Dynamic Geometric Data Structures via Shallow
Cuttings
Timothy M. Chan

Department of Computer Science, University of Illinois at Urbana-Champaign, USA
tmc@illinois.edu

—— Abstract

We present new results on a number of fundamental problems about dynamic geometric data

structures:

1. We describe the first fully dynamic data structures with sublinear amortized update time for
maintaining (i) the number of vertices or the volume of the convex hull of a 3D point set, (ii) the
largest empty circle for a 2D point set, (iii) the Hausdorff distance between two 2D point sets,
(iv) the discrete 1-center of a 2D point set, (v) the number of maximal (i.e., skyline) points in
a 3D point set. The update times are near n''/'? for (i) and (i), n”/® for (iii) and (iv), and
n?/ for (v). Previously, sublinear bounds were known only for restricted “semi-online” settings
[Chan, SODA 2002].

2. We slightly improve previous fully dynamic data structures for answering extreme point queries
for the convex hull of a 3D point set and nearest neighbor search for a 2D point set. The query
time is O(log? n), and the amortized update time is O(log* n) instead of O(log® n) [Chan, SODA
2006; Kaplan et al., SODA 2017].

3. We also improve previous fully dynamic data structures for maintaining the bichromatic closest
pair between two 2D point sets and the diameter of a 2D point set. The amortized update time
is O(log” n) instead of O(log” n) [Eppstein 1995; Chan, SODA 2006; Kaplan et al., SODA 2017].

2012 ACM Subject Classification Theory of computation — Computational geometry; Theory of
computation — Data structures design and analysis

Keywords and phrases dynamic data structures, convex hulls, nearest neighbor search, closest pair,
shallow cuttings

Digital Object ldentifier 10.4230/LIPIcs.SoCG.2019.24
Related Version A full version of this paper is available at https://arxiv.org/abs/1903.08387.

Funding Timothy M. Chan: Work supported in part by NSF Grant CCF-1814026.

Acknowledgements 1 thank Sariel Har-Peled for discussions on other problems that indirectly led
to the results of this paper. Thanks also to Mitchell Jones for discussions on range searching for

points in convex position.

1 Introduction

Background. Dynamic data structures that can support insertions and deletions of data
have been a fundamental topic in computational geometry since the beginning of the field.
For example, in 1981 an early landmark paper by Overmars and van Leeuwen [25] presented
a fully dynamic data structure for 2D convex hulls with O(logn) query time and O(log? n)
update time; the log2 n bound was later improved in a series of work [7, 6, 12] for various
basic types of hull queries, e.g., finding extreme points along given directions.

One of the key results in the area is the author’s fully dynamic data structure for 3D
convex hulls [10], which was the first to achieve polylogarithmic query and update time for
basic types of hull queries. The original solution required O(log2 n) query time for extreme
point queries, and O(log® n) amortized update time. (A previous solution by Agarwal and

© Timothy M. Chan; [

BY licensed under Creative Commons License CC-BY ,—E fl]m
35th International Symposium on Computational Geometry (SoCG 2019). : : : :
Editors: Gill Barequet and Yusu Wang; Article No. 24; pp. 24:1-24:13 O N jl—l

\\v Leibniz International Proceedings in Informatics N
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

24:2

Dynamic Geometric Data Structures via Shallow Cuttings

Matousek [4] had O(n®) query or update time for an arbitrarily small constant ¢ > 0.)
Recently Kaplan et al. [21] noted a small modification of the data structure, improving
the update time to O(log5 n). The result has numerous applications, including dynamic 2D
nearest or farthest neighbor search (by the standard lifting map). Another application is
dynamic 2D bichromatic closest pair (i.e., computing min,e p mingeq ||p — ¢l for two planar
point sets P and Q) or dynamic 2D diameter (i.e., computing max,ep maxgep ||p — ¢|| for
a planar point set P): Eppstein [18] gave a clever, general technique reducing dynamic
closest/farthest pair problems to dynamic nearest/farthest neighbor search, which increased
the update time by a log® n factor; when combined with the above, this yielded an O(log7 n)
update time bound.

For many other problems, polylogarithmic update time appears more difficult, and getting
sublinear update time is already challenging. For example, in SoCG 2001, the author [§]
obtained a dynamic data structure for the width of a 2D point set with O*(y/n) amortized
update time.! (Part of the difficulty is that the width problem is neither “decomposable” nor
“LP-type”.) Sublinear update time is known for a few other assorted geometric problems,
such as dynamic connectivity for the intersection graph of geometric objects [14].

In SODA 2002, the author [9] explored still more challenging dynamic geometric problems,
including maintaining

(i) the number of vertices and facets of a 3D convex hull, or its volume,
(ii) the largest empty circle for a 2D point set (with center restricted to be inside a fixed
triangle),
(i) the Hausdorff distance for 2D point sets P and @ (i.e., computing max,eq min,ep ||[p—¢|
for two planar point set), and
(iv) the discrete 1-center of a 2D point set P (i.e., computing minge p maxpyep |p — ¢||)-

The paper [9] obtained sublinear results only for the insertion-only case and the off-line case
(where we are given the entire update sequence in advance), or a generalization of both — the
semi-online case (as defined by Dobkin and Suri [17], where we are given the deletion time
of an element when it is inserted). The update time bounds were O*(n7/®) for (i) and (ii),
and O*(n°/%) for (iii) and (iv).

None of these four problems are “decomposable”. In particular, problem (i) is nontrivial
since known methods such as [10] for 3D convex hull queries do not maintain the global hull
explicitly, unlike Overmars and van Leeuwen’s original data structure for 2D convex hulls.
Problem (ii) also seems to require explicit maintenance of a 3D convex hull (lifted from
the 2D farthest-point Voronoi diagram). Problems (iii) and (iv) are max-min or min-max
problems, and lack the symmetry of min-min and max-max problems that enable Eppstein’s
technique. For all these problems, the fully dynamic case has remained open.

New results.

1. We present the first fully dynamic data structures with sublinear update time for Problems
(i)-(iv). The amortized update time bounds are O*(n'*/12) for (i) and (ii), and O*(n®/6)
for (iii) and (iv).

The approach is general enough to be applicable to many more problems; for example, we
can maintain the number of maximal or “skyline” points (points that are not dominated
by other points) in a 3D point set in O*(n?/3) amortized time.

L Throughout the paper, we use the O* notation to hide small extra factors that are polylogarithmic, or
in some cases, o(n®) for an arbitrarily small constant € > 0.

T.M. Chan

2. For basic 3D convex hull queries (e.g., extreme point queries) and 2D nearest neighbor

search, as mentioned, Kaplan et al. [21] have lowered the amortized update time of the
author’s fully dynamic data structure [10], from O(log® n) to O(log® n). We describe a
further logarithmic-factor improvement, from O(log® n) to O(log* n).
Although this improvement is admittedly small, the importance of the result stems from
its many applications [10]; for example, we can now compute the convex (or onion) layers
of a 3D point set in O(n log® n) time, and the k-level in an arrangement of planes in 3D
in O(nlogn + flog*n) time where f is the output size.

3. For bichromatic closest pair and diameter in 2D, combining Eppstein’s technique [18]

with the above new result on dynamic nearest neighbor search already gives a slightly
improved amortized update time of O(log6 n). We describe a further, more substantial
improvement that eliminates the two extra logarithmic factors caused by Eppstein’s
technique [18]. The new update time bound is O(log* n).
Dynamic bichromatic closest pair has applications to other problems. For example, we
can now maintain the Euclidean minimum spanning tree of a 2D point set with O(log6 n)
amortized update time by using another reduction of Eppstein [18] combined with known
results for dynamic minimum spanning trees for graphs [20].

Techniques. The common thread in all of our new methods is the use of shallow cuttings:
Let H be a set of n hyperplanes in R?. The level of a point g refers to the number of
hyperplanes of H strictly below q. A (k, K)-shallow cutting is a collection of cells covering all
points of level at most k, such that each cell intersects at most K hyperplanes. The conflict
list Ha of a cell A refers to the subset of all hyperplanes of H intersecting A.

Matousek [23] proved the existence of shallow cuttings with small number of cells.
Specifically, in 3D, the main lemma can be stated as follows:2

» Lemma 1. (Shallow Cutting Lemma) Given a set H of n planes in R® and a parameter
k € [1,n], there exists a (k,O(k))-shallow cutting with O(n/k) cells, where each cell is a
“downward” tetrahedron containing (0,0, —o0). The cutting, together with the conflict lists of
all its cells, can be constructed in O(nlogn) time.

The construction time was first shown by Ramos [26] with a randomized algorithm. Later,
Chan and Tsakalidis [15] obtained the first O(n logn)-time deterministic algorithm.

To see how static shallow cuttings may be useful for dynamic geometric data structures,
observe that most of the problems considered here are related to the lower envelope of a
dynamic set of planes in R? (via duality or the standard lifting transformation). Usually, the
bottleneck lies in deletions rather than insertions. Basically, a shallow cutting provides a
compact implicit representation of the (< k)-level, which is guaranteed to cover the lower
envelope even when up to k deletions have occurred.

A further idea behind all our solutions is to classify planes into two types, those that
intersect few cells of the shallow cutting, and those that intersect many cells. The latter type
of planes may be bad in slowing down updates, but the key observation is that there can’t
be too many bad elements.

The new sublinear solutions to Problems (i)—(iv), described in Sections 2-3, are obtained
by incorporating the shallow cutting idea with the previous techniques from [9], based on
periodic rebuilding. The entire solution is conceptually not complicated at all, and the

2 Matousek’s original formulation in R? states the existence of a (k, n/r)-shallow cutting with O(rl4/2) (1 +
kr/n)[4/21) cells.

24:3

SoCG 2019

24:4

Dynamic Geometric Data Structures via Shallow Cuttings

description for Problem (i) fits in under two pages, assuming the availability of known
range searching structures. As are typical in other works on data structures with sublinear
update time with “funny” exponents, parameters are judiciously chosen to balance several
competing costs.

The shallow cutting idea has actually been exploited before in dynamic data structures
for basic 3D convex hull queries: Agarwal and Matousek [4] used shallow cuttings recursively
(which caused some loss of efficiency), while the author [10] used a hierarchy of shallow
cuttings, for logarithmically many values of k. The above application of shallow cuttings to
Problems (i)—(iv) is even more elementary — we only need a single cutting. (This makes it all
the more embarassing that the idea was missed till now.)

For basic 3D convex hull queries and 2D nearest neighbor search, our improvement is less
innovative. Described in Section 4 (which can be read independently of the previous sections),
it is based on the author’s original data structure [10], with Kaplan et al’s logarithmic-
factor improvement [21], plus one extra idea to remove a second logarithmic factor: the
main observation is that Chan and Tsakalidis’s algorithm for shallow cuttings [15] already
constructs an entire hierarchy of O(logn) cuttings in O(nlogn) time, not just a single cutting.
However, the hierarchy needed for the data structure in [10] requires some planes be pruned
as we go from one cutting to the next, so Chan and Tsakalidis’s algorithm cannot be applied
immediately. Still, we show that some nontrivial but technical changes (as explained in the
appendix) can fix the problem.

For 2D bichromatic closest pair and diameter, our log? n-factor improvement, described
in Section 5, is a bit more interesting. We still do not know how to improve Eppstein’s
general reduction [18] from dynamic closest pair to dynamic nearest neighbor search, but
intuitively the blind combination of Eppstein’s technique with the author’s dynamic data
structure for 2D nearest neighbor search seems wasteful, since both share some commonalities
(both are sophisticated variants of the logarithmic method [5], and both handle deletions
via re-insertions of elements into smaller subsets). To avoid the redundancy, we show how
to directly modify our dynamic data structure for 2D nearest neighbor search to solve
the dynamic 2D bichromatic closest pair problem. The resulting modification completely
bypasses Eppstein’s “conga line” structure [18, 19], and turns out to cause no increase to the
O(log* n) bound.

2 Dynamic 3D Convex Hull Size

We begin with our new sublinear-time fully dynamic data structure for maintaining the
number of vertices/facets of the convex hull of a dynamic 3D point set. The solution is
based on the use of shallow cuttings (Lemma 1) and the author’s previous semi-online data
structure [9].

» Theorem 2. We can maintain the number of vertices, edges, and facets for the convex
hull of a dynamic set of n points in R3, in general position, with O*(n) preprocessing time
and O*(n*Y/12) amortized insertion and deletion time.

Proof. It suffices to maintain the number of convex hull facets, which determines the number
of vertices and edges (assuming general position). It suffices to compute the number of upper
hull facets, since by symmetry we can compute the number of lower hull facets. We describe
our solution in dual space, where the problem is to compute the number of vertices in LE(H)
for a dynamic set H of n planes in R3.

T.M. Chan

Let k£ and s be parameters to be set later. We divide the update sequence into phases of
k updates each. We maintain a decomposition of the set H into a deletion-only set Hy and a
small set Hp.q of “bad” planes.

Preprocessing for each phase. At the beginning of each phase, we construct a (k, O(k))-
shallow cutting T of H with O(n/k) cells, together with all their conflict lists, by Lemma 1.
We set

Ho = {h € H : h intersects at most n/s cells} and Hpaq = H — Hp.

Since the total conflict list size is O(n/k - k) = O(n), we have |Hpaq| = O(s).

Let Vp and Ep be the set of vertices and edges of the portion of LE(Hy) covered by T,
respectively. There are O(k) such vertices and edges per cell of T', and hence, |Vp|,|Eo| =
O(n/k - k) = O(n). We preprocess Vy and Ey in O*(n) time by known range searching and
intersection searching techniques, so that

we can count the number of points in V; inside a query tetrahedron in O*(n?/3) time
(this is 3D simplex range searching) [22, 11, 2J;

we can count the number of line segments in Ej intersecting a query triangle in O*(n3/4)
time (as noted in [9], we can first solve the case of lines and query halfplanes in R? using
semialgebraic range searching [3] in Pliicker space, and then extend the solution for line
segments and query triangles by a multi-level data structure [2]).

These data structures can support insertions and deletions of points in Vj and line segments
in Ep in O*(1) time each. In addition, we preprocess Hy in a known dynamic lower envelope
data structure in O*(n) time, to support ray shooting queries in LE(Hy) in O*(1) time and
deletions in O*(1) time (e.g., see [4] or Section 4). The total preprocessing time per phase is
O*(n). Amortized over k updates, the cost is O*(n/k).

Inserting a plane h. We just insert h to the list Hpaq. Note that |Hpaa| = O(s + k) at all
times, since there are at most k insertions per phase.

Deleting a plane h from Hy,,q. We just remove h from the list Hyaq-

Deleting a plane h from Hy. We consider each cell A € I' intersected by h, and compute
LE((Hp)a) from scratch in O(klogk) time (since |(Hp)a| = O(k)). As the number of cells
intersected by h is at most n/s, this computation requires O*(kn/s) total time. The sets
Vo and Ey undergo at most O(kn/s) changes, and their associated data structures can be
updated in O*(kn/s) time.

Computing the answer. To compute the number of vertices of LE(H) = LE(Ho U Hypaq), we
first construct LE(Hpaq) in O((s + k) log(s + k)) time, and triangulate all its O(s + k) faces.
For each triangle 7 in this triangulation:

we count the number of vertices of V; that lie directly below 7, in O*(n?/?) time; and
we count the number of edges of Ey that intersect 7, in O*(n®/4) time.

We sum up all these counts. In addition, for each edge of LE(Hpaq), we test whether it
intersects LE(Hp) by ray shooting in O*(1) time, and increment the count if true. For each
vertex of LE(Hypaq), we test whether it is underneath LE(Hy) by vertical ray shooting in
O*(1) time, and increment the count if true. Note that LE(H) is covered by T" at all times,
since there are at most & deletions per phase. The overall count thus gives the answer. The
total time to compute the answer is O*((s + k)n®/4).

24:5

SoCG 2019

24:6

Dynamic Geometric Data Structures via Shallow Cuttings

Analysis. The overall amortized update time is
O*(n/k + kn/s + (s + k)n3/4).
The theorem follows by setting s = k2 and k = n'/!2, <

The preprocessing time can be made O(nlogn) and space made O(n) by increasing the
update time by an n® factor, via known trade-offs for range/intersection searching (with
larger-degree partition trees). The method can be deamortized, using existing techniques [24].

The same method can be adapted to maintain the sum or maximum of f(v) over all
vertices v of LE(H), for a general class of functions f. Instead of range counting, we store
the set Vj of points for range sum or range maximum queries (which have similar complexity
as range counting). For the set Ey of line segments, the base level of its multi-level data
structure requires data structures Sy, for each canonical subset L of lines in R3, so that we
can return the sum or maximum of f(£N k) over all £ € L for a query plane h in O*(|L|%)
time, supporting insertions and deletions in L in O*(1) time. If o < 3/4, the final time
bound of our algorithm remains O* (n'!/12).

» Theorem 3. We can maintain the volume of the convex hull for a dynamic set of n points
in R, with O*(n) preprocessing time and O*(n'*'/12) amortized insertion and deletion time.

Proof. Let o be a fixed point sufficiently far below all the input points. It suffices to maintain
the sum of the volume of the tetrahedra op;psps over all upper hull facets p1pops, since by
symmetry we can maintain a similar sum for lower hull facets and subtract. We map each
point p to its dual plane hy,. Then the problem fits in the above framework, with f(v) equal
to the volume of the tetrahedron opipaps for a vertex v defined by the planes hy,, hp,, hp,.
For a fixed line ¢ defined by the planes h,, and h,,, observe that f(¢Nhy,) is a linear function
over the 3 coordinates of p, since the volume of opypap can be expressed as a determinant.
(This assumes that opyps is oriented clockwise, which we can ensure at the base level of the
multi-level data structure.) Thus, we can implement the base structures Sy with o« = 0, by
simply summing the 4 coefficients of the associated linear functions over all £ € L. <

» Theorem 4. We can maintain the largest empty circle of a dynamic set of n points in R?,
under the restriction that the center lies inside a given triangle Ao, with O*(n) preprocessing
time and O*(n''/12) amortized insertion and deletion time.

Proof. By the standard lifting transformation, map each input point p = (a,b) € R? to the
plane h, with equation z = —2ax — 2by + a® + b in R3. Add 3 near-vertical planes along
the edges of Ay. The largest empty circle problem reduces to finding a vertex v = (z,y, 2)
of the lower envelope of these planes, maximizing f(v) = 2% + y? + 2. For a fixed line
£, observe that f(£ N h(gyp)) is a fixed-degree rational function (ratio of two polynomials)
in the 2 variables a and b. We can implement the base structures Sy with a = 2/3, by
known techniques for semialgebraic range searching in 3D [4] (applied to the graphs of these
bivariate functions). <

We can obtain sublinear update time bounds for other similar problems, e.g., maintain-
ing the minimum/maximum-area Delaunay triangle of a dynamic 2D point set. Another
application is computing the number of maximal points, also called “skyline points” (which
are points not dominated by other points), in a dynamic 3D point set:

» Theorem 5. We can maintain the number of mazimal points in a dynamic set P of n points
in R3, with O*(n) preprocessing time and O*(n?/®) amortized insertion and deletion time.

T.M. Chan

Proof. The maximal points are vertices of the upper envelope of orthants (—oo, a] X (—oo, b] X
(=00, c] over all input points (a,b,c) € P (the upper envelope is an orthogonal polyhedron).
As is well known, an analogue of the shallow cutting lemma holds for such orthants in 3D
(in fact, there is a transformation that maps such orthants to halfspaces in 3D); for example,
see [13]. The same method can thus be adapted. In fact, it can be simplified. The data
structure for Vj is for orthogonal range searching [16], which has O*(1) query and update
time. The data structure Ej is not needed. The overall update time becomes

O*(n/k+kn/s+ (s +k)).

The theorem follows by setting s = k% and k = n'/3. |

We can similarly maintain the volume of a union of n boxes in R? in the case when all
the boxes have a common corner point at the origin (this is called the hypervolume indicator
problem) with O*(n?/3) update time (previously, an O*(y/n) bound was known only in the
semi-online setting [9]).

3 Dynamic 2D Hausdorff Distance

The method in Section 2 can also be adapted to solve the dynamic 2D Hausdorff distance
problem:

» Theorem 6. We can maintain the Hausdorff distance between two dynamic sets P and Q
of at most n points in R?, with O*(n) preprocessing time and O*(n®/?) amortized insertion
and deletion time.

Proof. By the standard lifting transformation, map each point p = (a,b) € P to the plane
h, with equation z = —2az — 2by + a® + b* in R®. Let H be the resulting set of planes.
For each point ¢ € @, let Ay (q) denote the point on LE(H) at the vertical line at q. The
problem is to find the maximum of f(Ag(q)) over all ¢ € Q, where f(z,y,2) = 22 + y? + z,
for a dynamic set H of at most n planes and a dynamic set @ of at most n points.

Let k and s be parameters to be set later. We divide the update sequence into phases of
k updates each. We maintain a decomposition of the set H into a deletion-only set Hy and a
small set Hy,q of “bad” planes, and a decomposition of the set @) into a deletion-only set Qg
and a small set Qnaq of “bad” points.

Preprocessing for each phase. At the beginning of each phase, we construct a (k, O(k))-
shallow cutting T of H with O(n/k) cells, together with all their conflict lists, by Lemma 1.
We further subdivide the cells to ensure that each cell contains at most k points of () in its
xy-projection; this can be done by O(n/k) additional vertical plane cuts, so the number of
cells remains O(n/k). We set

Hy = {h € H : h intersects at most n/s cells} and Hypy,q = H — Hy.

Since the total conflict list size is O(n/k - k) = O(n), we have |Hpaq| = O(s).

We set Qo = Q. We compute A, (q) for all ¢ € @ in O(nlogn) time. Let Ay be the
subset of points in {Apg,(q) : ¢ € Q} covered by I'. We preprocess the point set Ag in known
3D simplex range searching data structures [22, 11, 2] in O*(n) time, to support the following
queries in O*(n?/3) time:

compute the maximum of f(v) over all points v € Ay inside a query tetrahedron;

24:7

SoCG 2019

24:8

Dynamic Geometric Data Structures via Shallow Cuttings

compute the maximum of f(Ay,1(7,y)) over all points v = (x,y, z) € Ag inside a query
tetrahedron for a query plane h,; note that maximizing f(A¢n,}(z,y)) is equivalent to
maximizing the distance from (z, y) to p (so we can use a 2-level data structure, combining
simplex range searching with 2D farthest neighbor searching).

The data structures can support insertions and deletions of points in Ag in O*(1) time each.
In addition, we preprocess Hy in a known dynamic lower envelope data structure in O*(n)
time, to support ray shooting queries in LE(Hp) in O*(1) time and deletions in O*(1) time
(e.g., see [4] or Section 4).

Inserting a plane h to H or a point g to Q. We just insert h to the list Hyaq or ¢ to the
list Qpad. Note that |Hpaa| = O(s + k) and |Qpaa| = O(k) at all times.

Deleting a plane h from Hy,q or a point g from Qpaq. We just remove h from the list
Hyaq or q from the list Qpaq-

Deleting a point g from Qg. We just remove Ap,(q) from the set Ay in O*(1) time.

Deleting a plane h from Hy. We consider each cell A € I' intersected by h, and compute
A(Ho)a (q) for all ¢ € @ in the xy-projection of A from scratch in O(klogk) time (since A is
intersected by O(k) planes in H and contains O(k) points of @ in its xzy-projection). As the
number of cells intersected by h is at most n/s, this computation takes O*(kn/s) total time.
The set Ay undergoes at most O(kn/s) changes, and its associated data structures can be
updated in O*(kn/s) time.

Computing the answer. To compute the maximum of f(Ag(q)) over all ¢ € Q, we first
construct LE(Hpaq) in O((s + k) log(s + k)) time, and triangulate all its O(s + k) faces. For
each triangle 7 in this triangulation:

We compute the maximum of f(v) over all v = (x,y, z) € Ag that lie directly below 7, in
O*(n?/3) time. Note that for all such v, the Ay (x,y) = Ay, (2,y) = v.
We let h be the plane through 7 and compute the maximum of f(A(xy(2,y)) over all
v = (x,y,2) € Ag that lie directly above 7, in O*(n?/3) time. Note that for all such v,
)\H(x’ y) = /\{h}(xa y)
In addition, for each ¢ € Qpag, we compute Ay (q) by vertical ray shooting in LE(H) and
LE(Hpaq) in O*(1) time; we take the maximum of f(Ag(q)) for these points. Note that
LE(H) is covered by I at all times, since there are at most k deletions per phase. The overall
maximum thus gives the answer. The total time to compute the answer is O*((s 4 k)n?/?).

Analysis. The overall amortized update time is
O*(n/k + kn/s + (s + k)n?/3).
The theorem follows by setting s = k% and k = n'/?. |

We can similarly solve the dynamic 2D discrete 1-center problem, by switching lower
with upper envelopes and maximum with minimum:

» Theorem 7. We can maintain the discrete 1-center of a dynamic set of n points in R2,
with O*(n) preprocessing time and O* (n®°) amortized insertion and deletion time.

It is possible to slightly improve the O*(n®/?) bound to O*(n®¢) in the preceding two
theorems: the key observation is that the point set Ag is in convex position, and in the
convex-position case, the O*(n?/3) query time for 3D simplex range searching can be improved
to O*(y/n), as shown by Sharir and Zaban [27]. (The same observation also improves the
author’s previous O*(n®9) result to O*(n3/*) in the semi-online setting.)

T.M. Chan

It remains open whether the dynamic Hausdorff distance and discrete 1-center problem in
dimensions d > 3 can similarly be solved in sublinear time. The author’s previous paper [9]
gave an O*(nl_l/(d“)(M/Q]H))—time algorithm but only in the semi-online setting. In higher
dimensions, the size of shallow cuttings becomes too large for the approach to be effective.

4 Dynamic 3D Convex Hull Queries

In this section, we present a slightly improved data structure for extreme point queries for a
dynamic 3D convex hull, by combining the author’s previous data structure [10] (as refined
by Kaplan et al. [21]) with a modification of Chan and Tsakalidis’s algorithm for constructing
a hierarchy of shallow cuttings [15].

To describe the latter, we need a definition: Given a set H of n planes in R? and a
collection Ty, of cells, a T'y,-restricted (k, K)-shallow cutting is a collection gyt of cells
covering {p € R3 : p is covered by T, and has level at most k}, such that each cell in Toy
intersects at most K planes. We note that Chan and Tsakalidis’s algorithm, with some
technical modifications, can prove the following lemma. (The proof requires knowledge of
Chan and Tsakalidis’s paper, and is deferred to the full paper.)

» Lemma 8. There exist constants b, c, and ¢’ such that the following is true: For a set H
of at most n planes in R® and a parameter k € [1,n], given a (—oo, cbk)-shallow cutting® T,
with at most ¢'n/(bk) downward cells, together with their conflict lists, we can construct a
Ty -restricted (k, ck)-shallow cutting Toyy with at most ¢'n/k downward cells, together with
their conflict lists, in O(n + (n/k)log(n/k)) deterministic time.

We now redescribe the author’s previous data structure [10] for 3D extreme point queries,
with slight changes to incorporate Lemma 8. The redescription uses a recursive form of
the logarithmic method [5], which should be a little easier to understand than the original
description.

» Theorem 9. We can maintain a set of n points in R3, with O(nlogn) preprocessing time,
O(log?® n) amortized insertion time, and O(log* n) amortized deletion time, so that we can
answer find the extreme point of the convex hull along any query direction in O(log2 n) time.

Proof. We describe our solution in dual space, where we want to answer vertical ray shooting
queries for LE(H), i.e., find the lowest plane of H at a query vertical line, for a dynamic set
H of n planes in R3.

Preprocessing. Our preprocessing algorithm is given by the pseudocode below (ignoring
trivial base cases), with the constants b, ¢, ¢’ from Lemma 8:*

preprocess(H):

1. Hy=H, Ty={R3}, {=1log,n

2. fori=1,...,£4do{

3. I'; = a I';_j-restricted (n/b?, en/b?)-shallow cutting of H;_; with at most ¢/b’ cells
4. H; = H;_y —{h € H : h intersects more than 2cc’¢ cells of Ty U---UT;}

5. for each A € T';, compute the conflict list (H;)a and initialize ka =0

}

3Ina (—o0, k)-shallow cutting, the cells are not required to cover any particular region.
4 Line 4 is where Kaplan et al’s improvement lies [21]. The original data structure from [10] basically
had H; = H;—1 — {h € H : h intersects more than 2cc’¢ cells of T';}.

24:9

SoCG 2019

24:10

Dynamic Geometric Data Structures via Shallow Cuttings

6. preprocess H, for static vertical ray shooting
7. Hp,a=H—-H,
8. preprocess(Hpaq)

Note that T';_; is a (—oo, cn/bi~1)-shallow cutting of H; o, and consequently a (—oo,
en/bi~1)-shallow cutting of H; 1, since H; 1 C H; 5. Given I';_; and its conflict lists, we
can thus apply Lemma 8 to compute I'; and its conflict lists, in O(n + b%log b?) time. The
total time for lines 1-5 is O(nlogn + Zle bilogb') = O(nlogn). Line 6 takes O(nlogn)
time (by a planar point location method [16]).

We claim that |Hpaq| < n/2. To see this, consider each h € Hy,q. Let ¢ be the index
with h € H;_1 — H;. Then h intersects more than 2cc’'f cells of I'; U --- UTY; send a charge
from h to each of these cells. Each cell in I'; receives charges only from planes in H;_;
that intersect the cell. Thus, the total number of charges is at least 2¢c’¢|Hpaq| and is at
most Zﬁzl en/b - b = cc'fn. The claim follows. The preprocessing time thus satisfies the
recurrence P(n) < P(n/2) + O(nlogn), which gives P(n) = O(nlogn).

Inserting a plane h. We simply insert h to Hpaq recursively. When |Hypaq| reaches 3n/4, we
rebuild the data structure for H. It takes ©(n) updates for a rebuild to occur. The amortized
insertion time thus satisfies the recurrence I(n) < I(3n/4)+O(P(n)/n) = I(3n/4) +O(logn),
which gives I(n) = O(log?n).

Deleting a plane h. The deletion algorithm is as follows:

delete(H, h):
1. fori=1,...,4do

2 for each A € T; with h € (H;)a do {

3. increment ka

4 if kn > n/b"*! then

5 for all h € (H;)a that are still in H but not yet in Hpaq, insert h to Hpaq

}
6. if h € Hpaq then delete(Hbad, h)

Let i be the largest index with h € H;. Then h intersects at most 2¢c’¢ = O(logn) cells
of Ty U---UT;. Thus, in each deletion, lines 3-5 are executed O(logn) times.

In lines 3-5, it takes n/b*™! increments of ka to cause the |(H;)a| < cn/b’ planes to
be inserted to Hpaq. Thus, each increment triggers O(1) amortized number of insertions
to Hpad, and so a deletion triggers O(logn) amortized number of insertions to Hypag. The
amortized deletion time thus satisfies the recurrence D(n) < D(3n/4) + O(logn)I(3n/4) =
D(3n/4) + O(log® n), which gives D(n) = O(log" n).

Answering the query for a vertical line q. We first answer the query for the static set Hy
in O(logn) time (by planar point location); if the returned plane has already been deleted,
ignore the answer. We then recursively answer the query for Hyaq, and return the lowest of
all the planes found. The query time satisfies the recurrence Q(n) < @Q(3n/4) + O(logn),
which gives Q(n) = O(log®n).

Correctness of the query algorithm. To prove correctness, let h* be the lowest plane at ¢
and v* = h*Ngq. If h* € Hy.gq, correctness follows by induction. So, assume that h* € Hypag.

If v* is covered by T'y, say, by the cell A € Ty, then either v* is on LE(Hy), in which case
the algorithm would have correctly found h*, or some plane in (H;)a has been deleted from
H, in which case all active planes of (Hy)a, including h*, would have been inserted to Hpaq.

T.M. Chan

Otherwise, let ¢ be an index such that v* is not covered by I'; but is covered by I';_1, say,
by the cell A € I';_;. Since I'; is a I';_j-restricted (n/b?,cn/b?)-shallow cutting of H; 1, it
follows that v* must have level more than n/ b* in H;_;. In order for v* to be the answer,
the more than n/ b’ planes of H;_; below v* must have been deleted from H. But then all
active planes of (H;_1)a, including h*, would have been inserted to Hpaq. <

By the standard lifting transformation, we obtain:

» Corollary 10. We can maintain a set of n points in R?, with O(nlogn) preprocessing time,
O(log® n) amortized insertion time, and O(log* n) amortized deletion time, so that we can
answer find the nearest neighbor to any query point in O(log2 n) time.

The space usage in the above data structure is O(nlogn), but can be improved to O(n),
by following an idea mentioned in [10] (due to Afshani): instead of storing conflict lists
explicitly, generate conflict lists on demand by using a known optimal (static) linear-space
data structure for halfspace range reporting [1].

Following [10], we can use the same dynamic data structure to answer other basic types of
3D convex hull queries, e.g., gift wrapping queries (finding the two tangents of the hull with
a query line outside the hull) in O(log® n) time and line-intersection queries (intersecting the
hull with a query line) in O(log4 nlogo(l) logn) time. The latter corresponds to 3D linear
programming queries in dual space. The dynamic data structure can be adapted to maintain
the smallest enclosing circle of a 2D point set. Following [12], the dynamic data structure
can also be adapted to answer 3D halfspace range reporting queries.

5 Dynamic 2D Bichromatic Closest Pair

We now adapt the data structure in Section 4 to solve the dynamic 2D bichromatic closest
pair problem:

» Theorem 11. We can maintain the closest pair between two dynamic sets P and @ of at
most n points in R?, with O(nlogn) preprocessing time, O(log?n) amortized insertion time,
and O(log* n) amortized deletion time.

Proof. By the standard lifting transformation, map each input point p = (a, b) to the plane
h, with equation z = —2ax — 2by + a® + b in R3. Let H = {h, : p € P}. For each point

q € Q, let A (q) denote the point on LE(H) at the vertical line at ¢g. Let J = {hy : g € Q}.

For each point p € P, define A;(p) similarly. We want to compute the minimum of f(Ag(q))
over all ¢ € Q, where f(x,vy,2) = 22 +y?+ 2, which is equivalent to the minimum of f(\(p))
over all p € P.

Preprocessing. We maintain a global heap, whose minimum gives the answer. We modify
the preprocess(H) algorithm in Section 4:

preprocess(H, J):

1. run lines 1-7 of the preprocess(H) algorithm on H

2. for each h, € J, add f(Am,(q)) to the heap

3. run lines 1-7 of the preprocess(H) algorithm but with H’s replaced by J’s
4. for each h, € H, add f(Ay,(p)) to the heap

5. preprocess(Hpad, Jbad)

As in Section 4, the preprocessing time satisfies the recurrence P(n) < P(n/2)+0(nlogn),
which gives P(n) = O(nlogn).

24:11

SoCG 2019

24:12

Dynamic Geometric Data Structures via Shallow Cuttings

Inserting a plane h, to H. We recursively insert h, to Hp,q. We also compute Ay, (p) in
O(logn) time (by planar point location), and add f(A;,(p)) to the heap.

When |Hpaa| or |Jpad| reaches 3n/4, we rebuild the data structure for H and J. It takes
Q(n) updates for a rebuild to occur. The amortized insertion time thus satisfies the recurrence
I(n) < I(3n/4) + O(logn) + O(P(n)/n) = I(3n/4) + O(logn), which gives I(n) = O(log®n).

Inserting a plane h, to J. Symmetric to the above.

Deleting a plane h, from H. We run lines 1-5 of the delete(H, h) algorithm in Section 4
(with h = hy). In the heap, we remove all entries f(Am,(¢)) that has Ag,(q) = Ag,3(q). If
hp € Hypaa, we further recursively delete h, from Hyp,q. We also remove f(Ay,(p)) from the
heap.

For the analysis, we can charge removals of entries from the heap to their corresponding
insertions, by amortization. The amortized deletion time thus satisfies the recurrence
D(n) < D(3n/4) 4+ O(logn)I(3n/4) = D(3n/4) + O(log® n), which gives D(n) = O(log*n).

Deleting a plane hgy from J. Symmetric to the above.

Correctness. Let p*q¢* be the closest pair with p* € P and ¢* € Q. If both hy« € Hpaq and
hg+ € Jbad, correctness follows by induction. Otherwise, assume without loss of generality
that hy+ & Hpadq. (The case Jy« & Jpaa is symmetric.) Let v* = Ay (¢*). The rest of the
correctness argument is essentially identical to that in Section 4:

If v* is covered by Ty, say, by the cell A € Ty, then either v* is on LE(Hp), in which case
the algorithm would have included f(Ag(¢*)) in the heap, or some plane in (H;)a has been
deleted from H, in which case all active planes of (Hy)a, including h,+, would have been
inserted to Hyaq.

Otherwise, let ¢ be an index such that v* is not covered by I'; but is covered by I';_1, say,
by the cell A € T';_;. Since T'; is a I';_j-restricted (n/b?, cn/b?)-shallow cutting of H; 1, it
follows that v* must have level more than n/ b* in H;_,. In order for v* to be the answer,
the more than n/b planes of H; 1 below v* must have been deleted from H. But then all
active planes of (H;_1)a, including h,-, would have been inserted to Hypaq. <

We can similarly solve the diameter problem, by replacing min with max and lower with
upper envelopes:

» Theorem 12. We can maintain the diameter of a dynamic set of n points in R2, with
O(nlogn) preprocessing time, O(log® n) amortized insertion time, and O(log* n) amortized
deletion time.

—— References

1 Peyman Afshani and Timothy M. Chan. Optimal halfspace range reporting in three dimensions.
In Proc. 20th ACM-SIAM Sympos. Discrete Algorithms (SODA), pages 180-186, 2009. URL:
http://dl.acm.org/citation.cfm?id=1496770.1496791.

2 Pankaj K. Agarwal. Simplex range searching and its variants: A review. In M. Loebl, J. Nesetril,
and R. Thomas, editors, Journal through Discrete Mathematics. Springer, to appear.

3 Pankaj K. Agarwal and Jifi Matousek. On range searching with semialgebraic sets. Discrete
Comput. Geom., 11:393-418, 1994. doi:10.1007/BF02574015.

4 Pankaj K. Agarwal and Jiri Matousek. Dynamic half-space range reporting and its applications.
Algorithmica, 13(4):325-345, 1995. doi:10.1007/BF01293483.

5 Jon Louis Bentley and James B. Saxe. Decomposable searching problems I: static-to-dynamic
transformation. J. Algorithms, 1(4):301-358, 1980. doi:10.1016/0196-6774(80)90015-2.

6 Gerth Stglting Brodal and Riko Jacob. Dynamic planar convex hull. In Proc. 43rd Sympos.
Found. Comput. Sci. (FOCS), pages 617-626, 2002. doi:10.1109/SFCS.2002.1181985.

T.M. Chan

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Timothy M. Chan. Dynamic planar convex hull operations in near-logarithmic amortized time.
J. ACM, 48(1):1-12, 2001. Preliminary version in FOCS 1999. doi:10.1145/363647.363652.
Timothy M. Chan. A fully dynamic algorithm for planar width. Discrete Comput. Geom.,
30(1):17-24, 2003. Preliminary version in SoCG 2001. doi:10.1007/s00454-003-2923-8.
Timothy M. Chan. Semi-online maintenance of geometric optima and measures. SIAM
J. Comput., 32(3):700-716, 2003. Preliminary version in SODA 2002. doi:10.1137/
S0097539702404389.

Timothy M. Chan. A dynamic data structure for 3-d convex hulls and 2-d nearest neighbor
queries. J. ACM, 57(3):16:1-16:15, 2010. Preliminary version in SODA 2006. doi:10.1145/
1706591.1706596.

Timothy M. Chan. Optimal partition trees. Discrete Comput. Geom., 47(4):661-690, 2012.
Preliminary version in SoCG 2010. doi:10.1007/s00454-012-9410-z.

Timothy M. Chan. Three problems about dynamic convex hulls. Int. J. Comput. Geom. Appl.,
22(4):341-364, 2012. Preliminary version in SoCG 2011. doi:10.1142/50218195912600096.
Timothy M. Chan, Kasper Green Larsen, and Mihai Patragcu. Orthogonal range searching on
the RAM, revisited. In Proc. 27th ACM Sympos. Comput. Geom. (SoCG), pages 1-10, 2011.
do0i:10.1145/1998196.1998198.

Timothy M. Chan, Mihai Patragcu, and Liam Roditty. Dynamic connectivity: Connecting to
networks and geometry. SIAM J. Comput., 40(2):333-349, 2011. Preliminary version in FOCS
2008. doi:10.1137/090751670.

Timothy M. Chan and Konstantinos Tsakalidis. Optimal deterministic algorithms for 2-d and
3-d shallow cuttings. Discrete Comput. Geom., 56(4):866-881, 2016. Preliminary version in
SoCG 2015. doi:10.1007/s00454-016-9784-4.

Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational

Geometry: Algorithms and Applications. Springer, 3rd edition, 2008. URL: http://www.

worldcat.org/oclc/227584184.

David P. Dobkin and Subhash Suri. Maintenance of geometric extrema. J. ACM, 38(2):275-298,
1991. doi:10.1145/103516.103518.

David Eppstein. Dynamic Euclidean minimum spanning trees and extrema of binary functions.
Discrete Comput. Geom., 13:111-122, 1995. doi:10.1007/BF02574030.

David Eppstein. Fast hierarchical clustering and other applications of dynamic closest pairs.
ACM Journal of Experimental Algorithmics, 5:1, 2000. doi:10.1145/351827.351829.

Jacob Holm, Eva Rotenberg, and Christian Wulff-Nilsen. Faster fully-dynamic minimum
spanning forest. In Proc. 23rd Furopean Sympos. Algorithms (ESA), pages 742-753, 2015.
doi:10.1007/978-3-662-48350-3_62.

Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, and Micha Sharir. Dynamic
planar Voronoi diagrams for general distance functions and their algorithmic applications.
In Proc. 28th ACM-SIAM Sympos. Discrete Algorithms (SODA), pages 2495-2504, 2017.
d0i:10.1137/1.9781611974782.165.

Jifi Matousek. Efficient partition trees. Discrete Comput. Geom., 8:315-334, 1992. doi:
10.1007/BF02293051.

Jir{ Matousek. Reporting points in halfspaces. Comput. Geom. Theory Appl., 2:169-186, 1992.
d0i:10.1016/0925-7721(92)90006-E.

Mark H. Overmars. The Design of Dynamic Data Structures, volume 156 of Lecture Notes in
Computer Science. Springer, 1983. doi:10.1007/BFb0014927.

Mark H. Overmars and Jan van Leeuwen. Maintenance of configurations in the plane. J.
Comput. Syst. Sci., 23(2):166-204, 1981. doi:10.1016/0022-0000(81)90012-X.

Edgar A. Ramos. On range reporting, ray shooting and k-level construction. In Proc. 15th
Sympos. Comput. Geom. (SoCG), pages 390-399, 1999. doi:10.1145/304893.304993.

Micha Sharir and Shai Zaban. Output-sensitive tools for range searching in higher dimensions.

Manuscript, 2013. URL: http://www.cs.tau.ac.il/~michas/shai.pdf.

24:13

SoCG 2019

	Introduction
	Dynamic 3D Convex Hull Size
	Dynamic 2D Hausdorff Distance
	Dynamic 3D Convex Hull Queries
	Dynamic 2D Bichromatic Closest Pair

