10 (0.17) (0.31) (1.66) (0.37) (3.28) (0.17)

7. Reading Fluency – 0.007
 BF10 (0.17)

8. Working memory –
 BF10
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median within-participant difference in effect sizes between 
significant and non-significant effects was 0.91 (M = 1.02, 
range = 0.46–3.05), Wilcoxon signed-rank test, W = 1653, 
p < 0.001. These large-effect size differences suggest that 
the discontinuities observed were unlikely to be driven by 
statistical randomness.

We also assessed the evidence for strong associative 
mappings among the 822 non-significant effects out of 
1767 effect sizes in the whole sample. Out of the 822 non-
significant effects, 96 (11.7%) are true null differences (e.g. 
participants responded “5” consistently for numerosity 5 
regardless of calibration). Most of these true null differ-
ences are observed for numerosities 10 or less (see Online 
Resource Table S3), which is consistent with the notion that 
calibration effects are dependent on set size hypothesized by 
Sullivan and Barner (2013, 2014). At the individual level, 10 
participants had true null differences for 5 and 6; 9 partici-
pants had true null differences for 5 through 7; 2 participants 
had true null differences for 5 through 8; 1 participant each 
had true null differences from 5 through 9, and 5 through 10. 
Taken together, these true null differences provide support 

for the presence of strong associative mappings among the 
small numerosities that are unlikely to be based on the same 
mechanism as mappings for larger numerosities.

Even though the trend of the calibration effects across all 
numerosities should be the primary focus, there is still a con-
cern that the observed discontinuities may be due to a lack 
of statistical power for individual numerosities, with at most 
10 data points per calibration condition. We thus explored 
whether these discontinuities still exist with a greater num-
ber of data points per calibration condition using a “sliding 
window” of 2, 3, or 5 numerosities. This approach is theo-
retically valid given the approximate nature of the analog 
number system (Izard & Dehaene, 2008). For instance, a 
sliding window of 3 numerosities included 5, 6, and 7 in 
the first window, 6, 7, and 8 in the second window, 7, 8, 
and 9 in the third window, and so on. For the analyses with 
sliding windows of 2, 3, and 5 numerosities, 54, 53, and 54 
out of 57 participants, respectively, showed discontinuities 
in the calibration effects (chance = 0.5, one-sided binomial 
ps < 0.001, BF10s > 1.26 × 1010). Even at these coarser reso-
lutions with presumably higher statistical power (two- to 

Fig. 3   Examples of continuous and discontinuous calibration effects 
in four participants who showed a calibration by numerosity interac-
tion effect. a Raw estimates per condition. b Green step plots reflect 
binary coding of “1” for significant pairwise difference between con-
ditions per numerosity and “0” for non-significant pairwise difference 
at p < 0.05 (uncorrected) for the corresponding plots above. Orange 
data points represent the Bayes factors artificially bounded between 

0 and 4. Bayes factors > 3 and < 1/3 (dashed lines) reflect evidence in 
favor of a calibration effect and lack thereof, respectively. Bayes fac-
tors close to 1 (dotted line) reflect data insensitivity in distinguish-
ing between the null and alternative hypotheses. The continuity of the 
calibration effects and trend of effect sizes for all 57 participants are 
shown in Figures S2 and S3
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fivefold increase), the qualitative patterns of the results 
remained unchanged (see Figs. S5–S9).2

Strategy use during uncalibrated estimation

A hypothesis from the response-grid model is that in every 
individual, a substantial number of estimates or numerosity-
numeral mappings will be retrieved from a response grid. 
In other words, it predicts that most if not all participants 
will use benchmarking as part of their strategy repertoire at 
least on some of the trials. Hence, we focused most of our 
analyses on the use of benchmarking, but provided a detailed 
summary of the questionnaire data and other exploratory 
analyses in the Online Resource. We first excluded partici-
pants who were metacognitively unaware of how they per-
formed the task and did not choose any other strategy options 
(N = 8). Hence, the following analyses were conducted for 

the remaining 49 participants. The proportion of participants 
who used more than one strategy (33/49, 67%, median num-
ber of strategies = 3) was greater than chance (0.5, binomial 
p = 0.01, BF10 = 6.67) (Fig. 4). By and large, participants var-
ied the use of strategies in their repertoire based on the set 
size and the configuration of dot sets (see Online Resource). 
It is clear from Fig. 3 that the proportion of participants 
who used benchmarking as part of their strategy repertoire 
(26/49, 53%) was not greater than chance (0.5, binomial 
p = 0.39, BF10 = 0.26). Even if we included participants who 
reported that they instinctively knew each and every numeral-
numerosity mapping from memory (but not also benchmark-
ing) (2/49, 4.1%), the proportion (28/49, 57%) was still not 
greater than chance (0.5, binomial p = 0.20, BF10 = 0.48). 
No other strategy was greater than chance either (0.5, bino-
mial ps > 0.38, BFs < 0.26). The proportions of participants 
using the four strategies most commonly used: benchmark-
ing (26/49, 53%), anchoring (26/49, 53%), exact counting 
(26/49, 53%), and approximate counting (23/49, 50%) were 
not significantly different from one another (  2 = 0.55, df = 3, 
p = 0.907), suggesting that there was no single strategy that 
was essential in any participant’s strategy repertoire. Of the 
26 participants who used benchmarking, only six (23%) 

Fig. 4   Summary of the frequencies for combinations of strategy used 
during the uncalibrated estimation task. The choices that participants 
could choose from include: a using a subset of the dots as an anchor 
(“Anchoring”), b retrieved a quantity from memory, and approxi-

mately added or subtracted from it (“Benchmarking”), c exact count-
ing (“ExactCounting”), d approximate counting (“ApproxCounting”), 
e instinctively knew each and every quantity from memory (“Knew”), 
f no awareness of particular strategy (“Unaware”), and g others

2  We also used the base range of associative mappings estimated 
from the “sliding window” analysis of 2 numerosities to assess the 
consistency of the original base range index. They were highly cor-
related [rs(54) = 0.74, p < 0.001], indicating that individual differ-
ences captured by the original index are consistency across estimation 
approaches.
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mentioned that there were particular numeral-numerosity 
mappings that they retrieved from memory. In other words, 
when benchmarking was used, it was more likely that 
there were no particular benchmarking numeral-numeros-
ity mappings retrieved (chance = 0.5, binomial p = 0.005, 
BF01 = 21.53), possibly due to the use of numeral-numerosity 
mappings from previous trials as benchmarks (e.g., “guessed 
off of memory of previous trials”, see Online Resource for 
explicit mention by at least three participants).

Finally, we focused on the three participants who showed 
continuity in their calibration effects (see Fig. S2) and examined 
their reported strategy use. One participant was not particularly 
aware of the strategies used, one used only anchoring (anchor 
subsets: 5, 10), and one used exacting counting, benchmarking 
(benchmark numerosity-numeral mappings: 10, 15, 20, 25), and 
anchoring (anchor subsets: 5, 10). Taken together, there is little 
evidence that is consistent with the hypothesis that a response 
grid is even used at all by most of our participants.

Exploratory analyses relating strategy use 
and degree of consistency in estimation

We explored the extent to which estimation performance 
was constrained between the calibrated and uncalibrated 
conditions. If a response grid is primarily used for esti-
mation in both conditions, the degree of consistency of 
estimates should be highly constrained by the supposedly 
fixed acuity of the analog mental number line to which the 
response grid is mapped onto. If multiple strategies are typi-
cally used, and may differ between conditions, the degree 
of consistency should be less constrained between condi-
tions. In other words, any change in consistency is likely 
due to external factors such as strategies than the acuity 
of representations per se. On average, CVs were higher in 
the calibrated condition (Mdn = 0.17) than in the uncali-
brated condition (Mdn = 0.14) (Wilcoxon signed-rank test, 
W = 1457, p < 0.001). There was no conclusive evidence 
that participants who reported that their strategies differed 
after calibration (27 out of 57, 47.4%) had a greater change 
in CV (M = 0.041, Mdn = 0.034, SD = 0.041) than those 
who reported that their strategies did not differ (M = 0.032, 
Mdn = 0.012, SD = 0.053) (Mann–Whitney U test, W = 322, 
p = 0.189, BF10 = 0.44). An individual differences approach 
may also provide insights into the idiosyncrasies in changes 
in consistency (i.e., reduced in some, but increased in oth-
ers), possibly due to strategy-related changes. Previous stud-
ies showed that when drastic strategic differences between 
conditions were not expected,3 CVs (or equivalently, the 

Weber’s fraction) were highly correlated between calibrated 
and uncalibrated conditions (r = 0.82, Yeo et al., 2019), 
or between two calibrated conditions (r = 0.78, Izard & 
Dehaene, 2008). In the current study, the explicit calibration 
was more likely to induce changes in strategy deployment, 
and indeed, the CVs were less strongly correlated between 
conditions [r(55) = 0.58, p < 0.001, BF10 = 1.04 × 104] (see 
Table S2 for the full correlation matrix). Fisher’s z com-
parison of the correlation coefficients in Yeo et al. (2019) 
and in the current study confirmed the attenuation, z = 2.60, 
p = 0.0046.

Discussion

Previous research suggests that the quality of numeral-
numerosity mappings, typically indexed by performance 
during an estimation task in terms of accuracy, consistency 
and linearity of estimates, is related to math competence 
in children and adults (Alvarez et al., 2017; Bartelet et al., 
2014; Booth & Siegler, 2006; Castronovo & Göbel, 2012; 
Chesney et al., 2015; Guillaume et al., 2016; Libertus et al., 
2016; Lyons et al., 2014; Mazzocco et al., 2011a; Mejias, 
Grégoire, et al., 2012; Mejias, Mussolin, et al., 2012; Mejias 
& Schiltz, 2013; Pinheiro-Chagas et al., 2014; Wong et al., 
2016a). The current study aimed to examine the mechanisms 
that underlie such a relation by focusing on the relative 
extents of two hypothesized mechanisms of mapping—item-
based associative mapping and holistic structural mapping. 
Using fine-grained sampling during an estimation task, we 
were able to assess individual differences in the base range 
of associative mappings in adults, and examine whether that 
base range of associative mappings was related to estimation 
performance as well as to math competence.

Robust relation between estimation performance 
and math competence in adults

Our findings indicate that estimation performance is related 
to math competence even with a fine-grained sampling (31 
numerosities between 5 and 35), and as such, are consist-
ent with previous studies relating estimation performance 
to math competence in adults, all of which used a sparse 
sampling of numerosities (Castronovo & Göbel, 2012; 
Chesney et al., 2015; Guillaume et al., 2016; Mejias, Gré-
goire, et al., 2012). This suggests that the estimation–math 
relation is rather robust to the tested range and sampling 
procedure. Although previous studies typically controlled 
for reading ability and intelligence, strategy-related factors 
such as working memory are rarely controlled, at least in 
adult studies. Consistent with findings that several com-
monly employed estimation strategies require working 
memory resources (e.g., using subsets as anchors; Gandini 

3  Calibration method was either implicit (merely providing an upper 
bound in Yeo et al., 2019), or identical between two calibrated con-
ditions (merely changing the calibration reference value in Izard & 
Dehaene, 2008).
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et al., 2010; Gandini, Lemaire, Anton, et al., 2008; Gandini, 
Lemaire, & Dufau, 2008), we found that higher estima-
tion accuracy was indeed related to higher working mem-
ory capacity. Nonetheless, the estimation–math relation 
remained after controlling for reading fluency and working 
memory, suggesting that the fluency of retrieving domain-
general symbol–referent associations and working memory 
do not fully account for the estimation–math relation. Simi-
larly, Wong et al. (2016a) found that linearity of estimates 
still provided unique contribution to children’s arithmetic 
performance after controlling for visuo-spatial working 
memory and central executive function.

The estimation–math relation, however, seems to be rel-
evant for procedural and conceptual calculation skills, but 
not fluency in the retrieval of overlearned arithmetic facts. 
This adds to the growing list of studies that have found dif-
ferential relations between quality of numeral-numerosity 
mappings and distinct math sub-domains or skills (Brankaer 
et al., 2014; Holloway & Ansari, 2009; Jang & Cho, 2016, 
2018; Libertus, Feigenson, & Halberda, 2013; Libertus 
et al., 2016; Lourenco, Bonny, Fernandez, & Rao, 2012; 
Mazzocco et al., 2011a; Mejias & Schiltz, 2013; Orran-
tia et al., 2019). For instance, Libertus et al. (2016) found 
that, in children, estimation consistency was related to for-
mal math skills (e.g., arithmetic facts, place value), but not 
informal math skills (e.g., counting with fingers). Hence, it 
is critical for future studies to consider math competence as 
a composition of distinct constructs and skills rather than 
a holistic construct. In sum, the estimation–math relation 
is robust to sampling procedure, independent of domain-
general processes such as working memory, and specific to 
mathematical concepts and procedures beyond arithmetic 
fact retrieval fluency.

Base range of associative mappings among small 
numbers is neither related to estimation 
performance nor to math competence

By comparing participants’ estimates before and after cali-
bration using a sequential testing approach for every numer-
osity tested, the current study is the first to precisely measure 
the base range of associative mappings in our participants. 
We found conclusive evidence that the base range of asso-
ciative mappings neither relates to any of the estimation 
performance indices nor to any math measures. The base 
range also does not seem to account for the relation between 
estimation performance and procedural calculation skills. 
The lack of a relation is contrary to our prediction, but sup-
ports Sullivan and Barner’s (2014) hypothesis that associa-
tive mappings play a negligible role in both estimation and 
math skills.

Discontinuity in calibration effects is inconsistent 
with a holistic structural mapping

It is thought that making numerical estimates involves a 
system-level mapping between the analog mental number 
line and a symbolic response grid (Izard & Dehaene, 2008). 
It is further thought such a holistic mapping between the 
two systems underlies most of the numerosity-numeral map-
pings, and strong associative mappings are limited only to 
small numbers (for a review, see Carey & Barner, 2019; 
Sullivan & Barner, 2013, 2014). Based on these key assump-
tions, although we could identify a base range of associative 
mappings in every participant, we found discontinuities in 
the calibration effects in majority of our participants. This 
replicates and extends our previous finding (Yeo et al., 2019) 
with a vastly different sampling range (5–35 vs. 8–350) 
and resolution (all vs. selected numbers within the range), 
and calibration paradigm (explicit vs. implicit). Multiple 
approaches used to analyze the trends in the calibration 
effects suggest that the discontinuities cannot be entirely 
explained by randomness due to a lack of statistical power. 
Moreover, the calibration method used here is highly similar 
to that used by Izard and Dehaene (2008), but with several 
modifications that ought to favor an observation of continu-
ous calibration effects: (1) instead of one calibration inducer 
presented just once in Izard and Dehaene (2008), we used 
three calibration inducers with a fixed feedback-to-actual 
ratio presented three times each to instill and strengthen a 
more linear- or ratio-based calibration; (2) instead of provid-
ing a calibration inducer within the tested range in Izard and 
Dehaene (2008), we provided calibration inducers that are 
outside the tested range to avoid the possibility that memory 
of the calibration inducers would introduce inconsistencies 
in the effect sizes across numerosities, which could result 
in artefactual discontinuities. Despite these modifications, 
discontinuities in calibration effects are still observed. These 
discontinuities may stem from several non-mutually exclu-
sive possibilities that can inform the existing theories of 
numerosity estimation and the mappings between numeri-
cal symbols and their magnitude referents more generally.

First, some strong associative mappings may exist amidst 
structural mappings of larger numbers. There is evidence 
consistent with this possibility. In previous studies that 
employed sparse sampling (8, 12, 20, … 350) with adult par-
ticipants, the highest base range extended to 150 (Sullivan 
& Barner, 2013) or even 200 (Yeo et al., 2019). However, 
it is possible that the previous studies might have captured 
sparse associative mappings among large numbers rather 
than a truly continuous range of associative mappings. For 
instance, an individual who showed no calibration effects 
for 8, 12, and 20 previously has been assumed to have a 



Psychological Research	

1 3

continuous set of associative mappings up to 20, but he 
or she might have shown some calibration effects from 13 
through 19 if those had been sampled. In the current study, 
we sampled continuously up to 35 and the highest base range 
of associative mappings in any participant extended to only 
22. If there are indeed strong associative mappings for larger 
numbers sparsely distributed across the mental number line 
(Dehaene & Mehler, 1992), then it may be that the whole 
collection of associative mappings for both small and large 
numbers, and not just the “base range” that we have deline-
ated here, may play a critical role in estimation performance 
or math competence. Independent of the theories discussed, 
however, the base range of associative mappings in itself 
may have other theoretical value that are not explored within 
the scope of the current study, so we do not consider this 
novel measure to be entirely meaningless in light of the 
discontinuity finding. For instance, it can inform whether 
individual differences in the acuity of perceiving a difference 
of one between small sets (e.g., 6 vs. 7) are related to indi-
vidual differences in the subitizing range and visuo-spatial 
working memory more generally (e.g., Piazza et al., 2011; 
Revkin et al., 2008).

Moreover, our calibration manipulation, which used 
values beyond the actual range assessed (e.g., 75 dots as 
“100” when the largest set tested had 35 dots), also provided 
evidence to support the idea that associative mappings are 
not exclusive to small numbers. Specifically, many partici-
pants made calibrated estimates that are close to what we 
would expect based on the calibration values (see Fig. S1), 
which suggests that not only can association-based map-
pings be formed for large numbers, but they can also be 
applied fairly consistently and accurately during an esti-
mation task over the course of 20–30 min. There is also 
evidence that new associative mappings formed for up to 
sets of 210 can be so strong that they persisted even after 
eight months (Minturn & Reese, 1951). Hence, although 
strong associative numerosity-numeral mappings for large 
numbers may be rare in nature due to the lack of oppor-
tunities to learn those mappings, they are not difficult to 
acquire in lab-based novel symbol training studies (Lyons & 
Ansari, 2009; Lyons & Beilock, 2009; Malone, Heron-dela-
ney, Burgoyne, & Hulme, 2019; Merkley & Scerif, 2015; 
Merkley, Shimi, & Scerif, 2016; Zhao et al., 2012). In any 
case, the possibility that associative mappings can exist for 
large numbers implies that calibration may not affect the 
full length of a response grid, but segments of it. In other 
words, a response grid may be composed of segments that 
are pieced together with different anchor points rather than 
a single anchor point, in which case, the transformation of 
any response grid may not be adequately characterized by a 
two-parameter (translation and scaling) model as proposed 
by Izard and Dehaene (2008).

Alternatively, it is possible that the discontinuities beyond 
the base range do not indicate the presence of strong associa-
tive mappings, but that system-level structural mappings may 
not exist, at least not in the way that the analog mental number 
line and a symbolic response grid are thought to be holis-
tically linked. With a holistic mapping between the analog 
and symbolic systems (see Fig. 1), to the extent that a set 
of 25 dots has been calibrated to map to a different segment 
of the response grid, and that sets of 23 through 27 are not 
perceptually discriminable from sets of 25, there is no reason 
that calibration effects of comparable size should not also be 
observed for numerosities 23 through 27. Yet, the calibration 
effects do not show strong interdependence in most individu-
als. Such weak interdependency among adjacent numeral-
numerosity mappings suggests that participants do not make 
use of a response grid during an estimation task, at least not 
primarily. If numerosities are processed instantaneously and 
in parallel as commonly assumed, and the response grid is 
the primary mechanism for making estimates, the retrieval-
based benchmarking strategy should be in the repertoire of 
most if not all participants, even if it is not used all the time. 
However, only about half of our participants reported using 
benchmarking at all. It might be argued that our stimuli were 
presented for 500 ms, which was much longer than the 100 ms 
presentation used by Izard and Dehaene (2008), and likely did 
not encourage the use of benchmarking as much as it should. 
However, if this was true, it is telling that the response-grid 
model is not robust to task characteristics. For instance, sev-
eral studies have found that when participants are given more 
time to perceive the stimulus (up to 6 s), multiple strategy 
use is the norm and that strategies employed depended on 
task characteristics (Gandini et al., 2010; Gandini, Lemaire, 
& Dufau, 2008; Luwel, Lemaire, & Verschaffel, 2005; Luwel, 
Verschaffel, Onghena, & De Corte, 2003). More recently, 
Cheyette and Piantadosi (2019) tracked eye movements when 
participants performed a numerosity estimation task with dot 
arrays presented from 100 to 3000 ms, and they found that 
participants do not process all the dots in each set in parallel, 
but via a serial accumulation of dots that are foveate within 
a given duration. The more time participants had to foveate, 
the more accurate their estimates were. Indeed, many of our 
participants reported using strategies that require serial accu-
mulation across visual fixations (e.g., approximate or exact 
counting, and anchoring) as part of their repertoire. However, 
as acknowledged by the authors, their finding cannot distin-
guish whether “people build up an increasingly precise image 
of the visual scene as they saccade, from which numerical 
information is later extracted” (i.e., benchmarking), or that 
“numerical quantities themselves are being integrated across 
visual fixations” (i.e., non-benchmarking) (p. 5). Strategy 
reports can thus provide complementary information. In 
sum, our findings suggest that the response-grid account 
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at least in its current form is insufficient in explaining how 
numerical estimation is performed; even if a response grid 
exists, we believe that it does not remain stable throughout a 
task, and may undergo iterations of transformations depend-
ing on the strategy adopted on each trial. This could account 
for the discontinuity in the calibration effects. Regardless of 
which alternative is more likely, it is evident than the cur-
rent assumptions of a response grid need to be updated to 
accommodate the discontinuity in calibration effects and how 
task characteristics may influence strategy choice. It is also 
clear that the distinction between associative and structural 
mappings is likely not a function of set size (although that is 
indeed the case when we consider only true null differences 
between calibration conditions), and that structural mapping 
does not exist in the continuous fashion previously thought. 
Finally, the current study provides the first evidence that the 
base range of associative mappings is neither related to esti-
mation performance nor to math competence.

Alternative account of calibration effects observed 
globally rather than locally

How else can we account for the observations that calibra-
tion manipulations tend to affect not only the calibrated 
numerosity (locally), but other numerosities tested as well 
(globally) if we do not assume a holistic link between the 
analog mental number line and the symbolic response 
grid? We do not attempt to develop a full-fledged theory 
here based on the limits of our data, but we speculate that 
“structural mappings” may also exist at a more local level 
using analogical reasoning iteratively. Hence, the appar-
ent calibration effects observed globally could arise from 
trial-to-trial dependencies from a Bayesian perspective 
(Cicchini, Anobile, & Burr, 2014; Petzschner, Glasauer, & 
Stephan, 2015). This hypothesis is not novel in the context 
of numerosity-numeral mappings and has previously been 
alluded to within the analogy-based account proposed by 
Sullivan and colleagues (Alvarez et al., 2017; Sullivan & 
Barner, 2013, 2014). For instance, mappings can be formed 
by inferential processes from prior mappings (e.g., if a set 
of 25 items was previously labeled as “20”, a set of 50 items 
would be labeled as close to “40”), or using strong associa-
tive mappings with subsets as an anchor (e.g., if a set seems 
to be composed of about 5 groups of about 4 items each, 
then the set would be labeled as “20”). Such trial-to-trial 
dependencies have been demonstrated previously using a 
nonsymbolic number-line task in which participants were 
shown an array of dots and were asked to indicate its relative 
position on a line demarcated by two sample dot arrays (e.g., 
1 and 100 dots) (Cicchini et al., 2014). Cicchini, Anobile, 
and Burr (2014) found that participants’ responses on a trial 
strongly correlated with the numerosity on the immediately 
preceding trial, which suggests that the numerosity–space 

mappings are dynamically constructed rather than retrieved 
from static representations of number on a mental number 
line. The authors propose that taking into account recent his-
tory may reflect a general strategy that optimizes estimation 
behavior (Cicchini et al., 2014). Also using a number-line 
task, but with Arabic numerals instead of dot arrays, Sul-
livan, Juhasz, Slattery, and Barth (2011) found that partici-
pants’ estimates were influenced by the numerical magnitude 
of the first number that they had to map its relative position 
to. Both of these dependence findings are consistent with 
why the base range of associative mappings may not matter 
as only a single numerosity-numeral mapping may be suf-
ficient to constrain subsequent mappings.

Nonetheless, this trial-to-trial dependence account still 
cannot account for the discontinuity in the calibration 
effects. One possibility inferred from participants’ strategy 
reports here and in previous studies (Gandini et al., 2010; 
Gandini, Lemaire, & Dufau, 2008; Luwel et al., 2005, 2003), 
as well as analyses of changes in estimation consistency 
upon calibration, is that even though participants may use 
numerosity-numeral mappings from previous trials to infer 
the mapping on the current trial, there are strategic changes 
from trial to trial that could disrupt any trial-to-trial depend-
encies. Specifically, the employment of a specific strategy 
depends partly on the set size and the configuration of the 
items in the set. Hence, from a participant’s perspective, it 
may be optimal to construct the mappings dynamically by 
considering prior mappings and employing different strate-
gies on different trials rather than rely on a single strategy.

Taken together, multiple strategies and trial-to-trial 
dependencies can account for both the discontinuity in cali-
bration effects and the so-called structural mappings respec-
tively, without the need to assume a system-level holistic map-
ping between an analog mental number line and a numeral 
response grid, or even those individual systems per se. In fact, 
based on the ad-hoc analogy-based account, it may be more 
appropriate to think of “structural mappings” as mappings 
that are dynamically manipulated from associative mappings. 
We propose that it is necessary for future studies to devise 
more direct methods to distinguish holistic “structural map-
pings” based on the response grid account and ad-hoc “struc-
tural mappings” based on the analogy-based and trial-to-trial 
dependence accounts.

Limitations

To minimize fatigue from completing hundreds of trials 
without a break, we had to strike a balance between the 
sampling range and the number of data points which we 
could collect for each numerosity. The compromise resulted 
in at most ten data points per numerosity between the uncali-
brated and calibrated conditions, which might have reduced 
the precision in estimating each participant’s base range 
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of associative mappings. The limited number of trials per 
numerosity could have led to non-significant calibration 
effects with inconclusive evidence, and, therefore, resulted 
in the observed discontinuities and an over-estimation of the 
true upper bound of the base range of associative mappings. 
However, analyses of the continuity of calibration effects 
using multiple approaches and measures suggest that the 
discontinuity was unlikely to be driven by statistical random-
ness, but meaningful variability such as strategy changes. 
Although low statistical power may cast doubts on our con-
clusion that the base range of associative mappings is not 
related to estimation performance or math competence, low 
power should largely result in a systematic over-estimation 
of the base range, which should not pose a significant prob-
lem for analyses of inter-individual differences. A related 
concern is that the lack of relation between the base range 
of associative mappings and the estimation performance 
and math measures could be due to low reliability of the 
measures considered. Although the novel measure of base 
range of associative mappings has slightly below acceptable 
split-half reliability, it has high consistency between differ-
ent computational approaches. Future research may consider 
computing the base range index using a re-calibration para-
digm (i.e., with an additional calibration condition with a 
very different calibration ratio, e.g., Izard & Dehaene, 2008). 
Nonetheless, even if such relations truly exist, our data also 
suggest that what may matter more is the total collection of 
associative mappings regardless of numerical size, rather 
than just the base range among small numbers.

Finally, although strategy reports can offer insights that 
inform theories, a delayed summative reporting format 
(about 40–60 min after completing both uncalibrated and 
calibrated conditions) might limit the specificity of data that 
we can potentially observe patterns in. Hence, we believe 
that a trial-level reporting format as employed by Gandini 
and colleagues (Gandini et al., 2010; Gandini, Lemaire, & 
Dufau, 2008) will allow future research to better construct 
a more comprehensive model of numerical estimation and 
calibration. Although skepticism about the validity of self-
reports is understandable, there were no apparent aspects of 
the study protocol that could bias the reports, and participants 
were generally capable of introspection in their open-ended 
responses. Ultimately, self-reports are one of many measure-
ment tools, and their validity depends on the research ques-
tion (Haeffel & Howard, 2010). In investigations of arithme-
tic strategy use, at least, self-reports can even be superior to 
“objective” measures (Tschentscher & Hauk, 2014, 2015), or 
even necessary for making inferences from “objective” meas-
ures such as neuroimaging measures (Grabner et al., 2009; 
Matejko & Ansari, 2019; Peters & De Smedt, 2018; Polspoel, 
Peters, Vandermosten, & De Smedt, 2017).

It is also important to note that although the current sam-
ple have standardized scores in reading and math that span a 

wide range and are normally distributed, they were centered 
slightly above average (Ms = 118–124). Hence, our findings 
may be specific to an above-average sample. It may be plau-
sible that the base range of associative mappings is related 
to estimation performance and math competence in an aver-
age or below-average sample, or even in younger popula-
tions in which the experience-based associative mappings 
are developing.

Conclusions

The quality of numerosity-numeral mappings during estima-
tion seems robustly related to procedural calculation skills. 
We tested whether having a higher base range of associative 
numerosity-numeral mappings is related to estimation per-
formance or math competence. It was not related to either, 
and is, therefore, unlikely to underlie the estimation–math 
relation. Critically, our data did not provide strong evidence 
for a holistic link between an analog mental number line 
and a symbolic response grid. We found discontinuities in 
calibration effects, suggesting either strong associative map-
pings among large numbers or weak structural links between 
the two systems. In either case, our results call into ques-
tion the existence of “holistic structural mapping” (based 
on the response-grid model) as a reliable mechanism of 
transcoding between sets of objects and numerals. We also 
found that direct retrieval of numerosity-numeral mappings 
for large numbers is likely not an essential part of partici-
pants’ strategy repertoires. Our findings, therefore, suggest 
that performing serial estimation tasks may involve taking 
into account existing or previously constructed numerosity-
numeral mappings to further construct new mappings and 
flexibly switching among strategies (e.g., based on stimulus 
characteristics).
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Appendix

Questionnaire

1. Did you notice anything unusual about the estimation tasks? [Yes/No]
a. What was unusual about the tasks? 
b. How did this unusual factor affect your performance on the last task block?

2. How confident were you with your estimates on the first block as a whole, on a scale of 0 (not at all) -
100 (extremely)?

3. Which of the following strategies did you use to estimate each set of dots during the first task block? 
(check any that apply)

a. No particular strategy that I was aware of
b. Exact counting (e.g., "I counted exactly in groups of X, and I am certain there are X dots in 

each group.")
i. What was the largest quantity that you could label with absolute confidence without 

counting?
c. Approximate counting (e.g., "I first saw one group of about X dots, a group of about Y dots, 

and another group of about Z dots. So, there were about (X + Y + Z) dots.")
d. Instinctively knew each and every quantity from memory
e. Retrieved a quantity from memory, and approximately added or subtracted from it (e.g., "I 

quickly looked at all the dots, thought it looked like there are about X or a little bit more, so I 
said slightly more than X.")

i. Are there particular quantities that you retrieved from memory?
1. Yes

a. What particular quantity (or quantities) did you retrieve from 
memory? Please list them.

2. No, I usually used the trial before as a reference quantity for the current trial
f. Used a subset of the dots as an anchor (e.g., "I counted exactly a group of X dots, or saw a 

group about X dots. Then, I estimated that there were six other similar groups, so I figured 
that there are 7X dots.")

i. Are there particular quantities that you used as an anchor set/chunk?
1. Yes

a. What particular quantity (or quantities) did you use as an anchor 
set/chunk? Please list them.

2. No, I usually used the trial before as an anchor set/chunk for the current trial
g. Others

i. Please elaborate on what strategy or strategies you used.
4. You mentioned that you used more than one strategy. Under what situations did you use each strategy 

(i.e. particular types of trials, quantities, time into the task block, etc.)?
5. Did your strategies differ between the first block and the last block of trials? [Yes/No]

a. How did your strategies differ?
6. How confident were you with your estimates on the last block as a whole, on a scale of 0 (not at all) -

100 (extremely)?
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