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Abstract—Long noncoding RNA (lncRNA) plays key roles in
tumorigenesis. Misexpression of lncRNA can lead to changes in
expression profiles of various target genes, which are involved in
cancer initiation and progression. So, identifying key lncRNAs
for a cancer would help develop the cancer therapy. Usually,
to identify key lncRNAs for a cancer, expression profiles of
lncRNAs for normal and cancer samples are required. But, this
kind of data are not available for all cancers. In the present
study, a computational framework is developed to identify cancer
specific key lncRNAs using the lncRNA expression of cancer
patients only. The framework consists of two state-of-the-art
feature selection techniques - Recursive Feature Elimination
(RFE) and Least Absolute Shrinkage and Selection Operator
(LASSO); and five machine learning models - Naive Bayes,
K-Nearest Neighbor, Random Forest, Support Vector Machine,
and Deep Neural Network. For experiment, expression values of
lncRNAs for 8 cancers - BLCA, CESC, COAD, HNSC, KIRP,
LGG, LIHC, and LUAD - from TCGA are used. The combined
dataset consists of 3,656 patients with expression values of 12,309
lncRNAs. Important features or key lncRNAs are identified by
using feature selection algorithms RFE and LASSO. Capability
of these key lncRNAs in classifying 8 different cancers is checked
by the performance of five classification models. This study
identified 37 key lncRNAs that can classify 8 different cancer
types with an accuracy ranging from 94% to 97%. Finally,
survival analysis supports that the discovered key lncRNAs are
capable of differentiating between high-risk and low-risk patients.

Index Terms—Cancer Classification; Feature Selection;
lncRNA expression; Machine Learning; Survival Analysis.

I. INTRODUCTION

Recent studies indicate that several cancer risk loci are
transcribed into lncRNAs and these transcripts play key roles
in tumorigenesis [1], [2]. In their review paper, Cheetam at
al. [1] enumerated that lncRNAs play key roles in cancer
progression through a variety of mechanisms such as lncRNA
ANRIL for remodeling of chromatin [3], H19 for transcrip-
tional co-activation and co-repression [4], TERRA for protein
inhibition [5], MALAT1 for post-transcriptional modifications
[6] and PTENP1 for decoy [7]. LncRNA ANRIL, which
causes PCR1-mediated repression of tumor suppressor locus
INK4A-ARF-INK4b, is up-regulated in prostate cancer [3].
Similarly, H19 plays significant role in proliferation of gastric
cancer cell due to its up-regulation [4]. TERRA facilitates
telomeric heterochromatin formation [5]. MALAT1 induces
migration and tumor growth in lung cancer [6]. PTENP1

controls the expression level of tumor supressor gene PTEN
[7]. Also, lncRNAs have key functions in transcriptional, post-
transcriptional, and epigenetic gene regulation [8]. Schmitt et
al. discussed the impact of lncRNA in cancer pathway [9].
They described the involvement of lncRNAs in six hallmarks
of cancer [10] such as proliferation, growth suppression,
motility, immortality, angiogenesis, and viability.

While some researchers detailed the role of lncRNAs in
cancer progression, other discovered a number of lncRNA
biomarkers in several cancers by creating lncRNA-miRNA
co-expression networks [11], [12], [13]. Wang et al. on the
other hand identified 6 key lncRNAs for metastatic melanoma
from a competing endogenous RNA (ceRNA) network anal-
ysis using mRNA, miRNA and lncRNA expression [14]. By
constructing the similar network, Sui et al. found 41 lncRNAs
biomarkers in human lung adenocarcinoma [15]. Also, Chen
et al. identified 24 hub lncRNAs in smoking-associated lung
cancer by forming protein-protein interaction (PPI) networks
[16]. Similarly, Lanzos et al. identified cancer driver lncRNAs
as new candidates and distinguishing features by analyzing
the mutational patterns in tumor DNA [17]. Another model,
CRlncRC used machine learning algorithms including RF,
NB, SVM, LR and KNN to classify cancer related lncRNAs
from cancer-unrelated lncRNAs [18]. For this classification,
authors used combination of genomic, epigenetic, network and
expression features. In the present study, cancer related key
lncRNAs are identified using lncRNA expression values of
cancer patients applying feature selection algorithms. Then the
capability of identified lncRNAs in classifying 8 different can-
cers is checked by the performance of five classification mod-
els. Finally, survival analysis is conducted to check whether
the discovered lncRNAs are really capable of differentiating
between high-risk and low-risk patients.

Hoadley et al. showed that cell of origin patterns dominate
the molecular classification of tumors available in TCGA [19].
For their analysis, they used copy number, mutation, DNA
methylation, RPPA protein, mRNA and miRNA expression.
But, they did not consider another important molecular sig-
nature of cancer, which is lncRNA expression. While their
work motivates us to classify multiple cancers using lncRNA
expression, the main objective of this study is to find the key
lncRNAs related to specific cancer. However, research on such
classification is rarely found due to the high dimensionality
of the data [20]. Though RNAseq data from TCGA contains978-1-7281-1867-3/19/$31.00 c© 2019 IEEE
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reasonable number of samples, even it poses challenges for
classification task due to large number of features (mRNA,
miRNA, or lncRNA) with respect to the number of samples.
Many computational methods fail to identify a small number
of important features, rather increase learning costs and dete-
riorates performance [21]. To overcome this issue, researchers
used feature selection algorithm for dimension reduction such
as RFE (Recursive Feature Elimination) is used in [22], [23]
and LASSO is used in [24] as a feature selection method.

It is clear from the literature that lncRNAs, play a key role in
causing a cancer and its development. More research is needed
to identify cancer specific lncRNAs. Existing methods used
co-expression network such as lncRNA-mRNA or lncRNA-
miRNA-mRNA. As per our knowledge, there is no study that
uses lncRNA expression only to find the cancer specific lncR-
NAs except our previous work [25] where feature extraction
did not consider. Thus, we proposed a computational frame-
work using feature selection and classification methods that
can identify key lncRNAs and classify different cancers based
on the expression value of those key lncRNAs. Important
features or lncRNAs are selected in two steps: First, number
of feature is reduced using a cutoff on expression values and
then using a combination of two feature selection algorithms
RFE and LASSO. This study discovered 37 key lncRNAs for
eight different cancers.

The paper is organized as follows: Section 1 introduces the
role of lncRNAs as a key factor in tumorigenesis, different
methods to identify key lncRNAs, rationale of present study
in identifying cancer specific lncRNA. Section 2 describes the
data preparation. Section 3 presents the methodology by enu-
merating feature selection, machine learning model selection,
configuration, parameter tuning and evaluation. The results and
discussion, model performance and validation are presented in
section 4. Finally, section 5 concluded the research question
and future directions.

TABLE I: Summary of TCGA RNA-seq data sets used in this
study.

Tumor Types #Tumor
Samples

#Expressed
lncRNAs

Bladder Cancer (BLCA) 430 2501
Cervical Cancer (CESC) 309 2327
Colon Cancer (COAD) 512 2178
Head and Neck Cancer (HNSC) 546 1831
Kidney Papillary Cell Carcinoma (KIRP) 321 2651
Lower Grade Glioma (LGG) 529 2941
Liver Cancer (LIHC) 424 1771
Lung Adenocarcinoma (LUAD) 585 2854

Total (Unique) 3656 4786

(Initial dataset contains 12,309 common lncRNAs with expres-
sion data for 8 cancers. Third column represents the number of
expressed lncRNAs using threshold, mean lncRNA expression
≥ 0.3.)

II. DATA PREPARATION

To validate the idea, RNAseq FPKM normalized expression
data for 8 cancers - Bladder Cancer (BLCA), Cervical Cancer
(CESC), Colon Cancer (COAD), Head and Neck Cancer
(HNSC), Kidney Papillary Cell Carcinoma (KIRP), Lower
Grade Glioma (LGG), Liver Cancer (LIHC) and Lung Ade-
nocarcinoma (LUAD) - are downloaded (April, 2019) from
UCSC xena [26]. Selection of this eight cancers is based on
the number of samples (ranges from 309 to 585) to have a bal-
anced dataset as shown in Table I. Combined dataset consists
of 3656 patients with 60483 RNA (mRNA, miRNA, lncRNA)
expression representing 8 tumor types. The row and column
headings represent the RNAs and sample IDs respectively.
Values of each cell represents the normalized read counts
of an RNA for a specific sample. Since this study focuses
on identification of key lncRNAs for a cancer, expression
values of lncRNAs are isolated from the combined dataset
using lncRNA IDs available in TANRIC (The Atlas of non-
coding RNA in Cancer)[27]. This mapping resulted in 12,309
common lncRNAs with expression data for 8 cancers. In the
present study, we used a cutoff, mean lncRNA expression ≥
0.3 as used in [24], to determine expressed lncRNAs. The
number of expressed lncRNAs for different cancer are shown
in Table I. The combined number of expressed lncRNAs
applying this threshold is 4786. The total number of cancer
patient analyzed is 3656.

lncRNA IDs
(TANRIC)

TCGA
RNA-Seq Data

lncRNAs Expression

Is 
FPKM>=0.3?

RFECV Top Features
LassoCV

Top Features

Is Common?

Classification: 
NB KNN RF SVM

Classification: 
DNN

10-Fold cross validation 10-times random selection 
training:75%, testing: 25% 

Quantify Performance

Fig. 1: Overall Process for Data Preparation and Methodology
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III. METHODOLOGY

Fig. 1 shows the over all process for data preparation and
methodology. After reducing features (lncRNA) using cutoff,
mean expression ≥0.3, two feature selection methods RFE and
LASSO are used to reduce the dimension further. To validate
the capability of selected lncRNAs in classifying different
cancers, 5 different learning algorithms - Nave Bayes (NB),
K-Nearest Neighbor (KNN), Random Forest (RF), Support
Vector Machine (SVM), and Deep Neural Network (DNN)
- are used.

A. Feature selection

The lncRNAs those have more contribution towards the
classification of cancer types are more likely to be the key
lncRNA for cancer diagnosis and prognosis. Feature selection
methods can reduce the number of irrelevant and noisy lncR-
NAs and select the most related lncRNAs to improve the clas-
sification results, which decrease the computational costs and
improve the cancer classification performance [21]. To achieve
this goal, two widely applied wrapper based feature selection
methods: Recursive Feature Elimination (RFE) [28] and Least
Absolute Shrinkage and Selection Operator (LASSO) [29] are
used. These algorithms have better classification efficiency
and do not have limit on data types and can effectively deal
with nominal or continuous features, missing data and noisy
tolerance [30].

1) LASSO: The Least Absolute Shrinkage and Selection
Operator method applies a regularization (shrinking) process
where it penalizes the coefficients of the regression variables
and shrinks these to zero. The variables that still have a
non-zero coefficient are selected as the top features. The
tuning parameter λ controls the strength of the penalty. The
larger is the parameter λ the more number of coefficients are
shrinked to zero, less number of features are selected. In this
experiment, the optimized λ = 0.0036 is calculated by 5-fold
cross validation which is able to picked 765 important features
in 62 secs with 96% accuracy.

2) RFECV: Similarly, the Recursive Feature Elimination
RFE algorithm constructs a ranking coefficient according to
the weight vector w generated by an estimator e.g. linear
regression during training. It removes a set of features with
the smallest ranking coefficient in each iteration, and finally
obtains an optimized number of significant features.

Scikit-learn feature selection [31], a python package, has
been used for feature selection procedure. For a given number
of features, both LASSO and RFE can produce an optimum
number of features. The number of features produced by
LASSO and RFE are 765 and 786 respectively from 4786
features.

B. Classification

We used scikit-learn [31], a python library, for machine
learning models. For KNN model, k was set to 7. In SVM, lin-
ear kernel is used. For the RF model, the number of estimator
is 10 with entropy ensembling. Finally, Gaussian NB algorithm
is used for Naive Bayes model. In DNN, the number of hidden

layer is one. The number of node in input layer is equal to the
number of features (4786 lncRNAs). The hidden layer consists
of 20 nodes which are identified by parameter tuning. The
output layer has 8 nodes corresponding to 8 different cancer
types. After tuning hyper-parameters and optimizing model
parameters, a good convergence is found with learning rate
0.1 and epoch size 100. These parameters adjust the network
for appropriate weights to prevent over-fitting. XAVIER is
used as weight initializer in the model, which is a Gaussian
distribution with mean 0, variance 2.0/( f anIn+ f anOut). The
function that learns the weight vector is called the optimizer
function which is the stochastic gradient descent (SGD) in this
experiment. In training a deep learning model, the selection of
the optimizer, number of epochs, and batch size are important
for achieving a good performance. The activation function
allows the model to learn the complex data set. The activation
function ReLU is used in all layers and negative log likelihood
is used as the loss function.
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Fig. 2: Confusion Matrix of DNN Model (Accuracy = 98%,
Number of Features = 37)
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C. Parameter Tuning

The grid search method is used for ML to find the opti-
mized parameter for machine learning algorithms. The hyper-
parameters for deep neural network such as epoch, learning
rate, number of hidden layers, etc. also need to be tuned to
achieve high accuracy or precision. First, tuning is started
with learning rate and epoch. One hyper-parameter is fixed
to a certain value and observed the performance by changing
the other. For example, epoch is fixed to 30 and the value
of learning rate is changed in a range of 0.001 to 1.0. It is
noticed that accuracy increases with the increase of learning
rate then it stops increasing at a certain point and starts
decreasing. The learning rate at which accuracy reached to its
highest value is selected for experiment. Finally, learning rate
0.1 and epoch 100 produce a convergent result. Other hyper-
parameters such as the number of hidden layers and seed are
tuned in similar fashion. Deeplearning4J [32], a java machine
learning package, is used for DNN model development. All
models are executed on a CPU Intel core i7 with 16GB RAM.
For training 75% of each cancer type is selected randomly
using seed 123 for random number generation. The remaining
25% is used for testing in DNN. This training and testing
procedure has been repeated 10 times. The average of these
10 results are used as the performance of the model. On the
other hand, performance for the machine learning algorithms
are measured by 10-fold cross validation. The ROC curve with
AUC score for 8 different classes is shown in Fig. 3.
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Fig. 4: Accuracy of different models with different number of
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D. Evaluation

In this study, five classification models - NB, KNN, RF,
SVM and DNN - are used to classify 8 cancers - BLCA,
CESC, COAD, HNSC, KIRP, LGG, LIHC, and LUAD. To
compare the model performance, first, a confusion matrix
is generated and then three different performance metrics
- accuracy, precision, recall - are evaluated. Fig. 2 shows
one of the confusion matrices obtained from DNN model
with accuracy of 98%. Row labels represent the actual labels
and column labels represent the predicted labels. Accuracy is
the number of correct predictions made by the model over
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Fig. 5: Cost of different models with different number of
features

all kinds of predictions made. True positives(TP) and True
Negatives(TN) are the correct prediction.

Accuracy =
T P+T N

T P+T N +FP+FN
(1)

Precision is the number of correct positive results divided by
the number of positive results predicted by the classifier. It
indicates the predicted positive portion of the samples.

Precision =
T P

T P+FP
(2)

Recall is the number of correct positive results divided by the
number of all relevant samples.

Recall =
T P

T P+FN
(3)

All scores are calculated from the test data.

IV. RESULTS AND DISCUSSION

Table II shows the values of performance metrics for NB,
KNN, RF, SVM and DNN models using three different number
of feature sets or lncRNAs - 12,309, 4,786, and 37. First,
all lncRNA expressions (12,309) are used to classify eight
cancers. After initial reduction of feature size using cutoff,
mean expression≥0.3, 4,786 lncRNAs are left for classifica-
tion. Then feature selection methods RFE and LASSO are used
on 4,786 lncRNAs to find the optimum number of features.
RFE and LASSO produced 786 and 765 features respectively.
Classification is performed separately using RFE features and
LASSO features and results show that RFE features performed
better for most of the classifiers with accuracy ranging from
97% to 99%. Then common features, 344 lncRNAs between
these two optimum feature sets are used to classify the tumor
types which resulted in accuracy ranging from 96% to 99%.
Since, RFE features performed better, further experiments
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TABLE II: Performance comparison of different classifiers with different number of features

#Features Model Name Recall Precision Accuracy Cost (sec.)

NB 0.80±0.02 0.85± 0.02 0.83± 0.02 22.95
KNN 0.90±0.01 0.91±0.01 0.91±0.01 676.23

Block-a RF 0.89±0.02 0.89±0.02 0.89±0.01 28.39
SVM 0.91±0.00 0.92±0.01 0.93±0.02 300.48
DNN 0.97±0.01 0.97±0.01 0.97±0.01 720.33

NB 0.89±0.01 0.89±0.01 0.90±0.01 7.41
KNN 0.92±0.01 0.92±0.01 0.92±0.01 257.28

Block-b RF 0.90±0.01 0.91±0.01 0.91±0.01 24.73
SVM 0.95±0.01 0.95±0.01 0.95±0.01 42.79
DNN 0.97±0.01 0.97±0.01 0.97±0.01 139.16

NB 0.95±0.02 0.94±0.02 0.95±0.01 0.09
KNN 0.94±0.01 0.95±0.01 0.95±0.01 1.44

Block-c RF 0.97±0.01 0.97±0.01 0.97±0.01 2.28
SVM 0.97±0.01 0.97±0.01 0.98±0.01 0.82
DNN 0.95±0.01 0.95±0.01 0.95±0.01 4.07

(Block-a: Performance using all features (12309 lncRNAs)

Block-b: Performance using features obtained using mean FPKM ≥ 0.3 (4786 lncRNAs)

Block-c: Performance using features obtained from RFE and LASSO (37 lncRNAs)

TABLE III: 37 key lncRNAs identified in this study

lncRNA

AC000111.6, AC005082.12, AC005355.2, AC009299.3, AL450992.2,
AP001626.1, BBOX1-AS1, CTA-384D8.31, EMX2OS, FAM182A,
FENDRR, GATA3-AS1, H19, HAGLR, HOXA10-AS, HOXA11-AS,
HOXD-AS2, KIZ, LINC00857, LINC00958, LINC01082, LINC01158,
MIR205HG, NKX2-1-AS1, RP11-157J24.2, RP11-30K9.5,
RP11-373D23.2, RP11-435O5.6, RP11-445O3.2, RP11-535M15.1,
RP11-76C10.5, SFTA1P, TBX5-AS1, TMEM51-AS1, TP53TG1,
UCA1, XIST

are conducted with reduced number of RFE features such

as 200, 100, and 50 features while considering all LASSO

features (765) that resulted in common features of 129, 68,

and 37 lncRNAs respectively. With 37 lncRNAs, accuracy

of classification ranges from 94% to 97% as shown in Fig.

4. Further reduction of features deteriorates the performance

considerably. Thus, 37 lncRNAs as shown in Table III can

be considered as the key lncRNAs related to eight cancers

considered for analysis in this study.

It is clear from Fig. 4 and Fig. 5 that 37 key lncRNAs

produces better performance in terms of both accuracy and

cost compared to full (12,309 lncRNAs) and cutoff (4,786

lncRNAs) feature sets.

Validation: The results obtained, 37 key lncRNAs, are

visually validated using t-SNE plot and survival analysis. Fig.

6 shows the t-SNE plot of eight cancer samples derived using

expression values of 37 lncRNAs identified in the present

study. It is clear from this figure that 37 lncRNAs are capable

of differentiating eight different cancers. So, t-SNE plots

provide a validation that 37 lncRNAs can be considered as

the key features for diagnosis and prognosis of eight cancers.

Fig. 7 shows the validation of discovered lncRNAs using

survival analysis. Fig.7a shows top 10 lncRNAs with impor-

Fig. 6: tSNE representation of 37 lncRNA expressions for

eight tumor types

tance score obtained by LASSO, six of these are positively co-

related whereas four are negatively co-related. Fig. 7b shows

the box plot of expression value of second negatively co-

related lncRNA HOXD-AS2 for different cancers. It is clear

from the box plot that this lncRNA has distinguishable 5-point

statistics over the cancer types.

Fig.7c shows the survival analysis using positively co-

related lncRNA NKX2-1-AS1, which means a patient with

high expression (red line) would have low probability of

survival while a patient with low expression (Blue line)

would have high probability of survival. Fig.7d shows survival

analysis using negatively co-related lncRNA RP11-435O5.6,

which means a patient with low expression (Blue line) would
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Fig. 7: Validation of discovered key lncRNAs. a) Top-10 lncRNAs with importance score by LASSO b) Box plot of expression
values of lncRNA HOXD-AS2 for different cancers, c) Survival analysis using positively co-related lncRNA NKX2-1-AS1 in
BLCA, and d) Survival analysis using negatively co-related lncRNA RP11-435O5.6 in BLCA. Survival Analysis is done using
TANRIC.

have low probability of survival while a patient with high
expression (red line) would have high probability of survival.
These two survival analyses evidenced that first lncRNA is
acting as positively co-related and second lncNRA is acting
as negatively co-related lncRNA biomarker. Other lncRNAs
also provided similar corelation which implicates that the
discovered 37 lncRNAs can be considered as the key features
in terms of diagnosis and prognosis of these 8 cancers. This
approach is also used to identify the list of 214 key genes
related to breast cancer which are used in constructing the
trajectory of cancer development in [33].

V. CONCLUSION AND FUTURE REMARKS

A computational framework is developed to identify key
lncRNAs for multiple cancers employing two feature selection
and five classification methods using lncRNA expression of
cancer samples only. This study identified 37 key lncRNAs
that can classify 8 cancers with an accuracy ranging from
94% to 97%. t-SNE plot and survival analysis support that
the discovered 37 lncRNAs are capable of differentiating 8
cancers as well as differentiating between high-risk and low-
risk patients. Thus, the discovered lncRNAs can be used as
diagnostic and prognostic features for 8 cancers considered
in this study. In the extended version of the paper, we plan
to compare the discovered list of lncRNA with the existing
literature if available. Another extension of this paper could
be inclusion of lncRNA expression of corresponding normal
samples.
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