Quantity or Quality: Are Self-Healing Polymers and Elastomers Always Tougher with more Hydrogen Bonds?

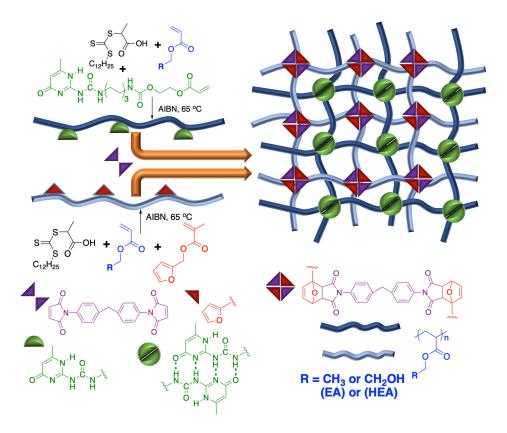
Sean C. Cummings, a,‡ Obed J. Dodo, a,‡ Alexander C. Hull, Borui Zhang, a,† Camryn P. Myers, a Jessica L. Sparks, Dominik Konkolewicz*, a

a Department of Chemistry and Biochemistry, Miami University, 651 E High St. Oxford, OH, 45056, USA

b Department of Chemical Paper and Biomedical Engineering, Miami University, 650 E High St. Oxford, OH, 45056, USA

ABSTRACT: Polymer materials containing dynamic bonds have many potential applications including adhesives, elastomers, and coatings with long lifetimes. Interpenetrated networks (IPNs) were studied, where one network had covalent linkers, and the other network had dynamic quadruple hydrogen-bonded 2-ureido-4[1H]-pyrimidinone (UPy) linkers. IPNs typically have superior mechanical properties to each component network. IPNs had either non-polar poly(ethyl acrylate) (PEA) or hydrogen-bond rich poly(2-hydroxyethyl acrylate) (PHEA) materiaes. Although the PHEA materials have more hydrogen-bonds, the self-healing, toughness and fracture energies were poorer than the PEA systems. This suggests that strong and dynamic hydrogen-bonds, even at the potential expense of total hydrogen-bonds, should be chosen for applications that require toughness such as high-performance coatings, sealants or elastomers.

KEYWORDS: Hydrogen-bonds; toughness; fracture energy; polymer network; interpenetrated network; dynamic bonds; self-healing polymers; RAFT polymerization.


Dynamic bonds have made substantial impacts on polymer materials, enabling materials to have extended useful lifetimes, improving toughness, or enhanced performance in challenging environments.¹ Realized and potential applications of dynamic polymers are numerous including coatings, sealants, advanced elastomers, rubbers, self and rehealable materials and even biomedical applications. 1-4 These applications arise from the dynamic bonding increasing toughness and enabling the material to be reprocessed or recover from damage. Dynamic bonds fall into two categories, dynamic covalent or dynamic non-covalent bonds.^{5,6} Dynamic covalent bonds use strong covalent bonds which typically require external stimuli to activate them towards exchange.⁵ In contrast, dynamic non-covalent or supramolecular bonds tend to be active under ambient conditions with relatively fast exchange under ambient conditions.⁷ There are many examples of non-covalent bonds including host-guest interactions, metal-coordination, and hydrogen-bonds. Hydrogen bonds have often been used to make dynamic and self-healing materials which exchange and heal under ambient conditions.^{2,6} Due to the large number of functionalities that can introduce hydrogen bonds to a material, "sacrificial" or engineered hydrogen bonds have been commonly added to polymer materials to increase performance in self-healing or toughness tests.^{8,9} High performance polymer materials can be engineered by combinations of dynamic covalent and non-covalent bonds such as hydrogen bonds.^{7,8,10-12} In these cases the dynamic covalent bonds can provide material integrity, with the non-covalent bonds introducing dynamics under ambient conditions. 10,13 Recent work has also shown that network and macromolecular architecture can further impact material mechanics. Interpenetrated networks (IPN), with one network entangled but not linked to the other, have enhanced toughness, fracture energy and strength. 13-16

One of the most commonly used and accessible strong hydrogen-bonded linkers is the quadruple hydrogen bonded 2-ureido-4[1H]-pyrimidinone (UPy) linker, with dimerization constants that can exceed 10⁶ M⁻¹. ^{17,18} This linker has been incorporated into polymer materials to induce thermoreversibility, ¹⁹ self-healing, ²⁰, shape memory, ^{21,22} responsive adhesive properties, 23 and enhanced toughness 24,25 through exchange of these H bonds. As with all other hydrogen-bonded interactions, solvent effects can impact association constants for UPy units, with less polar solvents favoring stronger association of UPy units.^{25,26} Earlier work has incorporated the UPy units into both polar polymer matrices rich in hydrogen bond donors and acceptors, 10,13 as well as non-polar matrices which should favor strong association of the UPy units. 14,27 In polar matrices, such as poly(2-hydroxyethyl acrylate) (PHEA), the association of UPy units is likely to be substantially weakened, ^{19,28,29} but there is a larger *quantity* of hydrogenbonds from the UPy units and the OH and carbonyl groups in the monomer. 30,31 In contrast, in non-polar matrices such as poly(ethyl acrylate) (PEA) the association of UPy unit is likely to be enhanced, or a higher quality UPy bond, although the backbone monomers do not form a hydrogen-bonded network. Typically, a material's toughness and ability to tolerate fractures before failing improves with "sacrificial" hydrogen-bonds,8 although it is currently unclear if quality of UPy association or quantity of hydrogen bonds, even at the potential expense of UPy association, leads to superior toughness and self-healing properties. By modifying only one terminal hydrogen of PEA to an OH group in PHEA, difference in pendant group mobility should be small, and sidechain flexibility is likely to play a minimal part in overall material properties.³² Earlier work showed IPN materials give superior mechanical properties by allowing more non-covalent bonds to form.³³ Therefore, IPN materials containing UPy linkers in one network and essentially static Diels-Alder adducts in the other network are used as model

system. This model system is designed to provide evidence on whether materials are toughened through the strength of hydrogen bond association (*quality*) or total number of hydrogen-bonds (*quantity*). In particular, for UPy containing polymers we investigate whether polymer materials are toughened through the increased association constant of UPy hydrogen bonds in non-polar PEA matrices,²⁶ leading to improved *quality* of hydrogen-bonds. Alternatively, we test if UPy containing polymer materials are toughened with the greater *quantity* of hydrogen-bonds in a PHEA matrix, which contains hydrogen-bonds at each repeat unit, despite the potential decrease in the UPy association constant in hydrogen bond rich matrices.

A series of IPNs were synthesized with different matrices (hydrogen bond rich PHEA and non-polar PEA), chain lengths (primary chain lengths of 50 vs 100) and crosslink densities (5 mol% total crosslink density or 7.5 mol% total crosslink density). Note crosslink density is evenly split between non-covalent UPy units and covalent Diels-Alder units. Polymer molecular weight data is given in Table S1 for PEA materials and Table S2 for PHEA materials. Primary chain lengths were controlled by reversible addition-fragmentation chain transfer (RAFT) polymerization.³⁴ Table S1-S2 gives the molecular weight data for the RAFT polymers synthesized as determined by size exclusion chromatography (SEC) and nuclear magnetic resonance (NMR). Representative SEC traces are given in Figure S1 and representative NMR spectra used to calculate molecular weight averages are given in Figures S2-S3. Note the SEC derived molecular weights were determined using conventional calibration against poly(methyl methacrylate) standards, making them apparent molecular weights. Nevertheless, generally narrow molecular weight distributions were obtained indicating good control over polymer architecture, and the NMR analysis in Table S1-S2 indicates that the obtained polymer composition is close to the

targeted composition, with PHEA based materials having substantially more hydrogen-bond donors than PEA based materials. The synthesis of the materials is given in Scheme 1.

Scheme 1. Synthesis and structure of IPN materials based on HEA (R=CH₂OH) or EA (R=CH₃) with UPy (green) hydrogen-bonded crosslinker and furan-maleimide (red-purple) covalent crosslinker.

Copolymers of ethyl acrylate (EA) or 2-hydroxyethyl acrylate (HEA) with either furfuryl methacrylate 2-(((6-(3-(6-methyl-4-oxo-1,4-dihydropyrimidin-2-(FMA) or yl)ureido)hexyl)carbamoyl)oxy)ethyl acrylate (UPyA) were synthesized by polymerization using an approach developed in the literature. ¹⁴ To generate the IPNs, the UPyA copolymer was mixed with the **FMA** copolymer and 1,1'-(Methylenedi-4,1phenylene)bismaleimide as a crosslinker for the FMA units, taking advantage of the Diels-Alder "click" chemistry properties.³⁵ Equal mass proportions of the non-covalent (UPyA) network forming polymer and the covalent (FMA) network forming polymer were used in each IPN, although IPNs of different backbone chain lengths and crosslink densities were used. It is important to note that the same backbone forming monomer (EA or HEA) was used for both the UPyA and the FMA polymers to limit the potential for phase separation. N,N-dimethylformamide (DMF) was used in the IPN synthesis, and removed after the material was formed.

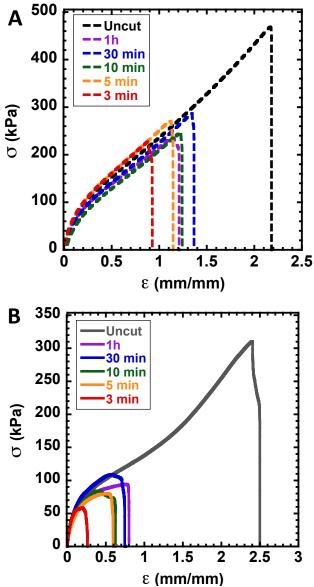

A code was developed to describe the materials, for instance PEA₁₀₀-5% is a material with average chain length of 100 units with 5% crosslink density, and overall Diels-Alder crosslink density of 2.5 mol% and a UPyA crosslink density of 2.5 mol%. Typical infrared spectra of the materials are given in Figure S4 with the OH stretch clearly visible in the PHEA materials and absent in PEA materials. These infrared spectra are consistent with those reported for PEA,¹⁴ and PHEA,⁴ based materials.

Table 1. Thermal and mechanical properties of the IPN materials. Errors represent standard error of mean.

Material	$T_{ m g}$	σ _{peak} (kPa)	$\epsilon_{break}(mm/mm)$	E (kPa)
	(°C)			
PEA ₁₀₀ -5%	-5	480±40	1.9±0.2	490±60
PEA ₁₀₀ -7.5%	1	1900±100	1.00±0.04	2900±200
PEA ₅₀ -7.5%	0	1260±40	1.74±0.07	1100±200
PHEA ₁₀₀ -5%	17	290 ± 60	2.54±0.06	190±50
PHEA ₁₀₀₋ 7.5%	19	2000±200	0.7±0.1	4500±400
PHEA ₅₀ -7.5%	13	900±200	1.12±0.04	1000±200

To evaluate the performance of the 6 materials, tensile, self-healing and fracture energy experiments were performed. Table 1 gives the tensile and thermal properties of each material. All materials had glass transition temperatures (T_g) near or below room temperature as determined by differential scanning calorimetry (DSC). The DSC measured T_g of homopolymers of PHEA were found to be -14 °C and -17 °C for PHEA₅₀ and PHEA₁₀₀, respectively. Similarly, the DSC measured T_g of homopolymers of PEA were found to be -32 °C and -30 °C for PEA₅₀ and PEA₁₀₀ homopolymers, respectively. In all cases, crosslinking to the IPN materials increases the rigidity of the backbone and raises the T_g , with small variations in T_g due to composition and chain-length, with the material with the highest crosslink density and chain length having the highest T_g .

It is important to note that under the testing conditions of ambient temperature (22 °C), all materials are above the glass transition temperature, leading to soft elastomeric material. This is reflected in the Young's Modulus values calculated using the Ogden model,³⁶ showing similar Young's modulus (E) values in the same order for paired PHEA and PEA materials. Young's modulus values are in the range of 0.2-5 MPa as shown in Table 1, typical for elastomeric materials.³⁷

Figure 1. A) Self-healing at ambient temperature of PEA₁₀₀-5%. B) Self-healing at ambient temperature of PHEA₁₀₀-5%.

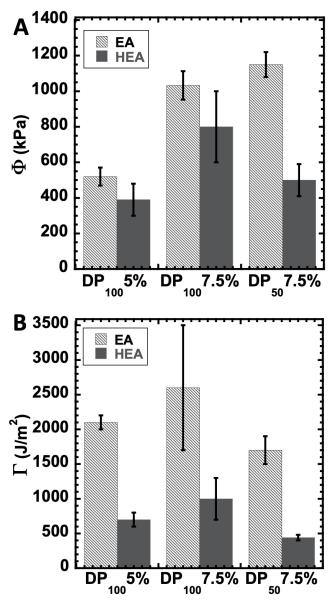
Each material's peak stress (σ_{peak}) and strain at break (ϵ_{break}) was evaluated by tensile testing. As anticipated higher crosslink density led to larger σ_{peak} , but made the materials less elastic reducing ϵ_{break} . Higher chain lengths led to an increase the number of elastically effective linkers that percolate the network, increasing σ_{peak} . In general the HEA based materials had similar or slightly lower σ_{peak} values compared to the comparable EA material, however, due to the

presence of covalent crosslinkers there is only a relatively small difference between the tensile properties of PHEA and PEA based materials.

To explore the dynamics and efficacy of hydrogen-bonds in the polymer networks, self-healing experiments were performed at room temperature. Earlier work showed that the covalent linkers are essentially static at room temperature, with self-healing attributed to exchange of hydrogen-bonds. 10,13,14 As seen in Figure 1, the PEA $_{100}$ -5% material recovered approximately half of the σ_{peak} and ϵ_{break} compared to the uncut material. In contrast, the PHEA $_{100}$ -5% recovered only about one quarter to one half of the σ_{peak} and ϵ_{break} of a typical uncut material. After 10 min there is minimal increase in recovered mechanical properties after self-healing consistent with the seconds to minutes timescale of UPy exchange. 27

The superior performance of PEA₁₀₀-5% compared to PHEA₁₀₀-5% suggests that the self-healing is promoted by the stronger hydrogen-bonded associations in the non-polar PEA matrix. Although PHEA has a greater number of potential hydrogen-bonds, this did not lead to improved self-healing. Figure S5 and Figure S6 compare the self-healing of the PEA₁₀₀-7.5% with self-healing of the PHEA₁₀₀-7.5% material and the self-healing of the PEA₅₀-7.5% material with the self-healing of the PHEA₅₀-7.5% material, respectively. All PEA based materials displayed superior self-healing to the PHEA based materials of the same composition. The self-healing data suggests that the UPy crosslinkers are more efficiently bonding in the PEA matrix compared to the PHEA matrix.

To further evaluate the impact of matrix hydrogen-bond characteristics on the materials energy dissipation and defect tolerance, toughness and fracture energy calculations were performed. Material toughness (Φ) was calculated as the area under the stress-strain curve in a tensile test as follows:³⁹


$$\Phi = \int_0^{\varepsilon_{\text{break}}} \sigma d\varepsilon \tag{1}$$

Where σ is the engineering stress, ε is the applied strain up to $\varepsilon_{\text{break}}$. Fracture energy was determined using the paired notched pristine approach outlined by Zhao et al.⁴⁰ One set of rectangular samples were notched ½ the width and subjected to tension until break. This gives the mean notched specimens strain at break ($\varepsilon_{\text{notch}}$). The energy needed to break this material was determined by applying tension to a pristine sample to the same strain and calculating the energy under the unnotched sample's stress-strain curve. The fracture energy (Γ) is determined by the following equation:⁴⁰

$$\Gamma = h \int_0^{\varepsilon_{\text{notch}}} \sigma d\varepsilon \tag{2}$$

Where h is the unnotched sample's initial height and σ , and ε are the unnotched specimen's stress and strain.

As seen in Figure 2A, the EA and HEA materials had similar toughness values for the DP₁₀₀-5% and DP₁₀₀-7.5%, although the DP₅₀-7.5% EA materials had a slightly higher toughness than the HEA material. These data suggest that the stronger binding of UPy units in the non-polar EA matrix at least offsets the greater number of hydrogen-bonds in the HEA matrix. However, the toughness includes contributions from both the covalent network and the non-covalent UPy network. Therefore, fracture energy were calculated to determine the impact of total energy dissipative interactions, including UPy hydrogen-bonds, matrix hydrogen bonds and other non-covalent interactions, including entanglements and dispersion forces.

Figure 2. A) Toughness (Φ) and B) fracture energy (Γ) for PEA100-5%, PEA100-7.5%, PEA50-7.5%, PHEA100-5%, PHEA100-7.5%, and PHEA50-7.5%. Note that the DP label was used to denote the degree of polymerization to facilitate direct comparison of the materials. Error bars represent standard error of mean.

Figure 2B showed that the EA materials have superior fracture energies compared to the HEA networks of the same composition. It is noteworthy that the fracture energies (Γ) show larger discrepancies between the PEA and the PHEA series than the toughness values (Φ). This could be because the toughness includes contributions from both non-covalent and covalent linkers,

while fracture energy is primarily dictated by energy dissipation driven by non-covalent hydrogen-bonds. The poor fracture energy and self-healing results of the PHEA materials suggest that despite HEA matrices increasing the quantity of hydrogen-bonds in the material, the PHEA derived hydrogen bonds are relatively weak and may disrupt or compete with the strong UPy linkers. This disruption of strong UPy hydrogen bonds can lead to a decrease in fracture energy and toughness, as well as reducing the self-healing efficiency. In contrast, the non-polar EA matrix promotes the formation of strong UPy hydrogen-bonds, since the matrix does not compete with hydrogen-bonding between UPy units, leading to enhanced self-healing and higher fracture energies. Despite the lower quantity of potential hydrogen-bonds in EA matrixes, the increased association constant of the UPy units, or increased quality of UPy hydrogen bonds, more than offsets this decrease in total number of hydrogen-bonds. Presumably, at very low densities of UPy crosslinker, the large number of hydrogen-bonds in HEA would surpass the small number of hydrogen-bonds possible from the UPy units. However, within typical crosslink densities studied, such as the 2.5-3.75 mol% UPy the ability to form high quality hydrogenbonds is critical, even if comparing against a system with an overall reduced number of hydrogen-bonds. These results hold under the tested conditions at the compositions studied, and suggest that quality of hydrogen bonds may be more important than quantity in these model systems.

In conclusion, IPNs containing covalently crosslinked Diels-Alder networks and quadruple hydrogen bonded 2-ureido-4[1H]-pyrimidinone (UPy) crosslinked networks were synthesized in two matrices of different hydrogen-bonding capabilities. One system used a non-polar poly(ethyl acrylate) matrix (PEA), and the other used a polar and hydrogen-bond rich poly(2-hydroxyethyl acrylate) (PHEA) matrix. The room temperature self-healing data for the PEA system was

superior to the PHEA system, suggesting that the increased association constant of UPy units in

the PEA matrices, or increased quality of UPy hydrogen bonds, is more important than the total

hydrogen-bonds in the studied PHEA systems, or quantity of hydrogen bonds. Toughness and

fracture energy measurements corroborate the self-healing experiments, indicating that in the

studied systems, the increased association strength of hydrogen-bonded UPy units in the tested

non-polar PEA matrices improves the mechanical properties, despite the PHEA matrices having

more hydrogen-bonds. This work suggests that a materials performance can be enhanced by

focusing on introducing stronger dynamic non-covalent bonds to a polymer material. This will

enable the design and realization of tough adhesives, elastomers, sealants, and hydrogels for

future applications in the materials and biomedical spaces.

ASSOCIATED CONTENT

Supporting Information. Experimental details, polymer characterization data and additional

materials characterization data are available.

AUTHOR INFORMATION

Corresponding Author

* Corresponding author: d.konkolewicz@miamiOH.edu

Present Addresses

†Authors current address: AHN-Neuroscience Research Institute, 320 E North Ave, Pittsburgh

PA 15212, USA

Author Contributions

13

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. ‡These authors contributed equally.

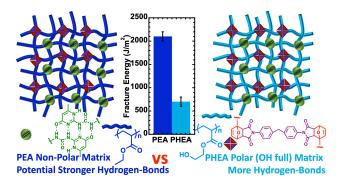
Funding Sources

This material is based upon work supported by the National Science Foundation under Grant No. (DMR-1749730). Acknowledgment is also made to the Donors of the American Chemical Society under Petroleum Research Fund (57243-DNI7) for partial support of this work. SCC would like to acknowledge support from the Miami University Undergraduate Summer Scholars Program. DK would also like to acknowledge support from the Robert H. and Nancy J. Blayney Professorship.

ACKNOWLEDGMENT

We are grateful to Michael Allegrezza for experimental assistance with the SEC system. We thank Nethmi De Alwis Watuthanthringe for assistance with the DSC measurements.

REFERENCES


- (1) Roy, N.; Bruchmann, B.; Lehn, J.-M. DYNAMERS: dynamic polymers as self-healing materials. *Chem. Soc. Rev.* **2015**, *44*, 3786-3807.
- (2) Cordier, P.; Tournilhac, F.; Soulié-Ziakovic, C.; Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. *Nature* **2008**, *451*, 977-980.
- (3) Smithmyer, M. E.; Deng, C. C.; Cassel, S. E.; LeValley, P. J.; Sumerlin, B. S.; Kloxin, A. M. Self-Healing Boronic Acid-Based Hydrogels for 3D Co-cultures. *ACS Macro Lett.* **2018**, *7*, 1105-1110.
- (4) Zhang, B.; Digby, Z. A.; Flum, J. A.; Chakma, P.; Saul, J. M.; Sparks, J. L.; Konkolewicz, D. Dynamic Thiol–Michael Chemistry for Thermoresponsive Rehealable and Malleable Networks. *Macromolecules* **2016**, *49*, 6871-6878.
- (5) Chakma, P.; Konkolewicz, D. Dynamic Covalent Bonds in Polymeric Materials. *Angew. Chem. Int. Ed.* **2019**, *58*, 9682-9695.
- (6) Herbst, F.; Döhler, D.; Michael, P.; Binder, W. H. Self-Healing Polymers via Supramolecular Forces. *Macromol. Rapid Commun.* **2013**, *34*, 203-220.
- (7) Voorhaar, L.; Hoogenboom, R. Supramolecular polymer networks: hydrogels and bulk materials. *Chem. Soc. Rev.* **2016**, *45*, 4013-4031.

- (8) Neal, J. A.; Mozhdehi, D.; Guan, Z. Enhancing Mechanical Performance of a Covalent Self-Healing Material by Sacrificial Noncovalent Bonds. *J. Am. Chem. Soc.* **2015**, *137*, 4846-4850.
- (9) Chen, Y.; Guan, Z. Multivalent hydrogen bonding block copolymers self-assemble into strong and tough self-healing materials. *Chem. Commun.* **2014**, *50*, 10868-10870.
- (10) Zhang, B.; Digby, Z. A.; Flum, J. A.; Foster, E. M.; Sparks, J. L.; Konkolewicz, D. Self-healing, malleable and creep limiting materials using both supramolecular and reversible covalent linkages. *Polym. Chem.* **2015**, *6*, 7368-7372.
- (11) Roy, N.; Buhler, E.; Lehn, J.-M. Double dynamic self-healing polymers: supramolecular and covalent dynamic polymers based on the bis-iminocarbohydrazide motif. *Polym. Int.* **2014**, *63*, 1400-1405.
- (12) Jiang, Z.; Bhaskaran, A.; Aitken, H. M.; Shackleford, I. C. G.; Connal, L. A. Using Synergistic Multiple Dynamic Bonds to Construct Polymers with Engineered Properties. *Macromol. Rapid Commun.* **2019**, *40*, 1900038.
- (13) Foster, E. M.; Lensmeyer, E. E.; Zhang, B.; Chakma, P.; Flum, J. A.; Via, J. J.; Sparks, J. L.; Konkolewicz, D. Effect of Polymer Network Architecture, Enhancing Soft Materials Using Orthogonal Dynamic Bonds in an Interpenetrating Network. *ACS Macro Lett.* **2017**, *6*, 495-499.
- (14) Zhang, B.; Ke, J.; Vakil, J. R.; Cummings, S. C.; Digby, Z. A.; Sparks, J. L.; Ye, Z.; Zanjani, M. B.; Konkolewicz, D. Dual-dynamic interpenetrated networks tuned through macromolecular architecture. *Polym. Chem.* **2019**, *10*, 6290-6304.
- (15) Li, J.; Illeperuma, W. R. K.; Suo, Z.; Vlassak, J. J. Hybrid Hydrogels with Extremely High Stiffness and Toughness. *ACS Macro Lett.* **2014**, *3*, 520-523.
- (16) Sun, J.-Y.; Zhao, X.; Illeperuma, W. R. K.; Chaudhuri, O.; Oh, K. H.; Mooney, D. J.; Vlassak, J. J.; Suo, Z. Highly stretchable and tough hydrogels. *Nature* **2012**, *489*, 133-136.
- (17) de Greef, T. F. A.; Nieuwenhuizen, M. M. L.; Sijbesma, R. P.; Meijer, E. W. Competitive Intramolecular Hydrogen Bonding in Oligo(ethylene oxide) Substituted Quadruple Hydrogen Bonded Systems. *J. Org. Chem.* **2010**, *75*, 598-610.
- (18) Sijbesma, R. P.; Beijer, F. H.; Brunsveld, L.; Folmer, B. J. B.; Hirschberg, J. H. K. K.; Lange, R. F. M.; Lowe, J. K. L.; Meijer, E. W. Reversible Polymers Formed from Self-Complementary Monomers Using Quadruple Hydrogen Bonding. *Science* **1997**, 278, 1601.
- (19) Yamauchi, K.; Lizotte, J. R.; Long, T. E. Thermoreversible Poly(alkyl acrylates) Consisting of Self-Complementary Multiple Hydrogen Bonding. *Macromolecules* **2003**, *36*, 1083-1088.
- (20) Cui, J.; Campo, A. d. Multivalent H-bonds for self-healing hydrogels. *Chem. Commun.* **2012**, *48*, 9302-9304.
- (21) Li, J.; Viveros, J. A.; Wrue, M. H.; Anthamatten, M. Shape-Memory Effects in Polymer Networks Containing Reversibly Associating Side-Groups. *Advanced Materials* **2007**, *19*, 2851-2855.
- (22) Li, J.; Lewis, C. L.; Chen, D. L.; Anthamatten, M. Dynamic Mechanical Behavior of Photo-Cross-linked Shape-Memory Elastomers. *Macromolecules* **2011**, *44*, 5336-5343.
- (23) Heinzmann, C.; Salz, U.; Moszner, N.; Fiore, G. L.; Weder, C. Supramolecular Cross-Links in Poly(alkyl methacrylate) Copolymers and Their Impact on the Mechanical and Reversible Adhesive Properties. *ACS Appl. Mater. Interfaces* **2015**, *7*, 13395-13404.

- (24) Guo, M.; Pitet, L. M.; Wyss, H. M.; Vos, M.; Dankers, P. Y. W.; Meijer, E. W. Tough Stimuli-Responsive Supramolecular Hydrogels with Hydrogen-Bonding Network Junctions. *J. Am. Chem. Soc.* **2014**, *136*, 6969-6977.
- (25) Elkins, C. L.; Park, T.; McKee, M. G.; Long, T. E. Synthesis and characterization of poly(2-ethylhexyl methacrylate) copolymers containing pendant, self-complementary multiple-hydrogen-bonding sites. *J.Polym. Sci. Part A: Polym. Chem.* **2005**, *43*, 4618-4631.
- (26) Zhou, C.; Li, X.; Gong, Z.; Jia, C.; Lin, Y.; Gu, C.; He, G.; Zhong, Y.; Yang, J.; Guo, X. Direct observation of single-molecule hydrogen-bond dynamics with single-bond resolution. *Nature Commun.* **2018**, *9*, 807.
- (27) Feldman, K. E.; Kade, M. J.; Meijer, E. W.; Hawker, C. J.; Kramer, E. J. Model Transient Networks from Strongly Hydrogen-Bonded Polymers. *Macromolecules* **2009**, *42*, 9072-9081.
- (28) Natterodt, J. C.; Sapkota, J.; Foster, E. J.; Weder, C. Polymer Nanocomposites with Cellulose Nanocrystals Featuring Adaptive Surface Groups. *Biomacromolecules* **2017**, *18*, 517-525.
- (29) Beijer, F. H.; Sijbesma, R. P.; Kooijman, H.; Spek, A. L.; Meijer, E. W. Strong Dimerization of Ureidopyrimidones via Quadruple Hydrogen Bonding. *J. Am. Chem. Soc.* **1998**, *120*, 6761-6769.
- (30) Morita, S.; Kitagawa, K.; Ozaki, Y. Hydrogen-bond structures in poly(2-hydroxyethyl methacrylate): Infrared spectroscopy and quantum chemical calculations with model compounds. *Vib. Spectrosc.* **2009**, *51*, 28-33.
- (31) Morita, S. Hydrogen-bonds structure in poly(2-hydroxyethyl methacrylate) studied by temperature-dependent infrared spectroscopy. *Front. Chem.* **2014**, 2.
- (32) Liu, Q.; Wang, C.; Guo, Y.; Peng, C.; Narayanan, A.; Kaur, S.; Xu, Y.; Weiss, R. A.; Joy, A. Opposing Effects of Side-Chain Flexibility and Hydrogen Bonding on the Thermal, Mechanical, and Rheological Properties of Supramolecularly Cross-Linked Polyesters. *Macromolecules* **2018**, *51*, 9294-9305.
- (33) Zanjani, M. B.; Zhang, B.; Ahammed, B.; Chamberlin, J. P.; Chakma, P.; Konkolewicz, D.; Ye, Z. Computational Investigation of the Effect of Network Architecture on Mechanical Properties of Dynamically Cross-Linked Polymer Materials. *Macromol. Theory Simul.* **2019**, *28*, 1900008.
- (34) Perrier, S. 50th Anniversary Perspective: RAFT Polymerization—A User Guide. *Macromolecules* **2017**, *50*, 7433-7447.
- (35) Tasdelen, M. A. Diels–Alder "click" reactions: recent applications in polymer and material science. *Polym. Chem.* **2011**, *2*, 2133-2145.
- (36) Shergold, O. A.; Fleck, N. A.; Radford, D. The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates. *Int J Impact Eng* **2006**, *32*, 1384-1402.
- (37) Schaefer, R. J. Mechanical properties of rubber. *Harris' Shock and Vibration Handbook, Sixth edition, A. Piersol, T. Paez (Eds), McGraw-Hill Companies Inc* **2010**, 33.31-33.18.
- (38) Zhong, M.; Wang, R.; Kawamoto, K.; Olsen, B. D.; Johnson, J. A. Quantifying the impact of molecular defects on polymer network elasticity. *Science* **2016**, *353*, 1264.
- (39) Hibbeler, R. C.: *Mechanics of Materials*; 4th ed.; Prentice Hall: Upper Saddle River, NJ, 2000.

(40) Zhao, X. Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. *Soft Matter* **2014**, *10*, 672-687.

Table of Content Entry/Abstract Graphic

