Journal of Computational Geometry jocg.org

Approximate Shortest Paths and Distance Oracles in Weighted Unit-Disk
Graphs*

Timothy M. Chan' and Dimitrios Skrepetost

ABSTRACT. We present the first near-linear-time algorithm that computes a (1 + ¢)-
approximation of the diameter of a weighted unit-disk graph of n vertices. Our algorithm
requires O (n log? n) time for any constant € > 0, so we considerably improve upon the
near-O (ns/ ?)-time algorithm of Gao and Zhang [17]. Using similar ideas we develop (1+¢)-
approximate distance oracles of O (1) query time with a likewise improvement in the pre-
processing time, specifically from near O (n3/ 2) to O (n log? n) We also obtain similar new
results for a number of related problems in the weighted unit-disk graph metric such as the
radius and the bichromatic closest pair.

As a further application we employ our distance oracle, along with additional ideas,
to solve the (1 + €)-approximate all-pairs bounded-leg shortest paths (apBLSP) problem for
a set of n planar points. Our data structure requires O (n2 log n) space, O (loglogn) query
time, and nearly O (n2'579) preprocessing time for any constant € > 0, and is the first that
breaks the near-cubic preprocessing time bound given by Roditty and Segal [31].

1 Introduction

In this paper we study distance-related problems in weighted unit-disk graphs. Such a graph
G is defined as the intersection graph of a set of unit-diameter disks in the plane. That
is, vertices correspond to a set S of points (the disk centers), and there is an edge between
u,v € S if and only if v and v are at Euclidean distance at most one. The weight or
length of uv is the Euclidean distance between u and v. We assume that the graph G is not
explicitly constructed, but is instead implicitly represented by the point set S. Unit-disk
graphs have been widely studied (see e.g. [6, 9, 17, 21, 22, 28, 35|), as they can model ad-hoc
communication networks.

We are interested in various fundamental shortest-path problems in such a weighted
unit-disk graph G, notably:

e designing approximate distance oracles, i.e., data structures so that given any s,t € V,
we can quickly compute a (14-¢)-approximation of the shortest-path distance distg|s, t]
between s and ¢ in G, and
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e designing algorithms for computing a (1 + &)-approximation of various parameters
such as the diameter (max; ey distg(s,t]), the radius (mingey maxcy distg[s, t]), the
bichromatic closest pair distance between two sets A, B C S (mingea, vep distg(s,t]),
and so on.

Besides practical motivation from wireless networks, this collection of problems is
interesting from a theoretical perspective as well because it connects computational geometry
with graph data structures—indeed, our new algorithms will draw on ideas from both areas.

We now discuss the technical challenges that arise when trying to address (1 + ¢)-
approximate shortest-path problems in weighted unit-disk graphs. For the rest of Section 1
we assume that € > 0 is a constant.

Planar graph techniques There has already been an extensive body of work on shortest-
path problems and distance oracles in planar graphs. For example, Thorup [32] gave (1+¢)-
approximate distance oracles in weighted, undirected planar graphs with O (n polylogn)
preprocessing time and space and O (1) query time. Subsequent work [26, 24, 20, 10] im-
proved the logarithmic factors and examined the dependency of the hidden factors on e.
Weimann and Yuster [34] presented a (1 + ¢)-approximation algorithm for the diameter in
weighted, undirected planar graphs that requires O (n log* n) time. Chan and Skrepetos [10]
improved the running time to O (n log? n) and also reduced the e-dependency from expo-
nential to polynomial. There has also been an exciting recent breakthrough on ezact al-
gorithms for diameter and distance oracles in planar graphs by Cabello [5] and subsequent
researchers [18, 12, 19].

All the above approximation results for planar graphs rely heavily on shortest-path
separators: a set of shortest paths with a common root, such that the removal of their
vertices decomposes the graph into at least two disjoint subgraphs. Unfortunately, such
separators do not seem directly applicable to a unit-disk graph G, and not only because G
may be dense. Indeed, by grid rounding we can construct a sparse weighted graph CA}, such
that it (i) approximately preserves distances in the original unit-disk graph G (e.g., see the
proof of Lemma 2), and (ii) is “nearly planar”, in the sense that each edge intersects at most a
constant number of other edges. However, even for such a graph it is not clear how to define
a shortest-path separator that divides it cleanly into an inside and an outside because edges
may “cross” over the separator. At least one prior paper [35] worked on extending shortest-
path separators to unit-disk graphs, but the construction was complicated and achieved only
constant approximation factors.

Gao and Zhang’'s WSPD-based technique Gao and Zhang [17], in a seminal paper, ob-
tained the first nontrivial set of results on shortest-path problems in weighted unit-disk
graphs. To do so, they adapted a familiar technique in computational geometry, namely
the well-separated pair decomposition (WSPD), introduced by Callahan and Kosaraju 7]
for solving proximity problems in the Euclidean (or L,) metric. Gao and Zhang proposed a
new variant of WSPDs for the weighted unit-disk graph metric and proved that any set of
n planar points has a WSPD of O (nlogn) size under the new definition.
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Consequently, Gao and Zhang obtained a (1 + ¢)-approximate distance oracle with
O (nlogn) size and O(1) query time. Unfortunately, the preprocessing time, O (n3/ 2{/logn),
is quite high, and becomes the bottleneck when the technique is applied to offline problems,
such as computing the diameter. However, the issue is not constructing the WSPD itself,
which can be done in near-linear time, but computing the shortest-path distances of a near-
linear number of vertex pairs in the “nearly planar” graph G mentioned above. Gao and
Zhang computed these distances in almost n3/2 time by showing that G has a balanced sep-
arator [29, 16| and adapting a known exact distance oracle for planar graphs [1]. Cabello [4]
has given an improved algorithm for computing multiple distances in planar graphs, and
if it could be adapted here, the running time would be reduced to around n*/?. However,
near-linear time still seems out of reach with current techniques.

Gao and Zhang [17] observed that the preprocessing time can be made near-linear
when the approximation factor is a certain constant (about 2.42). However, their solution
cannot be applied to obtain a 1+ ¢ approximation factor and also has no new implication to
the diameter problem (for which a near-2-approximation is easy by running a single-source
shortest paths algorithm).

Our technique In Section 2, we give the first near-linear-time algorithm that computes a
(1+4¢)-approximation of the diameter of a weighted unit-disk graph of n vertices. Specifically
our algorithm runs in O (n log? n) time, and its dependencies on the hidden factors on ¢
are polynomial. A similar result holds for (1 + ¢)-approximate distance oracles: we obtain
O (nlog®n) preprocessing time, O (nlogn) space, and O (1) query time. We have thus
answered one of the main questions left open in Gao and Zhang’s paper. Applications to
other related problems follow.

Our approach is conceptually simple: we just go back to known shortest-path sepa-
rator techniques for planar graphs [32, 24!

But how do we get around the issue that unit-disk graphs do not have nice path
separators? The idea is to first find a spanner subgraph H which is planar and has con-
stant approximation /stretch factor—such spanners are already known to exist for unit-disk
graphs [28], fortunately (and they were also used by Gao and Zhang [17]). We then apply
divide-and-conquer over the shortest-path separator decomposition tree for H instead of G.

Although the above plan may sound obvious in hindsight, the details are tricky to
get right. For example, how could the use of an O (1)-spanner eventually lead to a 1 + ¢
approximation factor? The known divide-and-conquer approaches for planar graphs select
a small number of vertices, called portals, along each separator and compute distances from
each with a single-source shortest paths (SSSP) algorithm. That works well because a
shortest path in a planar graph crosses a separator only at vertices. In our case, however,
we need to use the original (non-planar, unit-disk) graph G when computing distances from
portals, but therein a shortest path could “cross” the separator over an edge. We show
that we can nevertheless re-route such a path to pass through a separator vertex without
increasing the length by much, by using the fact that H is an O (1)-spanner.
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Application to all-pairs bounded-leg shortest paths In the last part of the paper, we
discuss a problem called all-pairs bounded-leg shortest paths (apBSLP). Given a set S of n
planar points, we define G<y, to be the subgraph of the complete Euclidean graph of S that
contains only edges of weight at most L. Then, we want to preprocess S, such that given two
points s,t € S and any positive number L, we can quickly compute a (1 + €)-approximation
of the length of the s-to-t shortest path in G<y, (i.e., the shortest path under the restriction
that each leg of the trip has length bounded by L). To see the connection of apBLSP with
the earlier problems, note that G<;, for each fixed L is a weighted unit-disk graph, after
rescaling the radii. One important difference however is that L is not fixed in apBLSP, and
we want to answer queries for any of the (;) combinatorially different L’s.

Bose et al. [2| introduced the problem and described a method with O (n5) prepro-
cessing time, O (n2 log n) space, and O (logn) query time. Roditty and Segal [31| improved
the preprocessing time to roughly O (n3) and the query time to O (loglogn). They also
gave a data structure for the variation of the problem in general weighted, directed graphs
with O (n2'5) space and 9] (n4) preprocessing time. Duan and Pettie [14] improved the

space and the preprocessing time of Roditty and Segal’s result in general graphs to 9] (n2)

and O (n3) respectively. In a recent independent work that appeared after the conference
version of this paper, Duan and Ren [15] presented the first data structure for the problem
in general graphs with subcubic preprocessing time, namely 9) (n2'6865) (the space remains
near quadratic).

We apply our (1 + €)-approximate distance oracle for weighted unit-disk graphs,
along with additional new ideas, in Section 3 to obtain the first data structure for (1 + ¢)-
approximate apBLSP in the Euclidean metric that breaks the cubic preprocessing barrier
given by Roditty and Segal: namely, we obtain nearly O (n2'667) preprocessing time, while

the space and query time remain O (n2) and O (loglogn) respectively as in [31]. With fast
matrix multiplication, we can further reduce the preprocessing time to O (n2'579), assuming
a polynomial bound on the spread, i.e., the ratio of the maximum to the minimum Euclidean
distance over all pairs of points in V.

Definitions and notations Let G = (V| E) be a graph. For any u,v € V, we denote a u-to-
v shortest path in G by mg[u, v] and its length by distg[u,v]. We also refer to distglu,v] as
shortest-path distance or simply distance. By pred[s,t] we denote t’s predecessor on 7[s, t].
The shortest-path tree of each u € V' is a spanning tree of G rooted at u such that the u-to-v
shortest-path distance for each v € V' in that tree corresponds to distg|s, t].

Model of computation Throughout the paper we use the standard (real) RAM model of
computation. Specifically, we have random access to an array of words, each storing a real
number, a © (logn)-bit integer (where n is the input size), or a pointer to another word.
Moreover, we can perform any standard arithmetic operation, such as addition, subtraction,
multiplication, division, square root, and comparison, that involves a constant number of
words in constant time.
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2 Approximate diameter and distance oracles

Let S be a set of planar points whose weighted unit-disk graph G has diameter A. A key
subproblem for both (i) computing a (1 4 €)-approximation of the diameter of G' and (ii)
building a (1 4 ¢)-approximate distance oracle for G is the construction of a distance oracle
with additive stretch O (¢A): a data structure, such that given any s,t € S, we can quickly
compute a value d with distg[s,t] < d < distg[s,t] + O (¢A). We describe our solution
for that subproblem in Section 2.2, after giving two preliminary ingredients in Section 2.1.
Then, we show in Section 2.3 how to employ that oracle, along with existing techniques, to
address the two original problems.

2.1 Preliminaries

The first ingredient we need is the existence of a planar spanner with constant stretch factor
in any weighted unit-disk graph. More formally, a subgraph H is a c-spanner of a graph
G = (V,E) if for every s,t € V, distg[s,t] < disty[s,t] < cdistg]s, t].

Lemma 1. (Planar spanner) Given a set S of n planar points, we can find a subgraph H
of its weighted unit-disk graph G in O (nlogn) time, such that H is (i) a planar graph and
(ii) a c-spanner of G, for some absolute constant ¢ > 0.

Li, Calinescu, and Wan [28| proved the above lemma with ¢ = 2.42 by simply building
the Delaunay triangulation of the given points and discarding edges of weight more than
one. Li et al.’s analysis builds upon existing work on the stretch factor of the Delaunay
triangulation for complete Euclidean graphs [13, 25].

The second ingredient is an efficient algorithm for the single-source shortest paths
(SSSP) problem in weighted unit-disk graphs. The currently best exact result is due to

1240(1)

Cabello and Jej¢i¢ [6], requires O (n log n) time and employs complicated dynamic

data structures for additively weighted Voronoi diagrams [8, 23]. For our purposes though,
it suffices to consider the (14O (¢))-approximate version of the problem instead, i.e., given a
set of points S and a source s € S, compute a path of length d[s, t] for each ¢ € S, such that
distg]s,t] <d[s,t] € (1+ O (¢))distg|s,t]. Our algorithm first finds a sparse graph G that
(14O (e))-approximately preserves distances in G. Then, it runs Dijkstra’s algorithm in G.
Sparsification in weighted unit-disk graphs has been used before (e.g., see [17, Section 4.2]).

Lemma 2. (Approximate SSSP) Given a set S of n planar points, we can solve the (1+¢)-
approximate SSSP problem in its weighted unit-disk graph G in O ((1/5)2nlog n) time.

Proof. First, we build a uniform grid of side length € and construct a sparse weighted graph
G by placing a vertex at each non-empty grid cell and an edge between every two such cells
¢ and ¢ if and only if there exist points p € ¢ and p’ € ¢ with ||pp’|| < 1. The weight
of that edge is equal to the distance between the center of ¢ and the center of ¢/. Each
grid cell has at most O ((1/£)?) neighbors, so @ has at most O ((1/£)?n) edges and can be
constructed in O ((1/€)?*nlogn) time by a Euclidean bichromatic closest pair algorithm [30]
over O ((1/¢)?n) pairs of grid cells, with a total size of O ((1/£)?n) points.
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We now prove that for any points s and ¢ of S with ||st|| > 1, distzles, ] < (1 +
O (e))distg[s,t], where ¢; and ¢; are the grid cells containing s and ¢ respectively. Let
pop1 - - - pe be an s-to-t shortest path in G, with pg = s and py = ¢. Two consecutive edges
therein have lengths whose sum is at least one because otherwise we could take a short-cut
and obtain a shorter path. Thus, distg[s,t] > [¢/2]. Consider the path cocy---¢p in G,
where ¢y = ¢g, ¢y = ¢, and each other ¢; is the cell that contains p;. Since for each i, the
weight of the edge cicipq in G is at most ||pipis1| 4+ O (€), it follows that distg[cs, ci] <
distg[s, t] + O (ef) < (1 + O (¢))dista[s, t].

Conversely, we prove that distg[s,t] < (1 + O (¢))distg[cs,ci]. Let coer--- ¢y be a
cs-to-c; shortest path in CA}, with ¢g = ¢s and ¢, = ¢;. Two consecutive edges therein
have weights in G whose sum is at least 1 — ce (for a sufficiently large constant ¢) because
otherwise we could take a short-cut and obtain a shorter path. Thus, distz[cs,ci] > Q(Y).
Let (p;,q;) is the bichromatic closest pair of ¢; and ¢; 1 (which has already been computed
during preprocessing). Note that there is an edge from ¢; to p;+1 in G of distance O (e),
since ¢; and p;41 lie in a common grid cell. Consider the path spoqop1qi1 - - - peget in G. Since
for each i, ||pigi|]| is at most the weight of the edge ¢;c;y1 in G plus O (), it follows that
distg[s, t] < distg[cs, ci] + O (el) < (1 + O (g))distz[cs, ci].

Given a source s € S, we can invoke Dijkstra’s algorithm in G to compute the
shortest path tree from ¢, and return d[s,t] = (1 + ce)distg[cs, ¢i] for each t € S, where
cs and ¢; are the grid cells that contain s and ¢, respectively, and ¢’ is a sufficiently large
constant. From the previous paragraph, we can find a corresponding path of the desired

length. Note that if ||st]] < 1, the shortest distance is trivially ||st]|. O

2.2 Distance oracles with additive stretch

We now describe a distance oracle with additive stretch O (¢A) for an arbitrary weighted,
undirected graph G = (V, E) of n vertices and of diameter A that has the following proper-
ties, which are the only ones needed from weighted unit-disk graphs.

(I) There exists a planar c-spanner H of G, for some constant ¢ > 0.

(IT) For any induced subgraph of G with n’ vertices, the (1 + ¢)-approximate
SSSP problem can be solved in T'(n’) time, for some function 7°(-) such that
T(n1) + T(n2) <T(ng + na).

(III) Every edge weight in G is at most A.

If G is a weighted unit-disk graph, Lemmas 1 and 2 imply (I) and (II), respectively,
where ¢ = 2.42 and T(n/) = O ((1/e)*n’logn’), and (III) holds as long as A > 1/e.

Shortest-path separators in H. Although G may not have nice shortest-path separators,
we know by planarity that H does. Thus we apply a known shortest-path separator decom-
position for H, namely the version of Kawarabayashi, Sommer, and Thorup [24, Section 3.1],
to compute in O (nlogn) time a decomposition tree T with the following properties.

JoCG 10(2), 3-20, 2019 8



Journal of Computational Geometry jocg.org

T has O(logn) height.

e Each node p of T is associated with a subset V(#) C V. The subsets V*) over all
children v of p are disjoint and contained in V). If 1 is the root, VW) = V; if p is a
leaf, V(#) has O(1) size.

e Each non-leaf node p of T is associated with a set of O(1) paths, called separator paths,
which are classified as “internal” and “external”’. The internal separator paths cover
precisely all vertices of V(#) — Uchild v of u V() while the external separator paths are

outside of V(1)

e For each child v of a non-leaf node i, every neighbor of the vertices of V*) in H is
either in V) or in one of the (internal or external) separator paths at .

e Each separator path is a shortest path in H and, in particular, has length at most the
diameter A(H) of H (which is at most cA).

Our data structure. To construct an additive oracle with O (¢A) stretch for G, we con-
struct the above decomposition tree 7 and augment it with extra information, as follows.
Let p be an internal node of 7, and let ¢ be one of its internal separator paths. Since o
has length at most A(H) < cA, we can select with a linear walk a set of O (1/¢) vertices
thereon, called portals, such that each consecutive pair of them is at distance at most G(¢A)
on o, unless they are adjacent in o.

Let P denote the set of all portals over all internal separator paths at a non-leaf
node p of 7. For each such node and for each p € P* and v € VI we invoke O (1/¢)
times the SSSP algorithm from Property (II) to compute a (1 + €)-approximation, JM [p, v],
of the shortest-path distance from p to v in the subgraph of G induced by V(). Then,
for each leaf p, we just find and store all pairwise distances in the subgraph of G that is
induced by V. Overall, our oracle requires O ((1/¢)T'(n) - logn) preprocessing time and
O ((1/e)n -logn) space.

Query algorithm. Given two vertices s,t € V, we first identify all O (logn) nodes u in
T, such that s € V® and ¢t € VW, To do so, we trivially start from the root and
go down the tree along a path. For each such node p, if p is not a leaf, we compute a
value d,[s,t] = min, p(, {d.[s,p] + du[p,t]} in O(1/e) time. If p is a leaf, d,[s,t] is the
exact shortest-path distance in the subgraph of G induced by V)  which we have already
computed. Finally we return the minimum, d[s,¢], over all d,[s,t]. The total query time is

O ((1/e)logn).

Stretch analysis. We want to prove that for any s,¢ € V, the value d[s,t] that our oracle
returns satisfies that distg(s,t] < d[s,t] < distg[s,t]+O (¢A). The left side of the inequality
clearly holds because d[s, t] corresponds to the length of an s-to-t path in a subgraph of G.
To prove the right side, let ™ be the shortest s-to-t path in GG, and let p be the lowest node
in 7, such that all vertices of 7 lie in V). We assume that yx is a non-leaf node because

otherwise we have already computed distg|[s, t] exactly.
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Figure 1: (a): Separator paths that divide a planar graph H into two components (corre-
sponding to two children of the root of the decomposition tree 7). (b): Portals along the
separator.

Although 7 is a path in the (not necessarily planar) graph G, we show that it is
possible to re-route it to pass through a vertex on a separator path of u without increasing
its length by much.

Claim 1. (Detour through a separator vertex) There exists an s-to-t path @' in G that (i)
passes through some vertex w on a separator path of u, (ii) uses only vertices of V() (except
maybe for w itself) and (iii) has length at most distg[s,t] + O (eA).

Proof. We assume that none of the vertices on 7 lie on a separator path of p because
otherwise we can just set 7/ = 7. Let v be the child of g with s € V()| let u be the last
vertex on 7 that lies in V) (note that u # ¢, by definition of u), and let v be the next
vertex after u thereon. By Property (I) of G, there is a path m,, from u to v in H of length
at most ¢ - (the weight of wv), which is at most ceA by Property (III). Let w be the first
vertex on m,, that lies outside of 174 ), which exists since v is outside of V). Then, from
the fourth property of 7, we know that w must be on an (internal or external) separator
path o of p. Thus, we set 7’ to be the path that goes from s to u along 7, then from u to w
along m, , (which uses only vertices in V®) as intermediates), then back from w to u along
Tu,w, and finally from w to ¢ along 7. See Figure 2(a) (where o is internal) and 2(b) (where
o is external). O

Next, we note how to further re-route 7 to pass through a portal.

Claim 2. (Detour through a portal) There exists an s-to-t path 7" in G that (i) passes
through a portal p on a separator path o' of ', where ' is some ancestor of u, (ii) uses
only vertices of VW) and (iii) has length at most distg[s,t] + O (/).

Proof. Let w be as in Claim 1, and let y’ be the lowest ancestor of p with w € 174C08
Notice that if w € V)| then ¢ = o/. Otherwise, since 1/ is the lowest ancestor, we have
W & Uehitd o of u 174CON Therefore, by the third property of 7, w must be on an internal
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Figure 2: Detour through a vertex of a separator path ¢ in Claim 1, where ¢ may be internal, as
in (a), or external, as in (b). Detour through a portal in Claim 2 in (c).

separator path ¢’ in p’. Let p be the portal on ¢’ that is closest to w. Thus, the p-to-w
distance on ¢’ is at most O (¢A). We set 7’ to be the path the goes from s to w along 7',

then from w to p along ¢’ and back from p to w, and, finally, from w to u along 7’. See
Figure 2(c). O

Let 4/ be as in Claim 2. It follows that d[s,t] < gu’ [s,t] < c?u/ [s,p] + JMI p,t] <
distg[s,t] + O (eA).

Theorem 1. (General distance oracles of additive stretch) Given a weighted graph G
of n vertices and of diameter A that satisfies Properties (I)—(111), together with the sub-
graph H from Property (I), we can construct a distance oracle of O (¢A) additive stretch,
O ((1/e)T'(n)logn) preprocessing time, O ((1/e)nlogn) space, and O ((1/€) logn) query time.

As we explained earlier, weighted unit-disk graphs satisfy Properties (I)-(III), so we
have the following theorem.

Corollary 1. (Distance oracles of additive stretch in unit-disk graphs) Given a set S of
n planar points, such that the weighted unit-disk graph of S has diameter A > 1/e, we
can construct for that graph a distance oracle of O (eA) additive stretch, O ((1/€)3nlog? n)
preprocessing time, O ((1/e)nlogn) space, and O ((1/e)logn) query time.

2.3 Applications

We now describe how to employ Corollary 1 to compute a (1 + ¢)-approximation of the
diameter of a unit-disk graph and how to build a (1 4 ¢)-approximate distance oracle for it.
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Let S be a set of planar points, let G be the weighted unit-disk graph defined by S, and let
H be a planar O (1)-spanner of G.

Approximate diameter. The WSPD-based technique of Gao and Zhang’s [17]| implies the
following lemma.

Lemma 3. (A consequence of WSPDs in unit-disk graphs) Given a set S of n planar
points, we can find a set of O ((1/5)4n log n) pairs of them in O ((1/6)4nlog n) time, such
that the shortest-path distance between any two vertices in the weighted unit-disk graph of S
can be (1 + €)-approzimated by the shortest-path distance between one of these pairs, which
can be found in O (1) time.

First, we compute in O (nlogn) time [30] the Euclidean diameter Ag of S (i.e., the
Euclidean distance of the farthest pair). If Ag > 1/e, then A > 1/e, and, to compute a (1 +
¢)-approximation of A, we can query the oracle of Corollary 1 of O (¢A) additive stretch with
all O ((1/e)*nlogn) pairs of Lemma 3 and return the maximum. Thus the approximation
factor is 1+ O (). The total time required for this case is O (((1/¢)*nlogn - (1/¢)logn).

If 1 < Ay < 1/¢, the problem is more straightforward, because we can construct the
sparsified graph G from the proof of Lemma 2, which preserves distances approximately,
and then run a standard all-pairs shortest paths (APSP) algorithm therein. Since G has
n =0 ((Ao/e)?) = O((1/e)*) vertices and m = O ((1/e)*n) = O ((1/¢)®) edges, we need
(@) (ﬁ2 logn + ﬁlﬁ) =0 ((1/5)10) time for this case. Finally, if Ag < 1, the unit-disk graph
is a complete Euclidean graph, so we just return Ag.

Theorem 2. (Approximate diameter) Given a set S of n planar points, we can compute
in O ((1/»3)5nlog2 n+ (1/e)1) time a (1 + €)-approzimation of the diameter of its weighted
unit-disk graph.

Remark: There might be an alternative solution that does not use Gao and Zhang’s WSPD
construction, but instead combines our techniques with those of Weimann and Yuster for
planar graphs [34]. However, such an alternative method seems inferior, since it would
increase the e dependency to 20(1/¢).

Approximate distance oracles. To build (1 + ¢)-approximate distance oracles in weighted
unit-disk graphs, we employ the oracle of Corollary 1 of O (¢A) additive stretch as a building
block using a known technique, called sparse neighborhood covers, similarly to the results
of Kawarabayashi et al. [24] and Gu and Xu [20] for the planar graphs case. The following
lemma is by Busch et al. [3] and Kawarabayashi et al. [24].

Lemma 4. (Sparse neighborhood cover) Given a weighted planar graph H of n vertices and
a value r, for each r we can construct, in O (nlogn) time, a collection of subsets Vi, Va, ...
of V', such that (i) the diameter of the subgraph of H induced by each V; is O (r), (ii) every
vertex resides in O (1) subsets, and (iii) for every vertex v, the set of all vertices at distance
at most r from v in H is contained in at least one of the V;’s.
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Every (weighted) shortest-path distance in G is upper bounded by n, so we first
apply the above lemma to H for each value of » € {20 2% ... ,210g”}. Thus, we obtain
collections of subsets Vl(r), 2(T), ... and then build the distance oracle of Corollary 1 for
the weighted unit-disk graph of each Vi(r). The total preprocessing time and space over
all O (logn) choices of 7 is O (logn - (1/¢)*nlog? n) and O (logn - (1/¢)nlogn) respectively.
Given s,t € S, we consider each r and each subset Vi(r) that contains both s and ¢, query
the oracle for Vi(r)
of r and O(1) choices of VZ-(T) (Lemma 4(ii)) is O (logn - (1/¢)logn).

If distq]s,t] > 1/e, let » > ¢/e be such that distg[s,t] € (r/2¢,r/c]. Then, each
vertex on the shortest path from s to t in G is at distance at most cdistg[s,t] < r from s in

H, so it is contained in a common subset Vi(r). Hence, we approximate distg[s,t] with an
additive error of O (er) = O (edista[s, t]), obtaining thus 1 + O (&) approximation factor.

, and return the minimum. The total query time over all O (logn) choices

If 1 < distg[s,t] < 1/e, we simply build the sparsified graph G from the proof
of Lemma 2, which preserves distances approximately. Then, from every vertex, we pre-
compute the distances to all grid cells at Euclidean distance at most 1/¢ by running Dijkstra’s
algorithm on a subgraph of G with n’ = O ((1/e)*) vertices and O ((1/¢)?n’) = O ((1/¢)")
edges in O ((1/€)%log(1/¢)) time. The preprocessing time and space over all sources is
O ((1/£)%nlog(1/¢)) and O ((1/)*n) respectively. Finally, if dist[s,t] < 1, the shortest-
path distance of s and ¢ is their Euclidean distance. We do not know a priori which of the
cases we are in, so we try all of them and return the minimum distance found.

Theorem 3. (Approximate distance oracles) Given a set S of n planar points, we can build
a (1 + ¢)-approzimate distance oracle for its weighted unit-disk graph with O ((1/¢)log?n)
query time, O ((1/5)3nlog3n + (1/e)%nlog(1/e)) preprocessing time, and

O ((1/e)nlog®n + (1/¢)*n) space.

To reduce the query time, we can combine the above method with Gao and Zhang’s
WSPD-based oracle [17, Section 5.1], which requires O (1) query time and O ((1/¢)nlogn)
space. The bottleneck in the construction time lies in finding (1 + €)-approximate shortest-
path distances for O ((1 /e)4nlog n) pairs, but we can compute these distances by querying
our oracle of Theorem 3 in O ((1/e)*nlogn - (1/e) log? n) total time.

Corollary 2. (Approximate distance oracles with O (1) query time) Given a set S of n
planar points, we can construct a (1 + €)-approzimate distance oracle for its weighted unit-
disk graph with O(1) query time, O ((1/e)’nlog®n + (1/e)®nlog (1/)) preprocessing time,
and O ((1/¢)*nlogn) space.

Similarly, we can use the distance oracle of Theorem 3 to improve Gao and Zhang’s
results for other distance-related problems on weighted unit-disk graphs (see [17, Section 5]):

Corollary 3. (Approximate radius and bichromatic closest pair) Let S be a set n points
in the plane, and let G be the corresponding weighted unit-disk graph. We can compute a
(1 + €)-approzimation of the radius of G or of the bichromatic closest pair distance of two
given sets A,B C S in G in O ((1/¢)°nlog®n + (1/¢)5nlog(1/e)) time.
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Remarks:

e We did not seriously attempt to optimize the poly(1/e,logn) factors, but some small
improvements could be possible with more effort.

e Our distance oracle in Theorem 3 can be easily modified to report an approximate
shortest path, not just its distance, in additional time proportional to the number of
edges in the path. To do so, every time we find approximate shortest distances in a
subgraph from a portal, we also store its approximate shortest-path tree.

e The same approach gives (1 + O(e))-approximation results for unweighted unit-disk
graphs, assuming that the diameter and the distances of the query vertices exceed
Q(1/e). Specifically a WSPD-based technique can be employed for the unweighted
case as well, but the error now has an extra additive term of 4+ O(e) [17, Lemma 6.2],
which can be ignored under our assumption. Also, we need to replace the SSSP
algorithm of Lemma 2 with the O (nlogn)-time exact SSSP algorithm by Cabello and
Jejéic [6] or by Chan and Skrepetos [9].

3 Approximate apBLSP

In this section, we study the (1+¢)-approximate apBSLP problem. Given a set S of n planar
points, let G be its complete weighted Euclidean graph, let wy,wo, ..., wy, where N = (g),
be the weights of the edges of G in non-decreasing order, and let G* be the subgraph of G
that contains only the edges of weight at most w; (note that GV = G). We can assume
that w; > 1. Otherwise, we can impose that assumption by simply rescaling S in linear
time. We want to preprocess S into a data structure, such that we can quickly answer
(1 + e)-approximate bounded-leg distance queries, i.e., given s,t € S and a positive number
L, compute a (1+¢)-approximation of distqi[s, t], where i is the largest integer with w; < L.
First, we briefly review the previous methods of Bose et al. [2] and of Roditty and Segal [31],
in Section 3.1, and then describe our own approach, in Section 3.2.

3.1 Previous methods

Let s,t € S, and let ¢(s,t) be the minimum index, such that s and t are connected in G5,
Since each G is a subgraph of G, we have distg[s, t] < distgn-1[s,t] < -+ < distge(s [8, 1.
Moreover, the s-to-t shortest path in any G* with i > ¢(s,t) must have an edge of weight
at least wg(, ), s0 distc[s,t] > We(s,r)- Any shortest path has at most n — 1 edges, thus
distaes |5, 1] < (n — 1)distg[s,t]. Therefore, as Roditty and Segal [31, Section 2| noticed,
we can compute and store a (1 + ¢)-approximation of the s-to-t shortest-path distance for
each s,t € S in only O (logl Te n) graphs, such that a bounded-leg distance query can be
answered with a binary search in O (log logy . n) time.

Specifically, for every s,t € S and j € {0,1,..., [log;,.n]}, let I/(s,t) be the set of
indices of the graphs G*, such that (1 + )/ distg[s, t] < distqi[s,t] < (14 ¢)I  distg[s, t]. If
I (s,t) # (), we create two values m/(s,t) and #/(s,t), where the former is any index therein
and the latter is equal to w,,;j (). Else, m7(s,t) and #/(s,t) are undefined.
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The total space required over all pairs of S is O (n2 logy . n) Then, given a positive
number L, we can find the largest i among the m/(s,t)’s such that w; < L with a binary
search over the #/(s,t)’s in O (loglog;,.n) time and return a (1 + ¢)-approximation of the
s-to-t shortest-path distance in G*.

To compute a possible index for m7 (s, t) for each s,t € Sand j € {0,1,..., [log; . n]},
Roditty and Segal performed O (n2 logy . n) independent binary searches, each making
O (logn) (1 4 e)-approximate bounded-leg distance queries (i.e., a query to find a (1 + ¢)-
approximation of the s-to-t shortest-path distance in some graph G*). Instead, we group the
queries for all s, ¢, 7 into O (logn -logy, . n) rounds of n? offline queries each, where “offline”
means that the queries in every round are given in advance.

Lemma 5. (Framework for approximate apBLSP) Given a set S of n planar points, we can
construct a data structure for the (1 + ¢)-approximate apBLSP problem of O ((1/€)n2 log n)

space, O (loglogn +log(1/c)) query time, O (Tom(n,n?,1+¢) - (1/c)log®n) preprocessing
time, where Tog(n', ¢', 1+€") denotes the total time for answering ¢’ offline (1+¢')-approximate
bounded-leg distance queries for an n'-point set.

Naively we could construct in near linear time a sparse (1-+¢)-spanner of every graph
G* and then run Dijkstra’s algorithm therein to answer each query (a similar idea was used
by Roditty and Segal). Thus a near-cubic bound would be obtained for Tog(n,n?,1 + €).
Instead, we show that by employing our (1 + ¢)-approximate distance oracle of Corollary 2
for weighted unit-disk graphs as a subroutine, we can obtain a truly subcubic bound on
Tog(n,n%, 1+ ¢), as we next describe.

3.2 Improved method

To obtain our improved method, we view the problem of answering n? approximate offline

bounded-leg distance queries for each s, € S and j € {0,1,...,[log;,.n]} as the problem
of constructing and querying the following offline semi-dynamic (actually insertion-only)
distance oracle.

Subproblem 1. (Semi-dynamic approximate distance oracles) Given an arbitrary graph of
n vertices with edge weights in [1,00), we want to perform an offline sequence of q operations,
each of which is either an edge insertion, or a query to compute a (1 + €)-approximation of
the shortest-path distance between two vertices.

Let Tayn(n,q,1 + €) be the complexity of Subproblem 1.

We could reduce our problem to Subproblem 1 by naively inserting the O (n2) edges
of G in increasing order of weight to an initially empty graph and mix that sequence of
insertions with the given sequence of bounded-leg distance queries. Hence we would have
Toii(n,n*, 1+ ¢€) = O (Tayn(n,n? 1 +€)).

We propose a better reduction that employs a simple periodic rebuilding trick. First,
we divide the sequence of the ¢ edge insertions and queries into O (q/r) phases of at most r
operations each, where r is a parameter to be set later. At the beginning of each phase, the
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current graph is a weighted unit-disk graph (after rescaling), so we can build the (1 + ¢)-
approximate distance oracle of Corollary 2 in O ((1/¢)’nlog®n) time. Then we query that
oracle in O (7’2) total time to approximate the shortest-path distances between all pairs of
vertices that are involved in the upcoming r operations (i.e., are endpoints of the edges
to be inserted, or belong to the pairs to be queried). We build the complete graph over
these at most 2r vertices with the approximate shortest-path distances as edge weights.
Each phase can then be handled by r edge insertions/queries on this smaller graph in
O (Tayn(2r,7,1 4 €)) time. The resulting approximation factor is at most (1+¢)% = 1+0(e).
Thus, for ¢ = n? we get the following bound:

Tog(n,n? 14+ 0(e)) = O <7;2 ((1/e)°nlog® n + 1% + Tayn(2r,7, 1 + 5))) . (1)

To solve Subproblem 1, we could do nothing during insertions and in each query
re-run Dijkstra’s algorithm from scratch, thus obtaining Tyyn(2r,7,1 + ) = O(r3). Then
by setting r = (1/¢)%/3n1/31logn, we can obtain a still better bound Typg(n,n?, 1+ O(¢)) =
0 ((1/6)10/3718/3 log?n), which is truly subcubic.

Actually, by using fast matrix multiplication and additional techniques, we can es-
tablish a better bound on Thg(n,n%, 1+ O(¢)). Our idea is to recursively divide phases into
subphases, as in the proof of the following lemma. (Note that this lemma actually holds for
general graphs. Although (semi-)dynamic shortest paths have been extensively studied in
the literature, we are unable to find this particular result.)

Lemma 6. (A semi-dynamic approximate distance oracle) We can solve Subproblem 1 in
Tayn(2r,7,140(e)) = O ((1/e)r“ log rlog W) total time, where w is the matriz-multiplication

exponent and W is an upper bound on the mazimum (finite) shortest-path distances.

Proof. Let H be the input graph of 2r vertices, and let H' be the graph that results from per-
forming on H all edge insertions of the first /2 operations. We run the O ((1/£)r log W)-
time (14-¢)-approximate APSP algorithm of Zwick [36] on H and H’ and answer all distance
queries therein. Then, we construct two graphs H; and Hy of r vertices each, where H;
(respectively Hy) is the complete graph over all vertices that are involved in the first (re-
spectively last) r/2 operations. We set each edge weight in H; (respectively Hs) to be a
(1 4 ¢)-approximation of the shortest-path distance of its endpoints in H (respectively H'),
which we have already computed. Thus the error is increased by a 1 + ¢ factor. Finally, we
apply recursion in H; and Ho.

The running time of our approach is Tyyn (2r, 7, (14 €)") < 2T4yn(r,r/2, (1+)"1) +
O ((1/e)r* log W), where initially i = 1. Thus, Tayn (27,7, (14¢)) = O ((1/e)r* logrlog W).
The approximation factor is (1 + ¢)!°8" = 1 4+ ©(elogr), which can be refined to 1 + O (e),
by resetting € « ¢/ logr. O

Combining (1) with the above lemma gives

n? _
Tog(n,n%,1+0()) = O <7“ ((1/6)5n10g3n + (1/e)r¥ logrlog W)) .
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Setting r = n'/% yields Tog(n,n?, 14+ 0(e)) = O ((1/5)5n3*1/” log®(nW)), where W < nW,
and W is the spread of S, i.e., the ratio of the maximum-to-minimum pairwise Euclidean
distance.

Theorem 4. (Approximate all-pairs bounded leg shortest paths) Given a set S of n planar
points of spread W, we can construct a data structure for the (1 + €)-approzimate apBLSP
problem with O (loglogn + log(1/¢)) query and O ((1/5)6n3*1/w log®(nW)) preprocessing
time and O ((1/e)n?logn) space.

The current best bound on the matrix-multiplication exponent [33, 27] is w < 2.373,
which gives a preprocessing time of O ((1/5)6n2'579 10g5(nW)).

Remark: For the sake of simplicity we did not optimize the poly(1/e,log(nW)) factors. It
might be possible that known techniques like balanced quadtrees could be used to eliminate
the dependency on W.
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