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Abstract— Finding the network biomarkers of cancers and the
analysis of cancer driving genes that are involved in these
biomarkers are essential for understanding the dynamics of
cancer. Clusters of genes in co-expression networks are commonly
known as functional units. This work is based on the hypothesis
that the dense clusters or communities in the gene co-expression
networks of cancer patients may represent functional units
regarding cancer initiation and progression. In this study, RNA-
seq gene expression data of three cancers - Breast Invasive
Carcinoma (BRCA), Colorectal Adenocarcinoma (COAD) and
Glioblastoma Multiforme (GBM) - from The Cancer Genome
Atlas (TCGA) are used to construct gene co-expression networks
using Pearson Correlation. Six well-known community detection
algorithms are applied on these networks to identify communities
with five or more genes. A permutation test is performed to
further mine the communities that are conserved in other cancers,
thus calling them conserved communities. Then survival analysis
is performed on clinical data of three cancers using the conserved
community genes as prognostic co-variates. The communities that
could distinguish the cancer patients between high- and low-risk
groups are considered as cancer biomarkers. In the present study,
16 such network biomarkers are discovered.

Keywords—Cancer Biomarkers, Community Detection, Gene
Co-expression Network, Survival Analysis.

L INTRODUCTION

Gene expression profiles across samples can be highly
correlated, and it is natural to describe their pairwise
relationship using graph theoretic techniques or network
analyses. Genes that correlate in terms of expression may form
complexes, pathways, or participate in regulatory and signaling
circuits [1]-[3]. Gene expression patterns, combined with
statistical techniques, have been explored in many types of
cancer [4]-[9].

There have been some works on the identification of
recurrent patterns or biologically significant modules from gene
co-expression networks (GCN). In a GCN, nodes represent
genes, and edges represent that the pairs of genes connected by
edges have significantly similar expression patterns over
different samples. In other words, co-expression is a tool that
infers edges in a gene network that is based on the “guilt by
association” concept. Several methods exist for inferring edges
in a GCN. Pearson correlation is the most common co-
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expression measure used in various studies [3][10]. Another
standard method is Mutual Information (MI) [11], which is an
information theoretic measure for measuring the nonlinear
relationship between genes or other variables. Other notable
methods are Spearman Rank Correlation, Euclidean Distance,
Angle between a pair of observed expression vectors, and
Gaussian graphical models [12]-[13]. A threshold is applied
after constructing the co-expression network to retain the most
biologically significant correlations between genes. The
threshold can be soft [14] or hard [15] and is applied to produce
a binary or weighted network.

While the GCN has topological structures reflecting real
gene interactions, identifying groups of genes with dense
interactions becomes a topic of research interest. These highly
connected groups have a higher within-group homogeneity and
can be considered as biologically significant modules
performing a common task, such as shared regulatory inputs or
functional pathways. Different methods are used to find these
groups or modules. Lee et al. used hierarchical clustering to find
functionally relevant modules [16]. Weighted Gene Correlation
Network Analysis (WGCNA) is the most widely used package
for finding modules [17] applying hierarchical clustering. It
involves soft thresholding during the construction of a GCN.
Tang et al. constructed a free scale GCN using WGCNA on
gene expression data of breast cancer and found three hub genes
[11]. Similarly, other researchers identified critical genes
associated with different cancers such as breast, cervical, colon,
esophageal, osteosarcoma, and ovarian cancer [18]-[25]. Few
of them conducted survival analysis to validate those
biomarkers.

To discover network biomarkers, other than GCNs,
researchers also used protein-protein interaction (PPI) networks
[26]-[28]. Though the PPI and co-expression networks are
static in nature, these come with rich information about the
dynamic processes such as the behavior of genetic networks in
response to DNA damage [29], the prediction of protein
subcellular localization [30]-[35], protein function [36],
genetic interaction [37], and the process of aging [38].

Graph-theoretic methods are also applied in the analysis of
GCN to achieve the same goal. In a recent work, Mondal et al.
showed that clique-like and bipartite graphs can be used as



building blocks for disease initiation and progression at the
protein or gene network level [39]. Using these building blocks,
Tanvir et al. discovered network modules related to cancers
from GCNs [40]. Shi et al. proposed a new algorithm named
Iterative clique enumeration technique (ICE) to discover
relatively independent maximal cliques for breast cancer on
GEO dataset, and they found some highly correlated modules
which may be capable of differentiating different tumor grades
[41]. Similarly, Perkins et al. used spectral graph theory on
Homo sapiens and Saccharomyces cerevisiae microarray data
for clustering genes at various thresholds [42]. Using the
centrality analysis method, Zhang et al. discovered the top five
hub genes for bladder cancer [43]. Later they found 329
differentially expressed genes (DEG) that are significantly
enriched by pathway analysis.

As GCN is a type of biological systems network, network
science approach such as community detection can be applied
to it as an analysis tool. Community detection in a network can
be viewed as identifying the clusters of related nodes. Several
studies were conducted on finding communities from biological
networks. Feng et al. proposed MiMod, an algorithm for finding
communities in GCN [44], which uses a divide-and-conquer
strategy through application of biclustering method. Tripathi et
al. [45] presented a framework that uses an adapting ensemble
method using multiple community detection algorithms to find
disease modules in heterogeneous biological networks. Wang
et al. proposed Heuristic Graph Clustering Algorithm (HGCA)
that selects seed nodes based on various topological
characteristics and expands from those seed nodes to form
communities from protein-protein interaction networks [46].
Kanter et al. propose a Python-based toolkit that uses the k-
Nearest Neighbor to identify communities. Couturier et al. used
Louvain, a community detection algorithm to detect subtypes
of cancer from scRNA-seq data of five Glioblastoma patients
[47].

Genes co-expressed across multiple samples are more likely
to correspond to functional groups [16]. Different cancers share
common characteristics [48], and conserved functions and
genes related to these common characteristics can be found by
analyzing GCNs of different types of cancer [49]. So, it is of
considerable significance to study the common characteristics
of patients with different types of cancer. This rationale
motivates our work to find cancer biomarkers using multiple
methods from GCNs. In a recent study, Yu et al. [50] used
GCNs to mine conserved communities for cancers using
Cytoscape plugin MCODE. The present study is the extended
version of our previus work [51] and different from Yu et al.
[50] in four different aspects: 1) in constructing GCN, they used
rank-based approach and we used a threshold on Pearson
Coeffient, ii) to identify communities, they used Cytoscape
plugin MCODE and we used six community detection
algorithms, iii) to identify conserved community, they found
community from only one cancer and then check the conserved
behavior with other cancer but we found communities from
each cancer and compared with others, and iv) in survival
analysis, they used GGI (gene expression grade index) score to
divide the patients into two groups whereas we used K-means
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clustering. The appraoch using GGI score has reproducibility
issue as explained in survival analysis, Section II-D.

In this study, RNA-seq gene expression data of three
cancers - BRCA, COAD and GBM - from The Cancer Genome
Atlas (TCGA) are used to construct GCNs using Pearson
Correlation with coefficient value greater than or equal to 0.70
as a threshold. Six well-known community detection
algorithms are applied on these networks to identify
communities with five or more genes. A permutation test is
performed to further mine the communities that are conserved
in other cancers, thus calling them conserved communities.
Then survival analysis is performed on clinical data of three
cancers using the conserved community genes as prognostic co-
variates. The communities that could distinguish the cancer
patients between high- and low-risk groups are considered as
cancer biomarkers. In the present study, 16 such network
biomarkers are discovered.

II. MATERIALS AND METHODS

A. Data Preparation

The RNAseq gene expression and clinical data for three
cancers — BRCA, COAD, and GBM - were collected from
linkedomics.org [52], which contains well organized collection
of multi-omics data of 32 cancers, curated from TCGA project.
The number of genes and samples for BRCA, COAD and GBM
are given in the Table 1. The gene expression dataset for each of
these three cancers contained a large number of zero values
which could lead to an erroneous outcome. In order to solve this
issue, genes that have average of RPKM value less than equal to
0.3 are removed. This criterion was used in [53]-[55] as a
preprocessing step. The number of genes that fulfills this
criterion and the remaining number of genes for each cancer are
given in the Table I.

Table I: Summary of gene expression data for three cancers

#of # of # of genes with avg #of
Cancer genes (RPKM) < 0.3 remaining
samples
genes
BRCA 1093 | 20155 1480 18675
COAD 379 19828 1557 18271
GBM 153 19660 1298 18362

B. Gene Co-expression Network Construction

Pearson’s Correlation was used to construct the GCN. It
computes the correlation coefficient between each pair of genes
based on gene expression values. These coefficient values,
ranging between -1 to +1, provide information about how two
genes are correlated with each other towards causing cancer in
terms of their expression values. The pairs of genes are filtered
using the criteria of having the absolute value of Pearson
Correlation Coefficient (PCC) greater than or equal to 0.70. This
threshold is based on the studies by Mondal and Hu [30][32][35],
which showed that GCN with PCC > 0.7 produces the best
results in predicting protein localization. A pair of genes having
PCC = 0.7 means they are strongly correlated. Table II shows
the topology of GCNs derived from three cancers.



It is clear from this table that number of connected
components (CC) in each of the co-expression network is very
high, most of which are pairs and triples as shown in Figure 1.

Table II: Network Topology of GCNs for three cancers. CC
represents connected component.

Cancer BRCA COAD GBM
# of Nodes 6613 6387 8655
# of Edges 99189 269027 194165
# of CCs 539 472 345
#of CCs >4 37 35 23

But the number of components with more than four edges is
much lower, which are used for finding the biomarker
communities.

Fig. 1. Gene co-expression network of BRCA. The image was generated
using PyGraphistry [56].

After construction of the GCN, six community detection
algorithms were used to find subnetworks of interest. The six
algorithms are — Fastgreedy [57], Infomap [58], Label
Propagation [59], Leading Eigenvector [60], Multilevel [61]
and Walktrap [62]. Python package NetworkX [63] and igraph
[64] were used for implementation.

C. Permutation Test

Permutation test, following the procedure enumerated by
Yuetal. [50], was done on each of the communities to find out
which were conserved in all the GCNs. The detailed workflow
for the permutation test is described below:

e Let, acommunity C extracted from GCN of cancer A has
n nodes.
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e Now a subnetwork is formed using the same n nodes of
C from GCN of cancer B. let the number of edges in that
subnetwork is e

e A random subnetwork of n nodes from GCN of cancer B
is formed. let, this subnetwork has e, edges.

e Previous step is repeated 1000 times and every time e,
is greater than e, is counted. Let this count be X.

e Now, the P-value for the community, which denotes the
significance value for the community in consideration, is
calculated by the following equation.

X

~ 1000

In each iteration, a P-value for a community from one cancer
with respect to another cancer is obtained. The evaluation of P-
value is done for each community with respect to all cancers
except the one this community is mined from. The communities
with P-value < 0.05 are considered as the conserved
communities.

D. Survival Analysis

The gene sets in conserved communities were used in
survival analysis to validate them as biomarkers in terms of
prognostic risk assessment of cancer patients. For each
conserved community, the member genes were taken as co-
variates and K-means clustering algorithm was used on cancer
samples to create two distinguishing groups assuming that the
gene community is capable of differentiating cancer patients in
high-risk and low-risk groups. Then Log-rank test and Kaplan-
Meier test were done using these two groups to check whether
the gene community is really capable of differentiating between
high-risk and low-risk groups.

Although Cox Proportional-Hazards Regression Model
(CPH) [65] is mostly used to do survival analysis, we chose K-
means clustering over CPH. The reason is that CPH requires
training samples and after training is done, a scoring method
based on the coefficients of CPH is normally used to divide the
test samples as two groups, referred to as high-risk and low-risk
groups. Then Log-rank and Kaplan-Meier test is done to check
the difference between the two groups. In CPH approach, test
data is half the size of the total clinical data and the remaining
half is used for training. The division of test and training
samples is often done randomly, which may result in different
output with different division, raising the question of
reproducibility. With K-means unlike CPH, one can use all the
samples to do survival analysis by creating two groups and the
result is reproducible. High-risk and low-risk groups are
identified after Kaplan-Meier test.

III. RESULTS AND DISCUSSION

A. Communities

In this study, six different community detection algorithms
were used on GCNs derived from three cancers - BRCA, COAD
and GBM - to discover the communities as possible network
modules or biomarkers. Each algorithm resulted in different
numbers of communities from different networks, as shown in



Figure 2. Infomap produced the highest numbers of
communities - 187 and 162 respectively from GCNs of BRCA
and COAD. For GBM, Walktrap produced 112 communities,
which is the highest for the same. Leading Eigenvector produced
lowest number of communities for all three GCNs - 51 from
BRCA, 38 from COAD and 32 from GBM. Total numbers of
unique communities produced by six algorithms from BRCA,
COAD and GBM are 387, 267 and 247 respectively. The
combined number of total unique communities are 899 while
only 2 are in common.

Summary of Communities

Walktrap |
Multilevel
Leading Eigenvector |

Label Propagation

CD algorithms

Infomap

FastGreedy

0 50 100 150 200
=GBM = COADREAD ®BRCA # of communities

Fig. 2. Number of communities discovered by different algorithms for
different GCNs. The communities with number of nodes greater than four are
accounted for.

B. Conserved Communities.

Based on permutation test, 64 communities out of 899 are
conserved - 27 from BRCA, 23 from COAD and 14 from GBM.
Figure 3 presents each of these 64 communities in terms of a)
number of genes in each community, b) the GCN network each
community is derived from, and c) the algorithm(s) each
community is discovered by. Fourteen out of 64 conserved
communities are discovered using multiple community
detection algorithms. For instance, community #1 is found by
three algorithms, Fastgreedy, Infomap and Label Propagation;
and community #5 was found by all six algorithms.

C. Survival Analysis

Survival analysis was performed on each of the 64
conserved communities to see if they could significantly
distinguish the risk between two groups, high-risk and low-risk,
of cancer patients. These two groups are created using K-mean
clustering employing the expression values of genes from the
community of interest. The set of genes involved in each
conserved community were used as prognostic variables to
predict the risks of cancer patients in all three cancers. The
communities that could distinguish the prognostic risks of
patients in multiple cancers are considered as network
biomarkers. Finally, the Log-rank test and Kaplan-Meier
Estimation were performed to validate their prognostic
capabilities.

Based on survival analysis, 16 out of 64 communities could
differentiate between high-risk and low-risk groups of patients
in one or two cancers. Table IIl presents the summary of
survival analyses of these 16 conserved communities. The triple
(Cancer, P-Value, HR) in third column represents — i) “Cancer”
represents the type of cancer patients used for survival analysis,
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i) “P-value” represents Log-rank test P-value, and iii) “HR”
represents the hazard ratio. It is clear from this table that five
communities (#5, #19, #27, #59, #63) were able to differentiate
prognostically significant patients’ group of two cancers and
others are capable of differentiating patients’ group in one
cancer.
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Fig. 3. The summary of 64 conserved communities. The vertical boxes - blue,
orange and green - indicate the GCNs from where conserved communities are
mined. The blue circle(s) in each row denote(s) the algorithm(s) that discovered
the corresponding community. The horizontal bar chart shows the sizes of the
communities in terms of number of nodes (genes). X-axis is the number of
genes and Y-axis is the communities, indexed from 1 to 64. The names of the
algortihms are abbreviated as: FG: Fastgreedy, IM: Infomap, LP: Label
Propagation, LE: Leading Eigenvector, ML: Multilevel and WT: Walktrap.
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Fig. 4. Kaplan-Meier Curve of cancer patients of (A) BRCA, (B) COAD, (C) GBM using community #27, and (D) BRCA (E) COAD (F) GBM using
community #63.

Figure 4 shows the Kaplan-Meier curve employing the gene
sets in communities #27 and #63 on BRCA, COAD and GBM
cancer patients. Community #27 was able to differentiate two
cancer patients’ groups in terms of prognostic risk significantly
(P- value <= 0.05), namely BRCA (Fig. 4-A) and COAD (Fig
4-B).

Table III: Summary of Survival Analysis of conserved
communities. The rows with bold community indexes indicate
they were found by multiple community detection algorithms.

Communi Correspondin Cancer Patients, Log-rank test
Index ty GI()ZN & P-value and Hazard Ratio
(Cancer, P-value, HR)
(COAD, 0.0425, 1.43),
S BRCA (GBM, 0.0067, 1.29)
8 BRCA (COAD, 0.0518, 1.62)
14 BRCA (BRCA, 0.0143, 1.63)
17 BRCA (BRCA, 0.0.0066, 1.43)
(BRCA, 0.0193, 1.31),
19 BRCA (GBM, 0.0218. 137)
23 BRCA (COAD, 0.0666,1.21)
(BRCA, 0.0071, 1.28),
27 COAD (COAD, 0.0201, 1.72)
34 COAD (COAD, 0.0086, 1.82)
36 COAD (COAD, 0.0367, 1.25)
41 COAD (COAD,0.0430,1.54)
53 GBM (GBM, 0.0329, 1.57)
56 GBM (COAD, 0.0243, 1.45)
57 GBM (GBM, 0.0226, 1.17)
(BRCA, 0.046, 1.19),
39 GBM (GBM, 0.0492, 1.148)
62 GBM (GBM, 0.0526, 1.52)
(COAD, 0.0047, 1.57),
63 GBM (GBM, 0.0175,1.83)

2101

But it could not perform the same way for GBM (Fig. 4-C),
which is evidenced by a high P-value of 0.91 and a hazard ratio
close to 1. Similarly, community #63 was able to differentiate
significantly in terms of prognostic risk for COAD (Fig. 4-E),
and GBM (Fig. 4-F), but could not do well for BRCA (Fig. 4-
D).

IV. CONCLUSION

Six well-known community detection algorithms are applied
to mine probable network biomarkers from gene expression
networks of three cancers - BRCA, COAD and GBM. A
permutation test is performed to further mine the communities
that are conserved in other cancers, thus calling them conserved
communities. Then survival analysis is performed on clinical
data of three cancers using the conserved community genes as
prognostic covariates. The communities that could distinguish
the cancer patients between high- and low-risk groups are
considered as cancer biomarkers. In the present study, 16 such
network biomarkers are discovered. The list of genes from these
network biomarkers can be used to discover the trajectory of
cancer development by inferring pseudotime from static
expression profiles [66].

In the extended version of this paper, functional analysis of
the conserved communities will be conducted to provide better
insights about the discovered network communities. Another
level of validation will be conducted using gene expression and
clinical data of different cancers which are not used to derive the
conserved communities. In this study, network biomarkers or
biomarker communities are mined using mRNA expression data
only. It would be worthwhile to study other omics data like
miRNA expression, IncRNA expression and DNA methylation
to identify network modules for cancer. Finding communities
from networks constructed using integration of multi-omics data
will provide holistic picture of network modules related to
cancer. Graph-based deep learning can be applied to these
biological networks to find submodules that might be of
biological interest as well.
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