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Abstract—Automatic histopathological Whole Slide Image
(WSI) analysis for cancer classification has been highlighted along
with the advancements in microscopic imaging techniques, since
manual examination and diagnosis with WSIs are time- and cost-
consuming. Recently, deep convolutional neural networks have
succeeded in histopathological image analysis. However, despite
the success of the development, there are still opportunities
for further enhancements. In this paper, we propose a novel
cancer texture-based deep neural network (CAT-Net) that learns
scalable morphological features from histopathological WSIs.
The innovation of CAT-Net is twofold: (1) capturing invariant
spatial patterns by dilated convolutional layers and (2) improving
predictive performance while reducing model complexity. More-
over, CAT-Net can provide discriminative morphological (texture)
patterns formed on cancerous regions of histopathological images
comparing to normal regions. We elucidated how our proposed
method, CAT-Net, captures morphological patterns of interest
in hierarchical levels in the model. The proposed method out-
performed the current state-of-the-art benchmark methods on
accuracy, precision, recall, and F1 score.

Index Terms—While Slide Images, Texture-based CNN

I. INTRODUCTION

The importance of histopathological image analysis for can-
cer classification has been dramatically increasing due to the
advancements in microscopic imaging techniques that allow
digitizing glass slides into Whole Slide Images (WSIs) [1].
Typically, medical specialists examine histopathological im-
ages from biopsies with various magnification factors, such as
patterns, textures, and morphological characteristics of tissues
that presents disease like cancer on WSIs. However, the
manual examination and diagnosis with WSIs are time- and
cost-consuming [2], [3].

However, although automatic histopathological image anal-
ysis using machine learning has strong potential for im-
proving efficiency, there are still computational challenges
to overcome. A number of studies have been proposed for
automatically classifying cancer on histopathological images.

Recently, Convolutional Neural Networks (CNNs) have
been widely explored in histopathological image analysis and
have achieved significant improvement of performance on
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Fig. 1: Overall framework of cancer texture-based deep neural
network

cancer classification [4], [5]. CNNs take an advantage of
convolutional layers that can automatically train the optimal
parametric kernels rather than using pre-defined features. Most
CNNs have trained the models with patch images instead of
directly introducing giga-pixel resolution WSIs [6]—[8]. Patch-
based training significantly reduces model complexity. An
Inception-based CNN model was proposed for detecting breast
cancer metastasis in lymph nodes on gigapixel pathology
images [6]. The deep neural network inputs a giga-pixel
pathological image and classifies/localizes cancerous regions
to assist pathologists. BICNN was developed to classify breast
cancer on histopathological images. BiCNN adopted a data
augmentation method and a transfer learning technique to
optimize model performance [9]. ImageNet was utilized to
classify benign and malignant tumors in H&E-stained sections
[10]. In the study, the CNN model was trained with patch
images of two different sizes (32 x 32 and 64 x 64 pixels)
extracted from WSIs and then classified cancer by combining
the patches of WSIs using majority voting. A multiple instance
learning-based CNN model was proposed to classify glioma
subtypes with multi-gigapixel WSIs [11]. The model was
trained by iteratively identifying discriminative patches in
the WSIs. Furthermore, the model identified discriminative
patches through Gaussian smoothing. These recent CNN ap-
proaches for tumor classification are all implemented with
patch-based image extraction to avoid high computational cost
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Fig. 2: The architecture of CAT-Net

and the limitations on preprocessing imposed by the nuclear-
based approach.

In this study, we propose a novel CAncer Texture-based
deep neural network model (CAT-Net). The innovations of
CAT-Net are twofold: (1) capturing invaiant spatial and
morphological patterns by dilated convolutional layers and
(2) improving predictive performance while reducing model
complexity. CAT-Net can also provide discriminative texture
patterns formed on cancerous regions of histopathological
images comparing to normal regions.

II. METHODS

In this paper, we propose a cancer texture-based deep neural
network (CAT-Net) that captures morphological patterns in
cancer, while reducing model complexity comparing to ex-
isting state-of-the-art deep learning models such as Inception
V3. We hypothesize that texture-based pattern analysis may
improve histopathological cancer image classification, since
morphological spatial patterns play an important role when
a pathologist reads slides. CAT-Net trains the model with
small-size patch images extracted by sliding a window on a
given giga-pixel WSI and provides a score for cancer (see
Fig. 1). CAT-Net is designed to effectively capture scalable
morphological texture patterns from a WSI.

We leverage dilated layers to achieve two objectives in the
model for the image texture analysis: (1) enlarging the field of
view of filters to incorporate larger context and (2) employing
varying values of dilation rate enabling object encoding at
multiple scales. It offers a control of the field-of-view and
finds the best trade-off between accurate localization (small
field-of-view) and context assimilation (large field-of-view).

CAT-Net consists of 21 layers of dilated convolutional,
max pooling, five types of mixed layers, fully connected, and
softmax layers (see Fig. 2). In CAT-Net, eleven mixed layers
are embedded in the architecture, inspired by the inception
model [7]. The mixed layers, called Inception layers, are
combinations of a set of conventional convolutional layers with
various kernel sizes. The mixed layers allow internal layers
that adaptively select the most appropriate filter size to a given
image. CAT-Net enables spatial invariance with an dilation rate
of 2x2 [12], [13].
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To generalize our architecture for input texture and scale,
CAT-Net includes five mixed layers with various texture
scales: Mixed layer A, Mixed layer B, Mixed layer C, Mixed
layer D and Mixed layer E in Fig. 2. The mixed layers share
a similar structure but with different kernel sizes and numbers
of convolution layers. Then, convolutional layers of various
sizes with output filters are concatenated into a single output
vector, forming the input of the next layer. Specifically, Mixed
layer A contains three different filters of: 1x1, 3x3, and 5x5
filter sizes; Mixed layer B contains two filter sizes: 1x1 and
3x3; Mixed layer C contains three filter sizes: 1x1, (1x7),
and 7x 1; Mixed layer D contains 4 filters: 1x 1, 1x7, 7x1 and
33 filters sizes; Mixed layer E filter contains 1x1, 1x3, 3x1,
and 3 x3 filter sizes (see Fig. 2). The details of the architecture
is described in Table 1.

The multi-scaled CAT-Net can capture important morpho-
logical patterns of various sizes in cancer nuclei. CAT-Net does
not include auxiliary classifiers unlike the Inception model,
which makes model complexity less than the inception model
but still improves accuracy.

III. EXPERIMENTAL RESULTS

We conducted intensive experiments with pathological im-
age dataset obtained by gastroscopic biopsy specimen of
94 cases at the Gyeongsang National University Changwon
Hospital (Changwon, Korea) between February 2016 and July
2017 to assess the performance of the proposed CAT-Net.
The tissue specimens were stained with Hematoxylin and
Eosin (H&E) using standard protocols in routine clinical care.
Then, totally 94 whole slide images (WSIs) were generated.
Specific cancer regions were annotated on the cancer WSIs
by a pathologist at Gyeongsang National University Hospi-
tal. The WSIs were categorized into four: well (13 WSIs),
moderately (11 WSIs), poorly-differentiated adenocarcinoma
(20 WSIs), poorly cohesive carcinoma (20 WSIs) including
signet-ring cell features, and normal gastric mucosa (30 WSIs),
respectively. The histologic type and differentiation grade of
the carcinoma were determined according to the classification
system of the World Health Organization, fourth edition’.

In this study, we considered only well (13 WSIs) and
moderately differentiated (11 WSIs) WSIs as well as normal
gastric mucosa WSIs (30 WSIs). Then, we randomly selected
24 WSIs from the 30 normal WSIs to balance the numbers
of cancer and normal WSIs. The dataset was randomly split
into 24, 16, and 8 WSIs for train, validation, and test respec-
tively, while preserving the proportions of cancer and normal
classes. The experiments were repeated ten times for model
reproducibility.

Patches were extracted from the WSIs with the 40X magni-
fication as an input to CAT-Net, due to the high resolution of a
WSI. We generated patches by sliding a kernel window of size
256 and stride of 128 on a WSI. Image-morphological prepro-
cessing, such as image thresholding and skew correction, were

I'This study was approved by the Institutional Review Board of Gyeongsang
National University Hospital with a waiver for informed consent (2018-08-
005-001).



TABLE I: Architecture of CAT-Net

Layer (Number) Filter Size Stride | Output (WxHXN)
Dilated Conv (1) 3x3 2 256 x 256 x 3
Dilated Conv (2) 3x3 1 149 x 149 x 32 ‘ﬁ
Dilated Conv (3) 3x3 1 147 x 147 x 32
Max Pooling (4) 3x3 2 147 x 147 x 64 ‘g
Dilated Conv (5) 1x1 1 73 x 73 x 64 ‘g
Dilated Conv (6) 3x3 1 73 x 73 x 80
Max Pooling (7) 3x3 2 71 x 71 x 192 \ﬁ
MixedA (8) (Ix1) (3x3) (5x5) 1 35 x 35 x 192
Mixed layer A (9) (Ix1) (3x3) (5x5) 1 35 x 35 x 256 \ﬁ
Mixed layer A (10) (Ix1) 3x3) (5%5) 1 35 x 35 x 288
Mixed layer B (11) (Ix1) 3x3) 2 35 x 35 x 288 ‘ﬁ
Mixed layer C (12, 13, 14, 15) (Ix1) (I1x7)*2 (Tx1)*2 1 17 x 17 x 768 ‘ﬁ
Mixed layer D (16) (Ix1) (Ix7) (Tx1) 3%x3) 17 x 17 x 768 ‘ﬁ
Mixed layer E (17) (Ix1) (1x3) 3x1) (3x3) 8 x 8 x 1280 \ﬁ
Mixed layer E (18) (Ix1) (1x3) 3x1) (3x3) 1 8 x 8 x 2048
Average Pooling (19) (Ix1) 8 x 8 x 2048 ‘D

TABLE II: Experimental results with patch images

Method Accuracy* Precision*

Recall* F1 score*

VGG16 0.682 (0.0120) | 0.674 (0.0091)

0.689 (0.0130) | 0.681 (0.0110)

EM-CNN 0.704 (0.0707) | 0.738 (0.1053)

0.689 (0.0831) | 0.681 (0.1477)

N-Net50 0.693 (0.0080) | 0.696 (0.0042)

0.692 (0.0080) | 0.693 (0.0090)

N-Net256 0.662 (0.0034) | 0.664 (0.0054)

0.663 (0.0052) | 0.663 (0.0045)

GB-INCV3 | 0.937 (0.0042) | 0.938 (0.0042)

0.936 (0.0033) | 0.937 (0.0046)

CAT-Net 0.961 (0.0029) | 0.965 (0.0052)

0.961 (0.0031) | 0.962 (0.0055)

used to minimize noise on the patches. Cancer patches were
extracted only from the annotated cancer regions in the cancer
WSIs. Finally, 24,000, 16,000, and 8,000 patches of 256256
pixels on average were generated for training, validation, and
test respectively.

We compared the performance of CAT-Net with the current

state-of-the-art benchmark methods. The benchmark classifiers o

included VGG16 [14], EM-CNN [15], N-Net [16], and Google
Brain’s Inception V3 (GB-INCV3) [17]. The experimental
settings for the benchmark methods were as follows:

e VGG16: We trained with patches of 256 x 256 pixels
using VGG16 architecture as proposed in [14]. We im-
plemented VGG16 using Keras in Python, where SGD
optimizer was used. The optimal hyper-parameters of
learning rate, dropout, and weight decay were obtained
by grid search with training and validation data on each

proposed CNN structure, but we considered the same size
of patch images (256x256). The model was trained by
ADAM optimizer and batch Normalization with momen-
tum of 0.99 and epsilon of 0.001. The optimal hyper-
parameters of learning rate and dropout were obtained
by grid search.

N-Net50: To directly compare the performance, the non-
overlapping window of 50x50 pixels was used to gener-
ate patches without nuclei segmentation. We implemented
N-Net using Keras in Python, where Stochastic Gradient
Descent (SGD) optimizer was used. The optimal hyper-
parameters were obtained with the same manner with
VGG16.

N-Net256: N-Net was also trained with the same size’s
patches (256x256 pixels) inputs with CAT-Net. The
optimal hyper-parameters were obtained with the same
manner with VGG16.

experiment. « GB-INCV3: The kernel window of 299 %299 pixels with

o EM-CNN: EM-CNN was implemented in Keras with the
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Fig. 3: Boxplots of the experimental results: (a) Accuracy, (b) Precision, (c) Recall, and (d) F1 score

Cancer

Fig. 4: Output feature maps of caner and normal patches from
Mixed Layer A

Original patch Mixed layer A Mixed layer B Mixed layer E

Cancer

Normal

Fig. 5: Feature maps of cancer and normal patches at Mixed
layers A—E. Morphological patterns of interest are captured in
the hierarchical levels.

stride of 128 pixels was slided on the WSIs to generate
patches, as proposed. GB-INCV3 was implemented by
its open source in PyTorch provided by the authors,
where Adaptive Moment Estimation (Adam) optimizer
was used. The optimal parameters were obtained with
same manner as VGG16.

e CAT-Net: CAT-Net was implemented in PyTorch, where
SGD optimizer was used. We used batch-normalization to
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(c)

Fig. 6: Heatmaps on four examples of cancer and normal
WSIs. The annotation (circles in green in the left side)
indicates cancerous regions on the WSIs. For instance, (a) and
(b) show partial cancerous regions on the WSIs, whereas the
tissue in (c) is entirely cancerous and (d) is a totally normal
tissue. The heapmaps in the right side show accurate prediction
of cancerous regions on the WSIs.

achieve faster training and drop-out to avoid over-fitting.
Three hyper-parameters of learning rate, weight decay,
momentum, and kernel size were optimized automatically
by grid search with the minimum validation loss.

We measured accuracy, precision, recall, and F1 score
on the patch-based classification. The experimental results
of the ten experiments are summarized in Table II. CAT-
Net outperformed the other four benchmark methods, where
CAT-Net produced the highest accuracy of 0.9613 £ 0.0029
(mean =+ std), precision of 0.9653 + 0.0052, recall of 0.9617
£+ 0.0031 and F1 score of 0.9625 £ 0.0055, respectively.
Figure 3 visualizes the experimental results of the benchmark
methods, where our proposed method, CAT-Net, showed the
best performance with high reproducibility.

We examined feature maps of CAT-Net on the mixed layers



to elucidate how the texture-based CAT-Net works for cancer
detection and how the mechanism of the model is connected
with knowledge in pathology. Figure 4 shows a subset of
feature maps (24 out of 64) at the end of the Mixed layer
A on patch examples of cancer and normal. Pixels in bright
color (yellow) on the feature maps represent activated nodes
by the optimally trained CAT-Net. Each feature maps were
generated by multiple kernels and dilated/convolutional layers,
which captures morphological patterns of interests in various
aspects. For instance, in the cancer patch, the first feature map
in the upper-left corner (circled in blue) highlights cytoplasm
of a tissue, whereas the feature map circled in red captures
most nuclei and mitosis of interests. In the same manner, the
cytoplasm of the epithelial cells shows yellow color in the
first feature map (circled in blue). Whereas, the feature map
circled in red in the normal patch shows normal epithelial cells
in yellow.

Figure 5 visualizes activated nodes in Mixed layers A—
E, where the feature map scores (higher than the median)
are colored in red in the figures. The feature maps also
capture most nuclei of interest on the patches in the mixed
layers, and morphological patterns of interests are identified
in the hierarchical levels. Interestingly, in the cancer patch,
inflammatory cells around cancer cells are identified in Mixed
layer A, but the importance of the inflammatory cells tend to
be diminished toward to Mixed layer E. It shows that both
inflammatory cells and cancer cells are capture in the lower
layers because they look similar each other but eventually
more cancer cells are highlighted by the model at the end. As
the same manner, a number of normal epithelial cells identified
by the models decreased toward to Mixed layer E in the normal
patch.

The optimally trained CAT-Net produced scores of cancer
on the patches sliding a patch window over a WSI, and the
scores are illustrated as a heat map, which indicates cancerous
regions on the WSI. Heatmaps of four sample WSIs, including
(a)-(b) partially cancerous tissues, (c) a entirely cancerous
tissue, and (d) a entirely normal tissue, are visualized in Fig. 6.
On each sub figure, annotation (circles in green in the left side)
indicates cancerous regions on the WSI, whereas the right side
shows its heatmap generated by CAT-Net. The heatmaps show
accurate prediction of cancer corresponding to the ground
truths.

IV. CONCLUSION

In this paper, we demonstrate a novel cancer texture-based
deep learning model, named CAT-Net. CAT-Net improves
the predictive performance by capturing multi-scale cancer
morphological patterns from a WSI. CAT-Net leverages a
part of the inception module without computing an auxiliary
loss, which reduce model’s complexity while preserving the
performance.

Through the intensive experiments, CAT-Net showed out-
standing performance among the current state-of-the-art meth-
ods in cancer histopathological image classification. Moreover,
feature maps which were extracted from CAT-Net illustrated
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distinctive morphological patterns of cancer and normal on
WSIs. The Morphological patterns of interest in a hierarchi-
cal manner in the deep neural network can be visualized.
Heatmaps generated by CAT-Net showed substantial consen-
sus with the annotations of the ground truth on a WSI, which
can assist pathologists to efficiently diagnose WSIs.
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