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 CURRENT
OPINION Primer on machine learning: utilization of large

data set analyses to individualize pain management

Parisa Rashidia, David A. Edwardsb, and Patrick J. Tighec

Purpose of review

Pain researchers and clinicians increasingly encounter machine learning algorithms in both research
methods and clinical practice. This review provides a summary of key machine learning principles, as well
as applications to both structured and unstructured datasets.

Recent findings

Aside from increasing use in the analysis of electronic health record data, machine and deep learning
algorithms are now key tools in the analyses of neuroimaging and facial expression recognition data used
in pain research.

Summary

In the coming years, machine learning is likely to become a key component of evidence-based medicine,
yet will require additional skills and perspectives for its successful and ethical use in research and clinical
settings.
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INTRODUCTION

In recent years, advances in machine learning have
promulgated to many domains of biomedical infor-
matics, including pain management [1

&&

]. In this
article, we first review many core principles and
definitions in the field of machine learning. Next,
we examine the impact of machine learning
approaches in the analyses of large electronic health
record data sets. We end with a review of advanced
machine and deep learning approaches to semi-
structured and unstructured datasets, highlighting
several exciting future directions in the use of
machine learning to enhance our understanding
and treatment of pain conditions.

OVERVIEW OF MACHINE LEARNING

In recent years, there has been an increasing interest in
applying machine learning techniques in the health-
care domain. Today, a wide range of machine learning
applications can be found, for example, selection of
human blastocysts after in-vitro fertilization [2], pre-
dicting medical events based on electronic health
records (EHR) [3,4

&

], and diabetic retinopathy detec-
tion [5]. In the pain management domain, many
researchers have started to utilize such approaches,
for rexample, recognizing pain facial expressions [6,7].

In the following primer, we provide a brief intro-
duction of machine learning methods, followed by
a discussion of pain management applications.

Definition

Machine learning is a sub-field of artificial intelli-
gence, with the goal of learning a function from a set
of data points by optimizing a certain performance
metric, such as prediction accuracy. Each data point
x, is composed of categorical or numerical features
such as demographics, laboratory results, or preex-
isting conditions. Additionally, each data point
might be associated with a label y. The label (cate-
gory or outcome of interest) is either directly
extracted from data, for example, postoperative

aJ. Crayton Pruitt Family Department of Biomedical Engineering (BME),
University of Florida (UF), bDivision of Pain Medicine, Department of
Anesthesiology, Vanderbilt University, Nashville, TN and cDepartment of
Anesthesiology, College of Medicine, University of Florida, Gainesville,
FL, USA

Correspondence to Patrick J. Tighe, MD, MS, J. Crayton Pruitt Family
Department of Biomedical Engineering (BME), University of Florida (UF),
PO Box 100254, 1600 SW Archer Road, Gainesville, FL 32610-0254,
USA. Tel: +1 352 273 7844; e-mail: ptighe@anest.ufl.edu

Curr Opin Anesthesiol 2019, 32:653–660

DOI:10.1097/ACO.0000000000000779

0952-7907 Copyright � 2019 Wolters Kluwer Health, Inc. All rights reserved. www.co-anesthesiology.com

REVIEW

mailto:ptighe@anest.ufl.edu


 Copyright © 2019 Wolters Kluwer Health, Inc. All rights reserved.

outcome (0¼mortality, 1¼ survival), or might be
provided by an expert, for example, melanoma
lesion diagnosis from photographic images (0¼not
not present, 1¼present) [8].

Differentiation from statistics

Although machine learning and statistics share
some key elements, they have been developed in
different contexts to solve different problems. Clas-
sical statistical models were designed to handle data
with a few dozen input variables and modest sample
sizes, with an emphasis on experiment design [9].

On the other hand, machine learning models
often concentrate on prediction from already avail-
able data by using general-purpose algorithms to
find patterns in very rich and unwieldy data [9].
For example, modern deep learning models can
detect and segment objects in high-dimensional
image or video data, such as volumetric electron
microscopy images [10], and can identify temporal
patterns across many high-resolution physiological
signals [4

&

].

TYPES OF MACHINE LEARNING TASKS

Machine learning approaches can be divided into
three general categories: supervised learning, unsu-
pervised learning, and reinforcement learning
approaches. Beyond these, there are several other
approaches, such as semi-supervised learning and
active learning; we refer interested readers to refer-
ences on these topics [11,12].

Supervised learning

Supervised learning models require a labeled dataset
(the category or outcome is identified), where labels
are used as supervision signals to guide the learning
process [13]. The supervised task itself can be a
classification task, where the target label is a nomi-
nal label (e.g. 0¼mortality, 1¼ survival). Other
supervised tasks include regression, where the target

label (e.g. 0¼no stroke, 1¼ stroke) is drawn from a
continuous numerical range of values (e.g. blood
pressure). Finally, the supervised task might be a
ranking task, where the target is an ordinal value
(e.g. ranking of pain management medications).

Many supervised machine learning techniques
have been developed in the past few decades, includ-
ing decision trees, random forests, support vector
machines (SVM), neural networks, gradient boost-
ing machines, among others [14

&

]. These methods
have shown good performance on small/moderate
sized and structured datasets in many domains
related to traditional outcomes research including
diagnosis management, prediction modeling, event
detection, and risk evaluation, including the risk of
severe pain following surgery [15–21].

Unsupervised learning

Unsupervised learning models, on the other hand,
do not require labeled data, but rather will discover
relationships in data in an unsupervised manner
(e.g. by grouping similar data points together in a
lower dimensional space (more homogenous sub-
groups)). Some examples include clustering,
dimensionality reduction, and autoencoder techni-
ques [14

&

,22]. Particularly in recent years,
dimensionality reduction techniques, such as T-dis-
tributed Stochastic Neighbor Embedding (t-SNE)
[23] and Uniform Manifold Approximation and
Projection (UMAP) [24] have been used extensively
in visualizing high-dimensional data (e.g. for visu-
alization of genetic disease-phenotype similarity).
The s-SNE and UMAP techniques ‘compress’ highly
dimensional data into two dimensions that can be
plotted on a more understandable x–y coordinate
plane, all while preserving some of the mathemati-
cal relationships contained in the higher dimen-
sional space. For instance, t-SNE could be used to
compress the information contained within four-
dimensional videos of ultrasound-guided nerve
blocks (e.g. x, y, color depth, time) onto a two-
dimensional plane to understand nonlinear rela-
tionships amongst the original four dimensions.

Reinforcement learning

Reinforcement learning models map a sequence of
situations (i.e. states) into a sequence of actions by
maximizing a reward signal [25]. Unlike supervised
learning, in reinforcement learning problems, the
correct actions are not labeled. Rather, the reinforce-
ment learning model should infer the correct
actions based on the reward signal, which
might be provided in a delayed manner. Recent
reinforcement learning models apply deep learning

KEY POINTS

� In certain circumstances and contexts, machine learning
may offer advantages over traditional techniques.

� One of the key opportunities for machine learning in
pain research and clinical practice pertains to the use
of complex and unstructured data.

� Patients, physicians, and researchers will need to
address important ethical issues as machine learning
methods and applications to pain continue to evolve.

Regional anesthesia
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techniques to represent high-dimensional states (e.g.
for diagnosing neural symptoms, or for optimizing
medical dosing) [26,27]. Recent work in a simulated
intensive care decision support model suggests these
approaches may help improve clinical outcomes
through improved, data-based decision support,
although also highlighted the significant challenges
in this approach in the healthcare setting [28].

MEASURING MACHINE LEARNING
PERFORMANCE

To evaluate the performance of machine learning
models, the original dataset is typically partitioned
into three independent subsets: a training subset, a
validation subset for fine-tuning parameters, and a
test dataset solely used for reporting the perfor-
mance. It is also possible to perform the data parti-
tioning using cross-validation or stratified cross-
validation methods. In stratified cross-validation,
the folds contain proportional number of examples
from each class based on considerations, such as
prevalence. Several model performance metrics can

be used, including classification accuracy, precision,
recall, area under curve (AUC), F1 score, or mean
absolute error (MAE) [29]. It is important to imple-
ment a rigorous testing approach to avoid overfit-
ting problems, where data fits training data but fails
to provide generalization in case of new data. Clini-
cal machine learning models can greatly benefit
from external validation and prospective clinical
validation to avoid such issues [30].

DEEP LEARNING

Deep learning models are a relatively new class of
machine learning models that aim to automatically
learn data representations, and typically achieve
higher performance compared with conventional
machine learning models [31

&&

]. Most deep learning
models learn a hierarchy of features, increasingly
becoming more complex and building upon prior
simpler features. For instance, recognizing a human
in an image can involve finding representation of
edges from pixels, contours and corners from edges,
and facial features from corners and contours [32

&&

].

FIGURE 1. Different deep learning methods can be used to extract information from clinical data.

Primer on machine learning Rashidi et al.

0952-7907 Copyright � 2019 Wolters Kluwer Health, Inc. All rights reserved. www.co-anesthesiology.com 655



 Copyright © 2019 Wolters Kluwer Health, Inc. All rights reserved.

Most deep learning models are based on neural
networks, where each layer is composed of several
neurons. The input layer neurons represent input
data (e.g. pixel values in an image) and the output
neurons correspond to the target values, such as
binary prediction of survival/mortality, or multi-
pixel segmentation mask in a biomedical image.
The middle layer neurons are called as hidden neu-
rons. There are many different types of deep neural
networks, including convolutional neural networks
(CNN) for analyzing images, recurrent neural net-
works (RNN) for processing sequential and temporal
data, and variational autoencoders for dimensional-
ity reduction [31

&&

,32
&&

,33]. In most deep learning
models, at least several thousand examples will be
needed to develop a reasonable model [30].

STRUCTURED AND UNSTRUCTURED DATA

One of the key advances of machine learning over
traditional statistical methods concerns the analyses
of unstructured data. Structured data in this context
refers to data organized in a traditional biomedical
data model where columns commonly represent
variables, and rows different patients, observations,
or cases. Additionally, each element is generally
curated and validated such that each variable is
restricted to a single form and format. These orga-
nizational constructs lend themselves to traditional
machine learning analyses given that their organi-
zation aligns well with the matrix-based solutions
commonly used for solving regression-type prob-
lems (Fig. 2).

FIGURE 2. Structured data. The organization of structured data lends itself well to solving traditional regression analyses.

Regional anesthesia

656 www.co-anesthesiology.com Volume 32 � Number 5 � October 2019



 Copyright © 2019 Wolters Kluwer Health, Inc. All rights reserved.

Contrariwise, unstructured data is information
that does not conform to such traditionally orga-
nized common data models. Examples of unstruc-
tured data in the perioperative environment include
images, videos, waveforms, network structures, and
clinical text documents. Without some type of
decomposition or abstraction, unstructured data
has no discretely labelled variables in which the
information can be placed. Moreover, the informa-
tion within unstructured data is typically accessible
at several different scales. For instance, with imaging
data, we may wish to consider information on a
pixel-by-pixel level, but also to consider different
shapes, their size, orientation, and relationship with
other shapes.

Structured datasets, such as EHR records, readily
provide most data points (features) in a numerical or
categorical form. However, unstructured and semi-
structured data, such as biomedical images, protein
networks, clinical notes, and physiological time
series data typically need to be converted into a
suitable numerical format. The task of changing
the form of representation for the purpose of learn-
ing is called representation learning or embedding,
and is achieved using deep learning techniques
[32

&&

,34].

EARLY EXPLORATIONS

Early explorations with machine learning in health-
care were developed by neurophysiologists and
modeled after the complex function of the brain
[35]. Neurons in the brain signal within networks by
propagating suprathreshold signals across synapses
by dispatching anterograde and retrograde messen-
gers. Artificial neural network machine learning
models were developed to explore this function of
the brain. With only a few data features to use to
predict an outcome, simple three-layer neural net-
works (Fig. 3) were developed that rivaled the per-
formance of multiple regression mathematical
models [36,37]. Since then, complex multilayer
models (e.g. multilayer perceptron neural network)
have been used in several clinical studies including
to diagnose cancer [38,39].

Three basic reasons neural networks and other
machine learning methods performed well on
healthcare data are that they account for nonline-
arity among parameters (e.g. nonlinear response of
age), they account for important interactions
among variables (e.g. smoking history and rates of
surgical infection on hospital length of stay), and
with increasing number of data features, predictive
power can be retained despite a limited sample size

FIGURE 3. An example of a simple three-layer perceptron neural network. In this example, four input variables (input layer)
have several interactions (hidden layer) and determine one of two possible outcomes (output layer).

Primer on machine learning Rashidi et al.
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(e.g. hundreds or even thousands of exposure var-
iables can still result in a unbiased prediction mod-
els). Occasionally the complexity of the data
precludes foreknowledge of which methods would
be preferred, so multiple machine learning models
can be developed as an initial screening strategy to
identify the method that has the best performance.

Structured data studies

Postoperative pain is a difficult outcome to predict
because of the number of possible contributing
factors. Patient factors (e.g. age, sex, genetic profile,
comorbid medical and psychological disease) and
surgical factors (e.g. surgeon, operation, operative
location, surgical and anesthetic techniques) can all
contribute to the likelihood of severe acute or
chronic postsurgical pain. Even though some
patients are more likely than others to experience
severe pain, resources and treatment are often
applied to all patients because of an inability to
identify before surgery those who are at risk.

Acute postsurgical knee pain

In a chart review of 349 patients who were to
undergo anterior cruciate ligament (ACL) recon-
struction, perioperative data (e.g. age, BMI, sub-
stance use, medications, open versus arthroscopic
surgical approach, tourniquet time, anesthetic med-
ications) were collected and multiple machine
learning models [logistic regression, BayesNet, mul-
tilayer perceptron, support vector machine, alter-
nating decision tree (ADTree)] created to predict
which patients would experience severe acute post-
operative pain, and therefore, require postoperative
rescue pain treatment in the form of a femoral nerve
block [21]. Machine learning models developed on
structured data from the EHR outperformed logistic
regression models identifying patients likely to
experience severe postoperative pain after ACL
repair.

Decision support tool for acute pain
consultation

With structured data, machine learning methods
can be useful decision support tools to replace less
efficient human-driven operations. In the Tighe
et al. [19] study, a cohort of machine learning mod-
els were developed and tested to predict the need for
preoperative pain service consultation based solely
on data elements from surgical posting schedules.
Bayesian classifiers had the best performance on this
data to predict which surgical cases should prompt a
preoperative request for acute pain consultation
with an accuracy AUC of 0.87 in a training time

of 0.0018 s. This is noteworthy, given the training
times required for other machine learning
approaches, such as neural networks, which
required over 30 s of training time per model, and
highlight the need to consider outcomes, features,
and algorithmic factors in designing machine
learning solutions.

Unstructured data studies

Neuroimaging data

Within the domain of pain research, there have
been several exciting forays into nontraditional,
unstructured, and semistructured data using
machine learning approaches. Machine learning
analyses of neuroimaging data (e.g. images
obtained through functional MRI – fMRI) can be
based upon structural features, such as via volumet-
ric pixel (voxel)-based morphometry indicating the
size of specific brain regions, functional biomarkers,
such as blood oxygenation (BOLD) or arterial spin
labelling, and connectivity measures across brain
regions [40,41]. Early work by Mackey and
coworkers showed that the semi-structured data
from fMRI studies, when analyzed using a support
vector machine, could label the painful versus non-
painful thermal stimuli with high degrees of accu-
racy (81–84%) [42]. Follow-up work by Wager et al.
[43] extended these findings by identifying fMRI-
based signatures of thermal pain that also discrimi-
nate from other aversive events and are sensitive to
opioid analgesic effects. Notably, these machine
learning approaches generally rely on human
and/or algorithmic abstraction of neuroimaging
features rather than deep learning approaches to
feature processing.

Robinson, Hu, and others have raised important
questions concerning disparities between machine
learning-derived neuroimaging biomarkers of pain
and patient self-report of pain [44

&&

,45]. Given the
subjective nature of many pain experiences and
ethical issues involved in under-treatment versus
over-treatment of pain conditions, researchers and
clinicians will need to seriously examine findings
from this rapidly evolving field to ensure that
appropriate relief of patient suffering is not lost
to an overly simplified abstractions of quasi-
validated models.

Facial recognition

One common approach to facial expression recog-
nition concerns machine learning analyses on fea-
tures coded as action units using the Facial Action
Coding System, such that the action units serve as

Regional anesthesia
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an interpretable abstraction layer for facial expres-
sions [46]. Other approaches use deep neural net-
works to capture raw features direct from images of
facial expressions, potentially accessing a richer set
of features but at a cost of reduced interpretability
[47]. Recent work by Chen et al. [48] has shown that
mental representations of facial expressions of pain,
as assessed via machine learning of facial action
units, are consistent across cultures. This approach
has also been extended to animal models of pain,
such as with the Mouse Grimace Scale, which
trained an Inception V3 convolutional neural net
on a dataset of human-scored images of mice in
various pain states [49,50].

These early investigations on facial recognition
of pain are already translating towards the clinical
environment, with special emphasis on pediatric
populations. Sikka et al. [51] has used similar meth-
ods for pediatric postoperative pain, with detection
of pain versus no pain model accuracy of AUC 0.84–
0.94. Other teams have used similar approaches to
neonatal pain, a particularly exciting advance given
the range of painful procedures neonates experience
during extended NICU stays [52,53].

ONGOING CHALLENGES AND
OPPORTUNITIES

Despite the myriad advances offered by machine
learning, these new analytical techniques have also
forced a reckoning by physicians and researchers on
fundamental challenges concerning the application
of evidence-based medicine to individual patients.

Above all, physicians must remember that
patients are more than just data. Accurate machine
learning algorithms may enhance disease diagnosis,
but they cannot deliver that diagnosis with compas-
sion and understanding, with a recognition of the
impact of that diagnosis on the patient and their
future. Perhaps one of the greatest potential benefits
of machine learning in medicine would be allowing
physicians to attend more to the humanistic needs
of our patients.

One final challenge concerns the ever-present
potential for divergence of the observed from the
expected. In prognosticating outcomes with grave
consequences, physicians and patients will need to
consider how to approach scenarios where the fore-
casted outcome is considered highly likely, but for
reasons that may be murky. For instance, how
should a physician counsel a patient who is 90%
likely to succumb to an illness based upon a
machine learning algorithm, but where the diagno-
sis is based upon 10 000 ‘-omic’ features that
neither physician, nor patient, nor researcher can
readily interpret? And what of the patient who is

potentially concerned about more than one out-
come, perhaps judging tradeoffs between life expec-
tancy, function, and suffering? Although the future
of machine learning in pain medicine is exciting,
patients and physicians must first confront myriad
ethical and operational questions before these tools
can definitively improve patient health.
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