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Abstract—Automatic histopathological Whole Slide Image
(WSI) analysis for cancer classification has been highlighted along
with the advancements in microscopic imaging techniques, since
manual examination and diagnosis with WSIs are time- and cost-
consuming. Recently, deep convolutional neural networks have
succeeded in histopathological image analysis. However, despite
the success of the development, there are still opportunities
for further enhancements. In this paper, we propose a novel
cancer texture-based deep neural network (CAT-Net) that learns
scalable morphological features from histopathological WSIs.
The innovation of CAT-Net is twofold: (1) capturing invariant
spatial patterns by dilated convolutional layers and (2) improving
predictive performance while reducing model complexity. More-
over, CAT-Net can provide discriminative morphological (texture)
patterns formed on cancerous regions of histopathological images
comparing to normal regions. We elucidated how our proposed
method, CAT-Net, captures morphological patterns of interest
in hierarchical levels in the model. The proposed method out-
performed the current state-of-the-art benchmark methods on
accuracy, precision, recall, and F1 score.

Index Terms—While Slide Images, Texture-based CNN

I. INTRODUCTION

The importance of histopathological image analysis for can-

cer classification has been dramatically increasing due to the

advancements in microscopic imaging techniques that allow

digitizing glass slides into Whole Slide Images (WSIs) [1].

Typically, medical specialists examine histopathological im-

ages from biopsies with various magnification factors, such as

patterns, textures, and morphological characteristics of tissues

that presents disease like cancer on WSIs. However, the

manual examination and diagnosis with WSIs are time- and

cost-consuming [2], [3].

However, although automatic histopathological image anal-

ysis using machine learning has strong potential for im-

proving efficiency, there are still computational challenges

to overcome. A number of studies have been proposed for

automatically classifying cancer on histopathological images.

Recently, Convolutional Neural Networks (CNNs) have

been widely explored in histopathological image analysis and

have achieved significant improvement of performance on
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Fig. 1: Overall framework of cancer texture-based deep neural

network

cancer classification [4], [5]. CNNs take an advantage of

convolutional layers that can automatically train the optimal

parametric kernels rather than using pre-defined features. Most

CNNs have trained the models with patch images instead of

directly introducing giga-pixel resolution WSIs [6]–[8]. Patch-

based training significantly reduces model complexity. An

Inception-based CNN model was proposed for detecting breast

cancer metastasis in lymph nodes on gigapixel pathology

images [6]. The deep neural network inputs a giga-pixel

pathological image and classifies/localizes cancerous regions

to assist pathologists. BiCNN was developed to classify breast

cancer on histopathological images. BiCNN adopted a data

augmentation method and a transfer learning technique to

optimize model performance [9]. ImageNet was utilized to

classify benign and malignant tumors in H&E-stained sections

[10]. In the study, the CNN model was trained with patch

images of two different sizes (32 × 32 and 64 × 64 pixels)

extracted from WSIs and then classified cancer by combining

the patches of WSIs using majority voting. A multiple instance

learning-based CNN model was proposed to classify glioma

subtypes with multi-gigapixel WSIs [11]. The model was

trained by iteratively identifying discriminative patches in

the WSIs. Furthermore, the model identified discriminative

patches through Gaussian smoothing. These recent CNN ap-

proaches for tumor classification are all implemented with

patch-based image extraction to avoid high computational cost
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Fig. 2: The architecture of CAT-Net

and the limitations on preprocessing imposed by the nuclear-

based approach.

In this study, we propose a novel CAncer Texture-based

deep neural network model (CAT-Net). The innovations of

CAT-Net are twofold: (1) capturing invaiant spatial and

morphological patterns by dilated convolutional layers and

(2) improving predictive performance while reducing model

complexity. CAT-Net can also provide discriminative texture

patterns formed on cancerous regions of histopathological

images comparing to normal regions.

II. METHODS

In this paper, we propose a cancer texture-based deep neural

network (CAT-Net) that captures morphological patterns in

cancer, while reducing model complexity comparing to ex-

isting state-of-the-art deep learning models such as Inception

V3. We hypothesize that texture-based pattern analysis may

improve histopathological cancer image classification, since

morphological spatial patterns play an important role when

a pathologist reads slides. CAT-Net trains the model with

small-size patch images extracted by sliding a window on a

given giga-pixel WSI and provides a score for cancer (see

Fig. 1). CAT-Net is designed to effectively capture scalable

morphological texture patterns from a WSI.

We leverage dilated layers to achieve two objectives in the

model for the image texture analysis: (1) enlarging the field of

view of filters to incorporate larger context and (2) employing

varying values of dilation rate enabling object encoding at

multiple scales. It offers a control of the field-of-view and

finds the best trade-off between accurate localization (small

field-of-view) and context assimilation (large field-of-view).

CAT-Net consists of 21 layers of dilated convolutional,

max pooling, five types of mixed layers, fully connected, and

softmax layers (see Fig. 2). In CAT-Net, eleven mixed layers

are embedded in the architecture, inspired by the inception

model [7]. The mixed layers, called Inception layers, are

combinations of a set of conventional convolutional layers with

various kernel sizes. The mixed layers allow internal layers

that adaptively select the most appropriate filter size to a given

image. CAT-Net enables spatial invariance with an dilation rate

of 2×2 [12], [13].

To generalize our architecture for input texture and scale,

CAT-Net includes five mixed layers with various texture

scales: Mixed layer A, Mixed layer B, Mixed layer C, Mixed

layer D and Mixed layer E in Fig. 2. The mixed layers share

a similar structure but with different kernel sizes and numbers

of convolution layers. Then, convolutional layers of various

sizes with output filters are concatenated into a single output

vector, forming the input of the next layer. Specifically, Mixed

layer A contains three different filters of: 1×1, 3×3, and 5×5

filter sizes; Mixed layer B contains two filter sizes: 1×1 and

3×3; Mixed layer C contains three filter sizes: 1×1, (1×7),

and 7×1; Mixed layer D contains 4 filters: 1×1, 1×7, 7×1 and

3×3 filters sizes; Mixed layer E filter contains 1×1, 1×3, 3×1,

and 3×3 filter sizes (see Fig. 2). The details of the architecture

is described in Table I.

The multi-scaled CAT-Net can capture important morpho-

logical patterns of various sizes in cancer nuclei. CAT-Net does

not include auxiliary classifiers unlike the Inception model,

which makes model complexity less than the inception model

but still improves accuracy.

III. EXPERIMENTAL RESULTS

We conducted intensive experiments with pathological im-

age dataset obtained by gastroscopic biopsy specimen of

94 cases at the Gyeongsang National University Changwon

Hospital (Changwon, Korea) between February 2016 and July

2017 to assess the performance of the proposed CAT-Net.

The tissue specimens were stained with Hematoxylin and

Eosin (H&E) using standard protocols in routine clinical care.

Then, totally 94 whole slide images (WSIs) were generated.

Specific cancer regions were annotated on the cancer WSIs

by a pathologist at Gyeongsang National University Hospi-

tal. The WSIs were categorized into four: well (13 WSIs),

moderately (11 WSIs), poorly-differentiated adenocarcinoma

(20 WSIs), poorly cohesive carcinoma (20 WSIs) including

signet-ring cell features, and normal gastric mucosa (30 WSIs),

respectively. The histologic type and differentiation grade of

the carcinoma were determined according to the classification

system of the World Health Organization, fourth edition1.

In this study, we considered only well (13 WSIs) and

moderately differentiated (11 WSIs) WSIs as well as normal

gastric mucosa WSIs (30 WSIs). Then, we randomly selected

24 WSIs from the 30 normal WSIs to balance the numbers

of cancer and normal WSIs. The dataset was randomly split

into 24, 16, and 8 WSIs for train, validation, and test respec-

tively, while preserving the proportions of cancer and normal

classes. The experiments were repeated ten times for model

reproducibility.

Patches were extracted from the WSIs with the 40X magni-

fication as an input to CAT-Net, due to the high resolution of a

WSI. We generated patches by sliding a kernel window of size

256 and stride of 128 on a WSI. Image-morphological prepro-

cessing, such as image thresholding and skew correction, were

1This study was approved by the Institutional Review Board of Gyeongsang
National University Hospital with a waiver for informed consent (2018-08-
005-001).
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TABLE I: Architecture of CAT-Net

Layer (Number) Filter Size Stride Output (W×H×N)

Dilated Conv (1) 3×3 2 256 × 256 × 3

Dilated Conv (2) 3×3 1 149 × 149 × 32

Dilated Conv (3) 3×3 1 147 × 147 × 32

Max Pooling (4) 3×3 2 147 × 147 × 64

Dilated Conv (5) 1×1 1 73 × 73 × 64

Dilated Conv (6) 3×3 1 73 × 73 × 80

Max Pooling (7) 3×3 2 71 × 71 × 192

MixedA (8) (1×1) (3×3) (5×5) 1 35 × 35 × 192

Mixed layer A (9) (1×1) (3×3) (5×5) 1 35 × 35 × 256

Mixed layer A (10) (1×1) (3×3) (5×5) 1 35 × 35 × 288

Mixed layer B (11) (1×1) (3×3) 2 35 × 35 × 288

Mixed layer C (12, 13, 14, 15) (1×1) (1×7)*2 (7×1)*2 1 17 × 17 × 768

Mixed layer D (16) (1×1) (1×7) (7×1) (3×3) 17 × 17 × 768

Mixed layer E (17) (1×1) (1×3) (3×1) (3×3) 8 × 8 × 1280

Mixed layer E (18) (1×1) (1×3) (3×1) (3×3) 1 8 × 8 × 2048

Average Pooling (19) (1×1) 8 × 8 × 2048

TABLE II: Experimental results with patch images

Method Accuracy* Precision* Recall* F1 score*
VGG16 0.682 (0.0120) 0.674 (0.0091) 0.689 (0.0130) 0.681 (0.0110)

EM-CNN 0.704 (0.0707) 0.738 (0.1053) 0.689 (0.0831) 0.681 (0.1477)
N-Net50 0.693 (0.0080) 0.696 (0.0042) 0.692 (0.0080) 0.693 (0.0090)
N-Net256 0.662 (0.0034) 0.664 (0.0054) 0.663 (0.0052) 0.663 (0.0045)

GB-INCV3 0.937 (0.0042) 0.938 (0.0042) 0.936 (0.0033) 0.937 (0.0046)
CAT-Net 0.961 (0.0029) 0.965 (0.0052) 0.961 (0.0031) 0.962 (0.0055)

used to minimize noise on the patches. Cancer patches were

extracted only from the annotated cancer regions in the cancer

WSIs. Finally, 24,000, 16,000, and 8,000 patches of 256×256

pixels on average were generated for training, validation, and

test respectively.

We compared the performance of CAT-Net with the current

state-of-the-art benchmark methods. The benchmark classifiers

included VGG16 [14], EM-CNN [15], N-Net [16], and Google

Brain’s Inception V3 (GB-INCV3) [17]. The experimental

settings for the benchmark methods were as follows:

• VGG16: We trained with patches of 256 × 256 pixels

using VGG16 architecture as proposed in [14]. We im-

plemented VGG16 using Keras in Python, where SGD

optimizer was used. The optimal hyper-parameters of

learning rate, dropout, and weight decay were obtained

by grid search with training and validation data on each

experiment.

• EM-CNN: EM-CNN was implemented in Keras with the

proposed CNN structure, but we considered the same size

of patch images (256×256). The model was trained by

ADAM optimizer and batch Normalization with momen-

tum of 0.99 and epsilon of 0.001. The optimal hyper-

parameters of learning rate and dropout were obtained

by grid search.

• N-Net50: To directly compare the performance, the non-

overlapping window of 50×50 pixels was used to gener-

ate patches without nuclei segmentation. We implemented

N-Net using Keras in Python, where Stochastic Gradient

Descent (SGD) optimizer was used. The optimal hyper-

parameters were obtained with the same manner with

VGG16.

• N-Net256: N-Net was also trained with the same size’s

patches (256×256 pixels) inputs with CAT-Net. The

optimal hyper-parameters were obtained with the same

manner with VGG16.

• GB-INCV3: The kernel window of 299×299 pixels with



976

(a) (b)

(c) (d)

Fig. 3: Boxplots of the experimental results: (a) Accuracy, (b) Precision, (c) Recall, and (d) F1 score
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Fig. 5: Feature maps of cancer and normal patches at Mixed

layers A–E. Morphological patterns of interest are captured in

the hierarchical levels.

stride of 128 pixels was slided on the WSIs to generate

patches, as proposed. GB-INCV3 was implemented by

its open source in PyTorch provided by the authors,

where Adaptive Moment Estimation (Adam) optimizer

was used. The optimal parameters were obtained with

same manner as VGG16.

• CAT-Net: CAT-Net was implemented in PyTorch, where

SGD optimizer was used. We used batch-normalization to

(a) (b)

(c) (d)

Fig. 6: Heatmaps on four examples of cancer and normal

WSIs. The annotation (circles in green in the left side)

indicates cancerous regions on the WSIs. For instance, (a) and

(b) show partial cancerous regions on the WSIs, whereas the

tissue in (c) is entirely cancerous and (d) is a totally normal

tissue. The heapmaps in the right side show accurate prediction

of cancerous regions on the WSIs.

achieve faster training and drop-out to avoid over-fitting.

Three hyper-parameters of learning rate, weight decay,

momentum, and kernel size were optimized automatically

by grid search with the minimum validation loss.

We measured accuracy, precision, recall, and F1 score

on the patch-based classification. The experimental results

of the ten experiments are summarized in Table II. CAT-

Net outperformed the other four benchmark methods, where

CAT-Net produced the highest accuracy of 0.9613 ± 0.0029

(mean ± std), precision of 0.9653 ± 0.0052, recall of 0.9617

± 0.0031 and F1 score of 0.9625 ± 0.0055, respectively.

Figure 3 visualizes the experimental results of the benchmark

methods, where our proposed method, CAT-Net, showed the

best performance with high reproducibility.

We examined feature maps of CAT-Net on the mixed layers
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to elucidate how the texture-based CAT-Net works for cancer

detection and how the mechanism of the model is connected

with knowledge in pathology. Figure 4 shows a subset of

feature maps (24 out of 64) at the end of the Mixed layer

A on patch examples of cancer and normal. Pixels in bright

color (yellow) on the feature maps represent activated nodes

by the optimally trained CAT-Net. Each feature maps were

generated by multiple kernels and dilated/convolutional layers,

which captures morphological patterns of interests in various

aspects. For instance, in the cancer patch, the first feature map

in the upper-left corner (circled in blue) highlights cytoplasm

of a tissue, whereas the feature map circled in red captures

most nuclei and mitosis of interests. In the same manner, the

cytoplasm of the epithelial cells shows yellow color in the

first feature map (circled in blue). Whereas, the feature map

circled in red in the normal patch shows normal epithelial cells

in yellow.

Figure 5 visualizes activated nodes in Mixed layers A–

E, where the feature map scores (higher than the median)

are colored in red in the figures. The feature maps also

capture most nuclei of interest on the patches in the mixed

layers, and morphological patterns of interests are identified

in the hierarchical levels. Interestingly, in the cancer patch,

inflammatory cells around cancer cells are identified in Mixed

layer A, but the importance of the inflammatory cells tend to

be diminished toward to Mixed layer E. It shows that both

inflammatory cells and cancer cells are capture in the lower

layers because they look similar each other but eventually

more cancer cells are highlighted by the model at the end. As

the same manner, a number of normal epithelial cells identified

by the models decreased toward to Mixed layer E in the normal

patch.

The optimally trained CAT-Net produced scores of cancer

on the patches sliding a patch window over a WSI, and the

scores are illustrated as a heat map, which indicates cancerous

regions on the WSI. Heatmaps of four sample WSIs, including

(a)-(b) partially cancerous tissues, (c) a entirely cancerous

tissue, and (d) a entirely normal tissue, are visualized in Fig. 6.

On each sub figure, annotation (circles in green in the left side)

indicates cancerous regions on the WSI, whereas the right side

shows its heatmap generated by CAT-Net. The heatmaps show

accurate prediction of cancer corresponding to the ground

truths.

IV. CONCLUSION

In this paper, we demonstrate a novel cancer texture-based

deep learning model, named CAT-Net. CAT-Net improves

the predictive performance by capturing multi-scale cancer

morphological patterns from a WSI. CAT-Net leverages a

part of the inception module without computing an auxiliary

loss, which reduce model’s complexity while preserving the

performance.

Through the intensive experiments, CAT-Net showed out-

standing performance among the current state-of-the-art meth-

ods in cancer histopathological image classification. Moreover,

feature maps which were extracted from CAT-Net illustrated

distinctive morphological patterns of cancer and normal on

WSIs. The Morphological patterns of interest in a hierarchi-

cal manner in the deep neural network can be visualized.

Heatmaps generated by CAT-Net showed substantial consen-

sus with the annotations of the ground truth on a WSI, which

can assist pathologists to efficiently diagnose WSIs.
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