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Abstract— Recognizing human emotion from heartbeat infor-
mation alone is a challenging but ongoing research area. Here,
we utilize a point process model to characterize heartbeats.
We extract features from the model and train an ensemble
learner to classify these features into high/low valence, arousal,
dominance and liking classes based on subject ratings. On
average, we achieved over 60% classification accuracy which
is comparable to other methods that use a combination of
multiple types of physiological signals as opposed to only one
type of physiological signal used here. Informative features
were identified for the affective states and statistical testing
was performed to check for significant differences. From the
results we found that the ratio of low to high frequency band
power, the mean and the 10th RR-interval percentile were the
most significant features for distinguishing between low and
high levels of valence and dominance. These findings enable the
possibility of augmenting electrocardiogram or photoplethys-
mogram monitoring wearable devices with automated human
emotion recognition capabilities for mental health applications.

I. INTRODUCTION

Automated human emotion recognition has been an inter-
esting and ongoing research area involving multidisciplinary
expertise. It has been reported that over two million US citi-
zens have been diagnosed with bipolar disorder [1]. Despite
the rise in prevalence, current practices used for assessing
emotions are mainly conducted by means of basic question-
naires or are solely based on physician experience. Some
of the commonly used emotional spaces are: the discrete
emotion model proposed by Ekman [2] with six universal
emotions (happiness, surprise, anger, disgust, sadness and
fear), the two dimensional valance-arousal model by Russell
[3] which categorizes emotion according to scales of valance
and arousal, and the PAD (pleasure, arousal, and dominance)
model [4] which describes human emotions in terms of
pleasure, arousal and dominance axes.

In general, people tend to express their emotions through
the tone of their voice, gestures, posture and facial expres-
sions [5]. The usage of gesture, facial expression and speech-
based emotion detection techniques are susceptible to social
masking as they can be easily modulated/suppressed by the
subjects themselves [6]. This led to the popularity of emotion
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recognition techniques using physiological signals within
the last decade, as they originate from Autonomic Nervous
System (ANS) activity and hence cannot be triggered by
volitional control [7].

Experimental evidence has demonstrated that the analysis
of Heart Rate Variability (HRV) in both the time and fre-
quency domains can provide insight into changes associated
with emotion processing [8], [9]. The ANS is composed
of both the sympathetic and parasympathetic branches, both
of which are innervated to the heart in the sinoatrial node,
which is in charge of heart’s neuromodulation in response
to sympathetic and vagal activities [10]. An increase in
sympathetic neural activity is associated with an increase
in heart rate while a relative increase in parasympathetic
activity has the opposite effect [9]. The parasympathetic
influences are typically vagal, and manifest over the entire
HRV spectrum of the heart while the sympathetic influences
“roll off” at 0.15 Hz [8].

Recent advances in wearable devices have galvanized the
widespread use of consumer products capable of measuring
physiological signals. Such device are expected to play a
supportive role in health care, emotion recognition, and
health management applications. However, the development
of reliable health monitoring systems using commercially
available wearable devices are still in an early stage of
development [11]. While improvements in hardware such as
better sensors can increase reliability, software improvements
including better algorithms to estimate behavior would also
be essential.

In this study, we aim to implement a point process
model for heartbeats with parameters optimally chosen using
Maximum Likelihood Estimation (MLE) and the Bayesian
Information Criterion (BIC) [12]. The model is used to
extract features for characterizing different emotional states.
Photoplethysmography (PPG) signals are used here for de-
riving heart rate. HRV-based features are finally classified for
emotion recognition.

II. METHODS

A. Data

The Database for Emotion Analysis using Physiological
Signals (DEAP) is an open source data set [13] containing
multimodal physiological signals – electroencephalography
(EEG), electromyography (EMG), skin conductance, respi-
ration, PPG and body temperature. The data was recorded



from 32 healthy subjects (16 male; 16 female) while they
watched a series of music videos meant to elicit different
emotions [13]. In this study, we make use of the data from
the first 22 subjects to characterize emotions solely using
heart rate modelled as a point process. The data from the
rest of the subjects were collected from a different location
and were not used in this study.

Subjects were instructed to provide feedback on each
music video they viewed and rate them separately on valence,
arousal, dominance, liking and familiarity scales ranging
from 1-9. Due to the potential for subjective bias and
differences added due to the use of Self Assessment Scores
instead of standardized scores, we classified the trials to
belong to high/low categories of arousal, valence, dominance
and liking by imposing an inclusion criterion. The self
assessment scores for each individual were first sorted and
the 10 scores in the middle were removed to reduce the
effects of inexperience in rating and subjective bias. This
also ensured that we had an equal number of trials in the
high/low affective states. The scores on either side of this
criterion were then labeled as high or low accordingly.

B. Preprocessing

PPG signals from the DEAP dataset were first high pass
filtered at 2 Hz to remove drift. Peak detection was used to
detect the valleys of the signal and the differences between
successive peaks were calculated as RR-intervals. Missed
detections and false peaks were identified and manually
corrected before constructing the RR-intervals.

C. Point Process Modeling

We used the point process model in [14] for characterizing
heartbeat dynamics. A point process provides a mathematical
means of modeling physical activities such as heartbeats that
have homogeneous or inhomogeneous Poisson arrival times.
Assume K successive R-peak occurrences at times uk during
the observation interval (0,T ] such that 0 < u1 < u2 < · · ·<
uK ≤ T . We can define the RR-intervals as wk = uk−uk−1 and
the history term as Hk =

{
uk,wk,wk−1, . . . ,wk−p+1

}
where p

is the order for the model.
At time t > uk, the inter-arrival time for the next R-peak

can be modeled using a History Dependent Inverse Gaussian
(HDIG) density function:

f (t|Hk,θ) =

[
θp+1

2π(t−uk)3

] 1
2

× exp
{
−1

2
θp+1[t−uk−µ(Hk,θ)]

2

µ(Hk,θ)2(t−uk)

}
, (1)

where µ(Hk,θ) = θ0 + ∑
p
j=1 θ jwk− j+1 > 0 and θ =

(θ0,θ1, . . . ,θp+1).
Considering the dynamics of the parasympathetic and the

sympathetic inputs to the sinoatrial node as continuous, we
consider the parameter θ to be time-varying and use the local
maximum likelihood procedure described in [14] to track the
instantaneous RR-intervals. The parameters are updated at
each discrete time bin j∆ for j = 1, . . . ,J , where ∆ = T/J.
Here, we use ∆ = 10 ms.

D. Model Selection

BIC is one of the commonly used criterion for model
selection. We used MLE to choose the optimal order p
for each subject and the θ j estimates at each discrete time
instant. MLE and BIC were run iteratively to determine the
model order that gave the lowest BIC values.

BIC =−2log(likelihood)+K× log(N) (2)

where K is the number of parameters estimated and N is the
sample size.

E. Features

We extracted the following features from the RR-intervals
to characterize the HRV variations associated with different
emotions in each of the trials. These features were selected
as they have shown sensitivity towards emotion recognition
in prior studies.
The following were computed from the HDIG model:
Frequency domain features

1) HP (High Frequency Power): Power in 0.15 to 0.4 Hz.
2) LP (Low Frequency Power): Power in 0.04 to 0.15 Hz.
3) VLP (Very Low Frequency Power): Power < 0.04 Hz.
4) LP/HP (Power ratio): Ratio of the LP to HP
5) Total Power: The total power over the trial.

Time domain features
1) Mean RR-Interval
2) Variance of the RR-interval
3) Max RR-interval: The maximum RR-interval
4) 98 Percentile of the RR-interval
5) Min RR-interval
6) 10th Percentile of RR-interval

The following were computed from the original RR-intervals
and not from the HDIG model:

7) SDSD: Standard deviation of the successive difference
between RR-intervals.

8) RMSSD: Root mean square of the successive differ-
ence between RR-intervals.

9) pNN50: Ratio of the number of successive RR-
intervals which differ by more than 50 ms by the total
number of RR-intervals.

Complexity feature
1) Sample Entropy: Complexity measure used to indicate

the regularity of the signal [15].
All the features were z-scored for each individual for the
remainder of the analysis.

F. Statistical Testing

Initially the mean values of individual features for each
subgroup (low valence, high valence, low arousal, high
arousal, low dominance, high dominance, low liking, high
liking) was computer for each subject. Then, the normality
of the distribution of these mean values from all the subjects
was assessed using one-sample Kolmogorov-Smirnov test.
Since most of them did not satisfy the normality assumption,
a non-parametric paired statistical test was performed using



the Wilcoxon signed rank test, on all features. The mean
feature value during high emotional state trials were paired
with the corresponding values during the low emotional
trials. A p-value < 0.05 was considered to be statistically
significant.

G. Classification and Feature Learning

We implemented ensemble learning using the fitcensem-
ble function in Matlab 2018b (MathWorks, Inc., Natick,
Massachusetts, United States), to classify the HRV features
based on the emotion scores (each for valence, arousal,
dominance, liking). Bootstrap aggregation that bags tree-
stump based weak learners were used for learning. Multiple
bootstrapped replicas are selected randomly from the data
with repetition and these are used to grow decision trees. The
average response of the prediction from all the trees gives
the final prediction. Using such tree-based bagging methods
also allows for understanding the importance of the features
used in the model according to the change in risk/impurity
associated with the split on each feature. The Predictor
Importance function in Matlab was used to compute this
estimate for each feature.

We used both subject-specific and subject-independent
models. The latter model was trained on the pooled data
from all the subjects whereas the former was trained for each
subject individually, to fine tune for each subject. Five-fold
cross validation was performed to report the accuracy.

III. RESULTS

A. Goodness of Fit

We estimated the optimal order (9.63 ± 1.84 across
subjects) of the inverse Gaussian model for each individual
subject by systematically increasing the model order from 2
to 15 and selecting the one that yielded the least value for
BIC. This model order was then kept fixed for each subject,
independent of the trial.

B. Statistical Testing

The features which exhibited statistically significantly
differences between the groups at a significance level of 0.05
were identified and are shown Fig. 1. For arousal and liking,
no feature showed a significant difference between the high
vs. low classes. Low frequency band power, the ratio of band
powers and the total power were statistically significantly
different in the frequency domain for valence whereas no
frequency domain feature seemed to be significantly different
for high vs. low dominance. The mean and 10th RR-interval
percentile were the significant time domain features for
both valence and dominance classification. The dominance
condition also showed significant difference for the 90th RR-
interval percentile.

C. Classification and Feature Learning

The 5-fold cross validated accuracy for the ensemble
learners is summarized in Table I. The model was able to
discriminate between high and low valence and dominance
better than for arousal and liking when data from all the

subjects were combined. However, for the subject-specific
models, predicting based on arousal rating yielded the high-
est accuracy.

TABLE I
CROSS VALIDATION ACCURACY OF CLASSIFIERS: ALL VALUES ARE IN %

Classifier Valence Dominance Arousal Liking
Subject independent 57.57 55.45 51.96 52.72
Subject specific (mean) 63.2 64.1 66.5 63.8
Subject specific (max) 70.2 70.6 76.7 71.1

Fig. 1 shows an example of the most informative features
for valence and dominance. The arousal and liking groups
are not considered as we did not find any feature that showed
a statistically significant difference across the high/low con-
ditions. For valence, band power ratio and the lowest 10th

RR-interval percentile are the most relevant features. For
dominance, the mean RR-interval and the 90th RR-interval
percentile are the two most relevant features.

Fig. 1. Feature learning. a)distribution of the paired differences in features
between high and low emotional states; *statistical significance at p < 0.05.
b) estimated feature importance scores (subject independent classifier)

D. Continuous Monitoring of Important Features over Trials

Based on the statistical and the feature importance analy-
sis, the ratio of band power, mean and extreme values of the
RR-intervals during the trial were the most relevant features
to discriminate between levels of valence and dominance.
We then observed the change in these features for one of the
subjects who yielded more than 65% accuracy on both va-
lence and dominance classification. We can see that the from
Fig.2, ratio is lower in the low valence/dominance condition
compared to the higher rating conditions in general. Simi-
larly the mean HR is lower in the high valence/dominance
compared to lower rated trials. For instance, the mean RR-
intervals increase with a reduction in dominance rating for
the first 3 trials in dominance.

IV. DISCUSSION

In the original DEAP paper, Koelstra et al. [13] reported
an overall F1 score of 60.8% for valence, 53.3 % for arousal
and 53.8% for liking. However, they used all the peripheral



Fig. 2. Continuous monitoring of band power ratio and RR-intervals during the first half of the experiment for subject 18; the colored blocks represents
different trials and the intensity corresponds to the emotion ratings.

signals (skin conductance, PPG, EMG, temperature and
respiration) for the classifier. In this study, we were able to
distinguish between different levels of emotion solely using
heartbeat dynamics. We also identified that the ratio of band
power is a key feature in differentiating between levels of
valence. This is in agreement with prior studies that showed
a similar relationship [16], [8]. Similarly, mean RR-interval
and the 10th RR-interval percentile is found to be lower
in the high valence/dominance class suggesting that heart
rate generally higher in such conditions. All the statistically
significantly different features were identified as relevant
features by the ensemble learner as well. At the same time,
none of the features which gave the least or no importance
were statistically different either. Similar to [13], we had a
higher accuracy in classifying valence. We feel the model
accuracy might have suffered due to the use of subjective
ratings in the study, which might make it hard to compare
across subjects and might be prone to subjective bias and
inexperience.

In conclusion, we were able to distinguish between high
and low levels of valence and dominance using only heart-
beat dynamics. An HDIG model optimized using MLE
and BIC for each subject was used to characterize RR-
intervals. We identified relevant features for identifying levels
of emotion, which is in agreement with prior literature as
well. Performing non-parametric paired statistical tests, we
found that these features were indeed statistically different.
Future work would involve incorporating EEG features for
improving classification accuracy. Examining physiological
signal changes in additional scenarios (e.g. art, dance and
drama) that evoke different emotions would be yet another
direction of research.
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