
Orthogonal Range Searching in Moderate Dimensions:

k-d Trees and Range Trees Strike Back

Timothy M. Chan∗

October 1, 2017

Abstract

We revisit the orthogonal range searching problem and the exact `∞ nearest neighbor search-
ing problem for a static set of n points when the dimension d is moderately large. We give the
first data structure with near linear space that achieves truly sublinear query time when the
dimension is any constant multiple of log n. Specifically, the preprocessing time and space are
O(n1+δ) for any constant δ > 0, and the expected query time is n1−1/O(c log c) for d = c log n.
The data structure is simple and is based on a new “augmented, randomized, lopsided” variant
of k-d trees. It matches (in fact, slightly improves) the performance of previous combinatorial
algorithms that work only in the case of offline queries [Impagliazzo, Lovett, Paturi, and Schnei-
der (2014) and Chan (2015)]. It leads to slightly faster combinatorial algorithms for all-pairs
shortest paths in general real-weighted graphs and rectangular Boolean matrix multiplication.

In the offline case, we show that the problem can be reduced to the Boolean orthogonal
vectors problem and thus admits an n2−1/O(log c)-time non-combinatorial algorithm [Abboud,
Williams, and Yu (2015)]. This reduction is also simple and is based on range trees.

Finally, we use a similar approach to obtain a small improvement to Indyk’s data structure
(2001) for approximate `∞ nearest neighbor search when d = c log n.

1 Introduction

In this paper, we revisit some classical problems in computational geometry:

• In orthogonal range searching, we want to preprocess n data points in R
d so that we can

detect if there is a data point inside any query axis-aligned box, or report or count all such
points.

• In dominance range searching, we are interested in the special case when the query box is
d-sided, of the form (−∞, q1] × · · · × (−∞, qd]; in other words, we want to detect if there is
a data point (p1, . . . , pd) that is dominated by a query point (q1, . . . , qd), in the sense that
pj ≤ qj for all j ∈ {1, . . . , d}, or report or count all such points.

• In `∞ nearest neighbor searching, we want to preprocess n data points in R
d so that we can

find the nearest neighbor to the given query point under the `∞ metric.

∗Department of Computer Science, University of Illinois at Urbana-Champaign (tmc@illinois.edu). Much of this
work was done while the author was at the Cheriton School of Computer Science, University of Waterloo. A prelim-
inary version of this work appeared in Proc. 33rd Sympos. Comput. Geom., pages 27:1–27:15, 2017.

1

All three problems are related. Orthogonal range searching in d dimensions reduces to dom-
inance range searching in 2d dimensions.1 Furthermore, ignoring logarithmic factors, `∞ nearest
neighbor searching reduces to its decision problem (deciding whether the `∞ nearest neighbor
distance to a given query point is at most a given radius) by parametric search or randomized
search [8], and the decision problem clearly reduces to orthogonal range searching.

The standard k-d tree [23] has O(dn log n) preprocessing time and O(dn) space, but the worst-
case query time is O(dn1−1/d). The standard range tree [23] requires O(n logd n) preprocessing
time and space and O(logd n) query time, excluding an O(K) term for the reporting version of the
problem with output size K. Much work in computational geometry has been devoted to small
improvements of a few logarithmic factors. For example, the current best result for orthogonal
range reporting has O(n logd−3+ε n) space and O(logd−3 n/ logd−4 log n + K) time [12]; there are
also other small improvements for various offline versions of the problems [12, 13, 2].

In this paper, we are concerned with the setting when the dimension is nonconstant. Traditional
approaches from computational geometry tend to suffer from exponential dependencies in d (the so-
called “curse of dimensionality”). For example, the O(dn1−1/d) or O(logd n) query time bound for
range trees or k-d trees is sublinear only when d � log n/ log log n. By a more careful analysis [9],
one can show that range trees still have sublinear query time when d � α0 log n for a sufficiently
small constant α0. The case when the dimension is close to logarithmic in n is interesting in view
of known dimensionality reduction techniques [17] (although such techniques technically are not
applicable to exact problems and, even with approximation, do not work well for `∞). The case
of polylogarithmic dimensions is also useful in certain non-geometric applications such as all-pairs
shortest paths (as we explain later). From a theoretical perspective, it is important to understand
when the time complexity transitions from sublinear to superlinear.

Previous offline results. We first consider the offline version of the problems where we want
to answer a batch of n queries all given in advance. In high dimensions, it is possible to do better
than O(dn2)-time brute-force search, by a method of Matoušek [22] using fast (rectangular) matrix
multiplication [21]; for example, we can get n2+o(1) time for d � n0.15. However, this approach
inherently cannot give subquadratic bounds.

In 2014, a surprising discovery was made by Impagliazzo et al. [18]: range-tree-like divide-and-
conquer can still work well even when the dimension goes a bit above logarithmic. Their algorithm
can answer n offline dominance range queries (and thus orthogonal range queries and `∞ nearest
neighbor queries) in total time n2−1/O(c15 log c) (ignoring an O(K) term for reporting) in dimension
d = c log n for any possibly nonconstant c ranging from 1 to about log1/15 n (ignoring log log n
factors). Shortly after, by a more careful analysis of the same algorithm, Chan [11] refined the time

bound to n2−1/O(c log2 c), which is subquadratic for c up to about log n, i.e., dimension up to about
log2 n.

In 2015, Abboud, Williams, and Yu [1] obtained an even better time bound for dominance
range detection in the Boolean special case, where all coordinate values are 0’s and 1’s (in this
case, the problem is better known as the Boolean orthogonal vectors problem2). The total time for
n offline Boolean dominance range detection queries is n2−1/O(log c). The bound n2−1/O(log c) is a

1(p1, . . . , pd) is inside the box [a1, b1]×· · ·× [ad, bd] iff (−p1, p1, . . . ,−pd, pd) is dominated by (−a1, b1, . . . ,−ad, bd)
in R

2d.
2Two vectors (p1, . . . , pd), (q1, . . . , qd) ∈ {0, 1}d are orthogonal iff

∑d
i=1

piqi = 0 iff (p1, . . . , pd) is dominated by
(1− q1, . . . , 1− qd) (recalling that our definition of dominance uses non-strict inequality).

2

natural barrier, since a faster offline Boolean dominance algorithm would imply an algorithm for
CNF-SAT with n variables and cn clauses that would beat the currently known 2n(1−1/O(log c)) time
bound [1]; and an O(n2−δ)-time algorithm for any c = ω(1) would break the strong exponential-
time hypothesis (SETH) [25]. Abboud et al.’s algorithm was based on the polynomial method
pioneered by Williams [27] (see [5, 4] for other geometric applications). The algorithm was originally
randomized but was subsequently derandomized by Chan and Williams [14] in 2016 (who also
extended the result from detection to counting).

Abboud et al.’s approach has two main drawbacks, besides being applicable to the Boolean case
only: 1. it is not “combinatorial” and relies on fast rectangular matrix multiplication, making the
approach less likely to be practical, and 2. it only works in the offline setting.

Impagliazzo et al.’s range-tree method [18] is also inherently restricted to the offline setting—in
their method, the choice of dividing hyerplanes crucially requires knowledge of all query points in
advance. All this raises an intriguing open question: are there nontrivial results for online queries
in d = c log n dimensions?

New online result. In Section 2.1, we resolve this question by presenting a randomized data
structure with O(n1+δ) preprocessing time and space that can answer online dominance range

queries (and thus orthogonal range queries and `∞ nearest neighbor queries) in n1−1/O(c log2 c)

expected time for any d = c log n � log2 n/ log log n and for any constant δ > 0. (We assume
an oblivious adversary, i.e., that query points are independent of the random choices made by the
preprocessing algorithm.) The total time for n queries is n2−1/O(c log2 c), matching the offline bound
from Impagliazzo et al. [18] and Chan [11]. The method is purely combinatorial, i.e., does not rely
on fast matrix multiplication.

More remarkable than the result perhaps is the simplicity of the solution: it is just a variant
of k-d trees! More specifically, the dividing hyperplane is chosen in a “lopsided” manner, along a
randomly chosen coordinate axis; each node is augmented with secondary structures for some lower-
dimensional projections of the data points. The result is surprising, considering the longstanding
popularity of k-d trees among practitioners. Our contribution lies in recognizing, and proving,
that they can have good theoretical worst-case performance. (Simple algorithms with nonobvious
analyses are arguably the best kind.)

In Section 2.2, we also describe a small improvement of the query time to n1−1/O(c log c). This
involves an interesting application of so-called covering designs (from combinatorics), not often
seen in computational geometry.

Applications. By combining with previous techniques [9, 11], our method leads to new results
for two classical, non-geometric problems: all-pairs shortest paths (APSP) and Boolean matrix
multiplication (BMM).

• We obtain a new combinatorial algorithm for solving the APSP problem for arbitrary real-
weighted graphs with n vertices (or equivalently the (min,+) matrix multiplication problem
for two n × n real-valued matrices) in O((n3/ log3 n) poly(log log n)) time; see Section 2.4.
This is about a logarithmic factor faster than the best previous combinatorial algorithm
[10, 16, 11], not relying on fast matrix multiplication à la Strassen. It also extends Chan’s
combinatorial algorithm for Boolean matrix multiplication [11], which has a similar running
time (although for Boolean matrix multiplication, Yu [28] has recently obtained a further
logarithmic-factor improvement).

3

This extension is intriguing, as (min,+) matrix multiplication over the reals appears tougher
than other problems such as standard matrix multiplication over F2, for which the well-known
“four Russians” time bound of O(n3/ log2 n) [7] has still not been improved for combinatorial
algorithms.

• We obtain a new combinatorial algorithm to multiply an n× log2 n and a log2 n× n Boolean
matrix in O((n2/ log n) poly(log log n)) time, which is almost optimal in the standard word
RAM model since the output requires Ω(n2/ log n) words; see Section 2.5. The previous
combinatorial algorithm by Chan [11] can multiply an n × log3 n and a log3 n × n Boolean
matrix in O(n2 poly(log log n)) time. The new result implies the old, but not vice versa.

New offline result. Returning to the offline dominance or orthogonal range searching problem,
Abboud, Williams, and Yu’s non-combinatorial algorithm [1] has a better n2−1/O(log c) time bound
but is only for the Boolean case, leading to researchers to ask whether the same result holds for
the more general problem for real input. In one section of Chan and Williams’ paper [14], such a
result was obtained but only for d ≈ 2Θ(

√
logn).

In Section 3, we resolve this question by giving a black-box reduction from the real case to the
Boolean case, in particular, yielding n2−1/O(log c) time for any d = c log n � 2Θ(

√
logn).

This equivalence between general dominance searching and the Boolean orthogonal vectors
problem is noteworthy, since the Boolean orthogonal vectors problem has been used recently as the
basis for many conditional hardness results in P.

As one immediate application, we can now solve the integer linear programming problem on
n variables and cn constraints in 2(1−1/O(log c))n time, improving Impagliazzo et al.’s 2(1−1/poly(c))n

algorithm [18].
Our new reduction is simple, this time, using a range-tree-like recursion.

Approximate `∞ nearest neighbor searching. So far, our discussion has been focused on
exact algorithms. We now turn to `∞ nearest neighbor searching in the approximate setting. By
known reductions (ignoring polylogarithmic factors) [17], it suffices to consider the fixed-radius
decision problem: deciding whether the nearest neighbor distance is approximately less than a
fixed value. Indyk [19] provided the best data structure for the problem, achieving O(logρ log d)
approximation factor, O(dnρ log n) preprocessing time, O(dnρ) space, and O(d log n) query time for
any ρ ranging from 1 to log d. The data structure is actually based on traditional-style geometric
divide-and-conquer. Andoni, Croitoru, and Pătraşcu [6] proved a nearly matching lower bound.

In Section 4.1, we improve the approximation factor of Indyk’s data structure to O(logρ log c)
for dimension d = c log n, for any ρ ranging from 1+δ to log c (as an unintended byproduct, we also
improve Indyk’s query time to O(d)). The improvement in the approximation factor is noticeable
when the dimension is close to logarithmic. It does not contradict Andoni et al.’s lower bound [6],
since their proof assumed d � log1+Ω(1) n.

For example, by setting ρ ≈ log c, we get O(1) approximation factor, nO(log c) preprocessing
time/space, and O(d) query time. By dividing into n1−α groups of size nα, we can lower the
preprocessing time/space to n1−α · (nα)O(log(c/α)) while increasing the query time to O(dn1−α).
Setting α ≈ 1/ log c, we can thus answer n (online) queries with O(1) approximation factor in
n2−1/O(log c) total time, which curiously matches our earlier result for exact `∞ nearest neighbor
search but by a purely combinatorial algorithm.

4

In Section 4.2, we also provide an alternative data structure with linear space but a larger
O(c(1−ρ)/ρ2) approximation factor, and O(dnρ+δ) query time for any ρ between δ and 1− δ.

The idea is to modify Indyk’s method to incorporate, once again, a range-tree-like recursion.

2 Online Dominance Range Searching

In this section, we study data structures for online orthogonal range searching in the reporting
version (counting or detection can be dealt with similarly), using only combinatorial techniques
without fast matrix multiplication. By doubling the dimension (footnote 1), it suffices to consider
dominance range searching.

2.1 Main Data Structure

Our data structure is an augmented, randomized lopsided variant of the k-d tree, where each node
contains secondary structures for various lower-dimensional projections of the input.

Data structure. Let δ ∈ (0, 1) and c ∈ [δC0, (δ/C0) logN/ log2 logN] be user-specified parame-
ters, for a sufficiently large constant C0, where N is a fixed upper bound on the size of the input
point set. Let b ≥ 2 and α ∈ (0, 1/2) be parameters to be chosen later.

Given a set P of n ≤ N data points in d ≤ c logN dimensions, our data structure is simple and
is constructed as follows:

0. If n ≤ 1/α or d = 0, then just store the given points.

1. Otherwise, let J be the collection of all subsets of {1, . . . , d} of size bd/bc. Then |J | =
(

d
bd/bc

)

= bO(d/b). For each J ∈ J , recursively3 construct a data structure for the projection
PJ of P that keeps only the coordinate positions in J .

2. Pick a random i∗ ∈ {1, . . . , d}. Let µ(i∗) be the d(1− α)ne-th smallest i∗-th coordinate value
in P ; let p(i∗) be the corresponding point in P . Store n, i∗, and p(i∗). Recursively construct
data structures for

• the subset PL of all points in P with i∗-th coordinate less than µ(i∗), and

• the subset PR of all points in P with i∗-th coordinate greater than µ(i∗).

Analysis. The preprocessing time and space satisfy the recurrence

Td(n) ≤ Td(bαnc) + Td(b(1− α)nc) + bO(d/b)Tbd/bc(n) +O(n),

with Td(n) = O(n) for the base case n ≤ 1/α or d = 0. This solves to

Td(N) ≤ bO(d/b+d/b2+···)N(log1/(1−α)N)O(logb d)

= bO(d/b)N((1/α) logN)O(logb d)

= N1+O((c/b) log b)2O(log((1/α) logN) logb d) ≤ N1+O(δ)2O(log2((1/α) logN))

by setting b := (c/δ) log(c/δ).

3There are other options beside recursion here; for example, we could just use a range tree for PJ .

5

Query algorithm. Given the preprocessed set P and a query point q = (q1, . . . , qd), our query
algorithm proceeds as follows.

0. If n ≤ 1/α or d = 0, then answer the query directly by brute-force search.

1. Otherwise, let Jq = {i ∈ {1, . . . , d} : qi 6= ∞}. If |Jq| ≤ d/b, then recursively answer the
query for PJq and the projection of q with respect to Jq.

2. Else,

• if qi∗ ≤ µ(i∗), then recursively answer the query for PL and q;

• if qi∗ > µ(i∗), then recursively answer the query for PR and q, and recursively answer
the query for PL and q′ = (q1, . . . , qi∗−1,∞, qi∗+1, . . . , qd);

• in addition, if q dominates p(i∗), then output p(i∗).

Analysis. We assume that the query point q is independent of the random choices made during
the preprocessing of P . Let Lq = {i ∈ {1, . . . , d} : µ(i) < qi 6= ∞}. Let j = |Jq| and ` = |Lq|.

Suppose that j > d/b. The probability that we make a recursive call for PR is equal to
Pr[(i∗ ∈ Lq) ∨ (i∗ 6∈ Jq)] = `/d+ (1− j/d). We always make a recursive call for PL, either for q or
a point q′ with j − 1 non-∞ values; the probability of the latter is equal to Pr[i∗ ∈ Lq] = `/d.

Hence, the expected number of leaves in the recursion satisfies the following recurrence:

Qd,j(n) ≤















Qbd/bc,j(n) if j ≤ d/b

max`≤j

[(

`
d + 1− j

d

)

Qd,j(bαnc) +
(

`
d

)

Qd,j−1(b(1− α)nc)
+
(

1− `
d

)

Qd,j(b(1− α)nc)
]

if j > d/b,

(1)

with Qd,j(n) = 1 for the base case n ≤ 1/α or d = 0.
This recurrence looks complicated. Following [11], one way to solve it is by “guessing”. We

guess that
Qd,j(n) ≤ (1 + γ)jn1−ε

for some choice of parameters γ, ε ∈ (0, 1/2) to be specified later. We verify the guess by induction.
The base case n ≤ 1/α or d = 0 is trivial. Assume that the guess is true for lexicographically

smaller tuples (d, j, n). For j ≤ d/b, the induction trivially goes through. So assume j > d/b. Let
` be the index that attains the maximum in (1). Then

Qd,j(n) ≤
(

`

d
+ 1− j

d

)

(1 + γ)j(αn)1−ε +

(

`

d

)

(1 + γ)j−1((1− α)n)1−ε +

(

1− `

d

)

(1 + γ)j((1− α)n)1−ε

=

[(

`

d
+ 1− j

d

)

α1−ε +

(

`

d
· 1

1 + γ
+ 1− `

d

)

(1− α)1−ε

]

(1 + γ)jn1−ε

≤
[(

1− j − `

d

)

α1−ε +

(

1− γ`

2d

)

(1− α)1−ε

]

(1 + γ)jn1−ε

≤ (1 + γ)jn1−ε.

6

For the last inequality, we need to upper-bound the following expression by 1:

(

1− j − `

d

)

α1−ε +

(

1− γ`

2d

)

(1− α)1−ε. (2)

• Case I: j − ` > d/(2b). Then (2) is at most

(

1− 1

2b

)

α1−ε + (1− α)1−ε ≤
(

1− 1

2b

)

αeε ln(1/α) + 1− (1− ε)α

≤
(

1− 1

2b

)

α(1 + 2ε log(1/α)) + 1− (1− ε)α

≤ 1− α

2b
+ 3αε log(1/α),

which is indeed at most 1 by setting ε := 1/(6b log(1/α)).

• Case II: ` > d/(2b). Then (2) is at most

α1−ε + 1− γ

4b
≤ αeε ln(1/α) + 1− γ

4b

≤ α(1 + 2ε log(1/α)) + 1− γ

4b

≤ 2α+ 1− γ

4b
,

which is indeed at most 1 by setting γ := 8bα.

We can set α := 1/b4, for example. Then γ = O(1/b3). We conclude that

Qd(N) ≤ (1 + γ)dN1−ε ≤ eγdN1−ε ≤ N1−ε+O(cγ) ≤ N1−1/O(b log b).

Now, Qd(N) only counts the number of leaves in the recursion. The recursion has depth
O(log1/(1−α)N + log d). Each internal node of the recursion has cost O(d), and each leaf has cost
O(d/α), excluding the cost of outputting points (which occurs during the base case d = 0). Thus,
the actual expected query time can be bounded by Qd(N)(bd logN)O(1), which is N1−1/O(b log b) for

b � logN/ log2 logN . As b = (c/δ) log(c/δ), the bound is N1−1/O((c/δ) log2(c/δ)).

2.2 Slightly Improved Version

We now describe a small improvement to the data structure in Section 2.1, removing one log(c/δ)
factor from the exponent of the query time.

The idea is to replace J with a collection of slightly larger subsets, but with fewer subsets, so
that any set Jq of size t := bd/bc is covered by some subset in J ∈ J . Such a collection is called a
covering design (e.g., see [15]), which can be constructed easily by random sampling, as explained
in part (i) of the lemma below. In our application, we also need a good time bound for finding such
a J ∈ J for a given query set Jq; this is addressed in part (ii) of the lemma.

7

Lemma 2.1. (Covering designs) Given numbers v ≥ k ≥ t and N , and given a size-v ground
set V ,

(i) we can construct a collection J of at most
(

(

v
t

)

/
(

k
t

)

)

lnN size-k subsets of V in O(v|J |)
time, so that given any query size-t subset Jq ⊂ V , we can find a subset J ∈ J containing Jq
in O(v|J |) time with success probability at least 1− 1/N ;

(ii) alternatively, with a larger collection J of at most
(

(

v
t

)

/
(

k
t

)

)2
ln2(vN) subsets, we can reduce

the query time to O(v3 log2(vN)).

Proof. Part (i) is simple: just pick a collection J of
(

(

v
t

)

/
(

k
t

)

)

lnN random size-k subsets of V .

Given a query size-t subset Jq, use brute-force search. The probability that Jq is contained in a

random size-k subset is p :=
(

v−t
k−t

)

/
(

v
k

)

=
(

k
t

)

/
(

v
t

)

. Thus, the probability that Jq is not contained in

any of the |J | random subsets is at most (1− p)|J | ≤ e−p|J | = 1/N .

For part (ii), we use a recursive construction. Pick the largest v′ ∈ (k, v) such that
(

v
t

)

/
(

v′

t

)

≥
lnN ; if no such v′ exists, set v′ = k. Apply part (i) to obtain a collection J ′ of

(

(

v
t

)

/
(

v′

t

)

)

lnN

size-v′ subsets of V . For each V ′ ∈ J ′, recursively generate a collection with V ′ as the ground set.

We have |J ′| ≤
(

(

v
t

)

/
(

v′

t

)

)2
if v′ > k. Thus, the total number of sets in the collection satisfies the

recurrence

C(v, k, t) ≤
((

v

t

)/(

v′

t

))2

C(v′, k, t)

if v′ > k, and C(v, k, t) ≤ ln2N otherwise. Expanding the recurrence yields a telescoping product,

implying C(v, k, t) ≤
(

(

v
t

)

/
(

k
t

)

)2
ln2N .

To answer a query for a subset Jq ⊂ V of size t, first find a V ′ ∈ J ′ that contains Q and then

recursively answer the query in V ′. Since maximality of v′ implies
(

v
t

)

/
(

v′+1
t

)

< lnN , we have

|J ′| =
(

(

v
t

)

/
(

v′

t

)

)

lnN < v ln2N . Thus, the query time satisfies the recurrence

Q(v, k, t) ≤ O(v2 log2N) +Q(v′, k, t),

which solves to Q(v, k, t) ≤ O(v3 log2N). The overall failure probability for a query is at most
v/N , which can be changed to 1/N by readjusting N by a factor of v.

We now modify the data structure in Section 2.1 as follows. In step 1, we change J to a collection
of size-bd/2c subsets of {1, . . . , d} obtained from Lemma 2.1(ii) with (v, k, t) = (d, bd/2c , bd/bc).
Then |J | ≤

(

(

d
bd/bc

)

/
(bd/2c
bd/bc

)

)2
ln2(dN) ≤ 2O(d/b) log2N . The recurrence for the preprocessing time

and space then improves to

Td(n) ≤ Td(bαnc) + Td(b(1− α)nc) + (2O(d/b) log2N)Tbd/bc(n) +O(n),

which solves to Td(N) ≤ 2O(d/b+d/b2+···)N(log1/(1−α)N)O(logb d) ≤ N1+O(δ)2O(log2((1/α) logN)), this
time by setting b := c/δ (instead of b := (c/δ) log(c/δ)).

In the query algorithm, we modify step 1 by finding a set J ∈ J containing Jq by Lemma 2.1(ii)
and recursively querying PJ (instead of PJq). If no such J exists, we can afford to switch to brute-
force search, since this happens with probability less than 1/N . The analysis of the recurrence

8

for Qd(N) remains the same. Each internal node of the recursion now has cost O(d3 log2N) by
Lemma 2.1(ii); the extra factor will not affect the final bound. The overall query time is still
N1−1/O(b log b), which is now N1−1/O((c/δ) log(c/δ)).

Theorem 2.2. Let δ > 0 be any fixed constant and c ∈ [C1, (1/C1) logN/ log2 logN] for a suf-
ficiently large constant C1. Given N points in d = c logN dimensions, we can construct a data
structure in O(N1+δ) preprocessing time and space, so that for any query point, we can answer a
dominance range reporting query in N1−1/O(c log c) + O(K) expected time where K is the number
of reported points. For dominance range counting, we get the same time bound but without the K
term.

We mention one application to online (min,+) matrix-vector multiplication. The corollary below
follows immediately from a simple reduction [9] to d instances of d-dimensional dominance range
reporting with disjoint output.4

Corollary 2.3. Let δ > 0 be any fixed constant and d = (1/C1) log
2N/ log2 logN for a sufficiently

large constant C1. We can preprocess an N × d real-valued matrix A in O(N1+δ) time, so that
given a query real-valued d-dimensional vector x, we can compute the (min,+)-product of A and x
in O(N) expected time.

Applying the above corollary N/d times yields:

Corollary 2.4. Let δ > 0 be any fixed constant. We can preprocess an N ×N real-valued matrix
A in O(N2+δ) time, so that given a query N -dimensional real-valued vector x, we can compute the
(min,+)-product of A and x in O((N2/ log2N) log2 logN) expected time.

A similar result was obtained by Williams [26] for online Boolean matrix-vector multiplication.
Recently Larsen and Williams [20] have found a faster algorithm, in the Boolean case, but it is
not combinatorial, requires amortization, and does not deal with the rectangular matrix case in
Corollary 2.3.

2.3 Offline Deterministic Version

In this subsection, we sketch how to derandomize the algorithm in Section 2.1, with the improvement
from Appendix 2.2, in the offline setting when all the query points are known in advance. The
derandomization is achieved by standard techniques, namely, the method of conditional expectation.

We first derandomize Lemma 2.1(i) in the offline setting when the collection Q of all query
subsets Jq is given in advance. We know that EJ [|{Jq ∈ Q : Jq ⊆ J}|] = p|Q| with p :=

(

k
t

)

/
(

v
t

)

,
over a random size-k subset J of V . We explicitly find a size-k subset J such that |{Jq ∈ Q : Jq ⊆ J}|
is at least the expected value as follows. Say V = {1, . . . , v}. Suppose at the beginning of the i-th
iteration, we have determined a set Ji−1 ⊆ {1, . . . , i−1}. We compute the conditional expectations
EJ [|{Jq ∈ Q : Jq ⊆ J}| | J ∩ {1, . . . , i} = Ji−1] and EJ [|{Jq ∈ Q : Jq ⊆ J}| | J ∩ {1, . . . , i} =
Ji−1 ∪ {i}]. The expectations are easy to compute in O(v|Q|) time. If the former is larger, set
Ji = Ji−1, else set Ji = Ji−1 ∪ {i}. Then Jv has the desired property, and the total for the v
iterations is O(v2|Q|).

4For any j0 ∈ {1, . . . , d}, the key observation is that mind
j=1(aij + xj) = aij0 + xj0 iff (aij0 − ai1, . . . , aij0 − aid) is

dominated by (x1 − xj0 , . . . , xd − xj0) in R
d.

9

Once this subset J is found, we can add J to the collection J , remove all Jq ∈ Q contained in
J , and repeat. Since each round removes p|Q| subsets from Q, we have |J | = O(log1/(1−p) |Q|) =
(

(

v
t

)

/
(

k
t

)

)

·O(logN) for |Q| ≤ N . The total time is O(v2|J ||Q|), i.e., the amortized time per query

is O(v2|J |). (The extra vO(1) factor will not affect the final bound.) This collection J guarantees
success for all query subsets Jq ∈ Q.

The derandomization of Lemma 2.1(ii) follows from that of Lemma 2.1(i).
It remains to derandomize the preprocessing algorithm in Section 2.1. For a set Q of query

points, define the cost function

f(Q,n) :=
∑

q∈Q
(1 + γ)|Jq |n1−ε.

Let QL(i) and QR(i) be the set of query points passed to PL and PR by our query algorithm when
i∗ is chosen to be i. From our analysis, we know that

Ei∗ [f(QL(i
∗), (1− α)n) + f(QR(i

∗), αn)] ≤ f(Q,n).

We explicitly pick an i∗ ∈ {1, . . . , d} that minimizes f(QL(i
∗), (1 − α)n) + f(QR(i

∗), αn). The
cost function f is easy to evaluate in O(d|Q|) time, and so we can find i∗ in O(d2|Q|) time. The
amortized time per query increases by an extra dO(1) factor (which will not affect the final bound).

2.4 Offline Packed-Output Version, with Application to APSP

In this subsection, we discuss how to refine the algorithm in Section 2.1, so that the output can
be reported in roughly O(K/ log n) time instead of O(K) in the offline setting. The approach is to
combine the algorithm with bit-packing tricks.

We assume a w-bit word RAM model which allows for certain exotic word operations. In the
case of w := δ0 logN for a sufficiently small constant δ0 > 0, exotic operations can be simulated in
constant time by table lookup; the precomputation of the tables requires only NO(δ0) time.

We begin with techniques to represent and manipulate sparse sets of integers in the word RAM
model. Let z be a parameter to be set later. In what follows, an interval [a, b) refers to the integer
set {a, a + 1, . . . , b − 1}. A block refers to an interval of the form [kz, (k + 1)z). Given a set S of
integers over an interval I of length n, we define its compressed representation to be a doubly linked
list of mini-sets, where for each of the O(dn/ze) blocks B intersecting I (in sorted order), we store
the mini-set {j mod z : j ∈ S ∩B}, which consists of small (log z)-bit numbers and can be packed
in O((|S ∩B|/w) log z + 1) words. The total number of words in the compressed representation is
O((|S|/w) log z + n/z + 1).

Lemma 2.5. (Bit-packing tricks)

(i) Given compressed representations of two sets S1 and S2 over two disjoint intervals, we can
compute the compressed representation of S1 ∪ S2 in O(1) time.

(ii) Given compressed representations of S0, . . . , Sm−1 ⊂ [0, n), we can compute the compressed
representations of T0, . . . , Tn−1 ⊂ [0,m) with Tj = {i : j ∈ Si} (called the transposition of
S0, . . . , Sm−1), in O((K/w) log2 z +mn/z +m+ n+ z) time, where K =

∑m−1
i=0 |Si|.

10

(iii) Given compressed representations of S0, . . . , Sm−1 ⊂ [0, n) and a bijective function π : [0, n) →
[0, n) which is evaluable in constant time, we can compute compressed representations of
π(S1), . . . , π(Sm) in O((K/w) log2 z +mn/z +m+ n+ z) time, where K =

∑m−1
i=0 |Si|.

Proof. Part (i) is straightforward by concatenating two doubly linked lists and unioning two mini-
sets (which requires fixing O(1) words).

For part (ii), fix a block B1 intersecting [0,m) and a block B2 intersecting [0, n). From the
mini-sets {j mod z : j ∈ Si ∩ B2} over all i ∈ B1, construct the list L := {(i mod z, j mod z) :
j ∈ Si, i ∈ B1, j ∈ B2} in O((|L|/w) log z + z) time. Sort L by the second coordinate; this takes
O((|L|/w) log2 z) time by a packed-word variant of mergesort [3]. By scanning the sorted list L, we
can then extract the transposed small sets {i mod z : i ∈ Tj ∩ B1} for all j ∈ B2. The total time
over all dm/ze · dn/ze pairs of blocks B1 and B2 is O((K/w) log2 z + dm/ze · dn/ze · z).

For part (iii), we compute the transposition T0, . . . , Tm−1 of S0, . . . , Sn−1, reorder the sets into
T ′
0, . . . , T

′
n−1 with T ′

π(j) = Tj , and compute the transposition of T ′
0, . . . , T

′
n−1.

Theorem 2.6. Assume z ≤ No(1). Let δ > 0 be any fixed constant and c ∈ [C1, (1/C1) logN/
log2 logN] for a sufficiently large constant C1. Given a set P of N points in d = c logN dimen-
sions, we can construct a data structure in O(N1+δ) preprocessing time and space, so that we can
answer N offline dominance range reporting queries (with a compressed output representation) in
N2−1/O(c log c)+O(((K/w) log2 z+N2/z) log d) time where K is the total number of reported points
over the N queries.

Proof. We adapt the preprocessing and query algorithm in Section 2.1, with the improvement from
Section 2.2. A numbering of a set S of n elements refers to a bijection from S to n consecutive
integers. For each point set P generated by the preprocessing algorithm, we define a numbering
φP of P simply by recursively “concatenating” the numberings φPL

and φPR
and appending p(i∗).

The output to each query for P will be a compressed representation of the subset of dominated
points after applying φP .

In step 2 of the query algorithm, we can union the output for PL and for PR in O(1) time by
Lemma 2.5(i). In step 1 of the query algorithm, we need additional work since the output is with
respect to a different numbering φPJ

, for some set J ∈ J . For each J ∈ J , we can change the
compressed representation to follow the numbering φP by invoking Lemma 2.5(iii), after collecting
all query points Q(PJ) that are passed to PJ (since queries are offline). To account for the cost of
this invocation to Lemma 2.5(iii), we charge (a) (1/w) log2 z units to each output feature, (b) 1/z
units to each point pair in PJ ×Q(PJ), (c) 1 unit to each point in PJ , and (d) 1 unit to each point
in Q(PJ), and (e) z units to the point set PJ itself.

Each output feature or each point pair is charged O(log d) times, since d decreases to bd/2c
with each charge. Thus, the total cost for (a) and (b) is O((K/w) log2 z log d+ (N2/z) log d). The
total cost of (c) is N1+o(1) by the analysis of our original preprocessing algorithm; similarly, the
total cost of (e) is zN1+o(1). The total cost of (d) is N2−1/O(c log c) by the analysis of our original
query algorithm.

We can make the final compressed representations to be with respect to any user-specified
numbering of P , by one last invocation to Lemma 2.5(iii). The algorithm can be derandomized as
in Section 2.3 (since queries are offline).

One may wonder whether the previous range-tree-like offline algorithm by Impagliazzo et al. [18,
11] could also be adapted; the problem there is that d is only decremented rather than halved, which

11

makes the cost of re-numbering too large.
The main application is to (min,+) matrix multiplication and all-pairs shortest paths (APSP).

The corollary below follows immediately from a simple reduction [9] (see footnote 4) to d instances
of d-dimensional offline dominance range reporting where the total output size K is O(n2). Here,
we set w := δ0 logN and z := poly(logN).

Corollary 2.7. Let d = (1/C1) log
2N/ log2 logN for a sufficiently large constant C1. Given an

N × d and a d×N real-valued matrix, we can compute their (min,+)-product (with a compressed
output representation) in O((N2/ logN) log3 logN) expected time.

The corollary below follows from applying Corollary 2.7 q/d times, in conjunction with a sub-
routine by Chan [10, Corollary 2.5]. (The result improves [10, Corollary 2.6].)

Corollary 2.8. Let q = log3N/ log5 logN . Given an N × q and a q × N real-valued matrix, we
can compute their (min,+)-product in O(N2) time.

Applying Corollary 2.8 N/q times (and using a standard reduction from APSP to (min,+)-
multiplication), we obtain:

Corollary 2.9. Given two N ×N real-valued matrices, we can compute their (min,+)-product by
a combinatorial algorithm in O((N3/ log3N) log5 logN) time. Consequently, we obtain a combina-
torial algorithm for APSP for arbitrary N -vertex real-weighted graphs with the same time bound.

Note that Williams’ algorithm [27] is faster (achieving N3/2Ω(
√
logN) time), but is non-

combinatorial and gives a worse time bound (O(N2 logO(1)N)) for the rectangular matrix case
in Corollary 2.8.

2.5 Simplified Boolean Version, with Application to BMM

In this subsection, we note that our data structure in Section 2.1 can be much simplified in the
Boolean case when the input coordinates are all 0’s and 1’s.

The data structure is essentially an augmented, randomized variant of the standard trie.

Data structure. Let δ ∈ (0, 1) and c ∈ [δC0, (δ/C0) logN/ log3 logN] be user-specified parame-
ters. Let b be a parameter to be chosen later.

Given a set P of n ≤ N Boolean data points in d ≤ c logN dimensions, our data structure is
constructed as follows:

0. If d = 0, then return.

1. For every possible Boolean query point with at most d/b 1’s, store its answer in a table. The

number of table entries is O
(

(

d
bd/bc

)

)

= bO(d/b).

2. Pick a random i∗ ∈ {1, . . . , d}. Recursively construct data structures for

• the subset PL of all points in P with i∗-th coordinate 0, and

• the subset PR of all points in P with i∗-th coordinate 1,

dropping the i∗-th coordinates in both sets.

12

Analysis. The preprocessing time and space satisfy the recurrence

Td(n) ≤ max
α∈[0,1]

[

Td−1(αn) + Td−1((1− α)n) + bO(d/b)n
]

,

which solves to Td(N) ≤ dbO(d/b)N ≤ dN1+O((c/b) log b) = dN1+O(δ) by setting b := (c/δ) log(c/δ).

Query algorithm. Given the preprocessed set P and a query point q = (q1, . . . , qd), our query
algorithm proceeds as follows:

0. If d = 0, then return the answer directly.

1. If q has at most d/b 1’s, then return the answer from the table.

2. Otherwise,

• if qi∗ = 1, then recursively answer the query for PL and for PR (dropping the i∗-th
coordinate of q);

• if qi∗ = 0, then recursively answer the query for PL only.

Analysis. We assume that the query point q is independent of the random choices made during
the preprocessing of P . If q has more than d/b 1’s, then the probability that we make a recursive
call for PR is at most 1− 1/b. Say that the number of points in PL is αn. The expected number of
leaves in the recursion (ignoring trivial subproblems with n = 0) satisfies the following recurrence:

Qd(n) ≤ max
0≤α≤1

[(

1− 1

b

)

Qd−1(αn) +Qd−1((1− α)n)

]

, (3)

with Qd(0) = 0 and Q0(n) = 1 for the base cases.
We guess that

Qd(n) ≤ (1 + γ)dn1−ε

for some choice of parameters γ, ε ∈ (0, 1/2). We verify the guess by induction.
Assume that the guess is true for dimension d−1. Let α be the value that attains the maximum

in (3). Then

Qd(n) ≤
[(

1− 1

b

)

α1−ε + (1− α)1−ε

]

(1 + γ)d−1n1−ε

≤ (1 + γ)dn1−ε,

provided that we can upper-bound the following expression by 1 + γ:
(

1− 1

b

)

α1−ε + (1− α)1−ε. (4)

The proof is split into two cases. If α ≤ γ2, then (4) is at most α1−ε + 1 ≤ 1 + γ. If α > γ2, then
(4) is at most

(

1− 1

b

)

αeε ln(1/α) + 1− (1− ε)α ≤
(

1− 1

b

)

α(1 + 3ε log(1/γ)) + 1− (1− ε)α

≤ 1− α

b
+ 4αε log(1/γ),

13

which is at most 1 by setting ε := 1/(4b log(1/γ)).
We can set γ := 1/b3, for example. Then ε = O(1/(b log b)). We conclude that

Qd(N) ≤ (1 + γ)dN1−ε ≤ eγdN1−ε ≤ N1−ε+O(γc) ≤ N1−1/O(b log b) ≤ N1−1/O((c/δ) log2(c/δ)).

Now, Qd(N) excludes the cost at internal nodes of the recursion. Since the recursion has depth at
most d and each internal node has O(1) cost, the actual expected query time can be bounded by

O(dQd(N)), which is N1−1/O((c/δ) log2(c/δ)) for c/δ � logN/ log2 logN .
This result in itself is no better than our result for the general dominance problem. However, the

simplicity of the algorithm makes it easier to bit-pack the output (than the algorithm in Section 2.4):

Theorem 2.10. Let δ > 0 be any fixed constant and c ∈ [C1, (1/C1) logN/ log3 logN] for a
sufficiently large constant C1. Given a set P of N Boolean points in d = c logN dimensions,
we can construct a data structure in O(N1+δ) preprocessing time and space, so that we can
answer N offline dominance range reporting queries (with output represented as bit vectors) in
N2−1/O(c log c) +O((N2/w) logw) time.

Proof. We define a numbering φP of P simply by recursively concatenating the numberings φPL

and φPR
. In the table, we store each answer as a bit vector, with respect to this numbering φP .

Each query can then be answered in N1−1/O(c log c)+O(N/w) time, including the cost of outputting.
One issue remains: the outputs are bit vectors with respect to a particular numbering φP .

To convert them into bit vectors with respect to any user-specified numbering, we first form an
N ×N matrix from these N (row) bit vectors (since queries are offline); we transpose the matrix,
then permute the rows according to the new numbering, and transpose back. Matrix transposition
can be done in O((N2/w) logw) time, since each w × w submatrix can be transposed in O(logw)
time [24]. The algorithm can be derandomized as in Section 2.3 (since queries are offline).

Since Boolean dot product is equivalent to Boolean dominance testing (see footnote 2), we
immediately obtain a new result on rectangular Boolean matrix multiplication (with w := δ0 logN):

Corollary 2.11. Let d = (1/C1) log
2N/ log3 logN for a sufficiently large constant C1. Given an

N × d and a d × N Boolean matrix, we can compute their Boolean product by a combinatorial
algorithm in O((N2/ logN) log logN) time.

Applying the above corollary N/d times yields a combinatorial algorithm for multiplying two
N×N Boolean matrices in O((N3/ log3N) log4 logN) time. This is no better than Chan’s previous
BMM algorithm [11], which in turn is a logarithmic factor worse than Yu’s algorithm [28], but
neither previous algorithm achieves subquadratic time for the particular rectangular matrix case
in Corollary 2.11.

3 Offline Dominance Range Searching

In this section, we study the offline orthogonal range searching problem in the counting version
(which includes the detection version), allowing the use of fast matrix multiplication. By doubling
the dimension (footnote 1), it suffices to consider dominance range counting: given n data/query
points in R

d, we want to count the number of data points dominated by each query point. We
describe a black-box reduction of the real case to the Boolean case.

We use a recursion similar to a degree-s range tree (which bears some resemblance to a low-
dimensional algorithm from [13]).

14

Algorithm. Let δ ∈ (0, 1) and s be parameters to be set later. Let [s] denote {0, 1, . . . , s− 1}.
Given a set P of n ≤ N data/query points in R

j × [s]d−j , with d ≤ c logN , our algorithm is
simple and proceeds as follows:

0. If j = 0, then all points are in [s]d and we solve the problem directly by mapping each point
(p1, . . . , pd) to a binary string 1p10s−p1 · · · 1pd0s−pd ∈ {0, 1}ds and running a known Boolean
offline dominance algorithm in ds dimensions.

1. Otherwise, for each i ∈ [s], recursively solve the problem for the subset Pi of all points in P
with ranks from i(n/s) + 1 to (i+ 1)(n/s) in the j-th coordinate.

2. “Round” the j-th coordinate values of all data points in Pi to i+1 and all query points in Pi to
i, and recursively solve the problem for P after rounding (which now lies in R

j−1 × [s]d−j+1);
add the results to the existing counts of all the query points.

Analysis. Suppose that the Boolean problem for n points in d ≤ c log n dimensions can be solved
in dCn2−f(c) time for some absolute constant C ≥ 1 and some function f(c) ∈ [0, 1/4]. The following
recurrence bounds the total cost of the leaves of the recursion in our algorithm (assuming that n
is a power of s, for simplicity):

Td,j(n) = s Td,j(n/s) + Td,j−1(n).

For the base cases, Td,j(1) = 1; and if n >
√
N , then Td,0(n) ≤ (ds)Cn2−f(2cs) (since the Boolean

subproblems have dimension ds ≤ cs logN ≤ 2cs log n). On the other hand, if n ≤
√
N , we can use

brute force to get Td,0(n) ≤ dn2 ≤ dn3/2N1/4. In any case, Td,0(n) ≤ (ds)Cn3/2N1/2−f(2cs) = An3/2

where we let A := (ds)CN1/2−f(2cs).
One way5 to solve this recurrence is again by “guessing”. We guess that

Td,j(n) ≤ (1 + γ)jAn3/2

for some choice of parameter γ ∈ (0, 1) to be determined later. We verify the guess by induction.
The base cases are trivial. Assume that the guess is true for lexicographically smaller (j, n).

Then

Td,j(n) ≤ (1 + γ)jAs(n/s)3/2 + (1 + γ)j−1An3/2

=

[

1√
s
+

1

1 + γ

]

(1 + γ)jAn3/2

≤ (1 + γ)jAn3/2,

provided that
1√
s
+

1

1 + γ
≤ 1,

which is true by setting γ := 2/
√
s.

5Since this particular recurrence is simple enough, an alternative, more direct way is to expand Td,d(N) into a
sum

∑

i≥0

(

d+i
i

)

siTd,0(N/si) ≤
∑

i≥0
O(d+i

i
√

s
)i · AN3/2, and observe that the maximum term occurs when i is near

d/
√
s. . .

15

We can set s := c4, for example. Then γ = O(1/c2). We conclude that

Td,d(N) ≤ (1 + γ)dAN3/2 ≤ eγd(ds)O(1)N2−f(2cs)

≤ (ds)O(1)N2−f(2cs)+O(γc) = dO(1)N2−f(2c5)+O(1/c).

Now, Td,d(N) excludes the cost at internal nodes of the recursion. Since the recursion has depth
at most logsN + d, the actual running time can be bounded by Td,d(n)(d logN)O(1).

Abboud, Williams, and Yu’s algorithm [1] for the Boolean case, as derandomized by
Chan and Williams [14], achieves f(c) = 1/O(log c), yielding an overall time bound of
N2−1/O(log c)(d logN)O(1), which is N2−1/O(log c) for log c �

√
logN .

Theorem 3.1. Let c ∈ [1, 2(1/C1)
√
logN] for a sufficiently large constant C1. Given N points in

d = c logN dimensions, we can answer N offline dominance range counting queries in N2−1/O(log c)

time.

We remark that if the Boolean problem could be solved in truly subquadratic time dO(1)N2−ε,
then the above analysis (with s := (c logN)2, say) would imply that the general problem could be
solved in truly subquadratic time with the same ε, up to (d logN)O(1) factors.

4 Approximate `∞ Nearest Neighbor Searching

In this section, we study (online, combinatorial) data structures for t-approximate `∞ nearest
neighbor search. By known reductions [17, 19], it suffices to solve the fixed-radius approximate
decision problem, say, for radius r = 1/2: given a query point q, we want to find a data point of
distance at most distance t/2 from q, under the promise that the nearest neighbor distance is at
most 1/2.

Our solution closely follows Indyk’s divide-and-conquer method [19], with a simple modification
that incorporates a range-tree-like recursion.

4.1 Main Data Structure

Data structure. Let δ ∈ (0, 1), ρ > 1, and c ≥ 4 be user-specified parameters. Let s and k be
parameters to be chosen later.

Given a set P of n ≤ N data points in d ≤ c logN dimensions, our data structure is constructed
as follows:

0. If n ≤ s or d = 0, then just store the points in P .

Otherwise, compute and store the median first coordinate µ in P . Let P>i (resp. P<i) denote
the subset of all points in P with first coordinate greater than (resp. less than) µ + i. Let
αi := |P>i|/n and βi := |P<−i|/n. Note that the αi’s and βi’s are decreasing sequences with
α0 = β0 = 1/2.

1. If αk > 1/s and αi+1 > αρ
i for some i ∈ {0, 1, . . . , k−1}, then set type = (1, i) and recursively

construct a data structure for P>i and for P<i+1.

2. Else if βk > 1/s and βi+1 > βρ
i for some i ∈ {0, 1, . . . , k − 1}, then set type = (2, i) and

recursively construct a data structure for P<−i and for P>−(i+1).

16

3. Else if αk, βk ≤ 1/s, then set type = 3 and recursively construct a data structure for

• the set P>k ∪ P<−k and

• the (d− 1)-dimensional projection of P − (P>k+1 ∪ P<−(k+1)) that drops the first coor-
dinate (this recursion in d− 1 dimensions is where our algorithm differs from Indyk’s).

We set k :=
⌈

logρ log s
⌉

. Then one of the tests in steps 1–3 must be true. To see this, suppose
that αk > 1/s (the scenario βk > 1/s is symmetric), and suppose that i does not exist in step 1.

Then αk ≤ (1/2)ρ
k ≤ 1/s, a contradiction.

Analysis. The space usage is proportional to the number of points stored at the leaves in the
recursion, which satisfies the following recurrence (by using the top expression with (α, α′) =
(αi, αi+1) for step 1 or (α, α′) = (βi, βi+1) for step 2, or the bottom expression for step 3):

Sd(n) ≤ max







max
α,α′: α′>αρ, 1/s<α′≤α≤1/2

[

Sd(αn) + Sd((1− α′)n)
]

Sd(2n/s) + Sd−1(n),
(5)

with Sd(n) = n for the base case n ≤ s or d = 0.
We guess that

Sd(n) ≤ (1 + γ)dnρ

for some choice of parameter γ ∈ (0, 1). We verify the guess by induction.
The base case is trivial. Assume that the guess is true for lexicographically smaller (d, n).

• Case I: the maximum in (5) is attained by the top expression and by α, α′. Then

Sd(n) ≤ (1 + γ)d
[

(αn)ρ + ((1− α′)n)ρ
]

≤
[

αρ + 1− α′] (1 + γ)dnρ

≤ (1 + γ)dnρ.

• Case II: the maximum in (5) is attained by the bottom expression. Then

Sd(n) ≤ (1 + γ)d(2n/s)ρ + (1 + γ)d−1nρ

≤
[(

2

s

)ρ

+
1

1 + γ

]

(1 + γ)dnρ

≤ (1 + γ)dnρ

by setting s := 2(2/γ)1/ρ.

Set γ := δ/c. Then s = O((c/δ)1/ρ) and k = logρ log(c/δ) +O(1). We conclude that

Sd(N) ≤ eγdNρ ≤ Nρ+O(γc) = Nρ+O(δ).

For the preprocessing time, observe that the depth of the recursion is h := O(logs/(s−1)N + d)
(since at each recursive step, the size of the subsets drops by a factor of 1− 1/s or the dimension
decreases by 1). Now, h = O(s logN + d) ≤ O((c/δ) logN + d) = O((c/δ) logN). Hence, the
preprocessing time can be bounded by O(Sd(N)h) = O((c/δ)Nρ+δ logN).

17

Query algorithm. Given the preprocessed set P and a query point q = (q1, . . . , qd), our query
algorithm proceeds as follows:

0. If n ≤ s or d = 0, then answer the query directly by brute-force search.

1. If type = (1, i): if q1 > i + 1/2, then recursively answer the query in P>i, else recursively
answer the query in P<i+1.

2. If type = (2, i): proceed symmetrically.

3. If type = 3:

• if q1 > k + 1/2 or q1 < −(k + 1/2), then recursively answer the query in P>k ∪ P<−k;

• else recursively answer the query in P − (P>k+1 ∪ P<−(k+1)), after dropping the first
coordinate of q.

Note that in the last subcase of step 3, any returned point has distance at most 2k + 3/2
from q in terms of the first coordinate. By induction, the approximation factor t is at most
4k + 3 = O(logρ log(c/δ)).

Analysis. The query time is clearly bounded by the depth h, which is O((c/δ) logN).

Theorem 4.1. Let δ > 0 be any fixed constant. Let ρ > 1 and c ≥ Ω(1). Given N points in
d = c logN dimensions, we can construct a data structure in O(dNρ+δ) time and O(dN + Nρ+δ)
space, so that we can handle the fixed-radius decision version of approximate `∞ nearest neighbor
queries in O(d) time with approximation factor O(logρ log c).

4.2 Linear-Space Version

In this subsection, we describe a linear-space variant of the data structure in Section 4.1. (To our
knowledge, a linear-space variant of Indyk’s data structure [19], which our solution is based on,
has not been reported before.) The approximation factor is unfortunately poorer, but the fact that
the data structure is just a plain constant-degree tree with N leaves may be attractive in certain
practical settings.

The high-level idea of the variant is simple: in step 1 or 2, instead of recursively generating two
subsets that may overlap, we partition into three disjoint subsets; this guarantees linear space but
increases the cost of querying.

Data structure. Let ρ, δ ∈ (0, 1) be user-specified parameters. Let s and k be parameters to be
chosen later. Given a set P of n ≤ N data points in d ≤ c logN dimensions, our data structure is
constructed as follows:

0. If n ≤ s or d = 0, then just store the points in P .

Otherwise, compute the median first coordinate µ in P . Let P>i (resp. P<i) denote the subset
of all points in P with first coordinate greater than (resp. less than) µ+ i. Let αi := |P>i|/n
and βi := |P<−i|/n. Define the function f(α) := α− (ρα)1/ρ.

18

1. If αk > 1/s and αi+1 > f(αi) for some i ∈ {0, 1, . . . , k − 1}, then set type = (1, i) and
recursively construct a data structure for P>i+1, for P − (P>i+1 ∪ P<i), and for P<i.

2. If βk > 1/s and βi+1 > f(βi) for some i ∈ {0, 1, . . . , k − 1}, then set type = (2, i) and
recursively construct a data structure for P<−(i+1), for P − (P<−(i+1) ∪ P>−i), and for P>−i.

3. If αk, βk ≤ 1/s, then set type = 3 and recursively build a data structure for

• the set P>k ∪ P<−k and

• the (d− 1)-dimensional projection of P − (P>k ∪ P<−k) that drops the first coordinate.

We set k :=
⌈

2ρ
1−ρs

(1−ρ)/ρ
⌉

. Then one of the tests in steps 1–3 must be true by the following

lemma:

Lemma 4.2. For any sequence α0, α1, . . . ∈ [0, 1] with αi+1 ≤ αi− (ραi)
1/ρ and αk > 1/s, we have

k < 2ρ
1−ρs

(1−ρ)/ρ.

Proof. Let t := (1− ρ)/ρ. Then

α−t
i+1 ≥

[

αi(1− ρ1/ρα
1/ρ−1
i)

]−t
≥ α−t

i

(

1 + tρ1/ρα
1/ρ−1
i

)

≥ α−t
i + tρ1/ρ.

Iterating k times yields α−t
k ≥ (tρ1/ρ)k ≥ tk/2. Thus, k ≤ (2/t)α−t

k < (2/t)st.

Analysis. Space usage is clearly linear. Since the depth of the recursion is h = O(logs/(s−1)N+d),
the preprocessing time can be bounded by O(Nh) = O(sN logN + dN).

Query algorithm. Given the preprocessed set P and a query point q = (q1, . . . , qd), our query
algorithm proceeds as follows:

0. If n ≤ s or d = 0, then answer the query directly by brute-force search.

1. If type = (1, i): if q1 > i+1/2, then recursively answer the query in P>i+1 and in P −(P>i+1∪
P<i); else recursively answer the query in P<i and in P − (P>i+1 ∪ P<i).

2. If type = (2, i): proceed symmetrically.

3. If type = 3:

• if q1 > k + 1/2 or q1 < −(k + 1/2), then recursively answer the query in P>k ∪ P<−k;

• else recursively answer the query in P>k∪P<−k and in P − (P>k∪P<−k), after dropping
the first coordinate of q for the latter.

Note that in the last recursive call in step 3, any returned point has the distance at most 2k+1/2
from q with respect to the first coordinate. By induction, the approximation factor t is at most
4k + 1.

19

Analysis. The query time is bounded by O(s) times the number of leaves in the recursion, which
satisfies the following recurrence (by using the top expression with (α, α′) = (αi, αi+1) for step 1
or (α, α′) = (βi, βi+1) for step 2, or the bottom expression for step 3):

Qd(n) ≤ max







max
α,α′: α′>f(α), 1/s<α′≤α≤1/2

[

Qd(max{α′n, (1− α)n}) +Qd((α− α′)n)
]

Qd(2n/s) +Qd−1(n),
(6)

with Qd(n) = 1 for the base case n ≤ s or d = 0.
We guess that

Qd(n) ≤ (1 + γ)dnρ

for some choice of parameter γ ∈ (0, 1). We verify the guess by induction.
The base case is trivial. Assume that the guess is true for lexicographically smaller (d, n).

• Case I: the maximum in (6) is attained by the top expression and by α, α′. Then

Qd(n) ≤ (1 + γ)d
[

((1− α)n)ρ + ((α− α′)n)ρ
]

≤
[

1− ρα+ (α− α′)ρ
]

(1 + γ)dnρ

≤ (1 + γ)dnρ,

since α′ > α− (ρα)1/ρ.

• Case II: the maximum in (6) is attained by the bottom expression. Then

Qd(n) ≤ (1 + γ)d(2n/s)ρ + (1 + γ)d−1nρ

≤
[(

2

s

)ρ

+
1

1 + γ

]

(1 + γ)dnρ

≤ (1 + γ)dnρ

by setting s := 2(2/γ)1/ρ.

Set γ := δ/c. Then s = O(c/δ)1/ρ and k = O(ρ
1−ρ) ·O(c/δ)(1−ρ)/ρ2 . We conclude that

Qd(N) ≤ eγdNρ ≤ Nρ+O(γc) = Nρ+O(δ).

Theorem 4.3. Let δ > 0 be any fixed constant. Let ρ ∈ (δ, 1− δ) and c ≥ Ω(1). Given N points in
d = c logN dimensions, we can construct a data structure in O(dN) time and space, so that we can
handle the fixed-radius decision version of approximate `∞ nearest neighbor queries in O(Nρ+δ)
time with approximation factor O(c(1−ρ)/ρ2).

References

[1] A. Abboud, R. Williams, and H. Yu. More applications of the polynomial method to algorithm design.
In Proc. 26th ACM–SIAM Sympos. Discrete Algorithms (SODA), pages 218–230, 2015.

[2] P. Afshani, T. M. Chan, and K. Tsakalidis. Deterministic rectangle enclosure and offline dominance
reporting on the RAM. In Proc. 41st Int. Colloq. Automata, Languages, and Programming (ICALP),
Part I, pages 77–88, 2014.

20

[3] S. Albers and T. Hagerup. Improved parallel integer sorting without concurrent writing. Inform.
Comput., 136(1):25–51, 1997.

[4] J. Alman, T. M. Chan, and R. Williams. Polynomial representation of threshold functions with appli-
cations. In Proc. 57th IEEE Sympos. Found. Comput. Sci. (FOCS), pages 467–476, 2016.

[5] J. Alman and R. Williams. Probabilistic polynomials and Hamming nearest neighbors. In Proc. 56th
IEEE Sympos. Found. Comput. Sci. (FOCS), pages 136–150, 2015.

[6] A. Andoni, D. Croitoru, and M. M. Pătraşcu. Hardness of nearest neighbor under L∞. In Proc. 49th
IEEE Sympos. Found. Comput. Sci. (FOCS), pages 424–433, 2008.

[7] V. Z. Arlazarov, E. A. Dinic, M. A. Kronrod, and I. A. Faradzhev. On economical construction of the
transitive closure of a directed graph. Soviet Mathematics Doklady, 11:1209–1210, 1970.

[8] T. M. Chan. Geometric applications of a randomized optimization technique. Discrete Comput. Geom.,
22(4):547–567, 1999.

[9] T. M. Chan. All-pairs shortest paths with real weights in O(n3/ log n) time. Algorithmica, 50:236–243,
2008.

[10] T. M. Chan. More algorithms for all-pairs shortest paths in weighted graphs. SIAM J. Comput.,
39:2075–2089, 2010.

[11] T. M. Chan. Speeding up the Four Russians algorithm by about one more logarithmic factor. In Proc.
26th ACM–SIAM Sympos. Discrete Algorithms (SODA), pages 212–217, 2015.

[12] T. M. Chan, K. G. Larsen, and M. Pătraşcu. Orthogonal range searching on the RAM, revisited. In
Proc. 27th ACM Sympos. Comput. Geom. (SoCG), pages 1–10, 2011.

[13] T. M. Chan and M. Pătraşcu. Counting inversions, offline orthogonal range counting, and related
problems. In Proc. 21st ACM–SIAM Sympos. Discrete Algorithms (SODA), pages 161–173, 2010.

[14] T. M. Chan and R. Williams. Deterministic APSP, orthogonal vectors, and more: Quickly derandom-
izing Razborov–Smolensky. In Proc. 27th ACM–SIAM Sympos. Discrete Algorithms (SODA), pages
1246–1255, 2016.

[15] D. M. Gordon, O. Patashnik, G. Kuperberg, and J. Spencer. Asymptotically optimal covering designs.
J. Combinatorial Theory, Series A, 75(2):270–280, 1996.

[16] Y. Han and T. Takaoka. An O(n3 log log n/ log2 n) time algorithm for all pairs shortest paths. In Proc.
13th Scand. Sympos. and Workshops on Algorithm Theory (SWAT), pages 131–141, 2012.

[17] S. Har-Peled, P. Indyk, and R. Motwani. Approximate nearest neighbor: Towards removing the curse
of dimensionality. Theory Comput., 8(1):321–350, 2012.

[18] R. Impagliazzo, S. Lovett, R. Paturi, and S. Schneider. 0-1 integer linear programming with a linear
number of constraints. arXiv:1401.5512, 2014.

[19] P. Indyk. On approximate nearest neighbors under l∞ norm. J. Comput. Sys. Sci., 63(4):627–638, 2001.

[20] K. G. Larsen and R. Williams. Faster online matrix-vector multiplication. In Proc. 28th ACM–SIAM
Sympos. Discrete Algorithms (SODA), pages 2182–2189, 2017.

[21] F. Le Gall. Faster algorithms for rectangular matrix multiplication. In Proc. 53rd IEEE Symposium on
Foundations of Computer Science (FOCS), pages 514–523, 2012.

[22] J. Matoušek. Computing dominances in En. Inform. Process. Lett., 38(5):277–278, 1991.

[23] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer–Verlag, 1985.

[24] M. Thorup. Randomized sorting in O(n log log n) time and linear space using addition, shift, and
bit-wise Boolean operations. J. Algorithms, 42:205–230, 2002.

21

[25] R. Williams. A new algorithm for optimal 2-constraint satisfaction and its implications. Theor. Comput.
Sci., 348(2-3):357–365, 2005.

[26] R. Williams. Matrix-vector multiplication in sub-quadratic time (some preprocessing required). In Proc.
18th ACM–SIAM Sympos. Discrete Algorithms (SODA), pages 995–1001, 2007.

[27] R. Williams. Faster all-pairs shortest paths via circuit complexity. In Proc. 46th ACM Sympos. Theory
Comput. (STOC), pages 664–673, 2014.

[28] H. Yu. An improved combinatorial algorithm for Boolean matrix multiplication. In Proc. 42nd Int.
Colloq. Automata, Languages, and Programming (ICALP), Part I, pages 1094–1105, 2015.

22

