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Abstract— Finding the network biomarkers of cancers and the 
analysis of cancer driving genes that are involved in these 
biomarkers are essential for understanding the dynamics of 
cancer. Clusters of genes in co-expression networks are commonly 
known as functional units. This work is based on the hypothesis 
that the dense clusters or communities in the gene co-expression 
networks of cancer patients may represent functional units 
regarding cancer initiation and progression. In this study, RNA-
seq gene expression data of three cancers - Breast Invasive 
Carcinoma (BRCA), Colorectal Adenocarcinoma (COAD) and 
Glioblastoma Multiforme (GBM) - from The Cancer Genome 
Atlas (TCGA) are used to construct gene co-expression networks 
using Pearson Correlation. Six well-known community detection 
algorithms are applied on these networks to identify communities 
with five or more genes. A permutation test is performed to 
further mine the communities that are conserved in other cancers, 
thus calling them conserved communities.  Then survival analysis 
is performed on clinical data of three cancers using the conserved 
community genes as prognostic co-variates. The communities that 
could distinguish the cancer patients between high- and low-risk 
groups are considered as cancer biomarkers. In the present study, 
16 such network biomarkers are discovered.  

Keywords—Cancer Biomarkers, Community Detection, Gene 
Co-expression Network, Survival Analysis. 

I. INTRODUCTION 

Gene expression profiles across samples can be highly 
correlated, and it is natural to describe their pairwise 
relationship using graph theoretic techniques or network 
analyses. Genes that correlate in terms of expression may form 
complexes, pathways, or participate in regulatory and signaling 
circuits [1]–[3]. Gene expression patterns, combined with 
statistical techniques, have been explored in many types of 
cancer [4]–[9]. 

There have been some works on the identification of 
recurrent patterns or biologically significant modules from gene 
co-expression networks (GCN). In a GCN, nodes represent 
genes, and edges represent that the pairs of genes connected by 
edges have significantly similar expression patterns over 
different samples. In other words, co-expression is a tool that 
infers edges in a gene network that is based on the “guilt by 
association” concept. Several methods exist for inferring edges 
in a GCN. Pearson correlation is the most common co-

expression measure used in various studies [3][10]. Another 
standard method is Mutual Information (MI) [11], which is an 
information theoretic measure for measuring the nonlinear 
relationship between genes or other variables. Other notable 
methods are Spearman Rank Correlation, Euclidean Distance, 
Angle between a pair of observed expression vectors, and 
Gaussian graphical models [12]–[13]. A threshold is applied 
after constructing the co-expression network to retain the most 
biologically significant correlations between genes. The 
threshold can be soft [14] or hard [15] and is applied to produce 
a binary or weighted network.  

While the GCN has topological structures reflecting real 
gene interactions, identifying groups of genes with dense 
interactions becomes a topic of research interest. These highly 
connected groups have a higher within-group homogeneity and 
can be considered as biologically significant modules 
performing a common task, such as shared regulatory inputs or 
functional pathways. Different methods are used to find these 
groups or modules. Lee et al. used hierarchical clustering to find 
functionally relevant modules [16]. Weighted Gene Correlation 
Network Analysis (WGCNA) is the most widely used package 
for finding modules [17] applying hierarchical clustering. It 
involves soft thresholding during the construction of a GCN. 
Tang et al. constructed a free scale GCN using WGCNA on 
gene expression data of breast cancer and found three hub genes 
[11]. Similarly, other researchers identified critical genes 
associated with different cancers such as breast, cervical, colon, 
esophageal, osteosarcoma, and ovarian cancer [18]–[25]. Few 
of them conducted survival analysis to validate those 
biomarkers.  

To discover network biomarkers, other than GCNs, 
researchers also used protein-protein interaction (PPI) networks 
[26]–[28]. Though the PPI and co-expression networks are 
static in nature, these come with rich information about the 
dynamic processes such as the behavior of genetic networks in 
response to DNA damage [29], the prediction of protein 
subcellular localization [30]–[35], protein function [36], 
genetic interaction [37], and the process of aging [38]. 

Graph-theoretic methods are also applied in the analysis of 
GCN to achieve the same goal. In a recent work, Mondal et al. 
showed that clique-like and bipartite graphs can be used as 
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building blocks for disease initiation and progression at the 
protein or gene network level [39]. Using these building blocks, 
Tanvir et al. discovered network modules related to cancers 
from GCNs [40]. Shi et al. proposed a new algorithm named 
Iterative clique enumeration technique (ICE) to discover 
relatively independent maximal cliques for breast cancer on 
GEO dataset, and they found some highly correlated modules 
which may be capable of differentiating different tumor grades 
[41]. Similarly, Perkins et al. used spectral graph theory on 
Homo sapiens and Saccharomyces cerevisiae microarray data 
for clustering genes at various thresholds [42]. Using the 
centrality analysis method, Zhang et al. discovered the top five 
hub genes for bladder cancer [43]. Later they found 329 
differentially expressed genes (DEG) that are significantly 
enriched by pathway analysis. 

As GCN is a type of biological systems network, network 
science approach such as community detection can be applied 
to it as an analysis tool. Community detection in a network can 
be viewed as identifying the clusters of related nodes. Several 
studies were conducted on finding communities from biological 
networks. Feng et al. proposed MiMod, an algorithm for finding 
communities in GCN [44], which uses a divide-and-conquer 
strategy through application of biclustering method. Tripathi et 
al. [45] presented a framework that uses an adapting ensemble 
method using multiple community detection algorithms to find 
disease modules in heterogeneous biological networks. Wang 
et al. proposed Heuristic Graph Clustering Algorithm (HGCA) 
that selects seed nodes based on various topological 
characteristics and expands from those seed nodes to form 
communities from protein-protein interaction networks [46]. 
Kanter et al. propose a Python-based toolkit that uses the k-
Nearest Neighbor to identify communities. Couturier et al. used 
Louvain, a community detection algorithm to detect subtypes 
of cancer from scRNA-seq data of five Glioblastoma patients 
[47].  

Genes co-expressed across multiple samples are more likely 
to correspond to functional groups [16]. Different cancers share 
common characteristics  [48], and conserved functions and 
genes related to these common characteristics can be found by 
analyzing GCNs of different types of cancer [49]. So, it is of 
considerable significance to study the common characteristics 
of patients with different types of cancer. This rationale 
motivates our work to find cancer biomarkers using multiple 
methods from GCNs. In a recent study, Yu et al. [50] used 
GCNs to mine conserved communities for cancers using 
Cytoscape plugin MCODE. The present study is the extended 
version of our previus work [51] and different from Yu et al. 
[50] in four different aspects: i) in constructing GCN, they used 
rank-based approach and we used a threshold on Pearson 
Coeffient, ii) to identify communities, they used Cytoscape 
plugin MCODE and we used six community detection 
algorithms, iii) to identify conserved community, they found 
community from only one cancer and then check the conserved 
behavior with other cancer but we found communities from 
each cancer and compared with others, and iv) in survival 
analysis, they used GGI (gene expression grade index) score to 
divide the patients into two groups whereas we used K-means 

clustering. The appraoch using GGI score has reproducibility 
issue as explained in survival analysis, Section II-D.  

In this study, RNA-seq gene expression data of three 
cancers - BRCA, COAD and GBM - from The Cancer Genome 
Atlas (TCGA) are used to construct GCNs using Pearson 
Correlation with coefficient value greater than or equal to 0.70 
as a threshold. Six well-known community detection 
algorithms are applied on these networks to identify 
communities with five or more genes. A permutation test is 
performed to further mine the communities that are conserved 
in other cancers, thus calling them conserved communities.  
Then survival analysis is performed on clinical data of three 
cancers using the conserved community genes as prognostic co-
variates. The communities that could distinguish the cancer 
patients between high- and low-risk groups are considered as 
cancer biomarkers. In the present study, 16 such network 
biomarkers are discovered.  

II. MATERIALS AND METHODS 

A. Data Preparation 

The RNAseq gene expression and clinical data for three 
cancers – BRCA, COAD, and GBM - were collected from 
linkedomics.org [52], which contains well organized collection 
of multi-omics data of 32 cancers, curated from TCGA project. 
The number of genes and samples for BRCA, COAD and GBM 
are given in the Table 1. The gene expression dataset for each of 
these three cancers contained a large number of zero values 
which could lead to an erroneous outcome. In order to solve this 
issue, genes that have average of RPKM value less than equal to 
0.3 are removed. This criterion was used in [53]–[55] as a 
preprocessing step. The number of genes that fulfills this 
criterion and the remaining number of genes for each cancer are 
given in the Table I. 

Table I: Summary of gene expression data for three cancers 
 

Cancer 
# of 

samples 

# of 
genes 

# of genes with avg 
(RPKM)	≤	0.3 

# of 
remaining 

genes 

BRCA 1093 20155 1480 18675 

COAD 379 19828 1557 18271 

GBM 153 19660 1298 18362 

 

B. Gene Co-expression Network Construction 

Pearson’s Correlation was used to construct the GCN. It 
computes the correlation coefficient between each pair of genes 
based on gene expression values. These coefficient values, 
ranging between -1 to +1, provide information about how two 
genes are correlated with each other towards causing cancer in 
terms of their expression values. The pairs of genes are filtered 
using the criteria of having the absolute value of Pearson 
Correlation Coefficient (PCC) greater than or equal to 0.70. This 
threshold is based on the studies by Mondal and Hu [30][32][35], 
which showed that GCN with PCC ≥  0.7 produces the best 
results in predicting protein localization. A pair of genes having 
PCC ≥ 0.7 means they are strongly correlated. Table II shows 
the topology of GCNs derived from three cancers.  
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It is clear from this table that number of connected 
components (CC) in each of the co-expression network is very 
high, most of which are pairs and triples as shown in Figure 1. 

Table II: Network Topology of GCNs for three cancers. CC 
represents connected component.  

 
But the number of components with more than four edges is 
much lower, which are used for finding the biomarker 
communities.  

 

 
 

Fig. 1. Gene co-expression network  of BRCA. The image was generated 
using PyGraphistry [56]. 

After construction of the GCN, six community detection 
algorithms were used to find subnetworks of interest. The six 
algorithms are – Fastgreedy [57], Infomap [58], Label 
Propagation [59], Leading Eigenvector [60], Multilevel [61] 
and Walktrap [62]. Python package NetworkX [63] and igraph 
[64] were used for implementation.  

C. Permutation Test 

Permutation test, following the procedure enumerated by 
Yu et al. [50],  was done on each of the communities to find out 
which were conserved in all the GCNs. The detailed workflow 
for the permutation test is described below: 

 
• Let, a community C extracted from GCN of cancer A has 

n nodes. 

• Now a subnetwork is formed using the same n nodes of 
C from GCN of cancer B. let the number of edges in that 
subnetwork is ݁1  

• A random subnetwork of n nodes from GCN of cancer B 
is formed. let, this subnetwork has ݁ଶ edges. 

• Previous step is repeated 1000 times and every time  ݁2 
is greater than ݁ଵ is counted. Let this count be X.  

• Now,  the P-value for the community, which denotes the 
significance value for the community in consideration, is 
calculated by the following equation. ܲ ൌ ܺ1000	 

 In each iteration, a P-value for a community from one cancer 
with respect to another cancer is obtained. The evaluation of P-
value is done for each community with respect to all cancers 
except the one this community is mined from. The communities 
with P-value ≤ 0.05 are considered as the conserved 
communities. 

D. Survival Analysis 

The gene sets in conserved communities were used in 
survival analysis to validate them as biomarkers in terms of 
prognostic risk assessment of cancer patients. For each 
conserved community, the member genes were taken as co-
variates and K-means clustering algorithm was used on cancer 
samples to create two distinguishing groups assuming that the 
gene community is capable of differentiating cancer patients in 
high-risk and low-risk groups. Then Log-rank test and Kaplan-
Meier test were done using these two groups to check whether 
the gene community is really capable of differentiating between 
high-risk and low-risk groups.  

Although Cox Proportional-Hazards Regression Model 
(CPH) [65] is mostly used to do survival analysis, we chose K-
means clustering over CPH. The reason is that CPH requires 
training samples and after training is done, a scoring method 
based on the coefficients of CPH is normally used to divide the 
test samples as two groups, referred to as high-risk and low-risk 
groups. Then Log-rank and Kaplan-Meier test is done to check 
the difference between the two groups. In CPH approach, test 
data is half the size of the total clinical data and the remaining 
half is used for training. The division of test and training 
samples is often done randomly, which may result in different 
output with different division, raising the question of 
reproducibility. With K-means unlike CPH, one can use all the 
samples to do survival analysis by creating two groups and the 
result is reproducible. High-risk and low-risk groups are 
identified after Kaplan-Meier test.  

III. RESULTS AND DISCUSSION 

A. Communities 

In this study, six different community detection algorithms 
were used on GCNs derived from three cancers - BRCA, COAD 
and GBM – to discover the communities as possible network 
modules or biomarkers. Each algorithm resulted in different 
numbers of communities from different networks, as shown in 

Cancer BRCA COAD GBM 
# of Nodes 6613 6387 8655 
# of Edges 99189 269027 194165 
# of CCs 539 472 345 
# of CCs > 4 37 35 23 
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Figure 2. Infomap produced the highest numbers of 
communities - 187 and 162 respectively from GCNs of BRCA 
and COAD. For GBM, Walktrap produced 112 communities, 
which is the highest for the same. Leading Eigenvector produced 
lowest number of communities for all three GCNs - 51 from 
BRCA, 38 from COAD and 32 from GBM. Total numbers of 
unique communities produced by six algorithms from BRCA, 
COAD and GBM are 387, 267 and 247 respectively. The 
combined number of total unique communities are 899 while 
only 2 are in common. 

 
Fig. 2. Number of communities discovered by different algorithms for 
different GCNs. The communities with number of nodes greater than four are 
accounted for. 

B. Conserved Communities. 

Based on permutation test, 64 communities out of 899 are 
conserved - 27 from BRCA, 23 from COAD and 14 from GBM. 
Figure 3 presents each of these 64 communities in terms of a) 
number of genes in each community, b) the GCN network each 
community is derived from, and c) the algorithm(s) each 
community is discovered by.  Fourteen out of 64 conserved 
communities are discovered using multiple community 
detection algorithms. For instance, community #1 is found by 
three algorithms, Fastgreedy, Infomap and Label Propagation; 
and community #5 was found by all six algorithms.  

C. Survival Analysis 

Survival analysis was performed on each of the 64 
conserved communities to see if they could significantly 
distinguish the risk between two groups, high-risk and low-risk, 
of cancer patients. These two groups are created using K-mean 
clustering employing the expression values of genes from the 
community of interest. The set of genes involved in each 
conserved community were used as prognostic variables to 
predict the risks of cancer patients in all three cancers. The 
communities that could distinguish the prognostic risks of 
patients in multiple cancers are considered as network 
biomarkers. Finally, the Log-rank test and Kaplan-Meier 
Estimation were performed to validate their prognostic 
capabilities. 

Based on survival analysis, 16 out of 64 communities could 
differentiate between high-risk and low-risk groups of patients 
in one or two cancers. Table III presents the summary of 
survival analyses of these 16 conserved communities. The triple 
(Cancer, P-Value, HR) in third column represents – i) “Cancer” 
represents the type of cancer patients used for survival analysis, 

ii) “P-value” represents Log-rank test P-value, and iii) “HR” 
represents the hazard ratio. It is clear from this table that five 
communities (#5, #19, #27, #59, #63) were able to differentiate 
prognostically significant patients’ group of two cancers and 
others are capable of differentiating patients’ group in one 
cancer.   

 

 
Fig. 3. The summary of 64 conserved communities.  The vertical boxes - blue, 
orange and green - indicate the GCNs from where conserved communities are 
mined. The blue circle(s) in each row denote(s) the algorithm(s) that discovered 
the corresponding community. The horizontal bar chart shows the sizes of the 
communities in terms of number of nodes (genes). X-axis is the number of 
genes and Y-axis is the communities, indexed from 1 to 64. The names of the 
algortihms are abbreviated  as: FG:  Fastgreedy, IM: Infomap, LP: Label 
Propagation, LE: Leading Eigenvector, ML: Multilevel and WT: Walktrap.  
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Fig. 4. Kaplan-Meier Curve of cancer patients of (A) BRCA, (B) COAD, (C) GBM using community #27, and (D) BRCA (E) COAD (F) GBM using 

community #63. 

Figure 4 shows the Kaplan-Meier curve employing the gene 
sets in communities #27 and #63 on BRCA, COAD and GBM 
cancer patients. Community #27 was able to differentiate two 
cancer patients’ groups in terms of prognostic risk significantly 
(P- value <= 0.05), namely BRCA (Fig. 4-A) and COAD (Fig 
4-B). 

 
Table III: Summary of Survival Analysis of conserved 
communities. The rows with bold community indexes indicate 
they were found by multiple community detection algorithms.  

Community  
Index 

Corresponding 
 GCN 

Cancer Patients, Log-rank test 
P-value and Hazard Ratio 

(Cancer, P-value, HR) 

5 BRCA 
(COAD, 0.0425, 1.43), 
(GBM, 0.0067, 1.29) 

8 BRCA (COAD, 0.0518, 1.62) 

14 BRCA (BRCA, 0.0143, 1.63) 

17 BRCA (BRCA, 0.0.0066, 1.43) 

19 BRCA 
(BRCA, 0.0193, 1.31), 
(GBM, 0.0218. 1.37) 

23 BRCA (COAD, 0.0666,1.21) 

27 COAD 
(BRCA, 0.0071, 1.28),  
(COAD, 0.0201, 1.72) 

34 COAD (COAD, 0.0086, 1.82) 

36 COAD (COAD, 0.0367, 1.25) 

41 COAD (COAD,0.0430,1.54) 

53 GBM (GBM, 0.0329, 1.57) 

56 GBM (COAD, 0.0243, 1.45) 

57 GBM (GBM, 0.0226, 1.17) 

59 GBM 
(BRCA, 0.046, 1.19),  
(GBM, 0.0492, 1.148) 

62 GBM (GBM, 0.0526, 1.52) 

63 GBM 
(COAD, 0.0047, 1.57),  

(GBM, 0.0175,1.83) 

But it could not perform the same way for GBM (Fig. 4-C), 
which is evidenced by a high P-value of 0.91 and a hazard ratio 
close to 1. Similarly, community #63 was able to differentiate 
significantly in terms of prognostic risk for COAD (Fig. 4-E), 
and GBM (Fig. 4-F), but could not do well for BRCA (Fig. 4-
D).  

IV. CONCLUSION 

Six well-known community detection algorithms are applied 
to mine probable network biomarkers from gene expression 
networks of three cancers - BRCA, COAD and GBM. A 
permutation test is performed to further mine the communities 
that are conserved in other cancers, thus calling them conserved 
communities.  Then survival analysis is performed on clinical 
data of three cancers using the conserved community genes as 
prognostic covariates. The communities that could distinguish 
the cancer patients between high- and low-risk groups are 
considered as cancer biomarkers. In the present study, 16 such 
network biomarkers are discovered. The list of genes from these 
network biomarkers can be used to discover the trajectory of 
cancer development by inferring pseudotime from static 
expression profiles [66]. 

In the extended version of this paper, functional analysis of 
the conserved communities will be conducted to provide better 
insights about the discovered network communities. Another 
level of validation will be conducted using gene expression and 
clinical data of different cancers which are not used to derive the 
conserved communities. In this study, network biomarkers or 
biomarker communities are mined using mRNA expression data 
only. It would be worthwhile to study other omics data like 
miRNA expression, lncRNA expression and DNA methylation 
to identify network modules for cancer. Finding communities 
from networks constructed using integration of multi-omics data 
will provide holistic picture of network modules related to 
cancer. Graph-based deep learning can be applied to these 
biological networks to find submodules that might be of 
biological interest as well. 
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