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Abstract—Breast cancer is highly sporadic and 
heterogeneous in nature. Even the patients with same clinical 
stage do not cluster together in terms of genomic profiles such 
as mRNA expression.  In order to prevent and cure breast 
cancer completely, it is essential to decipher the detailed 
heterogeneity of breast cancer at genomic level. Putting the 
cancer patients on a time scale, which represents the trajectory 
of cancer development, may help discover the detailed 
heterogeneity. This in turn would help establish the mechanisms 
for prevention and complete cure of breast cancer. The goal of 
this study is to discover the heterogeneity of breast cancer by 
ordering the cancer patients using pseudotime. This is achieved 
through two objectives: First, a computational framework is 
developed to place the cancer patients on a time scale, meaning 
construct a trajectory of cancer development, by inferring 
pseudotime from static mRNA expression data; Second, 
discovering breast cancer heterogeneity at different time 
periods of the trajectory using statistical and machine learning 
techniques.  

In this study, the trajectory of breast cancer progression was 
constructed using static mRNA expression profiles of 1072 
breast cancer patients by inferring pseudotime. Three sets of 
key genes discovered using supervised machine learning 
techniques are used to develop the trajectories. The first set of 
genes are PAM50 genes which is available in literature. The 
second and third sets of genes were discovered in the present 
study using the clinical stages of breast cancer (Stage-I, Stage-
II, Stage-III, and Stage-IV). The proposed computational 
framework has the capability of deciphering heterogeneity in 
breast cancer at a granular level. The results also show the 
existence of multiple parallel trajectories at different time 
periods of cancer development or progression.  

Keywords—Breast cancer heterogeneity, mRNA expression, 
pseudotime, t-SNE, Trajectory of cancer development.  

I. INTRODUCTION 

The Breast Cancer Landscape published by the 
Department of Defense reported that 2.1 million women were 
diagnosed with the disease worldwide in 2018 which accounts 
for nearly a quarter of all cancers in women [1].  It is estimated 
that 268,600 new cases will be diagnosed and 41,760 breast 
cancer deaths would occur in 2019 in the United States alone 
[2]. Consequently, there is an overarching need to unearth the 
factors that will help identify the heterogeneity in breast 
cancer. According to DoD Breast Cancer Landscape, it is well 
established that there are several different major molecular 
subtypes of breast cancer including luminal A, luminal B, 
HER2-overexpressing, and basal-like. Expression of estrogen 
receptor (ER), progesterone receptor (PR), and HER2 can be 
used to approximate these four major subgroups (luminal A: 
ER+ and/or PR+/HER2-; luminal B: ER+ and/or 

PR+/HER2+; HER2 overexpressing: ER-/HER2+; and basal-
like: ER-/PR-/HER2-). The latter group is commonly called 
the triple-negative subtype of which basal-like tumors are one 
of its primary components. In the United States, 71% of 
tumors are Luminal A, 12% are Luminal B, 12% are triple-
negative, and 5% are HER2 [3]. 

To decipher the breast cancer heterogeneity in terms of 
gene expression profiles, longitudinal or time-series data for 
the same cohort (reasonably large size) of patients are 
necessary.  However, no such temporal data are available for 
patients with breast cancer.  Recent studies show that single-
cell gene expression with no temporal information can be 
analyzed to discover the mechanism of cell development by 
inferring pseudotime [4] [5][6][7][8]. These approaches allow 
us to observe the continuous changes at gene expression levels 
of cells and provide far more insights into the transcriptional 
kinetics of cell differentiation. These studies motivated us to 
hypothesize that the static mRNA expression data for breast 
cancers can be explored to decipher the trajectories of breast 
cancer development as well as heterogeneity at different 
points of the trajectory leading to metastasis by inferring 
pseudotime. The proposed study assumes that a cancer sample 
or patient represents the average behavior of a cell population, 
meaning that different patients represent different states of cell 
dynamics or different states of cancer development on a 
continuous trajectory. 

In the present study, first -- feature selection approaches 
are used to reduce the dimension from 20K to few hundreds; 
second -- t-Distributed Stochastic Neighbor Embedding (t-
SNE) is used to reduce the dimension to 3 t-SNE components; 
third – Principal curve analysis is done on samples with 3 t-
SNE components to draw a smooth curve connecting all the 
clusters. The pseudotime for a patient is evaluated from the 
length of projection on the curve; fourth – k-means and gap 
statistic are applied to discover the heterogeneity from the 
inferred the pseudotime for cancer patients from static mRNA 
expression data.  

Two major contributions of this study are: First, a 
computational framework is developed which is capable to 
construct the trajectory of breast cancer development by 
inferring pseudotime from static mRNA expression data. 
Second, it is also capable of deciphering heterogeneity in 
cancer along the trajectory of cancer at a granular level. 

II. DATASET PREPARATION 

The RNASeq mRNA expression profiles and clinical data 
of breast cancer patients were obtained from LinkedOmics 
[9]. The expression data contains profiles for 1093 patients 
whereas clinical data contains cancer stage information for 
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1072 patients. Finally, 1072 patients having both expression 
profiles and clinical stage information were used for analysis.  

Usually, mRNA expression profiles come with expression 
values of about 20K genes for each patient. However, all these 
genes are not related to cancer and cancer heterogeneity. The 
list of genes related to cancer are discovered using supervised 
machine learning techniques, such as a set of 50 genes for 
breast cancer known as PAM50 (Prediction Analysis of 
Microarray), to classify intrinsic subtypes [10]. For the present 
study, we used three different sets of genes to infer the 
trajectory of cancer development – the first set is PAM50 
genes, the second set (214 genes) and third set (233 genes) 
were obtained using feature selection approaches SVM-RFE 
(Support Vector Machine Recursive Feature Elimination) [11] 
and RF (Random Forest) [12] with respect to four clinical 
stages of cancer – Stage-I, Stage-II, Stage-III, and Stage-IV. 
It is surprising that gene sets produced by SVM-RFE and RF 
have only 16 genes in common. 

III. METHODOLOGY 

Four different statistical and machine learning techniques, 
namely, t-Distributed Stochastic Neighbor Embedding (t-
SNE) [13], Principal Curve Analysis [14], gap statistic [15], 
and k-means [16] are used to develop the computational 
framework for discovering heterogeneity in breast cancer. The 
different components of methodology are: a) Constructing the 
trajectory of breast cancer development, b) Method to check 
quality of constructed trajectory, and c) Deciphering 
heterogeneity in breast cancer 

A. Constructing the Trajectory of Breast Cancer 
Development  

The dimension reduction technique, t-SNE [13] is used to 
reduce the dimension of mRNA expression profiles of cancer 
patients from the number of key genes (50 from PAM50, 214 
from SVM-RFE, and 233 from RF) to three t-SNE 
components. Then the principal curve analysis [14] on cancer 
patients with three t-SNE components is conducted to 
construct a smooth curve connecting the clusters of cancer 
patients. The value of projection on the principal curve from 
each point (patient) represents the pseudotime for that patient 
on the trajectory of cancer development. A normalized 
pseudotime scale, ranging from 0 to 1, is developed from the 
projection values. This pseudotime based ordering of breast 
cancer patients represents the trajectory of breast cancer 
development.  

B. Method to Check Quality of Constructed Trajectory 

The cancer stage information has been used to evaluate the 
pair-wise order of cancer samples on the trajectory of cancer 
development thus determining the quality of a trajectory. Let 
t represents the trajectory of cancer development, an ordered 
path of n samples, produced by the pseudotime-based 
reconstruction method. Let ݏሺݐ, ݅, ݆ሻ  be a score to represent 
how well the order of the ݅ݐℎ and ݆ݐℎ samples in the ordered 
path t matches their expected order based on the stage 
information. A pseudo-temporal ordering score (POS) [6] for 
trajectory t are evaluated as the sum of ݏሺݐ, ݅, ݆ሻ for all pairs of 
samples. 

 ܱܲܵ௧ = ෍ ෍ ,ݐሺݏ ݅, ݆ሻ௝:௝வ௜
௡ିଵ
௜ୀଵ  

 

Where		ݏሺݐ, ݅, ݆ሻ is 0, if two samples are in the same stage. 
When the two samples are in different stages i.e., the ݅ݐℎ  and ݆ݐℎ samples are collected at stages ݔ and ݕ respectively, then 
the value of ݏሺݐ, ݅, ݆ሻ is either 1, if ݔ is an earlier stage, or -1 
if ݔ is a later stage than ݕ.  

C. Deciphering Heterogeneity in Breast Cancer 

 The trajectory developed above can be analyzed to 
decipher the heterogeneity of breast cancer at different time 
periods along the trajectory in terms of  - a) clustering to see 
how many clusters the patients form in a specific time period 
and b) mRNA expression profiles of key genes in each cluster 
of patients in a specific time period. 

To discover the heterogeneity in terms of cluster at 
different time periods, patients are divided into groups of 
evenly spaced time periods between 0 and 1. For example, the 
four equal time periods will be 0.00 – 0.25, 0.25 – 0.50, 0.50 
– 0.75, and 0.75 – 1.00. For each time period, the samples will 
be clustered based on three t-SNE components using k-means 
and gap statistic [15]. Gap statistic provides the optimum 
number of clusters that can be produced from a given set of 
samples. 

To decipher the heterogeneity in terms of mRNA 
expression profiles at different time periods, normalized 
expression values for key genes are plotted along the 
trajectory for patients in different clusters in a time period. 

IV. RESULTS AND DISCUSSION 

At the present state of the developed computational 
framework, there are three challenges. Challenge-1: In 
different runs, t-SNE produces different  sets of component 
values for a particular patient due to the stochastic nature of 
the algorithm, which results in different trajectories with 
different ordering scores; Chanllenge-2: Principal curve 
fitting may not start from a patient at Stage-I;  Chanllenge-3: 
In finding optimum clusters using gap statistic, which depends 
on the generation of a reference dataset from the given dataset, 
may (most of the time it produces the same number of clusters)  
result in different number of optimum clusters in different 
runs. These challenges will be addressed in our future work. 

Table 1 shows the pseudo-temporal ordering scores 
(POSs) for the trajectories developed in 10 runs with each of 
the three sets of key genes - PAM50, SVM-RFE, and RF. Due 
to the randomness of t-SNE technique, it produces trajectories 
with both positive and negative scores. Positive score 
represents that the patients are in correct order whereas 
negative score means the patients are out of order. Higher the 
positive score the better is the ordering, which means that the 
constructed trajectory is good. The perfect score, which is the 
maximum score for an ideal trajectory, depends on the number 
of patients in each stage of cancer. The highest score produced 
by individual sets of genes are 25,500, 46,016, and 17,292 for 
PAM50, SVM-RFE, and RF respectively. The trajectory with 
the highest score 46,016 is used for further analysis in 
deciphering heterogeneity in breast cancer.  
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TABLE I.  PSEUDO-TEMPORAL ORDERING SCORES FOR THE TRAJECTOIRES 
DEVELOPED IN DIFFERENT RUNS WITH EACH SETS OF GENES OBTAINED FROM 
PAM50, SVM-RFE, AND RF. 

t-SNE Run PAM50 SVM-RFE RF 

1 -5348 46016 17292

2 10364 -15504 -27134

3 25500 -23572 6760

4 14466 3586 9426

5 14776 19454 11944

6 5530 -17606 -8294

7 8664 -9134 -19762

8 7196 -13998 -5532

9 4426 16720 8208

10 3646 -10566 -16992

 

A. Heterogeneity in Terms of Cluster of Patients 

To discover the heterogeneity of breast cancer patients in 
terms of cluster: First, the patients are divided into groups by 
dividing the trajectory into four (Fig. 1) and eight (Fig. 2) 

equal time periods; Second, the optimum number of clusters 
among the patients at each time period are determined using 
k-means [16] and gap statistic [15]. 

Fig. 1 shows the clusters of breast cancer patients at 1st 
(0.00 to 0.25) and 3rd (0.50 to 0.75) time periods from 4 equal 
divisions of whole trajectory on a scale of normalized 
pseudotime between 0 and 1. Similarly, Fig. 2 shows the 
clusters at 5th (0.500 to 0.625) and 6th (0.625 to 0.750) time 
periods from 8 equal divisions of the whole trajectory. Table 
II presents the number of clusters at each time period for 4 and 
8 divisions of the whole trajectory. For four equal divisions, 
patients in each time period are grouped into 2 to 3 clusters 
producing a total of 10 clusters along the trajectory, while in 
case of eight divisions, patients are grouped into 2 to 4 clusters 
producing a total of 23 clusters. Existence of multiple clusters 
in each time period indicates the heterogeneity of breast 
cancer patients in that time period. Usually, for a trajectory of 
a normal event, all samples at a time period should form a 
single cluster. But in case of breast cancer trajectory, which is 
highly heterogeneous, one would expect multiple clusters at 
each time period as evidenced from Fig.1 and Fig.2. Fig. 2 
shows the heterogeneity at a finer level by dividing the 
trajectory into smaller time periods. In Fig.2, patients of 
Fig.1(b) are divided into two equal time periods (0.500 to 
0.625 and 0.625 to 0.750). Now, one can see, there are 6 
clusters in Fig. 2 compare to only 2 clusters in Fig. 1(b). It is 
clear from two figures that the proposed computational 
framework is capable of deciphering heterogeneity in cancer 
at a granular level.  

 

 
Fig. 1. Clusters of breast cancer patients from four equal divisions of trajectory on a scale of normalized pseudotime between 0 and 1. a) 1st time period from 
4 divisions represented by 1:4 and range of time for 1st time period is 0.00 to 0.25; b) 3rd time period from 4 divisions represented by 3:4 and range of time for 
3rd time period is 0.50 to 0.75. These clusters are generated using k-means [16] and gap statistic [15] on cancer patients with three t-SNE components. 
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Fig. 2. Clusters of breast cancer patients from eight equal divisions of trajectory on a scale of normalized pseudotime between 0 and 1. a) 5th time period from 
8 divisions represented by 5:8 and range of time for 5th time period is 0.500 to 0.625; b) 6th time period from 8 divisions represented by 6:8 and range of time 
for 6th time period is 0.625 to 0.750. These clusters are generated using k-means [16] and gap statistic [15] on cancer patients with three t-SNE components.

TABLE II.  NUMBER OF CLUSTERS AT EACH TIME PERIOD FOR 4 
AND 8 DIVISIONS OF THE WHOLE TRAJECTORY. P-1 REPRESENTS TIME PERIOD 
1 AND SO ON. 

Div. P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 
4 3 2 2 3     
8 2 2 3 3 3 3 3 4 

 

B. Heterogeneity in Terms of mRNA Expression 

Figs. 3 and 4 present the heterogeneity of breast cancer at 
different time period by showing the trajectories of cancer 
patients in different clusters with respect to mRNA expression 
of one of the key genes, DARC. Fig. 3 shows the expression 
profile of breast cancer patients at 1st (0.00 to 0.25) and 3rd 
(0.50 to 0.75) time periods from 4 equal divisions of whole 
trajectory on a scale of normalized pseudotime between 0 and 
1. Similarly, Fig. 4 shows the expression profile at 5th (0.500 
to 0.625) and 6th (0.625 to 0.750) time periods from 8 equal 
divisions of the whole trajectory. It is clear from Fig. 3(a) that 
patients in cluster 0 (blue) and cluster 2 (orange) follow two 
parallel trajectories between time period 0.10 and 0.25, which 
represents heterogeneity of cancer patients with respect to 
mRNA expression. Fig. 3(b) shows a little evidence of 
heterogeneity due to the overlap of two clusters by 8 to 10 
patients from cluster 1 (orange) between time period 0.50 and 
0.62. Smaller division of the trajectory, Fig. 4, which divides 
the patients of Fig. 3(b) into two equal time periods (0.500 to 
0.625 and 0.625 to 0.750) shows clear evidence of 
heterogeneity by producing parallel trajectories. This 
experiment shows the existence of parallel trajectories for 
breast cancer development. So, the proposed method has the 
capability of discovering parallel trajectories for breast cancer 
development.   

C. Heterogeneity of Trajectory in Terms of Cancer Stages 

Table III shows the distribution of breast cancer patients 
along the trajectory of cancer development with respect to 

cancer stages. In ideal cases, patients with stage-i would lie at 
the beginning and with stage-iv would lie towards the end of 
the trajectory. But, in case of breast cancer, patients from each 
stage are distributed all over the trajectory as indicated by 
Table III. This clearly shows that breast cancer is highly 
heterogeneous. This means that for some patients, cancer may 
progress fast and for others it may be slow. 

TABLE III.  DISTRIBUTION OF BREAST CANCER PATIENTS WITH 
RESEPECT TO CANCER STAGES ALONG THE TRAJECTORY OF CANCER 
DEVELOPMENT. 

Stage Period 1 
0.00 – 0.25

Period 2 
0.25 – 0.50 

Period 3 
0.50 – 0.75

Period 4 
0.75 – 1.00

Stage-i 45 57 74 4
Stage-ii 96 230 201 92
Stage-iii 36 85 86 43
Stage-iv 4 5 4 7

D. Heterogeneity of Trajectory in Terms of Intrisic 
Subtypes 

Table IV shows the distribution of breast cancer patients 
along the trajectory of cancer development with respect to 
intrinsic subtypes. The patients with subtypes LumA and 
LumB are distributed over the whole trajectory, while most of 
the Basal and HER2 are concentrated at time period between 
0.25 and 0.50.   

TABLE IV.  DISTRIBUTION OF BREAST CANCER PATIENTS WITH 
RESEPECT TO INTRINSIC SUBTYPES ALONG THE TRAJECTORY OF CANCER 
DEVELOPMENT. 

Intrinsic 
Subtypes 

Period 1 
0.00 – 0.25

Period 2 
0.25 – 0.50 

Period 3 
0.50 – 0.75

Period 4 
0.75 – 1.00

LumA 115 61 203 34 
LumB 20 23 70 70 
Basal  135 2 6 
HER2 5 52  8 
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Fig. 3. Expression profile of breast cancer patients from four equal divisions of trajectory on a scale of normalized pseudotime between 0 and 1. a) 1st time 
period from 4 divisions represented by 1:4 and range of time for 1st time period is 0.00 to 0.25; b) 3rd time period from 4 divisions represented by 3:4 and range 
of time for 3rd time period is 0.50 to 0.75. The expression profile is based on one of the key genes, DARC. 

 

Fig. 4. Expression profile of breast cancer patients from eight equal divisions of trajectory on a scale of normalized pseudotime between 0 and 1. a) 5th time 
period from 8 divisions represented by 5:8 and range of time for 5th time period is 0.500 to 0.625; b) 6th time period from 8 divisions represented by 6:8 and 
range of time for 6th time period is 0.625 to 0.750. The expression profile is based on one of the key genes, DARC. 

 

V. CONCLUSION AND FUTURE REMARKS 

A computational framework is developed to construct a 
trajectory of cancer development by inferring pseudotime 
from static mRNA expression data. The developed trajectory 
is used to analyze the heterogeneity of breast cancer. The 
proposed method discovered that there exists multiple parallel 
trajectories for breast cancer at different time periods along the 
trajectory. Though the proposed computational framework is 
capable of deciphering the heterogeneity of breast cancer at a 
granular level, it comes with three  challenges: Challenge-1: 
In different runs, t-SNE produces different  sets of component 
values for a particular patient due to the stochastic nature of 
the algorithm, which results in different trajectories with 
different ordering scores; Chanllenge-2: Principal curve 
fitting may not start from a patient at Stage-I;  Chanllenge-3: 
In finding optimum clusters using gap statistic, which depends 
on the generation of a reference dataset from the given dataset, 
may (most of the time it produces the same number of clusters)  

result in different number of optimum clusters in different 
runs. These challenges will be addressed in future work. 
Solving these challenges will provide a computaional 
framework for developing the representative trajectory of 
cancer development. 
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