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Abstract— We consider the problem of autonomous mobile
robot exploration in an unknown environment taking into
account the robot’s mapping rate, map uncertainty, and state
estimation uncertainty. This paper presents an exploration
framework built upon segment-aided pose SLAM adapted for
better active localization. We build on our previous work on
expectation maximization (EM) exploration, which explicitly
models unknown landmarks as latent variables and predicts
their expected uncertainty, to resolve the lack of landmark state
in denser instances of SLAM. The proposed system comprises
path generation, place recognition forecasting, belief propaga-
tion and utility evaluation using a virtual map. We analyze
the performance in simulated experiments, showing that our
algorithm maintains higher coverage speed in exploration as
well as lower mapping and localization error. The real-time
applicability is demonstrated on an unmanned ground vehicle.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) has been
well studied in theory and applied successfully on real sens-
ing platforms for state estimation and map-building using
data collected passively [1]. However, it’s still a challenge for
an autonomous vehicle to actively map an unknown environ-
ment, properly managing the trade-off between exploration
speed and state estimation quality. Improving the capability
of autonomous exploration is beneficial for many robot
mapping tasks, especially in scenarios where teleoperation is
limited or infeasible due to constrained communication, e.g.,
in unknown subsea environments with underwater robots.

The autonomous exploration problem is generally solved
in three stages: path generation, utility evaluation and exe-
cution. First, we identify candidate waypoints or generate a
sequence of actions to follow, which is typically achieved by
enumerating frontiers or by employing sampling-based path
planning methods. The selected path is usually straightfor-
ward to execute using feedback controllers, thus leaving us
with a fundamental problem of designing a utility function
to measure path optimality. Essentially, it should capture the
exploration-exploitation dilemma, i.e., a balancing of visiting
unknown areas to reduce map uncertainty, and revisiting
known areas to seek better localization (and map accuracy).

The simplified problem, planning with a priori maps, has
also been discussed to actively minimize the uncertainty of
known landmarks [2]–[4]. Similarly, planning in unknown
environments but with predefined waypoints is investigated
in [5]. If we don’t consider the uncertainty of a robot’s state
and map, the problem has been approached by following the
nearest frontier [6], choosing sensing actions to maximize
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mutual information [7], [8], using Cauchy-Schwarz quadratic
mutual information (CSQMI) to reduce computation time
[9], and by exploring on continuous Gaussian process frontier
maps [10]. Most of the existing research on exploration in
unknown environments takes advantage of occupancy grid
maps, considering utility functions involving map entropy
and robot pose uncertainty [11], [12]. This paradigm has
succeeded in complex applications, including real-time 3D
exploration and structure mapping with micro aerial vehicles
[13], [14]. However, inaccurate state estimation is likely
to result in a complete yet distorted map regardless of
exploration speed. The correlation between localization and
information gain is often taken into account by integrating
over a map’s entropy weighted by pose uncertainty [15]–
[17]. However, in prior work we have shown that weighted
entropy fails to capture the estimation error of landmarks
existing in the map, and map inaccuraries may result [18].

Predicing the impact of future actions on system uncer-
tainty remains an open problem [1], and this is particu-
larly true for unobserved landmarks. Our previous work on
expectation-maximization (EM) exploration [18] introduced
the concept of a virtual map composed of virtual landmarks
acting as proxy for a real feature-based map, on which
we are able to predict the uncertainty resulting from future
sensing actions. Since every virtual landmark is deeply
connected with robot poses that can observe it, the metrics
for exploration and localization are unified as the determinant
of the virtual landmarks’ error covariance matrix. In this
present work, we consider a more realistic dense navigation
scenario, in which exploration with range-sensing mobile
robots must rely on pose SLAM that does not incorporate
features explicity. In such scenarios, SegMap [19], [20]
provides a convenient utility for place recognition. Map
segments can serve as landmarks, and loop-closures from
segment matching allow us to perform active localization
efficiently. We improve our previous work on EM exploration
to accommodate dense observations using segment-aided
LiDAR mapping. The contributions of this paper are twofold:

• A framework for exploration using pose SLAM consid-
ering both exploration efficiency and mapping accuracy,
that is feasible in dense navigation scenarios;

• A thorough evaluation of our framework’s performance
in simulated environments, and demonstration of its
functionality and real-time viability in experiments us-
ing an unmanned ground vehicle (UGV);

The rest of the paper is organized as follows. We define the
addressed problem in Sec. II, and provide an overview of the
SLAM framework we use in Sec. III. The derivation if EM
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Fig. 1: Overview of the segment-aided LiDAR mapping used
for exploration. The factor graph includes sequential factors from
odometry (green) and sequential scan matching (blue), and place
recognition factors from segment matching (orange) and pose
matching (cyan).

exploration on a virtual map is presented in Sec. IV, which
is further elaborated in Sec. V. Experiments and results with
a range-sensing UGV are presented in Sec. VI.

II. PROBLEM DESCRIPTION

In this paper we address the problem of autonomous
exploration for a range-sensing mobile robot in an initially
unknown environment. Our robot performs SLAM and con-
structs an occupancy grid map as it explores. We assume a
bounded 2D space M ⊂ R2 where all discretized cells mi

are initialized as unknown P (mi = 1) = 0.5. A frontier is
defined as the boundary where free space meets unmapped
space. The exploration is considered complete if no frontier
can be detected. However, highly uncertain poses are likely
to result in complete, yet inaccurate occupancy grid maps,
limiting the usefulness of information gained by exploring
unknown space. Assuming the environment contains indi-
vidual landmarks L = {lk}, apart from discovering more
landmarks, minimizing the estimation error is equally crucial.
Although landmarks are explicitly incorporated into SLAM
in our previous work [18], we relax this requirement here and
propose to manage uncertainty through pose graph SLAM.

III. SEGMENT-AIDED LIDAR MAPPING

Although our EM exploration algorithm does not rely on
any specific SLAM framework, a fundamental requirement
is the need to predict the resulting uncertainty of future
robot poses if a sequence of sensing actions is executed.
Typically during exploration, loop closure constraints, such
as the re-observation of a landmark, are desired with some
regularity for better localization. However, not all real-world
exploration problems can reason scalably about individual
landmarks. Thus we propose to use segment-aided LiDAR
mapping [20] to support decision-making in exploration,
which optimizes a pose graph but is capable of detecting
and handling re-observation as in landmark-based SLAM.

A. System Overview

The diagram of our proposed SLAM system is shown
in Fig. 1. The backbone of the pose graph is composed
of two sequential factors. The odometry factor (fO) defines
the relative motion constraint between two consecutive poses
from persistent odometry measurements. Besides odometry,
when the robot is equipped with a 3D LiDAR, sequential

scan matching (fSSM) also provides a relative transformation
by aligning point clouds observed at two positions. The
essential component of graph SLAM to ensure accurate
estimation is loop closure, which is incorporated in two ways.
First, when the current position of the robot is in the vicinity
of a previously visited position, pose matching (fPM) is
performed by matching two point clouds accumulated around
these two positions. Secondly, segment matching (fSM) is
utilized for loop-closure, and details on segmentation and
segment association are elaborated in Sec. III-B. Overall,
the factor graph can be expressed as

f(Θ) = f 0(Θ0)
∏
i

fO
i (Θi)

∏
j

fSSM
j (Θj) (sequential)∏

p

fPM
p (Θp)

∏
q

fSM
q (Θq), (loop closures)

where variables Θ contain 6-DOF robot poses, and every
factor fi(Θi) defines a constraint model on a set of variables
Θi. The optimization of a factor graph leads to a nonlinear
least-squares problem, which can be solved efficiently using
iSAM2 [21]. Sequential scan matching is performed using
the iterative closest point (ICP) algorithm.

B. Segmentation and Matching

The segmentation and matching scheme follows SegMatch
as proposed in [22], with some adjustments such that
place recognition occurs aggressively and more frequently
in indoor environments. We first remove the ground in a
point cloud by fitting a plane using points appearing near
ground level with the knowledge of sensor displacement and
orientation. Euclidean cluster extraction is then performed on
non-ground points on the i-th time-step to divide the points
into clusters {Ci

1, C
i
2, ...}, and a voxel grid is constructed

from each cluster denoted as v(C). Two clusters detected
in sequential frames are considered to be parts of the same
segment when their corresponding voxel grids overlap by
a certain number of voxels, or v(Ci) ∩ v(Ci+1) > vthresh.
Let Ci

j be the cluster in the j-th segment observed at the
i-th time-step, then a complete segment can be represented
as Sj = {Ci

j , C
i+1
j , ..., C

i+Nj

j }, and all cluster points are
anchored at the first step i given relative pose information
via state estimation.

Feature descriptors (e.g., Ensemble of Shape Functions
(ESF)) computed on a segment’s point cloud provide one
approach to determining if two segments are from the same
object. Similarly, if we assume our state estimation has
limited drift in an indoor environment, associated segments
are likely to be spatially close to each other. Thus, we inten-
tionally remove geometric consistency verification in [20],
and instead Sj and Sk are matched by sequentially verifying
the following distances (1) ∆c = |c(Sj)−c(Sk)| where c(S)
is the segment centroid, (2) ∆f = |f(Sj)− f(Sk)| where f
is a feature descriptor vector, and (3) ∆v = v(Sj) ∩ v(Sk)
where the voxel grid v is constructed using the entire cluster
of points in a segment. A successful segment matching
results in a SM factor describing point cloud registration
over two segments. An example is given in Fig. 1: two
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(a) No place recognition (b) Add SM and PM

Fig. 2: Segment-aided LiDAR mapping. The ground truth trajectory
(green) is obtained via LeGO-LOAM [32] using a full-range (100m)
LiDAR point cloud, while our estimated trajectory (blue) relies on
points with a 3m cutoff distance. The drift is corrected by adding
segment matching (two lines with the same color connecting pose
and segment), and pose matching (red lines connecting two poses).

segments, blue and red are tracked at poses x1 – x2 and x6

– x7 respectively, and segment matching produces a factor
connecting x1 and x6.

IV. EM EXPLORATION

In the formulation of the SLAM problem as a belief
net [23], the solution is obtained by maximizing the joint
probability distribution,

X∗, L∗ = argmax
X,L

logP (X,L,Z), (1)

where X,L,Z are robot poses, landmarks, and measure-
ments respectively. During exploration, we are confronted
with unknown landmarks that haven’t been observed yet.
Therefore, we introduce the concept of virtual landmarks
V as latent variables, which describe potential landmark
positions that would be observed when following the planned
path. Then the objective is to maximize the following
marginal model,

X∗ = argmax
X

logP (X,Z)

= argmax
X

log
∑
V

P (X,Z, V ).
(2)

The above equation involves unobserved variables,
which can be approached intuitively using an expectation-
maximization (EM) algorithm as follows,

E-step: q(V ) = p(V |Xold, Z) (3)
M-step: Xnew = arg max

X
Eq(V )[logP (X,V, Z)]. (4)

In the E-step, latent virtual landmarks are computed based
on the current estimate of the trajectory and the history of
measurements. In the M-step, a new trajectory is selected
such that the expected value of joint probability, given the
virtual landmark distributions, is maximized. The iterative
algorithm alternates between the E-step and M-step, but each
iteration is accomplished by the execution of actions and the
collection of measurements.

The equation above poses a challenge for efficient so-
lution due to the exponential growth of potential virtual

landmark configurations with respect to the number of virtual
landmarks. Inspired by classification EM algorithms [24],
an alternative solution would add a classification step (C-
step) before the M-step to provide the maximum posterior
probability estimate of the virtual landmark distributions,

C-step: V ∗ = argmax
V

p(V |Xold, Z) (5)

M-step: Xnew = arg max
X

logP (X,V ∗, Z). (6)

If we further assume measurements are assigned to maximize
the likelihood argmaxZ h(X,V ), then the joint distribution
can be expressed as a multivariate Gaussian centered at the
proposed poses and landmark positions, and the covariance
can be approximated by the information matrix inverse,

P (X,V, Z) = N
([

X
V

]
,

[
ΣXX ΣXV

ΣV X ΣV V

])
. (7)

The solution of Eq. 6 is equivalent to evaluating the log-
determinant of the covariance matrix,

argmax
X

logP (X,V ∗, Z) = argmin
X

log det(Σ). (8)

This implies that the performance metric for our proposed
exploration is consistent with the D-optimality criterion
in active SLAM [25], except that the subjects considered
include unobserved landmarks.

Since we are more interested in the uncertainty of the
virtual landmarks and the most recent pose xT+N at step T
with planning horizon N , we can marginalize out irrelevant
poses in ΣXX , ending up with ΣxT+N

. Typically, there exist
thousands of virtual landmarks, thus approximation of ΣV V

is critical for real-time applications. Combined with pose
simplification, we can obtain that, for a positive definite
covariance matrix,

log det(Σ) < log det(ΣxT+N
) +

∑
k

log det(Σvk
), (9)

where ΣVk
is the diagonal block involving the kth virtual

landmark in ΣV V . This approximation is reasonable consid-
ering an overestimate of information using the introduced
virtual landmarks (see Sec. V-A).

Now we show an approximative estimate of Σvk
. Let

Σvk
be the actual covariance matrix, and let Σ

(i)
vk ,Σ

(j)
vk be

the covariance estimates from two individual measurements
at poses xi and xj respectively. As in [26], we define
Bl(Σ) , {x | xT Σ−1x ≤ l} as a covariance ellipse of
Σ � 0 with level l. Due to additive information, it can be
shown that Bl(Σvk

) ⊂ Bl(Σ
(i)
vk)∩Bl(Σ

(j)
vk ). The covariance

intersection (CI) [26] algorithm was proposed to obtain an
upper bound of the covariance estimate without knowledge
of the correlation between measurement sources. Given only
Σ

(i)
vk ,Σ

(j)
vk , CI calculates an upper bound of the actual error

covariance as follows,

Σ̂−1
vk

= ωΣ(i)
vk

−1
+ (1− ω)Σ(j)

vk

−1
, (10)

4901



Fig. 3: Covariance intersection (CI). The actual covariance ellipse
(black) lies inside the intersection of two individual estimates (blue
and red dashed), and CI computes an upper bound (green) of this
intersection.
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Fig. 4: System overview of our proposed EM-exploration algorithm.

where the weight ω can be optimized to minimize the
determinant of Σ̂vk

, leading to

ω∗ =
2b− ac

2(a+ b− ac)
, (11)

a = 1/det(Σ(i)
vk

), b = 1/det(Σ(j)
vk

), c = tr(Σ(i)
vk

Σ(j)
vk

−1
).
(12)

The weighted combination of information matrices implies
Bl(Σvk

) ⊂ Bl(Σ
(i)
vk) ∩ Bl(Σ

(j)
vk ) ⊂ Bl(Σ̂vk

), and it follows
that det(Σvk

) < det(Σ̂vk
). By iteratively fusing estimates

from different poses, we derive an upper bound on the actual
covariance in terms of the minimal determinant. The two-
step approximation is illustrated in Fig. 3. Therefore, Eq. 9
is transformed to a looser upper bound,

log det(Σ) < log det(ΣxT+N
) +

∑
k

log det(Σ̂vk
). (13)

From the derivation, we can see the algorithm operates on
the basis of three functions: (1) producing a virtual map from
the current estimate and measurements, (2) propagating the
pose belief under prospective future measurements, and (3)
predicting landmark uncertainty. As the last two functions are
decoupled, it’s perfectly feasible that they employ different
sensor models for measuring landmarks.

V. IMPLEMENTATION DETAILS

In this section, we present an implementation of the
proposed EM exploration algorithm. The system architecture
is illustrated in Fig. 4, and each module contributing to
exploration is elaborated in the following subsections.

A. Virtual Map

How can we predict unobserved landmarks without prior
knowledge of the characteristics of an environment? We can
approach this question by making a conservative assumption
that any location which hasn’t been mapped yet has a
virtual landmark. Therefore, the probability that a location

−26

−24

−22

−20

−18

−16

−14

Fig. 5: Virtual landmarks, shown as grid cells with 0.5m resolution.
Their uncertainty (measured by covariance log-determinant) is re-
duced after closing a loop. Unmapped virtual landmarks (gray) have
large initial uncertainty outside the spectrum of values depicted.

is potentially occupied with a landmark is strongly related
to the traditional occupancy grid map. Let P (mi) denote the
occupancy of a discretized cell, then we define a virtual map
V consisting of virtual landmarks with probability

P (vi = 1) =

{
1, if P (mi = 1) ≥ 0.5

0, otherwise.
(14)

Under circumstances with severe drift, the expected map
could be utilized to calculate a weighted average of occu-
pancy grid maps from all trajectory hypotheses, as in our
previous work [27]. In Fig. 5, we whiten the grid cells that,
once observed, no longer possess virtual landmarks.

In its definition, existing landmarks have been incor-
porated into the virtual map, which is essential because
minimizing the uncertainty of observed landmarks is also
desired. What distinguishes an occupancy grid map from the
virtual map is the treatment of unknown space, which con-
sequentially determines what metric we use for exploration.
In occupancy grid mapping, in order to enable exploration
towards unknown space, Shannon entropy is typically lever-
aged to optimize a path that provides maximum information
gain. However, another metric, such as an optimality criterion
defined over the covariance matrix, is required to take into
account mapping and localization uncertainty. In contrast,
virtual landmarks are initialized to have high uncertainty,
which is reduced by taking measurements of them, resulting
in remarkable information gain. The same metric can be
further optimized by improving localization through loop
closures, thus unifying the utility measure used in both
exploration and localization.

B. Path Generation

In the M-step, given the distribution of virtual landmarks,
path candidates are generated and evaluated using our pro-
posed utility function (Sec. V-E). The global paths that are to
be followed over a long span of time must take into account
two types of actions, exploration and place-revisiting [15].
Exploration actions normally have destinations near frontier
locations where mapped cells meet unknown cells, and to
reduce localization uncertainty, place-revisiting actions travel
back to locations the robot has visited, or where it’s able to
observe a previously observed map segment. The prevalence
of these locations requires us to examine a large number of
free grid cells in order to obtain a near-optimal solution.

Therefore, we break the path generation problem into two
steps. First, frontiers that are reachable from the robot’s
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(a) Localization cost λl(x) (b) Exploration cost λe(x) (c) Alternative paths

Fig. 6: Alternative paths to a destination are generated from the shortest path on a variety of cost maps by varying weights in a weighted
sum of distance, localization and exploration cost. In (c), the alternative paths to a single frontier location are visualized in blue for clarity.
Potential segment matching and pose matching are denoted by green lines.

current location are identified as destinations of our path
primitives. Next, we refine the path to a frontier location
instead of taking the shortest one using multi-objective
optimization for path planning. Let d(xi,xj) be the dis-
tance cost between two poses, let doccupied(x), dobserved(x)
be the distance costs from a pose to the nearest occupied
cell and nearest observed cell respectively, and let rsensor
be the maximum sensor range. Then we define (1) the
cost for localization as λl(xj)d(xi,xj) where λl(xj) =
1 − exp(−aldoccupied/rsensor), and (2) the cost to explore as
λe(xj)d(xi,xj) where λe(xj) = exp(−aedobserved/rsensor).
The cost maps favoring localization and exploration are
illustrated in Figs. 6a and 6b.

At current step T , we wish to find a path that minimizes
the following weighted sum,

N∑
i=1

(
w0 + wlλl(xT+i) + weλe(xT+i)

)
d(xT+i−1,xT+i),

(15)
where w0 is added to allow distance to dominate the cost
when the other two terms are close to zero. Considering there
is no single optimal path for the above objective function, we
employ a simple weighted sum approach to explore Pareto
optimal solutions [28], by varying weights wl ∈ [0, 1], we =
1 − wl and leaving w0 as constant. The resulting paths are
further pruned to retain only those that are well-separated.
We build a roadmap in the collision-free configuration space,
and Dijkstra’s algorithm is used to search for the shortest
path with different cost functions. A representative example
is shown in Fig. 6c, and it’s evident that a few detoured paths
are generated to explore unknown space, and to re-observe
one map segment and acquire pose matching (green lines).

C. Place Recognition

The place recognition module is designed to achieve
accurate prediction of both pose matching factors {f̃PM

p }
and segment matching factors {f̃SM

q } given a predefined
trajectory. While predicted pose matching occurs in the same
manner as in real SLAM, we don’t resolve segment matching
by predicting LiDAR measurements using a traditional ray-
casting algorithm on a voxel grid associated with a segment
v(S). Instead, we approximate the measurement by perform-
ing a range search using k-d tree on the entire set of points in
a segment, and if we are able to gather enough points within
sensor range, we are confident that a cluster will be extracted

from this segment. The predicted matching is also validated
by subsequent poses, and a segment matching factor will
be accepted if the process is successful without interruption
following a designated number of sequential poses.

D. Belief Propagation

Belief propagation is concerned with evaluation of Eq.
13 given future sequential odometry factors {f̃O

i }, and more
importantly, loop closure candidates from place recognition
{f̃PM

p }, {f̃SM
q }. Pose covariance recovery follows a standard

update of iSAM2, and we use Σ̃xi
to denote the covariance

estimate after incorporating predicted future factors. Clearly,
the segment-aided mapping framework doesn’t possess land-
marks, so we create an imaginary inverse sensor model
vk = h−1(xi, zik) that is able to compute the state of a
virtual landmark from measurement z that is corrupted by
zero-mean Gaussian noise with covariance Λ. The predicted
error covariance for the kth virtual landmark from a mea-
surement at the ith pose is Σ

(i)
vk = Ai

kΣ̃xi
Ai

k
T

+Bik
k ΛBik

k

T
,

and Ai
k, B

ik
k are Jacobian matrices of the inverse sensor

model with respect to pose and landmark. Eventually, we
obtain Σ̂vk

by fusing all individual estimates from poses
that can observe the kth landmark using CI in Eq. 10.
Unobserved landmarks will still have large initial covariance.
We illustrate the uncertainty reduction due to loop closure
in Fig. 5.

E. Utility Evaluation

As discussed in Sec.V-B, a variety of candidate paths are
generated and we select the best one among them according
to a utility function that maps a path to a scalar. In Eq.13,
the log-determinant of the covariance matrix is derived from
the M-step as the uncertainty metric. Since the estimated
covariance has to be fused with a large initial covariance,
the log-determinant, or D-optimality, is guaranteed to be
monotonically non-increasing during the exploration process,
which is consistent with the conclusion in [29]. In addition
to uncertainty criteria, it is valuable to incorporate a cost-to-
go term to establish a trade-off between traveling cost and
uncertainty reduction [15]. Thus, our utility is finalized as,

UEM(XT :T+N ) =− log det(Σ̃xT+N
)−

∑
k

log det(Σ̂vk
)

− αd(XT :T+N ), (16)
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Fig. 7: Three EM exploration examples in simulated office, parking lot and real-world lab environments (from top to bottom). Trajectory
estimate and ground truth are plotted with blue/green dashed lines. We also query the optimal path using different algorithms at the
same moment off-line, which are shown with solid lines: EM (red), RHEM (orange) and NBV (blue). Frontiers are represented as purple
squares, and predicted place recognition constraints are shown as thin green lines. All examples required 8-9 min. of real-time operation.

where α is the weight on path distance d(XT :T+N ). In our
experiments, we adopt a linearly decaying weight function
with respect to traveled distance, whose parameters are
determined experimentally and applied consistently through-
out our algorithm comparisons below. The selected path is
executed immediately, but to account for deviation from the
nominal trajectory during execution and inaccurate prediction
after taking new measurements, the path is discarded when
it’s blocked by obstacles or the robot has traveled a desig-
nated distance. The exploration planning process is repeated
until no frontier is detected.

F. Complexity Analysis

The generation of occupancy maps in Sec. V-A and two
cost maps in Sec. V-B are trivial. Let Np be the number of
alternative paths to evaluate; Nq is the number of poses on
an individual path, Nv is the number of virtual landmarks,
Td is the time to perform Dijkstra’s search, Tk is the time
to perform range search in k-d tree, and Tc is the time to
incrementally update a factor graph and recover the block-
diagonal of the covariance matrix. The time consumed to
generate alternative paths and place recognition factors is
NpTd and NpNqTk, respectively. The computational cost of
the proposed framework is dominated by belief propagation,
i.e., estimating pose covariance by executing a plan. Belief
propagation is naively achieved by a standard iSAM2 update
and covariance recovery in GTSAM, and the total time is
NpTc, where Tc is approximately O(n2.36) [30]. Afterwards,
covariance intersection is applied to every virtual landmark,
resulting in time of NvNk, assuming every landmark is
observed by a maximum of Nk poses.

VI. EXPERIMENTS AND RESULTS

We analyze the performance of our proposed algorithm
in two simulated environments where we can obtain ground

truth data, and in a real environment. The robot is intended
to explore the environment given only a bounding box,
and terminates when no unknown area is reachable. In all
experiments, we use a Clearpath Jackal UGV (Fig. 10a),
which is equipped with odometry and a VLP-16 LiDAR
with 3-meter range, intended to emphasize uncertainty. We
implement segment-aided SLAM and EM exploration in
ROS, and the simulation is built upon Gazebo.

A. Comparison

To better assess the proposed algorithm, We compare it
with two variants of next-best-view approaches. Throughout
the comparison, we use the same path generation method,
and the utility function is regarded as the only independent
variable. Consequently, our implementations differ somewhat
from the documented performance of the original algorithms.
We also note that the following utility functions depend
entirely on the occupancy grid map, not the virtual map.

Next-best-view (NBV): The NBV planner computes accu-
mulated gain discounted exponentially by distance from start.
The gain is defined with regard to the occupancy status of
the visible volume at pose xT+i detailed in [13], and thus

UNBV(XT :T+N ) =
N∑
i=1

Gain(xT+i) exp(−λd(XT :T+i)).

(17)
Uncertainty-aware receding horizon exploration and
mapping (RHEM): The RHEM planner [14] improves the
result in NBV by taking into account vehicle and feature
uncertainty. Specifically, we apply UNBV to search for a goal
point, then a nested utility function is evaluated on alternative
paths to the designated goal point,

U
(2)
RHEM = − log det(Σ̃xT+N

)−
∑
k

log det(Σ̂lk), (18)
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Fig. 8: Gazebo-based simulation environments explored by a simulated Jackal UGV. Results on the right show mapped volume, mapping
error and localization error with respect to traveled distance over 30 trials starting from the origin of each map.

Fig. 9: Heat map of robot positions using kernel density estimation
over 30 experiments in the parking lot environment. The 3-meter
scale indicates the sensor range simulated.

where we switch to lk in the above notation to indicate actual
rather than virtual landmarks. Similarly, in a featureless
environment, we resort to the same technique to acquire
an upper bound of a virtual landmark’s covariance, but the
utility function in RHEM doesn’t include the uncertainty of
unknown spaces that have not yet been mapped.

B. Simulation environment

The simulated experiments were conducted in two envi-
ronments (10 m× 10 m), an office and parking lot, featuring
different densities of objects for localization (see Fig. 8).
All algorithms were executed over 30 trials, starting from
the same location. We use three statistics with respect to
traveled distance to analyze the performance:

1) Exploration progress is computed as the spatial volume
considered as free or occupied in a 3D Octomap [31].

2) We measure the localization quality using root-mean-
square error (RMSE) of the entire trajectory,

ETrajectory =

√√√√ 1

T

T∑
i=0

||x̂i − xi||2. (19)

3) Map error is computed as the RMSE of all points
transformed based on the estimated trajectory,

EMap =

√√√√ 1

M

M∑
k=0

||p̂k − pk||2. (20)

From the results presented in Fig. 8, it is evident that
the EM algorithm maintains the highest exploration rate in

terms of mapped volume, and more importantly it effectively
modulates both trajectory and map error. The outcome can
be reasoned from a few moments during EM exploration in
Fig. 8. The NBV approach is solely based on unexplored
volume, thus prone to erroneous state estimation. Aside
from uncertainty, its utility is exponentially discounted by
distance cost, which renders information obtained at a greater
distance negligible. To remedy localization error, RHEM is
inclined to take a detour to where the robot can reacquire
previously mapped segments, but generally the improved
path resides in known space. Therefore, improving one utility
impairs the other one because of the separation of exploration
and localization metrics. To better understand the difference
in movements during exploration, we produce heatmaps of
robot positions in the parking lot environment (see Fig. 9).
We can see the robot was more attentive to places close
to vehicles in the parking lot using the EM exploration;
meanwhile, both RHEM and NBV left a large amount of
footprints in the empty area, and the NBV planner had less
interest in the right-half, less “informative" space.

C. Real world environment

We also wish to demonstrate the applicability of our
proposed algorithm to real robot platforms. The real-world
experimental scenario was located at the Stevens ABS En-
gineering Center (25 m × 15 m), similar to the simulated
office, occupied with workbenches and chairs (Fig. 10b). All
parameters are kept the same as in the simulated environ-
ments. Progressive instances of a representative execution
trace are depicted in Fig. 7. We can observe that drift from
the ground truth trajectory (obtained from LeGO-LOAM
[32]) becomes more severe when the vehicle is further from
the starting location. As a result, it traveled through the
central region several times for better localization. Inspection
of the resulting trajectory illustrates the balance between
exploration and exploitation.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have adapted an EM exploration algo-
rithm to the widely generalizable context of pose SLAM,
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(a) Jackal w/ VLP-16 (b) Stevens ABS laboratory

Fig. 10: Our UGV platform and test environment.

which exploits segmentation of point clouds to enhance place
recognition. The proposed framework, comprising virtual
map construction and computation of the covariance up-
per bound, offers an advantageous capability of forecasting
future actions without requiring the explicit modeling of
features in SLAM. The EM algorithm exhibits superior
performance in exploration rate, localization and mapping
accuracy in two simulated experiments. The computational
complexity is discussed in our original work [18], but
throughout our experiments, it is able to achieve near real-
time querying, and all experiments required less than 10
minutes of real-time operation. However, our path primitives
only consist of paths to frontier locations, thus uncertainty
continues increasing as exploration progresses. Improving
this routing scheme is a goal for future work.
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