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Abstract: Two graph theoretic concepts—clique and bipartite graphs—are explored to identify the 
network biomarkers for cancer at the gene network level. The rationale is that a group of genes work 
together by forming a cluster or a clique-like structures to initiate a cancer. After initiation, the disease 
signal goes to the next group of genes related to the second stage of a cancer, which can be represented 
as a bipartite graph. In other words, bipartite graphs represent the cross-talk among the genes 
between two disease stages. To prove this hypothesis, gene expression values for three cancers— 
breast invasive carcinoma (BRCA), colorectal adenocarcinoma (COAD) and glioblastoma multiforme 
(GBM)—are used for analysis. First, a co-expression gene network is generated with highly correlated 
gene pairs with a Pearson correlation coefficient ≥ 0.9. Second, clique structures of all sizes are isolated 
from the co-expression network. Then combining these cliques, three different biomarker modules 
are developed—maximal clique-like modules, 2-clique-1-bipartite modules, and 3-clique-2-bipartite 
modules. The list of biomarker genes discovered from these network modules are validated as the 
essential genes for causing a cancer in terms of network properties and survival analysis. This list of 
biomarker genes will help biologists to design wet lab experiments for further elucidating the 
complex mechanism of cancer. 

Keywords: bipartite graph; clique; network biomarker; Pearson correlation coefficient (PCC); gene 
co-expression network 

 

1. Introduction 

The present work is motivated by the prospective applications of protein-protein interaction 
(PPI) networks to diseases and other dynamic processes. Ideker and Sharan [1] enumerated four 
different applications of protein networks to diseases: i) identifying new disease genes, ii) studying 
the network properties of disease genes, iii) classifying diseases based on protein network, and iv) 
identifying disease-related subnetworks. Genome-wide PPI networks come with rich information 
about the dynamic processes such as the behavior of genetic networks in response to DNA damage 
[2] and exposure to arsenic [3], the prediction of protein function [4], genetic interaction [5], protein 
subcellular localization [6–11], the process of aging [12], and protein network biomarkers [13–15]. 

One of the widely used methods for elucidating biomarkers for diseases is through protein-protein 
interaction (PPI) or gene co-expression networks based on “guilt by association” concept. In a gene co-
expression network, nodes represent the genes and edges represent the connection between genes 
due to significantly similar expression patterns over different samples. Several methods exist for 
inferring edges in gene networks. Pearson correlation is one of the most common co-expression 
measures employed in various studies [16,17]. Another common method, Mutual Information (MI) 
[18] is an information theoretic measure for measuring nonlinear relationship between genes or other 
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variables. A threshold is applied after constructing the co-expression network to retain the most 
biologically significant correlations between genes. 

The main purpose of analyzing gene co-expression networks is to identify the biologically 
significant modules consist of groups of genes with dense interactions. Usually, highly connected 
groups have a higher within-group homogeneity and can be considered as biologically significant 
modules performing a common task, such as shared regulatory inputs or functional pathways. 
Clustering is a popular method for finding relevant modules from gene co-expression networks. 
Weighted Gene Correlation Network Analysis (WGCNA) is the most widely used package for 
module finding [19] which applies hierarchical clustering to find modules. It applies a soft threshold 
during construction of a gene co-expression network. Several researchers have identified key 
differentially expressed genes associated with different cancers, such as breast, cervical, colon, 
esophageal, osteosarcoma and ovarian cancers [20–26], using WGCNA. 

Lui et al. [27] used differential entropy technique to identify key genes in diabetes using rat’s 
time-series gene expression data from case and control samples. Guan et al. [28], developed a 
prediction model using Bayes discriminant method to predict the prognosis of hepatocellular 
carcinoma based on gene co-expression network. 

Graph theoretic methods are also applied for analysis of gene co-expression networks. Shi et.al. 
[29], proposed an algorithm named Iterative clique enumeration technique (ICE) to discover 
relatively independent maximal cliques for breast cancer on GEO dataset and found some highly 
correlated modules that may indicate the tumor grades. Similarly, Perkins et al. used spectral graph 
theory on Homo sapiens and Saccharomyces cerevisiae microarray data for clustering at various 
thresholds [30]. Zhang et al. [31], discovered the top five hub genes for bladder cancer using the 
centrality analysis method. 

None of the previous studies used clique and bipartite combination to identify the biologically 
significant modules. The main goal of this paper is to explore the existence of clique-bipartite-like 
network modules in actual gene network for cancer. Mondal et al. [32] showed that clique-like 
structures and bipartite graphs could be the building blocks for disease progression, Figure 2 in [32]. 
The rationale is that a group of proteins or genes work together by forming a network (a clique-like 
structure) to accomplish a specific function, which could be related to a disease stage [32] and 
bipartite structure represents the cross-talk among genes between two disease stages. 

In this study, gene co-expression network was constructed using highly correlated gene pairs 
with PCC ≥ 0.9. Three network modules—maximal clique-like graph, 2-clique-1-bipartite graph, and 
3-clique-2-bipartite graph—are identified. Finally, the effectiveness of the key genes discovered from 
these network modules was validated using pathway and survival analyses. 

2. Results 

Three different types of cancers—breast invasive carcinoma (BRCA), colorectal adenocarcinoma 
(COAD), and glioblastoma multiforme (GBM)—are considered in the present study to identify network 
biomarkers. Gene correlation networks based on gene expression profiles of BRCA (20,155 genes for 
1093 samples), COAD (19,828 genes for 379 samples), and GBM (19,660 genes for 153 samples) are 
developed with highly correlated gene pairs (PCC ≥ 0.9). From these networks, three types of gene 
network modules, considered as network biomarkers, are isolated: i) Single clique-like module based 
on maximal cliques named as “maximal clique-like” module, ii) clique-bipartite-like modules with 
two cliques and one bipartite graph named as “2-clique-1-bipartite” modules, which are discovered 
based on two cliques connected with maximum number of inter-clique connections, and iii) clique-
bipartite-like modules with three cliques (A, B, C) and two bipartite graphs (A-B and B-C) named as 
“3-clique-2-bipartite” modules, which are discovered based on two bipartite graphs having relatively 
more edges compare to others. 

This section is organized in following subsections: 2.1—results with the topology of gene co-
expression networks; 2.2—results with cliques and maximal clique-like modules; 2.3—results with 2-
clique-1-bipartite modules; and 2.4—results with 3-clique-2-bipartite modules. 
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2.1. Topology of Gene Co-Expression Networks 

Table 1 shows the topology of gene co-expression networks for three cancers—BRCA, COAD, 
and GBM—generated using gene pairs with PCC ≥ 0.9. The network for COAD is the largest and 
densest composed of 607 genes and 3651 interactions with an average degree of 12. The network for 
BRCA is the smallest composed of 380 genes and 1034 interactions, which is a sparse network with 
an average degree of 5.4. The network for GBM is the sparsest with an average degree of 4.9. 

Table 1. Topology of gene co-expression network with PCC > 0.9. 

Cancer Name # Of Genes # Of Edges Max Degree Min Degree Avg Degree 
BRCA 380 1034 39 1 5.4 
COAD 607 3651 75 1 12.0 
GBM 506 1243 49 1 4.9 

2.2. Cliques and Maximal Clique-Like Modules 

NetworkX [33], a python package, was used to discover cliques of all possible sizes. The total 
number of cliques are 209, 1535, and 322 for BRCA, COAD, and GBM, respectively. The size of cliques 
and the corresponding number of cliques (frequency) for each cancer are presented in Supplementary 
Table S1. It is clear from this table that small-sized cliques (3-node, 4-node, etc.) appear more than the 
cliques of larger size, as expected. The gene co-expression networks for BRCA, COAD, and GBM 
have 3, 10, and 6 maximal cliques with 17, 19, and 11 genes, respectively, Supplementary Table S1. 

For a particular cancer, most of the genes in maximal cliques are in common, Supplementary 
Table S2. Thus, it is better to combine the maximal cliques for a cancer to have a single maximal 
clique-like module for further analysis. The maximal clique-like modules for three cancers—BRCA, 
COAD, and GBM—are shown in Supplementary Figure S1. Finally, the maximal clique-like modules 
have 19, 30, and 14 genes for BRCA, COAD, and GBM, respectively, as shown in Table 2. Based on 
these modules, COAD and GBM cancers share six genes—CD4, HCK, ITGB2, LAIR1, LAPTM5, and 
SPI1. However, BRCA does not share any genes with the other two cancers. It can be concluded from 
the maximal clique-like modules that BRCA cancer has a unique behavior which is different from 
COAD and GBM, whereas COAD and GBM might have some common characteristics. 

Table 2. List of genes in maximal clique-like modules for three Cancers—BRCA, COAD, and GBM. 

Cancer List of genes in maximal clique-like modules 

BRCA 
CD2, CD247, CD3D, CD3E, CD5, CD96, CXCR3, IL2RG, LCK, LY9, PTPN7, SH2D1A, 

SIRPG, SIT1, SLA2, SLAMF1, SLAMF6, TBX21, UBASH3A 

COAD 
C1QB, C1QC, C3AR1, CD300A, CD4, CD53, CD86, CLEC7A, CSF1R, CYBB, CYTH4, 
DOK2, FCER1G, FPR3, HAVCR2, HCK, ITGB2, LAIR1, LAPTM5, LILRB1, LILRB4, 

LRRC25, MS4A4A, PDCD1LG2, SIGLEC7, SIGLEC9, SLAMF8, SPI1, TFEC, TYROBP 

GBM 
ALOX5, CD4, FERMT3, HCK, ITGB2, LAIR1, LAPTM5, NCKAP1L, PTPN6, SASH3, 

SPI1, STXBP2, VAV1, WAS 

2.3. 2-clique-1-Bipartite Modules 

Figure 1 shows clique-bipartite-like modules composed of two cliques and one bipartite graph 
for BRCA, COAD, and GBM. The nodes in two cliques are represented by yellow (Clique-1) and gray 
(Clique-2) colors. Intra-clique connections are blue and inter-clique connections, forming a bipartite 
graph, are red. In identifying clique-to-clique connections, it is made sure that the two cliques do not 
have any gene in common. Finding the interconnected cliques is a combinatorial problem. Usually, 
cliques or cluster of genes representing different stages of a disease are more likely to have cross-talks 
or interconnections between two cliques. Bipartite graphs between genes of two stages represent the 
cross-talks. This study focuses on identifying cliques with maximal connections (cross-talks) only. 
There are 59, 145, and 44 edges that are connecting two cliques in Figure 1a–c, which are the highest 
in three respective cancers. 
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Figure 1. Clique-bipartite-like modules with maximal interconnections between two cliques. (a) 
BRCA; (b) COAD; and (c) GBM. Nodes in Clique-1 are yellow and nodes in Clique-2 are grey colored. 
Intra-clique connections are blue and inter-clique connections (a bipartite graph) are red. 

Table 3 shows the list of genes discovered from these clique-bipartite-like modules. Based on 
these modules, COAD and GBM cancers share many genes in common. The common genes—in 
clique1 for both cancers are HCK, ITGB2, LAIR1, and LRRC25, and for clique2 are CD4, CD53, 
LILRB1, NCKAP1L, and SPI1. LAPTM5 is the only common gene between clique1 of GBM and 
clique2 of COAD. On the other hand, BRCA does not share any gene in common. It can be concluded 
from 2-clique-1-bipartite modules that BRCA cancer has unique behavior, which is different from 
COAD and GBM cancers, whereas COAD and GBM might have some common characteristics. 

Table 3. List of genes in 2-clique-1-bipartite modules. 

 BRCA COAD GBM 

Clique1 

CCL5, CD2, CD247, 
CD3D, CD3E, CXCR3, 

GZMA, IL2RG, 
SIRPG, SLA2, TBX21 

 

C1QB, C1QC, C3AR1, 
CD163, CLEC7A, 

CMKLR1, CSF1R, FPR3, 
HCK, ITGB2, LAIR1, 

LILRB2, LRRC25, 
SIGLEC7, SLAMF8, TLR8 

CD68, FERMT3, HCK, 
ITGB2, LAIR1, 

LAPTM5, LRRC25, 
SIGLEC9 

 

Clique2 

BTLA, ITK, LY9, 
PYHIN1, SH2D1A, 
SLAMF1, SLAMF6, 

TRAT1, ZNF831 
 

CD4, CD53, CD86, 
CYBB, CYTH4, 
DOCK2, DOK2, 
LAPTM5, LCP2, 

LILRB1, NCKAP1L, 
SLA, SPI1 

 

 

CD4, CD53, LILRB4, 
NCKAP1L, PTPN6, 
SASH3, SPI1, VAV1 

2.4. 3-Clique-2-Bipartite Modules 

The top three modules of 3-clique-2-bipartite from each cancer are considered for further 
analysis. Table 4 summarizes these modules in terms of clique size and the number of inter-clique 
connections. For example, BRCA-Module1 consists of three cliques of 13, seven, and four genes 
connected by two bipartite graphs of 56 and 13 connections. 

Table 4. Summary statistics of 3-clique-2-bipartite modules. 

 Clique-A Clique-B Clique-C 
Connections 

A-B 
Connections 

B-C 
BRCA-Module1  13 7 4 56 13 
BRCA-Module2 11 7 4 35 10 
BRCA-Module3 8 6 6 8 18 
COAD-Module1 16 14 7 85 53 
COAD-Module2 16 14 6 111 51 
COAD-Module3 16 12 7 69 40 
GBM-Module1 9 9 5 30 19 
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GBM-Module2 9 7 6 22 23 
GBM-Module3 9 7 4 36 14 

Figure 2 shows the top three 3-clique-2Clique-2-bipartite modules for BRCA. Modules for 
COAD and GBM are shown in Figure S2. The nodes in three cliques are represented by yellow 
(clique-A), grey (clique-B) and orange (clique-C) colors. Intra-clique edges are colored blue and inter-
clique edges are colored red. 

 

Figure 2. Top three 3-clique-2-bipartite modules for BRCA. Yellow nodes: Clique-A, gray nodes: 
Clique-B, Orange nodes: Clique-C. Blue: Intra-clique edges, Red: Inter-clique edges. (a) Cliques A, B, 
and C have 13, 7, and 4 nodes respectively. There are 56 connecting edges between cliques A and B 
and 13 connecting edges between cliques B and C.; (b) Cliques A, B, and C have 11, 7, and 4 nodes 
respectively. There are 35 connecting edges between cliques A and B and 10 connecting edges between 
cliques B and C.; (c) Cliques A, B, and C have 8, 6, and 6 nodes respectively. There are 8 connecting 
edges between cliques A and B and 18 connecting edges between cliques B and C. 

The complete lists of genes that are present in each of the top three 3-clique-2-bipartite modules 
for BRCA, COAD, and GBM are presented in Supplementary Table S3. Observation of these list 
reveals that there are many genes in common in three modules of a particular cancer. Table 5 shows 
the combined list—44, 48, and 32 genes for BRCA, COAD, and GBM respectively. Three cancers share 
four genes—CD53, DOCK2, IKZF1, and NCKAP1L. Other than these four genes, BRCA and COAD 
share three more genes—ITK, PTPRC, and TBC1D10C; COAD and GBM share 10 more genes—
ARHGAP30, CD4, CD86, CSF1R, HCK, ITGB2, LAIR1, LAPTM5, SASH3, and SPI; and BRCA and 
GBM do not share any more genes. Thus, BRCA and COAD share a total of seven genes; COAD and 
GBM share a total of 14 genes; and BRCA and GBM share only four genes. Again, based on 3-clique-
bipapartite modules, COAD and GBM shares many genes, which means that they might have some 
common cause for cancer development. These lists of common genes might provide better insight 
from lab experiments. 

Table 5. Combined list of genes from top three 3-clique-2 bipartite modules. 

 List of genes 

BRCA-
Modules 

ACAP1, CCL5, CD2, CD247, CD3D, CD3E, CD3G, CD5, CD53, CD96, CXCR3, 
CXCR6, DOCK2, EVI2B, FYB, GZMA, GZMM, IKZF1, IL2RG, ITK, LCP2, LY9, 

NCKAP1L, PLEK, PRF1, PRKCB, PTPRC, PTPRCAP, PYHIN1, S1PR4, SH2D1A, 
SIRPG, SIT1, SLA2, SLAMF1, SLAMF6, SPN, TBC1D10C, TBX21, THEMIS, TRAT1, 

UBASH3A, ZAP70, ZNF831 

COAD-
Modules 

APBB1IP, ARHGAP30, ARHGAP9, BTK, C3AR1, CD163, CD4, CD53, CD84, CD86, 
CLEC7A, CSF1R, CYBB, CYTH4, DOCK10, DOCK2, FPR3, HAVCR2, HCK, HCLS1, 

IKZF1, IL10RA, ITGAL, ITGB2, ITK, KLHL6, LAIR1, LAPTM5, LILRB1, LILRB4, 
LRRC25, MAP4K1, MNDA, MYO1G, NCKAP1L, PIK3R5, PTPRC, RASAL3, SASH3, 

SIGLEC7, SIGLEC9, SIRPB2, SLA, SLAMF8, SPI1, TBC1D10C, TRAF3IP3, WAS 

GBM-
Modules 

ARHGAP30, ARL11, C1QA, C1QB, C1QC, CD33, CD4, CD53, CD68, CD86, CSF1R, 
DOCK2, DOCK8, FCER1G, FCGR3A, FERMT3, HCK, IKZF1, ITGB2, LAIR1, 

LAPTM5, MYO1F, NCF4, NCKAP1L, PLCG2, SASH3, SPI1, STXBP2, SYK, TYROBP, 
VAMP8, VAV1 
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3. Discussion 

This section discusses the validation of key genes related to three cancers—BRCA, COAD, and 
GBM—discovered from three network modules—maximal clique-like modules, 2-clique-1-bipartite 
modules, and 3-clique-2-bipartite modules. First, since the key genes are discovered via network 
modules, this paper used a network-based app, CytoHubba [34] for validation. The app, CytoHubba, 
is capable of ranking genes in a network using 12 different graph-theoretic algorithms. The reason 
for using CytoHubba is that it produces successful results in predicting essential proteins from the 
yeast protein-protein interaction network [34]. Similarly, in a cancer gene co-expression network, the 
genes that cause cancer can be thought of as the essential genes for causing that cancer and most 
likely will have the similar network properties as essential proteins in PPI network. Second, a survival 
analysis is conducted to show the effectiveness of the key genes discovered using network modules. 
Finally, pathway and GO term enrichment analyses are conducted for the key genes. 

3.1. Validation Using CytoHubba 

Figure 3 shows the validation process using two validation metrics—Top 20 genes and Top 50 
genes—developed using CytoHubba. The original or base gene network (network created with PCC ≥ 
0.9) are analyzed using 12 scoring methods—betweenness, bottleneck, closeness, clustering coefficient 
(CC), degree, density of maximum neighborhood component (DMNC), eccentricity (EcC), edge 
percolated component (EPC), maximal clique centrality (MCC), maximum neighborhood component 
(MNC), radiality, and stress—of CytoHubba to create the list of genes as the benchmark for validation. 

Metric-1 (Top-20 Genes): First, Top-20 genes are taken from each of the 12 scoring methods. 
Then, the genes that appear in two or more scoring methods are considered as the benchmark for 
validation. The benchmarks for BRCA, COAD, and GBM cancers consist of 41, 53, and 42 genes, 
respectively, see Supplementary Table S4. 

 
Figure 3. Validation process using two metrics. Metric-1: Top-20 genes from 12 scoring methods of 
CytoHubba; Metric-2: Top-50 genes from 12 scoring methods of CytoHubba. 

Metric-2 (Top-50 Genes): Similarly, Top-50 genes are taken from each of the 12 scoring methods. 
Then, the genes that appear in two or more scoring methods are considered as the benchmark for 
validation. The benchmarks for BRCA, COAD, and GBM cancers consist of 92, 130, and 99 genes 
respectively, see Supplementary Table S4. 

Table 6 shows the number of key genes obtained by combining the unique genes from three 
modules and the number of these key genes validated by metric-1 and metric-2. For example, 47 key 
genes were discovered from three network modules of BRCA. These 47 key genes were then 
compared with the benchmark genes in metric-1 and metric-2. Out of 47 key genes, 26 and 45 genes 
were found to be common in metric-1 and metric-2, respectively. This validation supports that the 
list of genes discovered using three modules—maximal clique-like modules, 2-clique-1-bipartite 
modules, and 3-clique-2-bipartite modules—are essential genes for causing a cancer. This also 
supports the proposed hypotheses that there exist clique-like and clique-bipartite-like structures, 
which can be considered as network biomarkers for cancers. 
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Table 6. Summary of validation. 

Dataset. 
Key 

Genes 
Keys Genes Common with 
Metric-1 Metric-2 

BRCA 47 26 45 
COAD 61 23 53 
GBM 38 25 36 

3.2. Survival Analysis 

Cox proportional hazard regression [35], a semi-parametric method was used for calculating the 
Cox coefficients of the key genes (Supplemental Table S5). It can adjust survival rate estimation to 
quantify the effect to predictor variables, which are key genes in the present study. The clinical data 
of cancer patients (obtained from TCGA) were divided into two equal groups such that each group 
had the same ratio of dead and alive. One of the groups were used as training set for calculation of 
Cox coefficients of the key genes. Then, the prognostic risk of each patient in the test set was 
calculated based on the expression values of key genes using the gene expression grade index (GGI) 
[36]. The following equation calculates the risk: 

GGI Risk Score = ∑𝑥௜ − ∑𝑦௜  

where, 𝑥௜  and 𝑦௜  are the expression level of genes with positive and negative cox coefficient. 
According to GGI risk score, patients in the test were divided into two groups, as high and low 

risk groups. The patients with a top 50% GGI risk score are in the high-risk group and others are in the 
low-risk group. Then a log-rank test was performed to see if there are significant difference in the real 
survival risks between the two groups. 

The survival analysis of key genes of three cancers is shown in Figure 4. It is clear from this 
figure that the key genes of BRCA, COAD, and GBM are capable of distinguishing between cancer 
patients in terms of survival in the respective cancers. The log rank p-values between high-risk and 
low-risk groups were 0.0411, 0.0100, and 0.0171. Log-rank p-values below 0.05 means there is a 
significant difference between the two groups in consideration. The hazard ratios between high-risk 
groups and low-risk groups are 1.6478, 2.1627, and 1.6569 for cancer patients of BRCA, COAD, and 
GBM. This means, for example, high-risk groups of COAD patients are 2.1627 more likely to die than 
low-risk patients. 

 

Figure 4. Survival Analysis in data sets of BRCA (a), COAD (b), and GBM (c) cancer patients, using 
their respective key genes as prognostic factors. The Kaplan–Meyer curve in blue is for the low-risk 
group and in orange for the high-risk group. The shaded blue and orange regions around their 
respective lines indicate the confidence interval. The y-axis is the probability of survival and the x-
axis is the duration in days. 
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3.3. Pathway and Gene Ontology Enrichment of Key Genes 

The pathway and Gene Ontology (GO) enrichment analyses are also performed for validation 
of key genes (List of key genes can be found in Supplementary Table S5). Pathway analysis was 
performed in ReactomeFIViz [37], a Cytoscape app. The false discovery rate (FDR) was calculated 
based on P-values using Benjamini–Hochberg method. The top ten pathways enriched in three 
cancers were compared. The pathways enriched in at least two cancers is listed in Supplementary 
Table S6. TCR signaling in -ve CD4+ T cells is enriched in all three cancers. There are five other 
pathways- Neutrophil degranulation, Osteoclast differentiation, Staphylococcus aureus infection, 
Natural killer cell mediated cytotoxicity and Fc gamma R-mediated phagocytosis are enriched in both 
COAD and GBM. This may be due to genes in common between COAD and GBM in maximal clique-
like modules and 2-clique-1 bipartite modules. BRCA showed unique behavior in both modules. In 
3-clique-2-bipartite module, BRCA had three genes in common with other two cancers and three 
more in common with COAD. The pathway T cell receptor signaling pathway is the only pathway 
enriched in both BRCA and GBM. In all three modules, COAD and GBM shared the same number 
genes. This is further observed in the enriched pathways they share in common. 

A Cytoscape app, BiNGO [38] was used for GO enrichment analysis in three categories- 
biological process (BP), cellular component (CC), and molecular function (MF). BiNGO uses the 
Benjamini and Hochberg (false discovery rate) statistical method for multiple testing correction. The 
top ten enriched GO terms in three cancers were compared. GO terms common in at least two cancers 
are listed in Supplementary Table S7. 

The biological processes enriched in all three cancers are Immune system process, regulation of 
immune system process, positive regulation of immune system, and T cell activation. Three more 
biological processes are enriched in both BRCA and GBM, and two more are in COAD and GBM. 
Most of the common enriched BPs are related to immune system. It is an accepted fact that immune 
cells have the ability to influence cancer [39]. This is another validation of the key genes discovered 
in the present study. 

There are five cellular components enriched in all three cancers—plasma membrane, plasma 
membrane part, integral to plasma membrane, intrinsic to plasma membrane, and receptor complex. 
The dysregulation of the structural integrity of plasma membrane or its domain is known to promote 
oncogenic signaling [40]. Three other pathways—T cell receptor complex, membrane, and cell 
surface—are enriched in at least two of three cancers. 

The three molecular functions enriched in all three cancers are molecular transducer activity, 
signal transducer activity, and protein binding. Two other molecular functions—GTPase regulatory 
activity and nucleoside-triphosphatase regulator activity—are enriched in COAD and GBM while 
receptor activity and non-membrane spanning protein tyrosine kinase are enriched in BRCA and 
COAD. 

3.4. Future Direction 

This study discovers key genes related to cancers from gene co-expression networks. There are 
three epigenetic factors that drive the cancer via gene expression of cancer genes, which are: i) DNA 
methylation, ii) histone modification, and iii) miRNA dysregulation. Future study will be conducted 
to determine how these three epigenetic factors are related to the genes discovered in this study. A 
study will be conducted for further analysis of the clique-like disease progression to identify the core 
clique, which could be a clique of three or more genes, for initiating a cancer utilizing the information 
from three epigenetic factors. Finally, we will explore how the core clique expands to a maximal 
clique-like structure in the final stage of a cancer. 
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4. Materials and Methods 

4.1. Dataset Preparation 

Gene expression data for BRCA, COAD, and GBM are obtained from LinkedOmics [41]. The 
datasets consist of gene expression values of 20155 genes for 1093 samples, 19,828 genes for 379 
samples, and 19,660 genes for 153 samples, respectively, for BRCA, COAD, and GBM as mentioned 
in Table 7. In these datasets, all samples are cancer patients. 

Table 7. Summary of gene expression data for BRCA, COAD, and GBM. 

Cancer  No of Genes No of Samples 
Reduced no of 

genes 
Breast invasive carcinoma (BRCA) 20,155 1093 16,011 

Colorectal adenocarcinoma (COAD) 19,828 379 15,769 
Glioblastoma multiforme (GBM) 19,660 153 16,186 

The missing values were imputed using the fancyimpute package in Python employing the k-
nearest neighbors algorithm. The number of genes in the reduced datasets are 16,011, 15,769, and 
16,186, respectively, for BRCA, COAD, and GBM. For the present study, highly correlated positive 
gene pairs, PCC ≥ 0.9 in each cancer are considered for creating the base networks for further analysis. 

4.2. Method to Identify Clique and Clique-Bipartite-Like Modules 

To discover the cluster of genes or cliques and how they are connected to each other by forming 
bipartite graphs, Python package NetworkX [33] is used. First, list of cliques with different sizes are 
discovered. Then, using the list of cliques and the original network (network created with PCC ≥ 0.9), 
three types of gene network modules, considered as network biomarkers, are discovered—i) maximal 
clique-like modules, ii) 2-clique-1Clique-1-bipartite modules, and iii) 3-clique-2Clique-2-bipartite 
modules. 

Maximal clique-like module: The discovered cliques are organized in a list based on their size 
and frequency of occurrence. From the sorted list, the size and number of maximal (largest) cliques 
in each cancer are found and then combined together to get the maximal clique-like module. This 
process generates a single maximal clique-like module for each cancer. 

2-Clique-1-bipartite module: These are clique-bipartite-like modules with two cliques and one 
bipartite graph, which are discovered based on two cliques connected with maximum number of 
inter-clique connections.  

3-Clique-2-bipartite module: With the list of cliques and the original network (network created 
with PCC ≥ 0.9), a list of three connected cliques A, B, and C is generated in a way such that clique A 
is connected to clique B and clique B is connected to clique C, but cliques A, B, and C do not have any 
common genes. This process takes longer than usual because of the high number of cliques and the 
problem is combinatorial in nature. Every combination of three cliques is being checked to see 
whether it fulfills the condition. These modules are identified by first sorting the list by number of 
edges connecting cliques A and B and then sorting by number of edges connecting cliques B and C. 
It is observed that if one of the edge-count (between cliques A and B) has the highest value then the 
other edge-count (between cliques B and C) has very low value. Finally, from the sorted list, 
structures having both the edge-counts higher than others are selected as the possible network 
modules for a cancer. The top three structures from each cancer are considered for further analysis. 

5. Conclusions 

This paper used two graph theoretic concepts—clique and bipartite graphs—to identify the 
network biomarkers for cancer from gene co-expression networks developed with highly correlated 
gene pairs. The gene expression profiles of three cancers—BRCA, COAD, and GBM—are considered 
for experiment. Results show that three types of network modules—maximal clique-like, 2-clique-1-
bipartite, and 3-clique-2-bipartite graphs—derived using the simple graph theoretic concepts clique 
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and bipartite graph are capable of representing cancer dynamics at the gene network level. The 
combined list of genes from three network modules for a particular cancer are validated with the 
benchmark developed from a network-based tools CytoHubba. The effectiveness of the key genes is 
also validated by survival and pathway analyses. 

The discovered gene network modules provide a short list of genes related to cancer that can be 
used by the biologist to design wet lab experiment for further elucidation of the complex mechanism 
of cancer. 

Supplementary Materials: The following are available online at www.mdpi.com/2306-5729/4/2/81/s1; Figure S1. 
Maximal clique-like modules; Figure S2. Top three 3-clique-2-bipartite modules for COAD and GBM; Table S1. 
Frequency of cliques according to sizes; Table S2. List of genes in maximal cliques; Table S3. List of genes for 
top three 3-clique-2-bipartite modules; Table S4. List of benchmark genes in top-20 and top-50 metrics; Table 
S5. List of genes combining three network modules; Table S6. Enriched pathways with key genes; Table S7. GO 
term enrichment analysis. 
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