

24:2 Dynamic Geometric Data Structures via Shallow Cuttings

Matoušek [4] had O(nε) query or update time for an arbitrarily small constant ε > 0.)

Recently Kaplan et al. [21] noted a small modification of the data structure, improving

the update time to O(log5 n). The result has numerous applications, including dynamic 2D

nearest or farthest neighbor search (by the standard lifting map). Another application is

dynamic 2D bichromatic closest pair (i.e., computing minp∈P minq∈Q ‖p − q‖ for two planar

point sets P and Q) or dynamic 2D diameter (i.e., computing maxp∈P maxq∈P ‖p − q‖ for

a planar point set P): Eppstein [18] gave a clever, general technique reducing dynamic

closest/farthest pair problems to dynamic nearest/farthest neighbor search, which increased

the update time by a log2 n factor; when combined with the above, this yielded an O(log7 n)

update time bound.

For many other problems, polylogarithmic update time appears more difficult, and getting

sublinear update time is already challenging. For example, in SoCG 2001, the author [8]

obtained a dynamic data structure for the width of a 2D point set with O∗(
√

n) amortized

update time.1 (Part of the difficulty is that the width problem is neither “decomposable” nor

“LP-type”.) Sublinear update time is known for a few other assorted geometric problems,

such as dynamic connectivity for the intersection graph of geometric objects [14].

In SODA 2002, the author [9] explored still more challenging dynamic geometric problems,

including maintaining

(i) the number of vertices and facets of a 3D convex hull, or its volume,

(ii) the largest empty circle for a 2D point set (with center restricted to be inside a fixed

triangle),

(iii) the Hausdorff distance for 2D point sets P and Q (i.e., computing maxq∈Q minp∈P ‖p−q‖
for two planar point set), and

(iv) the discrete 1-center of a 2D point set P (i.e., computing minq∈P maxp∈P ‖p − q‖).

The paper [9] obtained sublinear results only for the insertion-only case and the off-line case

(where we are given the entire update sequence in advance), or a generalization of both – the

semi-online case (as defined by Dobkin and Suri [17], where we are given the deletion time

of an element when it is inserted). The update time bounds were O∗(n7/8) for (i) and (ii),

and O∗(n5/6) for (iii) and (iv).

None of these four problems are “decomposable”. In particular, problem (i) is nontrivial

since known methods such as [10] for 3D convex hull queries do not maintain the global hull

explicitly, unlike Overmars and van Leeuwen’s original data structure for 2D convex hulls.

Problem (ii) also seems to require explicit maintenance of a 3D convex hull (lifted from

the 2D farthest-point Voronoi diagram). Problems (iii) and (iv) are max-min or min-max

problems, and lack the symmetry of min-min and max-max problems that enable Eppstein’s

technique. For all these problems, the fully dynamic case has remained open.

New results.

1. We present the first fully dynamic data structures with sublinear update time for Problems

(i)–(iv). The amortized update time bounds are O∗(n11/12) for (i) and (ii), and O∗(n5/6)

for (iii) and (iv).

The approach is general enough to be applicable to many more problems; for example, we

can maintain the number of maximal or “skyline” points (points that are not dominated

by other points) in a 3D point set in O∗(n2/3) amortized time.

1 Throughout the paper, we use the O∗ notation to hide small extra factors that are polylogarithmic, or
in some cases, o(nε) for an arbitrarily small constant ε > 0.

T. M. Chan 24:3

2. For basic 3D convex hull queries (e.g., extreme point queries) and 2D nearest neighbor

search, as mentioned, Kaplan et al. [21] have lowered the amortized update time of the

author’s fully dynamic data structure [10], from O(log6 n) to O(log5 n). We describe a

further logarithmic-factor improvement, from O(log5 n) to O(log4 n).

Although this improvement is admittedly small, the importance of the result stems from

its many applications [10]; for example, we can now compute the convex (or onion) layers

of a 3D point set in O(n log4 n) time, and the k-level in an arrangement of planes in 3D

in O(n log n + f log4 n) time where f is the output size.

3. For bichromatic closest pair and diameter in 2D, combining Eppstein’s technique [18]

with the above new result on dynamic nearest neighbor search already gives a slightly

improved amortized update time of O(log6 n). We describe a further, more substantial

improvement that eliminates the two extra logarithmic factors caused by Eppstein’s

technique [18]. The new update time bound is O(log4 n).

Dynamic bichromatic closest pair has applications to other problems. For example, we

can now maintain the Euclidean minimum spanning tree of a 2D point set with O(log6 n)

amortized update time by using another reduction of Eppstein [18] combined with known

results for dynamic minimum spanning trees for graphs [20].

Techniques. The common thread in all of our new methods is the use of shallow cuttings:

Let H be a set of n hyperplanes in R
d. The level of a point q refers to the number of

hyperplanes of H strictly below q. A (k, K)-shallow cutting is a collection of cells covering all

points of level at most k, such that each cell intersects at most K hyperplanes. The conflict

list H∆ of a cell ∆ refers to the subset of all hyperplanes of H intersecting ∆.

Matoušek [23] proved the existence of shallow cuttings with small number of cells.

Specifically, in 3D, the main lemma can be stated as follows:2

I Lemma 1. (Shallow Cutting Lemma) Given a set H of n planes in R
3 and a parameter

k ∈ [1, n], there exists a (k, O(k))-shallow cutting with O(n/k) cells, where each cell is a

“downward” tetrahedron containing (0, 0, −∞). The cutting, together with the conflict lists of

all its cells, can be constructed in O(n log n) time.

The construction time was first shown by Ramos [26] with a randomized algorithm. Later,

Chan and Tsakalidis [15] obtained the first O(n log n)-time deterministic algorithm.

To see how static shallow cuttings may be useful for dynamic geometric data structures,

observe that most of the problems considered here are related to the lower envelope of a

dynamic set of planes in R
3 (via duality or the standard lifting transformation). Usually, the

bottleneck lies in deletions rather than insertions. Basically, a shallow cutting provides a

compact implicit representation of the (≤ k)-level, which is guaranteed to cover the lower

envelope even when up to k deletions have occurred.

A further idea behind all our solutions is to classify planes into two types, those that

intersect few cells of the shallow cutting, and those that intersect many cells. The latter type

of planes may be bad in slowing down updates, but the key observation is that there can’t

be too many bad elements.

The new sublinear solutions to Problems (i)–(iv), described in Sections 2–3, are obtained

by incorporating the shallow cutting idea with the previous techniques from [9], based on

periodic rebuilding. The entire solution is conceptually not complicated at all, and the

2 Matoušek’s original formulation in R
d states the existence of a (k, n/r)-shallow cutting with O(rbd/2c(1+

kr/n)dd/2e) cells.

SoCG 2019

24:4 Dynamic Geometric Data Structures via Shallow Cuttings

description for Problem (i) fits in under two pages, assuming the availability of known

range searching structures. As are typical in other works on data structures with sublinear

update time with “funny” exponents, parameters are judiciously chosen to balance several

competing costs.

The shallow cutting idea has actually been exploited before in dynamic data structures

for basic 3D convex hull queries: Agarwal and Matoušek [4] used shallow cuttings recursively

(which caused some loss of efficiency), while the author [10] used a hierarchy of shallow

cuttings, for logarithmically many values of k. The above application of shallow cuttings to

Problems (i)–(iv) is even more elementary – we only need a single cutting. (This makes it all

the more embarassing that the idea was missed till now.)

For basic 3D convex hull queries and 2D nearest neighbor search, our improvement is less

innovative. Described in Section 4 (which can be read independently of the previous sections),

it is based on the author’s original data structure [10], with Kaplan et al.’s logarithmic-

factor improvement [21], plus one extra idea to remove a second logarithmic factor: the

main observation is that Chan and Tsakalidis’s algorithm for shallow cuttings [15] already

constructs an entire hierarchy of O(log n) cuttings in O(n log n) time, not just a single cutting.

However, the hierarchy needed for the data structure in [10] requires some planes be pruned

as we go from one cutting to the next, so Chan and Tsakalidis’s algorithm cannot be applied

immediately. Still, we show that some nontrivial but technical changes (as explained in the

appendix) can fix the problem.

For 2D bichromatic closest pair and diameter, our log2 n-factor improvement, described

in Section 5, is a bit more interesting. We still do not know how to improve Eppstein’s

general reduction [18] from dynamic closest pair to dynamic nearest neighbor search, but

intuitively the blind combination of Eppstein’s technique with the author’s dynamic data

structure for 2D nearest neighbor search seems wasteful, since both share some commonalities

(both are sophisticated variants of the logarithmic method [5], and both handle deletions

via re-insertions of elements into smaller subsets). To avoid the redundancy, we show how

to directly modify our dynamic data structure for 2D nearest neighbor search to solve

the dynamic 2D bichromatic closest pair problem. The resulting modification completely

bypasses Eppstein’s “conga line” structure [18, 19], and turns out to cause no increase to the

O(log4 n) bound.

2 Dynamic 3D Convex Hull Size

We begin with our new sublinear-time fully dynamic data structure for maintaining the

number of vertices/facets of the convex hull of a dynamic 3D point set. The solution is

based on the use of shallow cuttings (Lemma 1) and the author’s previous semi-online data

structure [9].

I Theorem 2. We can maintain the number of vertices, edges, and facets for the convex

hull of a dynamic set of n points in R
3, in general position, with O∗(n) preprocessing time

and O∗(n11/12) amortized insertion and deletion time.

Proof. It suffices to maintain the number of convex hull facets, which determines the number

of vertices and edges (assuming general position). It suffices to compute the number of upper

hull facets, since by symmetry we can compute the number of lower hull facets. We describe

our solution in dual space, where the problem is to compute the number of vertices in LE(H)

for a dynamic set H of n planes in R
3.

T. M. Chan 24:5

Let k and s be parameters to be set later. We divide the update sequence into phases of

k updates each. We maintain a decomposition of the set H into a deletion-only set H0 and a

small set Hbad of “bad” planes.

Preprocessing for each phase. At the beginning of each phase, we construct a (k, O(k))-

shallow cutting Γ of H with O(n/k) cells, together with all their conflict lists, by Lemma 1.

We set

H0 = {h ∈ H : h intersects at most n/s cells} and Hbad = H − H0.

Since the total conflict list size is O(n/k · k) = O(n), we have |Hbad| = O(s).

Let V0 and E0 be the set of vertices and edges of the portion of LE(H0) covered by Γ,

respectively. There are O(k) such vertices and edges per cell of Γ, and hence, |V0|, |E0| =

O(n/k · k) = O(n). We preprocess V0 and E0 in O∗(n) time by known range searching and

intersection searching techniques, so that

we can count the number of points in V0 inside a query tetrahedron in O∗(n2/3) time

(this is 3D simplex range searching) [22, 11, 2];

we can count the number of line segments in E0 intersecting a query triangle in O∗(n3/4)

time (as noted in [9], we can first solve the case of lines and query halfplanes in R
3 using

semialgebraic range searching [3] in Plücker space, and then extend the solution for line

segments and query triangles by a multi-level data structure [2]).

These data structures can support insertions and deletions of points in V0 and line segments

in E0 in O∗(1) time each. In addition, we preprocess H0 in a known dynamic lower envelope

data structure in O∗(n) time, to support ray shooting queries in LE(H0) in O∗(1) time and

deletions in O∗(1) time (e.g., see [4] or Section 4). The total preprocessing time per phase is

O∗(n). Amortized over k updates, the cost is O∗(n/k).

Inserting a plane h. We just insert h to the list Hbad. Note that |Hbad| = O(s + k) at all

times, since there are at most k insertions per phase.

Deleting a plane h from Hbad. We just remove h from the list Hbad.

Deleting a plane h from H0. We consider each cell ∆ ∈ Γ intersected by h, and compute

LE((H0)∆) from scratch in O(k log k) time (since |(H0)∆| = O(k)). As the number of cells

intersected by h is at most n/s, this computation requires O∗(kn/s) total time. The sets

V0 and E0 undergo at most O(kn/s) changes, and their associated data structures can be

updated in O∗(kn/s) time.

Computing the answer. To compute the number of vertices of LE(H) = LE(H0 ∪ Hbad), we

first construct LE(Hbad) in O((s + k) log(s + k)) time, and triangulate all its O(s + k) faces.

For each triangle τ in this triangulation:

we count the number of vertices of V0 that lie directly below τ , in O∗(n2/3) time; and

we count the number of edges of E0 that intersect τ , in O∗(n3/4) time.

We sum up all these counts. In addition, for each edge of LE(Hbad), we test whether it

intersects LE(H0) by ray shooting in O∗(1) time, and increment the count if true. For each

vertex of LE(Hbad), we test whether it is underneath LE(H0) by vertical ray shooting in

O∗(1) time, and increment the count if true. Note that LE(H) is covered by Γ at all times,

since there are at most k deletions per phase. The overall count thus gives the answer. The

total time to compute the answer is O∗((s + k)n3/4).

SoCG 2019

24:6 Dynamic Geometric Data Structures via Shallow Cuttings

Analysis. The overall amortized update time is

O∗(n/k + kn/s + (s + k)n3/4).

The theorem follows by setting s = k2 and k = n1/12. J

The preprocessing time can be made O(n log n) and space made O(n) by increasing the

update time by an nε factor, via known trade-offs for range/intersection searching (with

larger-degree partition trees). The method can be deamortized, using existing techniques [24].

The same method can be adapted to maintain the sum or maximum of f(v) over all

vertices v of LE(H), for a general class of functions f . Instead of range counting, we store

the set V0 of points for range sum or range maximum queries (which have similar complexity

as range counting). For the set E0 of line segments, the base level of its multi-level data

structure requires data structures SL for each canonical subset L of lines in R
3, so that we

can return the sum or maximum of f(` ∩ h) over all ` ∈ L for a query plane h in O∗(|L|α)

time, supporting insertions and deletions in L in O∗(1) time. If α ≤ 3/4, the final time

bound of our algorithm remains O∗(n11/12).

I Theorem 3. We can maintain the volume of the convex hull for a dynamic set of n points

in R
3, with O∗(n) preprocessing time and O∗(n11/12) amortized insertion and deletion time.

Proof. Let o be a fixed point sufficiently far below all the input points. It suffices to maintain

the sum of the volume of the tetrahedra op1p2p3 over all upper hull facets p1p2p3, since by

symmetry we can maintain a similar sum for lower hull facets and subtract. We map each

point p to its dual plane hp. Then the problem fits in the above framework, with f(v) equal

to the volume of the tetrahedron op1p2p3 for a vertex v defined by the planes hp1
, hp2

, hp3
.

For a fixed line ` defined by the planes hp1
and hp2

, observe that f(` ∩ hp) is a linear function

over the 3 coordinates of p, since the volume of op1p2p can be expressed as a determinant.

(This assumes that op1p2 is oriented clockwise, which we can ensure at the base level of the

multi-level data structure.) Thus, we can implement the base structures SL with α = 0, by

simply summing the 4 coefficients of the associated linear functions over all ` ∈ L. J

I Theorem 4. We can maintain the largest empty circle of a dynamic set of n points in R
2,

under the restriction that the center lies inside a given triangle ∆0, with O∗(n) preprocessing

time and O∗(n11/12) amortized insertion and deletion time.

Proof. By the standard lifting transformation, map each input point p = (a, b) ∈ R
2 to the

plane hp with equation z = −2ax − 2by + a2 + b2 in R
3. Add 3 near-vertical planes along

the edges of ∆0. The largest empty circle problem reduces to finding a vertex v = (x, y, z)

of the lower envelope of these planes, maximizing f(v) = x2 + y2 + z. For a fixed line

`, observe that f(` ∩ h(a,b)) is a fixed-degree rational function (ratio of two polynomials)

in the 2 variables a and b. We can implement the base structures SL with α = 2/3, by

known techniques for semialgebraic range searching in 3D [4] (applied to the graphs of these

bivariate functions). J

We can obtain sublinear update time bounds for other similar problems, e.g., maintain-

ing the minimum/maximum-area Delaunay triangle of a dynamic 2D point set. Another

application is computing the number of maximal points, also called “skyline points” (which

are points not dominated by other points), in a dynamic 3D point set:

I Theorem 5. We can maintain the number of maximal points in a dynamic set P of n points

in R
3, with O∗(n) preprocessing time and O∗(n2/3) amortized insertion and deletion time.

T. M. Chan 24:7

Proof. The maximal points are vertices of the upper envelope of orthants (−∞, a]×(−∞, b]×
(−∞, c] over all input points (a, b, c) ∈ P (the upper envelope is an orthogonal polyhedron).

As is well known, an analogue of the shallow cutting lemma holds for such orthants in 3D

(in fact, there is a transformation that maps such orthants to halfspaces in 3D); for example,

see [13]. The same method can thus be adapted. In fact, it can be simplified. The data

structure for V0 is for orthogonal range searching [16], which has O∗(1) query and update

time. The data structure E0 is not needed. The overall update time becomes

O∗(n/k + kn/s + (s + k)).

The theorem follows by setting s = k2 and k = n1/3. J

We can similarly maintain the volume of a union of n boxes in R
3 in the case when all

the boxes have a common corner point at the origin (this is called the hypervolume indicator

problem) with O∗(n2/3) update time (previously, an O∗(
√

n) bound was known only in the

semi-online setting [9]).

3 Dynamic 2D Hausdorff Distance

The method in Section 2 can also be adapted to solve the dynamic 2D Hausdorff distance

problem:

I Theorem 6. We can maintain the Hausdorff distance between two dynamic sets P and Q

of at most n points in R
2, with O∗(n) preprocessing time and O∗(n8/9) amortized insertion

and deletion time.

Proof. By the standard lifting transformation, map each point p = (a, b) ∈ P to the plane

hp with equation z = −2ax − 2by + a2 + b2 in R
3. Let H be the resulting set of planes.

For each point q ∈ Q, let λH(q) denote the point on LE(H) at the vertical line at q. The

problem is to find the maximum of f(λH(q)) over all q ∈ Q, where f(x, y, z) = x2 + y2 + z,

for a dynamic set H of at most n planes and a dynamic set Q of at most n points.

Let k and s be parameters to be set later. We divide the update sequence into phases of

k updates each. We maintain a decomposition of the set H into a deletion-only set H0 and a

small set Hbad of “bad” planes, and a decomposition of the set Q into a deletion-only set Q0

and a small set Qbad of “bad” points.

Preprocessing for each phase. At the beginning of each phase, we construct a (k, O(k))-

shallow cutting Γ of H with O(n/k) cells, together with all their conflict lists, by Lemma 1.

We further subdivide the cells to ensure that each cell contains at most k points of Q in its

xy-projection; this can be done by O(n/k) additional vertical plane cuts, so the number of

cells remains O(n/k). We set

H0 = {h ∈ H : h intersects at most n/s cells} and Hbad = H − H0.

Since the total conflict list size is O(n/k · k) = O(n), we have |Hbad| = O(s).

We set Q0 = Q. We compute λH0
(q) for all q ∈ Q in O(n log n) time. Let Λ0 be the

subset of points in {λH0
(q) : q ∈ Q} covered by Γ. We preprocess the point set Λ0 in known

3D simplex range searching data structures [22, 11, 2] in O∗(n) time, to support the following

queries in O∗(n2/3) time:

compute the maximum of f(v) over all points v ∈ Λ0 inside a query tetrahedron;

SoCG 2019

24:8 Dynamic Geometric Data Structures via Shallow Cuttings

compute the maximum of f(λ{hp}(x, y)) over all points v = (x, y, z) ∈ Λ0 inside a query

tetrahedron for a query plane hp; note that maximizing f(λ{hp}(x, y)) is equivalent to

maximizing the distance from (x, y) to p (so we can use a 2-level data structure, combining

simplex range searching with 2D farthest neighbor searching).

The data structures can support insertions and deletions of points in Λ0 in O∗(1) time each.

In addition, we preprocess H0 in a known dynamic lower envelope data structure in O∗(n)

time, to support ray shooting queries in LE(H0) in O∗(1) time and deletions in O∗(1) time

(e.g., see [4] or Section 4).

Inserting a plane h to H or a point q to Q. We just insert h to the list Hbad or q to the

list Qbad. Note that |Hbad| = O(s + k) and |Qbad| = O(k) at all times.

Deleting a plane h from Hbad or a point q from Qbad. We just remove h from the list

Hbad or q from the list Qbad.

Deleting a point q from Q0. We just remove λH0
(q) from the set Λ0 in O∗(1) time.

Deleting a plane h from H0. We consider each cell ∆ ∈ Γ intersected by h, and compute

λ(H0)∆
(q) for all q ∈ Q in the xy-projection of ∆ from scratch in O(k log k) time (since ∆ is

intersected by O(k) planes in H and contains O(k) points of Q in its xy-projection). As the

number of cells intersected by h is at most n/s, this computation takes O∗(kn/s) total time.

The set Λ0 undergoes at most O(kn/s) changes, and its associated data structures can be

updated in O∗(kn/s) time.

Computing the answer. To compute the maximum of f(λH(q)) over all q ∈ Q, we first

construct LE(Hbad) in O((s + k) log(s + k)) time, and triangulate all its O(s + k) faces. For

each triangle τ in this triangulation:

We compute the maximum of f(v) over all v = (x, y, z) ∈ Λ0 that lie directly below τ , in

O∗(n2/3) time. Note that for all such v, the λH(x, y) = λH0
(x, y) = v.

We let h be the plane through τ and compute the maximum of f(λ{h}(x, y)) over all

v = (x, y, z) ∈ Λ0 that lie directly above τ , in O∗(n2/3) time. Note that for all such v,

λH(x, y) = λ{h}(x, y).

In addition, for each q ∈ Qbad, we compute λH(q) by vertical ray shooting in LE(H0) and

LE(Hbad) in O∗(1) time; we take the maximum of f(λH(q)) for these points. Note that

LE(H) is covered by Γ at all times, since there are at most k deletions per phase. The overall

maximum thus gives the answer. The total time to compute the answer is O∗((s + k)n2/3).

Analysis. The overall amortized update time is

O∗(n/k + kn/s + (s + k)n2/3).

The theorem follows by setting s = k2 and k = n1/9. J

We can similarly solve the dynamic 2D discrete 1-center problem, by switching lower

with upper envelopes and maximum with minimum:

I Theorem 7. We can maintain the discrete 1-center of a dynamic set of n points in R
2,

with O∗(n) preprocessing time and O∗(n8/9) amortized insertion and deletion time.

It is possible to slightly improve the O∗(n8/9) bound to O∗(n5/6) in the preceding two

theorems: the key observation is that the point set Λ0 is in convex position, and in the

convex-position case, the O∗(n2/3) query time for 3D simplex range searching can be improved

to O∗(
√

n), as shown by Sharir and Zaban [27]. (The same observation also improves the

author’s previous O∗(n5/6) result to O∗(n3/4) in the semi-online setting.)

T. M. Chan 24:9

It remains open whether the dynamic Hausdorff distance and discrete 1-center problem in

dimensions d ≥ 3 can similarly be solved in sublinear time. The author’s previous paper [9]

gave an O∗(n1−1/(d+1)(dd/2e+1))-time algorithm but only in the semi-online setting. In higher

dimensions, the size of shallow cuttings becomes too large for the approach to be effective.

4 Dynamic 3D Convex Hull Queries

In this section, we present a slightly improved data structure for extreme point queries for a

dynamic 3D convex hull, by combining the author’s previous data structure [10] (as refined

by Kaplan et al. [21]) with a modification of Chan and Tsakalidis’s algorithm for constructing

a hierarchy of shallow cuttings [15].

To describe the latter, we need a definition: Given a set H of n planes in R
3 and a

collection Γin of cells, a Γin-restricted (k, K)-shallow cutting is a collection Γout of cells

covering {p ∈ R
3 : p is covered by Γin and has level at most k}, such that each cell in Γout

intersects at most K planes. We note that Chan and Tsakalidis’s algorithm, with some

technical modifications, can prove the following lemma. (The proof requires knowledge of

Chan and Tsakalidis’s paper, and is deferred to the full paper.)

I Lemma 8. There exist constants b, c, and c′ such that the following is true: For a set H

of at most n planes in R
3 and a parameter k ∈ [1, n], given a (−∞, cbk)-shallow cutting3 Γin

with at most c′n/(bk) downward cells, together with their conflict lists, we can construct a

Γin-restricted (k, ck)-shallow cutting Γout with at most c′n/k downward cells, together with

their conflict lists, in O(n + (n/k) log(n/k)) deterministic time.

We now redescribe the author’s previous data structure [10] for 3D extreme point queries,

with slight changes to incorporate Lemma 8. The redescription uses a recursive form of

the logarithmic method [5], which should be a little easier to understand than the original

description.

I Theorem 9. We can maintain a set of n points in R
3, with O(n log n) preprocessing time,

O(log2 n) amortized insertion time, and O(log4 n) amortized deletion time, so that we can

answer find the extreme point of the convex hull along any query direction in O(log2 n) time.

Proof. We describe our solution in dual space, where we want to answer vertical ray shooting

queries for LE(H), i.e., find the lowest plane of H at a query vertical line, for a dynamic set

H of n planes in R
3.

Preprocessing. Our preprocessing algorithm is given by the pseudocode below (ignoring

trivial base cases), with the constants b, c, c′ from Lemma 8:4

preprocess(H):

1. H0 = H, Γ0 = {R3}, ` = logb n

2. for i = 1, . . . , ` do {

3. Γi = a Γi−1-restricted (n/bi, cn/bi)-shallow cutting of Hi−1 with at most c′bi cells

4. Hi = Hi−1 − {h ∈ H : h intersects more than 2cc′` cells of Γ1 ∪ · · · ∪ Γi}
5. for each ∆ ∈ Γi, compute the conflict list (Hi)∆ and initialize k∆ = 0

}

3 In a (−∞, k)-shallow cutting, the cells are not required to cover any particular region.
4 Line 4 is where Kaplan et al.’s improvement lies [21]. The original data structure from [10] basically

had Hi = Hi−1 − {h ∈ H : h intersects more than 2cc′` cells of Γi}.

SoCG 2019

24:10 Dynamic Geometric Data Structures via Shallow Cuttings

6. preprocess H` for static vertical ray shooting

7. Hbad = H − H`

8. preprocess(Hbad)

Note that Γi−1 is a (−∞, cn/bi−1)-shallow cutting of Hi−2, and consequently a (−∞,

cn/bi−1)-shallow cutting of Hi−1, since Hi−1 ⊆ Hi−2. Given Γi−1 and its conflict lists, we

can thus apply Lemma 8 to compute Γi and its conflict lists, in O(n + bi log bi) time. The

total time for lines 1–5 is O(n log n +
∑`

i=1 bi log bi) = O(n log n). Line 6 takes O(n log n)

time (by a planar point location method [16]).

We claim that |Hbad| ≤ n/2. To see this, consider each h ∈ Hbad. Let i be the index

with h ∈ Hi−1 − Hi. Then h intersects more than 2cc′` cells of Γ1 ∪ · · · ∪ Γi; send a charge

from h to each of these cells. Each cell in Γj receives charges only from planes in Hj−1

that intersect the cell. Thus, the total number of charges is at least 2cc′`|Hbad| and is at

most
∑`

j=1 cn/bj · c′bj = cc′`n. The claim follows. The preprocessing time thus satisfies the

recurrence P (n) ≤ P (n/2) + O(n log n), which gives P (n) = O(n log n).

Inserting a plane h. We simply insert h to Hbad recursively. When |Hbad| reaches 3n/4, we

rebuild the data structure for H. It takes Ω(n) updates for a rebuild to occur. The amortized

insertion time thus satisfies the recurrence I(n) ≤ I(3n/4)+O(P (n)/n) = I(3n/4)+O(log n),

which gives I(n) = O(log2 n).

Deleting a plane h. The deletion algorithm is as follows:

delete(H, h):

1. for i = 1, . . . , ` do

2. for each ∆ ∈ Γi with h ∈ (Hi)∆ do {

3. increment k∆

4. if k∆ ≥ n/bi+1 then

5. for all h ∈ (Hi)∆ that are still in H but not yet in Hbad, insert h to Hbad

}

6. if h ∈ Hbad then delete(Hbad, h)

Let i be the largest index with h ∈ Hi. Then h intersects at most 2cc′` = O(log n) cells

of Γ1 ∪ · · · ∪ Γi. Thus, in each deletion, lines 3–5 are executed O(log n) times.

In lines 3–5, it takes n/bi+1 increments of k∆ to cause the |(Hi)∆| ≤ cn/bi planes to

be inserted to Hbad. Thus, each increment triggers O(1) amortized number of insertions

to Hbad, and so a deletion triggers O(log n) amortized number of insertions to Hbad. The

amortized deletion time thus satisfies the recurrence D(n) ≤ D(3n/4) + O(log n)I(3n/4) =

D(3n/4) + O(log3 n), which gives D(n) = O(log4 n).

Answering the query for a vertical line q. We first answer the query for the static set H`

in O(log n) time (by planar point location); if the returned plane has already been deleted,

ignore the answer. We then recursively answer the query for Hbad, and return the lowest of

all the planes found. The query time satisfies the recurrence Q(n) ≤ Q(3n/4) + O(log n),

which gives Q(n) = O(log2 n).

Correctness of the query algorithm. To prove correctness, let h∗ be the lowest plane at q

and v∗ = h∗ ∩ q. If h∗ ∈ Hbad, correctness follows by induction. So, assume that h∗ 6∈ Hbad.

If v∗ is covered by Γ`, say, by the cell ∆ ∈ Γ`, then either v∗ is on LE(H`), in which case

the algorithm would have correctly found h∗, or some plane in (H`)∆ has been deleted from

H, in which case all active planes of (H`)∆, including h∗, would have been inserted to Hbad.

T. M. Chan 24:11

Otherwise, let i be an index such that v∗ is not covered by Γi but is covered by Γi−1, say,

by the cell ∆ ∈ Γi−1. Since Γi is a Γi−1-restricted (n/bi, cn/bi)-shallow cutting of Hi−1, it

follows that v∗ must have level more than n/bi in Hi−1. In order for v∗ to be the answer,

the more than n/bi planes of Hi−1 below v∗ must have been deleted from H. But then all

active planes of (Hi−1)∆, including h∗, would have been inserted to Hbad. J

By the standard lifting transformation, we obtain:

I Corollary 10. We can maintain a set of n points in R
2, with O(n log n) preprocessing time,

O(log2 n) amortized insertion time, and O(log4 n) amortized deletion time, so that we can

answer find the nearest neighbor to any query point in O(log2 n) time.

The space usage in the above data structure is O(n log n), but can be improved to O(n),

by following an idea mentioned in [10] (due to Afshani): instead of storing conflict lists

explicitly, generate conflict lists on demand by using a known optimal (static) linear-space

data structure for halfspace range reporting [1].

Following [10], we can use the same dynamic data structure to answer other basic types of

3D convex hull queries, e.g., gift wrapping queries (finding the two tangents of the hull with

a query line outside the hull) in O(log2 n) time and line-intersection queries (intersecting the

hull with a query line) in O(log4 n logO(1) log n) time. The latter corresponds to 3D linear

programming queries in dual space. The dynamic data structure can be adapted to maintain

the smallest enclosing circle of a 2D point set. Following [12], the dynamic data structure

can also be adapted to answer 3D halfspace range reporting queries.

5 Dynamic 2D Bichromatic Closest Pair

We now adapt the data structure in Section 4 to solve the dynamic 2D bichromatic closest

pair problem:

I Theorem 11. We can maintain the closest pair between two dynamic sets P and Q of at

most n points in R
2, with O(n log n) preprocessing time, O(log2 n) amortized insertion time,

and O(log4 n) amortized deletion time.

Proof. By the standard lifting transformation, map each input point p = (a, b) to the plane

hp with equation z = −2ax − 2by + a2 + b2 in R
3. Let H = {hp : p ∈ P}. For each point

q ∈ Q, let λH(q) denote the point on LE(H) at the vertical line at q. Let J = {hq : q ∈ Q}.

For each point p ∈ P , define λJ (p) similarly. We want to compute the minimum of f(λH(q))

over all q ∈ Q, where f(x, y, z) = x2 + y2 + z, which is equivalent to the minimum of f(λJ (p))

over all p ∈ P .

Preprocessing. We maintain a global heap, whose minimum gives the answer. We modify

the preprocess(H) algorithm in Section 4:

preprocess(H, J):

1. run lines 1–7 of the preprocess(H) algorithm on H

2. for each hq ∈ J , add f(λH`
(q)) to the heap

3. run lines 1–7 of the preprocess(H) algorithm but with H’s replaced by J ’s

4. for each hp ∈ H, add f(λJ`
(p)) to the heap

5. preprocess(Hbad, Jbad)

As in Section 4, the preprocessing time satisfies the recurrence P (n) ≤ P (n/2)+O(n log n),

which gives P (n) = O(n log n).

SoCG 2019

24:12 Dynamic Geometric Data Structures via Shallow Cuttings

Inserting a plane hp to H. We recursively insert hp to Hbad. We also compute λJ`
(p) in

O(log n) time (by planar point location), and add f(λJ`
(p)) to the heap.

When |Hbad| or |Jbad| reaches 3n/4, we rebuild the data structure for H and J . It takes

Ω(n) updates for a rebuild to occur. The amortized insertion time thus satisfies the recurrence

I(n) ≤ I(3n/4) + O(log n) + O(P (n)/n) = I(3n/4) + O(log n), which gives I(n) = O(log2 n).

Inserting a plane hq to J . Symmetric to the above.

Deleting a plane hp from H. We run lines 1–5 of the delete(H, h) algorithm in Section 4

(with h = hp). In the heap, we remove all entries f(λH`
(q)) that has λH`

(q) = λ{hp}(q). If

hp ∈ Hbad, we further recursively delete hp from Hbad. We also remove f(λJ`
(p)) from the

heap.

For the analysis, we can charge removals of entries from the heap to their corresponding

insertions, by amortization. The amortized deletion time thus satisfies the recurrence

D(n) ≤ D(3n/4) + O(log n)I(3n/4) = D(3n/4) + O(log3 n), which gives D(n) = O(log4 n).

Deleting a plane hq from J . Symmetric to the above.

Correctness. Let p∗q∗ be the closest pair with p∗ ∈ P and q∗ ∈ Q. If both hp∗ ∈ Hbad and

hq∗ ∈ Jbad, correctness follows by induction. Otherwise, assume without loss of generality

that hp∗ 6∈ Hbad. (The case Jq∗ 6∈ Jbad is symmetric.) Let v∗ = λH(q∗). The rest of the

correctness argument is essentially identical to that in Section 4:

If v∗ is covered by Γ`, say, by the cell ∆ ∈ Γ`, then either v∗ is on LE(H`), in which case

the algorithm would have included f(λH(q∗)) in the heap, or some plane in (H`)∆ has been

deleted from H, in which case all active planes of (H`)∆, including hp∗ , would have been

inserted to Hbad.

Otherwise, let i be an index such that v∗ is not covered by Γi but is covered by Γi−1, say,

by the cell ∆ ∈ Γi−1. Since Γi is a Γi−1-restricted (n/bi, cn/bi)-shallow cutting of Hi−1, it

follows that v∗ must have level more than n/bi in Hi−1. In order for v∗ to be the answer,

the more than n/bi planes of Hi−1 below v∗ must have been deleted from H. But then all

active planes of (Hi−1)∆, including hp∗ , would have been inserted to Hbad. J

We can similarly solve the diameter problem, by replacing min with max and lower with

upper envelopes:

I Theorem 12. We can maintain the diameter of a dynamic set of n points in R
2, with

O(n log n) preprocessing time, O(log2 n) amortized insertion time, and O(log4 n) amortized

deletion time.

References

1 Peyman Afshani and Timothy M. Chan. Optimal halfspace range reporting in three dimensions.

In Proc. 20th ACM-SIAM Sympos. Discrete Algorithms (SODA), pages 180–186, 2009. URL:

http://dl.acm.org/citation.cfm?id=1496770.1496791.

2 Pankaj K. Agarwal. Simplex range searching and its variants: A review. In M. Loebl, J. Nešetril,

and R. Thomas, editors, Journal through Discrete Mathematics. Springer, to appear.

3 Pankaj K. Agarwal and Jiří Matoušek. On range searching with semialgebraic sets. Discrete

Comput. Geom., 11:393–418, 1994. doi:10.1007/BF02574015.

4 Pankaj K. Agarwal and Jiří Matoušek. Dynamic half-space range reporting and its applications.

Algorithmica, 13(4):325–345, 1995. doi:10.1007/BF01293483.

5 Jon Louis Bentley and James B. Saxe. Decomposable searching problems I: static-to-dynamic

transformation. J. Algorithms, 1(4):301–358, 1980. doi:10.1016/0196-6774(80)90015-2.

6 Gerth Stølting Brodal and Riko Jacob. Dynamic planar convex hull. In Proc. 43rd Sympos.

Found. Comput. Sci. (FOCS), pages 617–626, 2002. doi:10.1109/SFCS.2002.1181985.

T. M. Chan 24:13

7 Timothy M. Chan. Dynamic planar convex hull operations in near-logarithmic amortized time.

J. ACM, 48(1):1–12, 2001. Preliminary version in FOCS 1999. doi:10.1145/363647.363652.

8 Timothy M. Chan. A fully dynamic algorithm for planar width. Discrete Comput. Geom.,

30(1):17–24, 2003. Preliminary version in SoCG 2001. doi:10.1007/s00454-003-2923-8.

9 Timothy M. Chan. Semi-online maintenance of geometric optima and measures. SIAM

J. Comput., 32(3):700–716, 2003. Preliminary version in SODA 2002. doi:10.1137/

S0097539702404389.

10 Timothy M. Chan. A dynamic data structure for 3-d convex hulls and 2-d nearest neighbor

queries. J. ACM, 57(3):16:1–16:15, 2010. Preliminary version in SODA 2006. doi:10.1145/

1706591.1706596.

11 Timothy M. Chan. Optimal partition trees. Discrete Comput. Geom., 47(4):661–690, 2012.

Preliminary version in SoCG 2010. doi:10.1007/s00454-012-9410-z.

12 Timothy M. Chan. Three problems about dynamic convex hulls. Int. J. Comput. Geom. Appl.,

22(4):341–364, 2012. Preliminary version in SoCG 2011. doi:10.1142/S0218195912600096.

13 Timothy M. Chan, Kasper Green Larsen, and Mihai Pătraşcu. Orthogonal range searching on

the RAM, revisited. In Proc. 27th ACM Sympos. Comput. Geom. (SoCG), pages 1–10, 2011.

doi:10.1145/1998196.1998198.

14 Timothy M. Chan, Mihai Pătraşcu, and Liam Roditty. Dynamic connectivity: Connecting to

networks and geometry. SIAM J. Comput., 40(2):333–349, 2011. Preliminary version in FOCS

2008. doi:10.1137/090751670.

15 Timothy M. Chan and Konstantinos Tsakalidis. Optimal deterministic algorithms for 2-d and

3-d shallow cuttings. Discrete Comput. Geom., 56(4):866–881, 2016. Preliminary version in

SoCG 2015. doi:10.1007/s00454-016-9784-4.

16 Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational

Geometry: Algorithms and Applications. Springer, 3rd edition, 2008. URL: http://www.

worldcat.org/oclc/227584184.

17 David P. Dobkin and Subhash Suri. Maintenance of geometric extrema. J. ACM, 38(2):275–298,

1991. doi:10.1145/103516.103518.

18 David Eppstein. Dynamic Euclidean minimum spanning trees and extrema of binary functions.

Discrete Comput. Geom., 13:111–122, 1995. doi:10.1007/BF02574030.

19 David Eppstein. Fast hierarchical clustering and other applications of dynamic closest pairs.

ACM Journal of Experimental Algorithmics, 5:1, 2000. doi:10.1145/351827.351829.

20 Jacob Holm, Eva Rotenberg, and Christian Wulff-Nilsen. Faster fully-dynamic minimum

spanning forest. In Proc. 23rd European Sympos. Algorithms (ESA), pages 742–753, 2015.

doi:10.1007/978-3-662-48350-3_62.

21 Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, and Micha Sharir. Dynamic

planar Voronoi diagrams for general distance functions and their algorithmic applications.

In Proc. 28th ACM–SIAM Sympos. Discrete Algorithms (SODA), pages 2495–2504, 2017.

doi:10.1137/1.9781611974782.165.

22 Jiří Matoušek. Efficient partition trees. Discrete Comput. Geom., 8:315–334, 1992. doi:

10.1007/BF02293051.

23 Jiří Matoušek. Reporting points in halfspaces. Comput. Geom. Theory Appl., 2:169–186, 1992.

doi:10.1016/0925-7721(92)90006-E.

24 Mark H. Overmars. The Design of Dynamic Data Structures, volume 156 of Lecture Notes in

Computer Science. Springer, 1983. doi:10.1007/BFb0014927.

25 Mark H. Overmars and Jan van Leeuwen. Maintenance of configurations in the plane. J.

Comput. Syst. Sci., 23(2):166–204, 1981. doi:10.1016/0022-0000(81)90012-X.

26 Edgar A. Ramos. On range reporting, ray shooting and k-level construction. In Proc. 15th

Sympos. Comput. Geom. (SoCG), pages 390–399, 1999. doi:10.1145/304893.304993.

27 Micha Sharir and Shai Zaban. Output-sensitive tools for range searching in higher dimensions.

Manuscript, 2013. URL: http://www.cs.tau.ac.il/~michas/shai.pdf.

SoCG 2019

	Introduction
	Dynamic 3D Convex Hull Size
	Dynamic 2D Hausdorff Distance
	Dynamic 3D Convex Hull Queries
	Dynamic 2D Bichromatic Closest Pair

