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Abstract—Breast cancer is highly sporadic and
heterogeneous in nature. Even the patients with same clinical
stage do not cluster together in terms of genomic profiles such
as mRNA expression. In order to prevent and cure breast
cancer completely, it is essential to decipher the detailed
heterogeneity of breast cancer at genomic level. Putting the
cancer patients on a time scale, which represents the trajectory
of cancer development, may help discover the detailed
heterogeneity. This in turn would help establish the mechanisms
for prevention and complete cure of breast cancer. The goal of
this study is to discover the heterogeneity of breast cancer by
ordering the cancer patients using pseudotime. This is achieved
through two objectives: First, a computational framework is
developed to place the cancer patients on a time scale, meaning
construct a trajectory of cancer development, by inferring
pseudotime from static mRNA expression data; Second,
discovering breast cancer heterogeneity at different time
periods of the trajectory using statistical and machine learning
techniques.

In this study, the trajectory of breast cancer progression was
constructed using static mRNA expression profiles of 1072
breast cancer patients by inferring pseudotime. Three sets of
key genes discovered using supervised machine learning
techniques are used to develop the trajectories. The first set of
genes are PAMSO0 genes which is available in literature. The
second and third sets of genes were discovered in the present
study using the clinical stages of breast cancer (Stage-1, Stage-
II, Stage-III, and Stage-IV). The proposed computational
framework has the capability of deciphering heterogeneity in
breast cancer at a granular level. The results also show the
existence of multiple parallel trajectories at different time
periods of cancer development or progression.

Keywords—Breast cancer heterogeneity, mRNA expression,
pseudotime, t-SNE, Trajectory of cancer development.

L INTRODUCTION

The Breast Cancer Landscape published by the
Department of Defense reported that 2.1 million women were
diagnosed with the disease worldwide in 2018 which accounts
for nearly a quarter of all cancers in women [1]. Itis estimated
that 268,600 new cases will be diagnosed and 41,760 breast
cancer deaths would occur in 2019 in the United States alone
[2]. Consequently, there is an overarching need to unearth the
factors that will help identify the heterogeneity in breast
cancer. According to DoD Breast Cancer Landscape, it is well
established that there are several different major molecular
subtypes of breast cancer including luminal A, luminal B,
HER2-overexpressing, and basal-like. Expression of estrogen
receptor (ER), progesterone receptor (PR), and HER2 can be
used to approximate these four major subgroups (luminal A:
ER+ and/or PR+/HER2-; luminal B: ER+ and/or
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PR+/HER2+; HER2 overexpressing: ER-/HER2+; and basal-
like: ER-/PR-/HER2-). The latter group is commonly called
the triple-negative subtype of which basal-like tumors are one
of its primary components. In the United States, 71% of
tumors are Luminal A, 12% are Luminal B, 12% are triple-
negative, and 5% are HER2 [3].

To decipher the breast cancer heterogeneity in terms of
gene expression profiles, longitudinal or time-series data for
the same cohort (reasonably large size) of patients are
necessary. However, no such temporal data are available for
patients with breast cancer. Recent studies show that single-
cell gene expression with no temporal information can be
analyzed to discover the mechanism of cell development by
inferring pseudotime [4] [S][6][7][8]. These approaches allow
us to observe the continuous changes at gene expression levels
of cells and provide far more insights into the transcriptional
kinetics of cell differentiation. These studies motivated us to
hypothesize that the static mRNA expression data for breast
cancers can be explored to decipher the trajectories of breast
cancer development as well as heterogeneity at different
points of the trajectory leading to metastasis by inferring
pseudotime. The proposed study assumes that a cancer sample
or patient represents the average behavior of a cell population,
meaning that different patients represent different states of cell
dynamics or different states of cancer development on a
continuous trajectory.

In the present study, first -- feature selection approaches
are used to reduce the dimension from 20K to few hundreds;
second -- t-Distributed Stochastic Neighbor Embedding (t-
SNE) is used to reduce the dimension to 3 t-SNE components;
third — Principal curve analysis is done on samples with 3 t-
SNE components to draw a smooth curve connecting all the
clusters. The pseudotime for a patient is evaluated from the
length of projection on the curve; fourth — k-means and gap
statistic are applied to discover the heterogeneity from the
inferred the pseudotime for cancer patients from static mRNA
expression data.

Two major contributions of this study are: First, a
computational framework is developed which is capable to
construct the trajectory of breast cancer development by
inferring pseudotime from static mRNA expression data.
Second, it is also capable of deciphering heterogeneity in
cancer along the trajectory of cancer at a granular level.

II. DATASET PREPARATION

The RNASeq mRNA expression profiles and clinical data
of breast cancer patients were obtained from LinkedOmics
[9]. The expression data contains profiles for 1093 patients
whereas clinical data contains cancer stage information for



1072 patients. Finally, 1072 patients having both expression
profiles and clinical stage information were used for analysis.

Usually, mRNA expression profiles come with expression
values of about 20K genes for each patient. However, all these
genes are not related to cancer and cancer heterogeneity. The
list of genes related to cancer are discovered using supervised
machine learning techniques, such as a set of 50 genes for
breast cancer known as PAMS0 (Prediction Analysis of
Microarray), to classify intrinsic subtypes [10]. For the present
study, we used three different sets of genes to infer the
trajectory of cancer development — the first set is PAMS0
genes, the second set (214 genes) and third set (233 genes)
were obtained using feature selection approaches SVM-RFE
(Support Vector Machine Recursive Feature Elimination) [11]
and RF (Random Forest) [12] with respect to four clinical
stages of cancer — Stage-I, Stage-II, Stage-III, and Stage-IV.
It is surprising that gene sets produced by SVM-RFE and RF
have only 16 genes in common.

III. METHODOLOGY

Four different statistical and machine learning techniques,
namely, t-Distributed Stochastic Neighbor Embedding (t-
SNE) [13], Principal Curve Analysis [14], gap statistic [15],
and k-means [16] are used to develop the computational
framework for discovering heterogeneity in breast cancer. The
different components of methodology are: a) Constructing the
trajectory of breast cancer development, b) Method to check
quality of constructed trajectory, and c) Deciphering
heterogeneity in breast cancer

A. Constructing the Trajectory of Breast Cancer
Development

The dimension reduction technique, t-SNE [13] is used to
reduce the dimension of mRNA expression profiles of cancer
patients from the number of key genes (50 from PAMS0, 214
from SVM-RFE, and 233 from RF) to three t-SNE
components. Then the principal curve analysis [14] on cancer
patients with three t-SNE components is conducted to
construct a smooth curve connecting the clusters of cancer
patients. The value of projection on the principal curve from
each point (patient) represents the pseudotime for that patient
on the trajectory of cancer development. A normalized
pseudotime scale, ranging from 0 to 1, is developed from the
projection values. This pseudotime based ordering of breast
cancer patients represents the trajectory of breast cancer
development.

B. Method to Check Quality of Constructed Trajectory

The cancer stage information has been used to evaluate the
pair-wise order of cancer samples on the trajectory of cancer
development thus determining the quality of a trajectory. Let
t represents the trajectory of cancer development, an ordered
path of n samples, produced by the pseudotime-based
reconstruction method. Let s(t,i,j) be a score to represent
how well the order of the ith and jth samples in the ordered
path ¢ matches their expected order based on the stage
information. A pseudo-temporal ordering score (POS) [6] for
trajectory ¢ are evaluated as the sum of s(t, i, j) for all pairs of
samples.

n—-1
POS, = Z Z st i, )

i=1 jij>i
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Where s(t,i,j) is 0, if two samples are in the same stage.
When the two samples are in different stages i.e., the ith and
jth samples are collected at stages x and y respectively, then
the value of s(t, i, ) is either 1, if x is an earlier stage, or -1
if x is a later stage than y.

C. Deciphering Heterogeneity in Breast Cancer

The trajectory developed above can be analyzed to
decipher the heterogeneity of breast cancer at different time
periods along the trajectory in terms of - a) clustering to see
how many clusters the patients form in a specific time period
and b) mRNA expression profiles of key genes in each cluster
of patients in a specific time period.

To discover the heterogeneity in terms of cluster at
different time periods, patients are divided into groups of
evenly spaced time periods between 0 and 1. For example, the
four equal time periods will be 0.00 — 0.25, 0.25 — 0.50, 0.50
—0.75,and 0.75 — 1.00. For each time period, the samples will
be clustered based on three t-SNE components using k-means
and gap statistic [15]. Gap statistic provides the optimum
number of clusters that can be produced from a given set of
samples.

To decipher the heterogeneity in terms of mRNA
expression profiles at different time periods, normalized
expression values for key genes are plotted along the
trajectory for patients in different clusters in a time period.

IV. RESULTS AND DISCUSSION

At the present state of the developed computational
framework, there are three challenges. Challenge-1: In
different runs, t-SNE produces different sets of component
values for a particular patient due to the stochastic nature of
the algorithm, which results in different trajectories with
different ordering scores; Chanllenge-2: Principal curve
fitting may not start from a patient at Stage-I; Chanllenge-3:
In finding optimum clusters using gap statistic, which depends
on the generation of a reference dataset from the given dataset,
may (most of the time it produces the same number of clusters)
result in different number of optimum clusters in different
runs. These challenges will be addressed in our future work.

Table 1 shows the pseudo-temporal ordering scores
(POSs) for the trajectories developed in 10 runs with each of
the three sets of key genes - PAM50, SVM-RFE, and RF. Due
to the randomness of t-SNE technique, it produces trajectories
with both positive and negative scores. Positive score
represents that the patients are in correct order whereas
negative score means the patients are out of order. Higher the
positive score the better is the ordering, which means that the
constructed trajectory is good. The perfect score, which is the
maximum score for an ideal trajectory, depends on the number
of patients in each stage of cancer. The highest score produced
by individual sets of genes are 25,500, 46,016, and 17,292 for
PAMS0, SVM-RFE, and RF respectively. The trajectory with
the highest score 46,016 is used for further analysis in
deciphering heterogeneity in breast cancer.



TABLE L. PSEUDO-TEMPORAL ORDERING SCORES FOR THE TRAJECTOIRES
DEVELOPED IN DIFFERENT RUNS WITH EACH SETS OF GENES OBTAINED FROM
PAMS50, SVM-RFE, AND RF.

t-SNE Run PAMS0 SVM-RFE RF
1 -5348 46016 17292
2 10364 -15504 -27134
3 25500 -23572 6760
4 14466 3586 9426
5 14776 19454 11944
6 5530 -17606 -8294
7 8664 -9134 -19762
8 7196 -13998 -5532
9 4426 16720 8208
10 3646 -10566 -16992

A. Heterogeneity in Terms of Cluster of Patients

To discover the heterogeneity of breast cancer patients in
terms of cluster: First, the patients are divided into groups by
dividing the trajectory into four (Fig. 1) and eight (Fig. 2)

equal time periods; Second, the optimum number of clusters
among the patients at each time period are determined using
k-means [16] and gap statistic [15].

Fig. 1 shows the clusters of breast cancer patients at 1%
(0.00 to 0.25) and 3 (0.50 to 0.75) time periods from 4 equal
divisions of whole trajectory on a scale of normalized
pseudotime between 0 and 1. Similarly, Fig. 2 shows the
clusters at 5™ (0.500 to 0.625) and 6™ (0.625 to 0.750) time
periods from 8 equal divisions of the whole trajectory. Table
II presents the number of clusters at each time period for 4 and
8 divisions of the whole trajectory. For four equal divisions,
patients in each time period are grouped into 2 to 3 clusters
producing a total of 10 clusters along the trajectory, while in
case of eight divisions, patients are grouped into 2 to 4 clusters
producing a total of 23 clusters. Existence of multiple clusters
in each time period indicates the heterogeneity of breast
cancer patients in that time period. Usually, for a trajectory of
a normal event, all samples at a time period should form a
single cluster. But in case of breast cancer trajectory, which is
highly heterogeneous, one would expect multiple clusters at
each time period as evidenced from Fig.1 and Fig.2. Fig. 2
shows the heterogeneity at a finer level by dividing the
trajectory into smaller time periods. In Fig.2, patients of
Fig.1(b) are divided into two equal time periods (0.500 to
0.625 and 0.625 to 0.750). Now, one can see, there are 6
clusters in Fig. 2 compare to only 2 clusters in Fig. 1(b). It is
clear from two figures that the proposed computational
framework is capable of deciphering heterogeneity in cancer
at a granular level.
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Fig. 1. Clusters of breast cancer patients from four equal divisions of trajectory on a scale of normalized pseudotime between 0 and 1. a) 1% time period from
4 divisions represented by 1:4 and range of time for 1* time period is 0.00 to 0.25; b) 3 time period from 4 divisions represented by 3:4 and range of time for
3 time period is 0.50 to 0.75. These clusters are generated using k-means [16] and gap statistic [15] on cancer patients with three t-SNE components.
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Fig. 2. Clusters of breast cancer patients from eight equal divisions of trajectory on a scale of normalized pseudotime between 0 and 1. a) 5™ time period from
8 divisions represented by 5:8 and range of time for 5™ time period is 0.500 to 0.625; b) 6" time period from 8 divisions represented by 6:8 and range of time
for 6™ time period is 0.625 to 0.750. These clusters are generated using k-means [16] and gap statistic [15] on cancer patients with three t-SNE components.

TABLE IL. NUMBER OF CLUSTERS AT EACH TIME PERIOD FOR 4
AND 8 DIVISIONS OF THE WHOLE TRAJECTORY. P-1 REPRESENTS TIME PERIOD
1 AND SO ON.
Div. | P-1 | P-2 | P-3 | P-4 |P-5 | P-6 | P-7 | P-8
4 3 2 2 3
8 2 2 3 3 3 3 3 4

B. Heterogeneity in Terms of mRNA Expression

Figs. 3 and 4 present the heterogeneity of breast cancer at
different time period by showing the trajectories of cancer
patients in different clusters with respect to mRNA expression
of one of the key genes, DARC. Fig. 3 shows the expression
profile of breast cancer patients at 1% (0.00 to 0.25) and 3™
(0.50 to 0.75) time periods from 4 equal divisions of whole
trajectory on a scale of normalized pseudotime between 0 and
1. Similarly, Fig. 4 shows the expression profile at 5™ (0.500
to 0.625) and 6™ (0.625 to 0.750) time periods from 8 equal
divisions of the whole trajectory. It is clear from Fig. 3(a) that
patients in cluster 0 (blue) and cluster 2 (orange) follow two
parallel trajectories between time period 0.10 and 0.25, which
represents heterogeneity of cancer patients with respect to
mRNA expression. Fig. 3(b) shows a little evidence of
heterogeneity due to the overlap of two clusters by 8 to 10
patients from cluster 1 (orange) between time period 0.50 and
0.62. Smaller division of the trajectory, Fig. 4, which divides
the patients of Fig. 3(b) into two equal time periods (0.500 to
0.625 and 0.625 to 0.750) shows clear evidence of
heterogeneity by producing parallel trajectories. This
experiment shows the existence of parallel trajectories for
breast cancer development. So, the proposed method has the
capability of discovering parallel trajectories for breast cancer
development.

C. Heterogeneity of Trajectory in Terms of Cancer Stages

Table IIT shows the distribution of breast cancer patients
along the trajectory of cancer development with respect to
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cancer stages. In ideal cases, patients with stage-i would lie at
the beginning and with stage-iv would lie towards the end of
the trajectory. But, in case of breast cancer, patients from each
stage are distributed all over the trajectory as indicated by
Table III. This clearly shows that breast cancer is highly
heterogeneous. This means that for some patients, cancer may
progress fast and for others it may be slow.

TABLE IIL DISTRIBUTION OF BREAST CANCER PATIENTS WITH
RESEPECT TO CANCER STAGES ALONG THE TRAJECTORY OF CANCER
DEVELOPMENT.

Stage Period 1 Period 2 Period 3 Period 4
0.00-0.25 | 0.25-0.50 | 0.50-0.75 | 0.75-1.00

Stage-i 45 57 74 4

Stage-ii 96 230 201 92

Stage-iii 36 85 86 43

Stage-iv 4 5 4 7

D. Heterogeneity of Trajectory in Terms of Intrisic
Subtypes

Table IV shows the distribution of breast cancer patients
along the trajectory of cancer development with respect to
intrinsic subtypes. The patients with subtypes LumA and
LumB are distributed over the whole trajectory, while most of
the Basal and HER2 are concentrated at time period between
0.25 and 0.50.

TABLE IV. DISTRIBUTION OF BREAST CANCER PATIENTS WITH
RESEPECT TO INTRINSIC SUBTYPES ALONG THE TRAJECTORY OF CANCER
DEVELOPMENT.

Intrinsic Period 1 Period 2 Period 3 Period 4
Subtypes 0.00-0.25 | 0.25-0.50 | 0.50-0.75 | 0.75-1.00
LumA 115 61 203 34

LumB 20 23 70 70

Basal 135 2 6

HER2 5 52 8
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Fig. 3. Expression profile of breast cancer patients from four equal divisions of trajectory on a scale of normalized pseudotime between 0 and 1. a) 1% time
period from 4 divisions represented by 1:4 and range of time for 1 time period is 0.00 to 0.25; b) 3™ time period from 4 divisions represented by 3:4 and range
of time for 3™ time period is 0.50 to 0.75. The expression profile is based on one of the key genes, DARC.
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Fig. 4. Expression profile of breast cancer patients from eight equal divisions of trajectory on a scale of normalized pseudotime between 0 and 1. a) 5* time
period from 8 divisions represented by 5:8 and range of time for 5 time period is 0.500 to 0.625; b) 6" time period from 8 divisions represented by 6:8 and
range of time for 6™ time period is 0.625 to 0.750. The expression profile is based on one of the key genes, DARC.

V. CONCLUSION AND FUTURE REMARKS

A computational framework is developed to construct a
trajectory of cancer development by inferring pseudotime
from static mRNA expression data. The developed trajectory
is used to analyze the heterogeneity of breast cancer. The
proposed method discovered that there exists multiple parallel
trajectories for breast cancer at different time periods along the
trajectory. Though the proposed computational framework is
capable of deciphering the heterogeneity of breast cancer at a
granular level, it comes with three challenges: Challenge-1:
In different runs, t-SNE produces different sets of component
values for a particular patient due to the stochastic nature of
the algorithm, which results in different trajectories with
different ordering scores; Chanllenge-2: Principal curve
fitting may not start from a patient at Stage-I; Chanllenge-3:
In finding optimum clusters using gap statistic, which depends
on the generation of a reference dataset from the given dataset,
may (most of the time it produces the same number of clusters)
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result in different number of optimum clusters in different
runs. These challenges will be addressed in future work.
Solving these challenges will provide a computaional
framework for developing the representative trajectory of
cancer development.
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