
Noname manuscript No.
(will be inserted by the editor)

Faster Approximate Diameter and Distance Oracles in

Planar Graphs

Timothy M. Chan · Dimitrios Skrepetos

the date of receipt and acceptance should be inserted later

Abstract We present an O
(
n log2 n+ (1/ε)5n log n

)
-time algorithm that

computes a (1 + ε)-approximation of the diameter of a non-negatively-
weighted, undirected planar graph of n vertices. This is an improve-
ment over the algorithm of Weimann and Yuster [ICALP 2012] of
O
(
(1/ε)4n log4 n+ 2O(1/ε)n

)
time in two regards. First we eliminate the ex-

ponential dependency on 1/ε by adapting and specializing Cabello’s recent
Voronoi-diagram-based technique [SODA 2017] for approximation purposes.
Second we shave off two logarithmic factors by choosing a better sequence of
error parameters in the recursion.

Moreover, using similar techniques we obtain a variant of Gu and Xu’s
(1+ε)-approximate distance oracle [ISAAC 2015] with polynomial dependency
on 1/ε in the preprocessing time and space and O (log(1/ε)) query time.

1 Introduction

In this paper we study the approximate versions of two fundamental shortest-
path problems in non-negatively-weighted, undirected planar graphs. The first
problem is that of approximating the diameter, defined as the longest shortest-
path distance of any two vertices. The second problem is that of constructing
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approximate distance oracles, i.e., data structures that support the follow-
ing kind of queries: given any two vertices, return an approximation of their
shortest-path distance. Let n be the number of vertices of the discussed graphs.

Diameter. Ever since Frederickson [12] in 1983 solved the problem exactly in
O
(
n2

)
time (with his all-pairs shortest paths (APSP) algorithm), a natural

question arose as to whether the diameter can be computed in subquadratic
time. Eppstein [11] in 1995 gave a partial answer in unweighted planar graphs
with a linear-time algorithm for the special case of the diameter being a con-
stant. Chan [6] in 2006 and Wulff-Nilsen [30] in 2008 developed two slightly-
subquadratic-time solutions (for arbitrary diameter), both of them requiring

O
(
n2 · log logn

logn

)
time in unweighted planar graphs. The algorithm of Wulff-

Nilsen also works for the weighted case but in O
(
n2 · (log logn)4

logn

)
time. How-

ever a truly-subquadratic-time algorithm, i.e., one that runs in O
(
n2−δ

)
time

for some constant δ > 0, still eluded researchers for many years, thus leading
them to consider approximation algorithms.

A c-approximation of the diameter ∆ is a value ∆̃ with ∆ ≤ ∆̃ ≤ c∆.
The linear-time single-source shortest paths (SSSP) algorithm of Henzinger
et al. [17] can trivially compute a 2-approximation. In 2007 Berman and

Kasiviswanathan [2] gave a (3/2)-approximation algorithm of Õ
(
n3/2

)
time,

where Õ (f(n)) denotes O
(
f(n) logO(1) n

)
. In 2012, Weimann and Yuster [29]

in a breakthrough gave a (1 + ε)-approximation algorithm with a near linear
time of O

(
(1/ε)4n log4 n+ 2O(1/ε)n

)
. However, Weimann and Yuster’s result

did not settle the problem completely, as the running time has exponential
dependency on 1/ε, and moreover, there are multiple (four) log n factors.

Unexpectedly the next result came in the context of exact algorithms. In
2017, Cabello [4] (full paper in [5]) made a breakthrough with an Õ

(
n11/6

)
-

expected-time algorithm. His techniques are as interesting as the result itself,
for they involved a seemingly alien concept to planar graphs, Voronoi diagrams,
originating from computational geometry. Gawrychowski et al. [14], again us-
ing Voronoi diagrams, derandomized Cabello’s algorithm and improved its run-
ning time to Õ

(
n5/3

)
. No lower bound is available presently, but Cabello [5]

conjectured that the diameter cannot be computed exactly in time faster than
O
(
n1+δ

)
for some constant δ > 0.

We show that Cabello’s idea of employing Voronoi diagrams in planar
graphs can be combined nicely with Weimann and Yuster’s recursive scheme
to get better approximation algorithms, eliminating the 2O(1/ε) factor from
the running time of the latter. Compared with Cabello’s approach, which had
to deal with the general case of site weights being real numbers, our version
of Voronoi diagrams is much simplified because in the approximate setting
we can map the site weights to small integers. We also eliminate two of the
four logarithmic factors by using a better sequence of error parameters in
the recursion and by employing the multiple shortest paths data structure of
Klein [21].
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Theorem 1 (Approximate diameter) We can find a (1 + ε)-approximation
of the diameter of a non-negatively-weighted, undirected planar graph of n
vertices in O

(
n log2 n+ (1/ε)5n log n

)
time.

Distance oracles. A c-approximate distance oracle for a graph is a data
structure that supports the following kind of query: given any two vertices
at shortest-path distance d, return a value d̃ with d ≤ d̃ ≤ (1 + ε)d. The
seminal paper of Thorup [28] presented (1 + ε)-approximate distance oracles
in non-negatively-weighted, undirected planar graphs with O

(
(1/ε)2n log3 n

)

preprocessing time, O ((1/ε)n log n) space, and O (1/ε) query time. These
oracles were later simplified by Klein [20]. Kawarabayashi et al. [18] con-
structed an oracle of linear space but O

(
(1/ε)2 log2 n

)
query time, and then

Kawarabayashi et al. [19] improved the dependency on 1/ε of the space-query-
time product from 1/ε2 to 1/ε. Wulff-Nilsen [31] described another trade-off,
with O

(
n(log log n)2

)
space and O

(
(log log n)3

)
query time, ignoring depen-

dency on ε. In the word RAM model, Gu and Xu [16] combined the techniques
of the above results with those of Weimann and Yuster [29] for the approximate
diameter problem to obtain the first distance oracle with constant query time
(independent of both n and ε). However, the preprocessing time and space of
Gu and Xu’s data structure have exponential dependency on 1/ε.

We employ techniques similar to those of our diameter algorithm to de-
velop in the word RAM model the first (1 + ε)-approximate distance ora-

cle with o(1/ε) query time and O
(
(1/ε)O(1) n logO(1) n

)
preprocessing time

and space. Specifically, the preprocessing time and space of our oracle are
O
(
n log3 n+ (1/ε)5n log2 n

)
and O

(
(1/ε)n log2 n+ (1/ε)4+δn log n

)
respec-

tively for any constant δ > 0, and the query time is O (log (1/ε)). Although
we slightly increase the query time of the oracle of Gu and Xu (from O (1)
to O (log (1/ε))), we significantly improve its preprocessing time and space by
eliminating the exponential dependency on 1/ε.

Theorem 2 (Approximate Distance Oracles) We can construct a (1 + ε)-
approximate distance oracle for a non-negatively-weighted, undirected pla-
nar graph of n vertices with O

(
n log3 n+ (1/ε)5n log2 n

)
preprocessing time,

O
(
(1/ε)n log2 n+ (1/ε)4+δn log n

)
space, and O (log (1/ε)) query time in the

word RAM model, for any constant δ > 0.

2 Preliminaries

2.1 Definitions and notations

Let G = (V,E) be a non-negatively-weighted, undirected planar graph, i.e., a
graph that can be drawn in the plane such that edges intersect only at their
endpoints. We also refer to V and E as V (G) and E(G) respectively. Let G∗

be the dual of G. We assume that G and any graph under discussion in this
chapter comes with a fixed embedding (we can find such an embedding in
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linear time [9,26]) and is triangulated (we can triangulate naively, in linear
time).

For any u, v ∈ V , we denote the u-to-v shortest path in G by πG[u, v] and
its length by distG[u, v]. We also refer to distG[u, v] as shortest-path distance
or simply distance. By predG[s, t] we denote t’s predecessor on πG[s, t]. The
shortest-path tree of each u ∈ V is a spanning tree of G rooted at u such that
the u-to-v shortest-path distance for each v ∈ V in that tree corresponds to
distG[s, t].

We are interested in the following shortest-path problems in G.

– The problem of computing a (1 + ε)-approximation of the diameter ∆ =

maxu,v∈V distG[u, v] of G, i.e. a value ∆̃ with ∆ ≤ ∆̃ ≤ (1 + ε)∆. Simi-
lar problems are computing (1 + ε)-approximations of related parameters,
such as the radius (i.e., minu∈V maxv∈V distG[u, v]), the eccentricity of each
vertex u ∈ V (i.e., maxv∈V distG[u, v]), et cetera.

– The problem of constructing (1+ε)-approximate distance oracles, i.e., data
structures that support the following kind of queries: given any s, t ∈ V ,
compute a value d̃ with distG[s, t] ≤ d̃ ≤ (1 + ε)distG[s, t] and the prede-

cessor of t in an s-to-t path of length d̃.

2.2 Model of computation

Throughout the paper, except for Section 5, we use the standard (real) RAM
model of computation. Specifically, we have random access to an array of
words, each storing a real number, a Θ (log n)-bit integer (where n is the input
size), or a pointer to another word. Moreover, we can perform any standard
arithmetic operation, such as addition, subtraction, multiplication, division,
and comparison, that involves a constant number of words in constant time.

In Section 5 we work in the word RAM model of computation, where
the input values are assumed to be w-bit integers (w ≥ log n). We assume
that standard arithmetic and bit-wise logical operations on w-bit integers take
constant time.

3 A farthest-neighbor data structure

Here, we want to construct a data structure for the following farthest-neighbor
problem in planar graphs, which is crucial in obtaining our diameter algorithm
in Section 4. Let [W ] = {0, 1, . . . ,W − 1} for an integer W > 0.

Problem 1 (Farthest neighbor) Let H = (V,E) be a triangulated planar
graph of n vertices with a fixed embedding. Also, let X be a set of b ver-
tices on the boundary of its outer face, and let U be a subset of V . Finally, let
H+ be the graph that is obtained by adding to H a vertex z0 and an edge of
unspecified weight from z0 to each x ∈ X.
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Construct a data structure that supports the following kind of queries:
given a weight `(·) for each edge (z0, x), where x ∈ X, find the distance to
the farthest neighbor of z0 in H+ among the vertices of U , i.e., compute
maxu∈U distH+(z0, u).

Cabello [5, Theorem 21] employed Voronoi diagrams in planar graphs to

develop a farthest-neighbor data structure with Õ
(
n2b3 + b4

)
preprocessing

time and Õ (b log b) expected query time, under a non-degeneracy assumption.
His result works for the more general version of Problem 1 where the weight `(·)
of each edge (z0, x) (x ∈ X) is a real number. We show that when these weights
are instead small integers, we can employ Voronoi diagrams in a simpler way
to construct a farthest-neighbor data structure in time only near linear in n.
Moreover, our query time does not have any log n factors.

3.1 Defining Voronoi diagrams in planar graphs

The concepts of standard geometric Voronoi diagrams can be extended to the
planar graph H = (V,E) from the setting of Problem 1. Each site s is a pair
(vs, ws), where vs is its placement (i.e., a vertex of H), and ws is its weight.
Given a set of sites S, the graphic Voronoi region of s ∈ S in H is defined as

VR(s, S) = {u ∈ V | distH [vs, u] + ws ≤ distH [vt, u] + wt, ∀ t ∈ S − {s}},

i.e., as the set of all vertices closer to s than to any other site under the
weighted metric. The (additively weighted) graphic Voronoi diagram VD(S)
of S in H is simply the collection of VR(s, S) over all s ∈ S. See Figure 1(a)-
(b). Since we discuss Voronoi diagrams only in H, we drop the subscripts and
refer to bis(·, ·), VR(·, ·), and VD(·) from now on.

Henceforth, we assume that S is a set of b sites, each placed at a vertex on
the boundary of the infinite face of H. We assume that S is generic, i.e., for
each s, t ∈ S and u ∈ V , we have distH [u, vs] +ws 6= distH [u, vt] +wt. We also
assume that S is independent, i.e., each region of the graphic Voronoi diagram
of S is non-empty. Given s, t ∈ S, We define their bisector bis(s, t) to be the
set of the duals of the edges in

{(u, v) ∈ E | distH [u, vs] + ws < distH [u, vt] + wt and

distH [v, vt] + wt < distH [v, vs] + ws}.

In other words, bis(s, t) is composed of the duals of the edges whose endpoints
are not both closer to the same site. From [5, Lemma 10], each such bisector
is a simple cycle in H∗. See Figure 1(c).

Klein [22] introduced the framework of abstract Voronoi diagrams to unify
the treatment of various Voronoi diagrams in the plane. Cabello defined a
system of abstract bisectors as






bis(s, t),


 ⋃

v∈VR(s,{s,t})

v∗




◦
 | s, t ∈ S, s 6= t



 ,
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four sites of a given generic and independent set S′ ⊆ S. For the rest of this
section, we assume that each s ∈ S′ is assigned a weight drawn from [W ]. We
also assume that without loss of generality all subsets of at most four sites
of S are generic and independent (we can easily find those that are not and
ignore them).

As Cabello did, we first compute all possible bisectors for each pair of
sites of S. Our approach builds upon that of [5, Lemma 17] and requires only
O (nW ) time, whereas Cabello’s needed O

(
n2

)
time for site weights being real

numbers. Also, we can return a pointer to a bisector in O (1) time instead of
O (log n) time.

Lemma 1 (Bisectors) Let H be a triangulated planar graph with a fixed em-
bedding, and let S be a set of b sites placed on vertices on the boundary of its
outer face with unspecified weights.

Given two sites s, t ∈ S, there are O (W ) distinct bisectors in the family
of bis((vs, ws), (vt, wt)) over all possible weights ws and wt drawn from [W ].
Moreover, we can compute all of them in O (nW ) total time, such that given
weights ws, wt ∈ [W ] for any generic and independent set of two sites s, t ∈ S,
we can return a pointer to their bisector in O (1) time.

Proof Assuming without loss of generality that ws ≥ wt, we can write
bis((vs, ws), (vt, wt)) as bis((vs, w), (vt, 0)), where w = ws − wt ∈ [W ]. Thus,
there are O (W ) distinct bisectors in that family. We represent each such bisec-
tor with a linked list that contains its edges (which form a cycle) in clockwise
order.

In the preprocessing phase, we find the shortest-path trees from vs and vt
in linear time [17] and compute the value ηu = distH [vt, u] − distH [vs, u] for
each u ∈ V . For each of the O (W ) values of w, we find with a linear scan every
edge uv ∈ E, such that w < ηu and w > ηv, and insert its dual to the linked
list of bis((vs, w), (vt, 0)). We might need to rearrange that list in linear time.
Finally, we store all these lists in a table, such that given weights ws, wt ∈ [W ],
where without loss of generality ws ≥ wt, for any two sites s, t ∈ S, we can
return a pointer to the linked list of bis((vs, ws−wt), (vt, 0)) in O (1) time. ut

Next, we show how to compute all Voronoi diagrams of any three sites of
S in O

(
nW 2

)
time. We improve upon the approach of Cabello [5, Lemma 18],

requiring O
(
n2

)
time for site weights being real numbers, and we also simplify

it, as we employ neither line arrangements nor amortization. We can return a
pointer to a Voronoi diagram of any three sites of S in O (1) time instead of
O (log n).

Lemma 2 (Voronoi diagrams of 3 sites) Let H be a triangulated planar graph
with a fixed embedding, and let S be a set of b sites placed on vertices on the
boundary of its outer face with unspecified weights.

Given three sites s, t, q ∈ S, there are O
(
W 2

)
distinct Voronoi diagrams in

the family VD({(vs, ws), (vt, wt), (vq, wq)}) over all possible weights ws, wt, and
wq drawn from [W ]. Moreover, we can compute all of them in O

(
nW 2

)
total
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time, such that given weights ws, wt, wq ∈ [W ] for any generic and independent
set of three sites s, t, q ∈ S, we can return a pointer to their Voronoi diagram
in O (1) time.

Proof Similarly to the proof of Lemma 1, assuming without loss of generality
that ws, wt ≥ wq, we can write VD({(vs, ws), (vt, wt), (vq, wq)}) as
VD({(vs, w

′
s), (vt, w

′
t), (vq, 0)}), where w′

s = ws − wq, w
′
t = wt − wq ∈ [W ].

Hence, that family of Voronoi diagrams has size O
(
W 2

)
. According to [5,

Lemma 13], a Voronoi diagram of three sites has at most one Voronoi node
(besides v∞), which we represent with a pointer. Also, each Voronoi arc is a
contiguous portion e∗1, e

∗
2, . . . , e

∗
k for some k, of the bisector of (s, t), (s, q), or

(t, q) [5, Section 5.2]. Thus, we represent that arc with pointers to e∗1, to e∗k,
and to the relevant bisector.

In the preprocessing phase, we invoke Lemma 1 to compute and store all
bisectors of (s, t), (s, q), and (t, q) in O (nW ) time. Then we find the shortest-
path trees from vs, vt, and vq in linear time [17], and we compute for each
vertex u ∈ V the values ηstu = distH [vs, u] − distH [vt, u], η

qt
u = distH(vq, u) −

distH(vt, u), and ηsqu = distH(vs, u)− distH(vq, u).
For each of the O

(
W 2

)
values of w′

s and w′
t, we use the η values to find

with a linear clockwise scan that starts at v∞ the first and the last edge
(uv)∗ (i.e., the dual of uv ∈ E) of bis(s, t) such that u ∈ VR(s, {s, t, q}) and
v ∈ VR(t, {s, t, q}). If these edges exist, we properly create the pointers for
a Voronoi arc and then repeat with bis(s, q) and bis(t, q). If VD({s, t, q}) has
three Voronoi arcs, we can find and store a pointer to its Voronoi node in O (1)
time by determining the vertex of H∗ where these arcs meet. Last, we store
a pointer to each computed Voronoi diagram in a two-dimensional table, such
that given weights ws, wt, wq ∈ [W ], where without loss of generality ws, wt ≥
wq, we can return pointers to the node and to the arcs of VD({(vs, ws −
sq), (vt, wt − wq), (vq, 0)}) in O (1) time. ut

We now give a data structure that given any four sites of S, constructs their
Voronoi diagram, thus supporting the elementary operation of the Voronoi
diagrams algorithm of Theorem 3. The proof is similar to that in [5, Lemma 19],
but using Lemmas 1 and 2 for bisectors and Voronoi diagrams of three sites
respectively, we achieve O

(
nb3W 2

)
preprocessing time instead of Õ

(
n2b3

)
.

Also, the query time here is O (1) instead of O (log n). The proof we give
below is a paraphrase of that of Cabello, and we include it for the sake of
completeness.

Lemma 3 (Voronoi diagrams of 4 sites) Let H be a triangulated planar graph
with a fixed embedding, and let S be a set of b sites placed on vertices on the
boundary of its outer face with unspecified weights.

We can construct in O
(
nb3W 2

)
time a data structure that supports the

following kind of queries: given a generic and independent set of four sites of
S, whose weights are drawn from [W ], we can return a pointer to their Voronoi
diagram in O (1) time.
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Proof In the preprocessing phase, we apply the methods of Lemmas 1 and 2
to compute all distinct bisectors (respectively Voronoi diagrams) of any two
(respectively three) sites of S in O

(
nW 2

)
time. Let s, t, q, r be four given sites

of S with weights drawn from [W ]. We assume without loss of generality that
the clockwise order of the four sites on the boundary of the outer face of S
is s, t, q, r. For each pair s, t we check in constant time whether bis(s, t) fully
participates in VD({s, t, q}) and VD({s, t, r}).

If that is so, then bis(s, t) encloses exactly the vertices of H that are closest
to s than to any of the other three sites, i.e., the vertices of VR(s, {s, t, q, r}).
Thus, VD({s, t, q, r}) is composed of bis(s, t) and VD({t, q, r}), and we can
easily generate its Voronoi nodes and arcs. Notice that in this case, the part
of the Voronoi diagram that is restricted in the interior faces of H is not
connected. See Figure 2(a).

Else, no bisector fully bounds a Voronoi region. In other words, the part of
the Voronoi diagram that is restricted in the interior faces of H is connected.
That implies that VD({s, t, q, r}) has two Voronoi nodes, besides v∞ (remem-
ber that H∗ is triangulated). See Figure 2(b). There are two cases for these
nodes. First, they are the meeting points of each bis(s, ·) and of each bis(r, ·),
respectively (Figure 2(c)). Second, they are the meeting points of each bis(q, ·)
and of each bis(t, ·), respectively (Figure 2(d)).

We can determine which case we are in by finding whether bis(s, r) par-
ticipates in VD({s, t, q, r}). Notice that the intersection of VR(s, {s, r, q}) and
VR(s, {s, r, t}) gives VR(s, {s, r, t, q}) because these two Voronoi diagrams con-
tain each bisector bis(s, ·). Thus, we can find the Voronoi nodes v and v′ of
VD({s, r, q}) and VD({s, r, t}) respectively, and compare the order of v∞, v′,
and v along bis(s, r). That can be done in constant time after linear preprocess-
ing time per bisector. If it is clockwise, we are in the first case (see Figure 2(e));
else, we are in the second (see Figure 2(f)). After determining the case we are
in, we can generate the Voronoi nodes and arcs of VD({s, t, q, r}) by properly
using the information of the relevant Voronoi diagrams of triples of sites. ut

Combining the above lemma with the Voronoi diagram algorithm of Theo-
rem 3, we obtain a data structure that given any generic and independent set
S′ ⊆ S, whose weights are drawn from [W ], computes their Voronoi diagram.
Its preprocessing time is O

(
nb3W 2

)
, while the structure of Cabello required

Õ
(
n2b3

)
construction time for real site weights. Also, the query time here is

O (b log b) expected, while that of Cabello had multiple log n factors.

Theorem 4 (Voronoi diagram data structure) Let H be a triangulated planar
graph with a fixed embedding, and let S be a set of b sites placed on vertices
on the boundary of its outer face with unspecified weights.

We can construct in O
(
nb3W 2

)
time a data structure that supports the

following kind of queries: given a generic and independent set S′ ⊆ S, whose
weights are drawn from [W ], we can compute the Voronoi diagram of S′ in
O (b log b) expected or O

(
b2
)
worst-case time.
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the Voronoi diagram data structure of Theorem 4 and then apply Lemma 1
to compute all bisectors of each pair of sites. For each s ∈ S we assign a
cost cs(u) = distH(vs, u) to each u ∈ U and cs(u) = 0 to each u ∈ V − U .
Then, we construct the data structure of Lemma 4, where Π is the set of all
bis(s, ·), ` = bW , h = nbW , and k = b. Note that for any s, t ∈ S, bis(s, t)
is an s-star-shaped cycle in H∗ because VR(s, {s, t}) is a connected subtree
of the shortest-path tree of s with the same root. To avoid degeneracies, we
arbitrarily order the edges of H that are incident to vertices of X and perturb
the weight of the i-th such edge by adding to it a number ρ · i, where ρ > 0 is
infinitesimal. We also compute the shortest path tree from every x ∈ X. The
preprocessing time is O

(
nb3W 2

)
.

In a query, we create naively in O
(
b2
)
time a set S′ ⊆ S by deleting from

S each site s with `(z0, vs) > `(z0, vt) + distH [vs, vt] for some t ∈ S. That,
along with the perturbation in the preprocessing, guarantees that S′ is generic
and independent respectively. For each s′ ∈ S′ we set ws′ equal to `(z0, vs′)
and then query the data structure of Theorem 4 to compute the Voronoi
diagram of S′ in O

(
b2
)
worst-case time (we do not need the faster O (b log b)

randomized bound here). For each s′ ∈ S′ the boundary of VR(s′, S′) is the
concatenation of at most b subpaths of the bisectors bis(s′, ·) because each
Voronoi arc is a contiguous part of a bisector, as mentioned earlier. Thus, we
can find maxu∈VR(s′,S′) distH(s′, u) by employing Lemma 4. Finally, we return

the maximum of these distances, for a total of O
(
b2
)
query time. ut

4 Approximate diameter

Given a non-negatively-weighted, undirected planar graph G of N vertices and
of diameter ∆, we show how to compute a (1 + O (ε))-approximation of ∆,

which is equivalent to computing an O (ε∆)-additive approximation. Let ∆̃ be
a 2-approximation of ∆, which we can compute in linear time [17].

We adapt the recursive scheme of Weimann and Yuster [29]. The input to
our algorithm is a non-negatively-weighted, undirected planar graph G whose
vertices are either marked or unmarked, and the output is an O (ε∆)-additive
approximation of the longest shortest-path distance of any two marked vertices
of G. At the beginning, G = G, all vertices of G are marked, and n = N . Let
G1 and G2 be two of G’s subgraphs such that each marked vertex of G lies
in at least one of them. We denote by d (G1, G2, G) the longest shortest-path
distance in G between a marked vertex in G1 and another in G2. Notice that
d (G,G,G) = max{d (G1, G2, G) , d (G1, G1, G) , d (G2, G2, G)}. We make the
following assumption for the distances between marked vertices of G, which
states the distance in G between any marked vertices is an O (ε∆)-additive
approximation of their distance in G.

Assumption 1 (Distances between marked vertices) For every two marked
vertices s, t of G, we have distG [s, t] ≤ distG[s, t] ≤ distG [s, t] + ε∆.
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Recall that a separator of a planar graph is a subset of its vertices whose
removal decomposes it into at least two disjoint, induced subgraphs. If the
size of each is at most a constant fraction α of that of the original graph, the
separator is said to be α-balanced. Moreover, if the vertices of the separator
are shortest paths with common root, it is called shortest-path separator.

Our algorithm for computing d (G,G,G) performs the following steps.

1. Find an α-balanced shortest-path separator C of G, for some constant
α < 1, such that the removal of its vertices decomposes G into two disjoint
subgraphs A and B. Let Gin = A ∪ C and Gout = B ∪ C. See Section 4.1.

2. Compute an O (ε∆)-additive approximation of d (Gin, Gout, G). See Sec-
tion 4.2.

3. Unmark each vertex of C in both Gin and Gout (these vertices appear
in both graphs, so we have already considered all such pairs of marked
vertices). Augment Gin with extra (unmarked) vertices and edges into a
non-negatively-weighted, undirected planar graph G+

in which satisfies As-
sumption 1 and its size is roughly the same as the number of marked
vertices of Gin. Construct a similarly defined graph G+

out for Gout. Recur-
sively solve the problem in G+

in and G+
out to compute d

(
G+

in, G
+
in, G

+
in

)
and

d
(
G+

out, G
+
out, G

+
out

)
. See Section 4.3.

4. Return max
{
d (Gin, Gout, G) , d

(
G+

in, G
+
in, G

+
in

)
, d

(
G+

out, G
+
out, G

+
out

) }
.

4.1 Decomposing G

To compute the shortest-path separator C in Step 1 we first find the shortest-
path tree T from any marked vertex of G in linear time [17]. As Lipton and
Tarjan showed [24, Lemma 2], there are two root pathsR andQ in T , which can
be computed in linear time, such that the removal of their vertices decomposes
G into two disjoint planar subgraphs A and B of 2n/3 vertices each. However,
the size of C = R∪Q can be as big as n. See Figure 3(a)-(b). Let Gin = A∪C
and Gout = B ∪ C.

4.2 Approximating d (Gin, Gout, G)

Let Min (respectively Mout) be the set of marked vertices of Gin (respec-
tivelyGout). We want to O (ε∆)-additively approximate the distance from each
v ∈ Mout to its farthest neighbor in Min (i.e., maxu∈Min

minc∈C(distG[v, c] +
distG[c, u])), and return the maximum. To do that, we would like to construct
the farthest-neighbor data structure of Theorem 5 with H = Gin, X = C, and
U = Min. Then, for each v ∈ Mout we want to query that data structure with
z0 = v, X ′ = X, and `(z0, x

′) = distG[z0, x
′] for each x′ ∈ X ′. However, there

are two issues with that approach. First, C could have O(n) vertices, thus
leading to superlinear total time. Second, the edge weights `(z0, x

′), where
x′ ∈ X ′, for each query are not necessarily small integers (because the dis-
tances distG[z0, x

′] are in general non-negative numbers).
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distG[v, c] + distG[c, p] ≤ distG[v, c] + ε∆ and distG[p, u] ≤ distG[c, u] + ε∆.
Using these inequalities, we have

d′ (Gin, Gout, G) = distG[v, p] + distG[p, u]

≤ distG[v, c] + distG[c, u] + 2ε∆

≤ distG[v, u] + 2ε∆ ≤ d (Gin, Gout, G) + 2ε∆.

See Figure 3(d). ut

For the second issue, we show how to ensure that whenever we query the
data structure of Theorem 5 each `(z0, x) (x ∈ X) is a small integer. We assume
that without loss of generality 1/ε is an integer. First, we compute the shortest-
path tree in G from every p ∈ P in O ((1/ε)n) time [17] and create a value

d̂[v, p] for each v ∈ Mout and p ∈ P by first rounding distG[v, p] to the closest

multiple of ε∆̃ and then dividing it with that number. If distG[v, p] ≥ 4∆̃,
then distG[v, p] will be irrelevant in approximating d′ (Gin, Gout, G). Thus, in

this case we set d̂[v, p] = 4/ε. Notice that now d̂[v, p] ∈ [4/ε]. We divide (but

not round) every edge weight of Gin by ε∆̃ and denote the resulting graph by

Ĝin. Let
d̂ = ε∆̃ · max

v∈Mout,u∈Min

min
p∈P

(d̂[v, p] + distĜin
[p, u]).

Thus, we have d (Gin, Gout, G) ≤ d̂ ≤ d (Gin, Gout, G) +O(ε∆).
We can finally construct the farthest-neighbor data structure of Theorem 5

with H = Ĝin, X = P , U = Min, b = O (1/ε), and W = 4/ε. For each v ∈

Mout, we query the data structure with z0 = v, X = P , and `(z0, x) = d̂G[v, x],

where x ∈ X, and multiply the answer by ε∆̃. The total time to O (ε∆)-
additively approximate d (Gin, Gout, G) is O

(
nb3W 2 + nb2

)
= O

(
(1/ε)5n

)
.

Contrary to our approach, Weimann and Yuster [29] employed a brute-force
search, after observing that there are only 2O(1/ε) combinatorially different
vertices of Min and Mout (in terms of their vectors of distances to the portals).

4.3 Recursively solving the problem in G+
in and G+

out

The vertices on C appear in both Gin and Gout, so we have already considered
all such pairs of marked vertices and can unmark them in both graphs. Then,
we need to augment Gin into a graph G+

in to ensure that Assumption 1 is
satisfied, i.e., distG [s, t] ≤ distG+

in
[s, t] ≤ distG [s, t] + ε∆ for any two marked

vertices s, t of G+
in. Also, we need to ensure that the size of G+

in is roughly the
same as the number of marked vertices of Gin. We want to augment Gout to a
similarly defined graph G+

out and use recursion in G+
in and G+

out.
We start at the common root of R and Q and select with a linear walk

on their 8∆̃-prefices 1/ε′ of their vertices, called dense portals, where ε′ � ε
is a parameter to be set later, such that any consecutive pair of them is at
distance ε′∆ thereon. The union Bin of the (1/ε′)2 shortest paths in Gout of
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deleted the non-dense-portals and redirected their incident edges, there is a u-
to-p path in G+

in of length at most distG[u, c]+distG[c, p] ≤ distG[u, c]+ε′∆ and
a p′-to-v path of length at most distG[p

′, c′] + distG[c
′, v] ≤ distG[c

′, v] + ε′∆.
If the c-to-c′ shortest path in G does not lie entirely in Gin, then from the

way we constructed B+
in, we know

distG+
in
[p, p′] ≤ distGout [c, c

′]+distGout [p, c]+distGout [p
′, c′] ≤ distG[c, c

′]+2ε′∆.

Otherwise, let the c-to-c′ shortest path in G be composed of the c-to-x shortest
path in R, the x-to-x′ shortest path in V (Gin)−V (C), and the x′-to-c′ shortest
path in Q, where x ∈ R and x′ ∈ Q. We can similarly show that in this case
we also have distG+

in
[p, p′] ≤ distG[c, c

′] + 2ε′∆.

Therefore, the concatenation of the u-to-p, p-to-p′, and p′-to-v shortest
paths in G+

in yields a path of length

distG+
in
[u, p] + distG+

in
[p, p′] + distG+

in
[p′, v]

≤ distGin
[u, c] + distG[c, c

′] + distGin
[c′, v] +O (ε′∆)

≤ distG[u, v] +O (ε′∆) . ut

It remains to show how to construct B′
in and how to set ε′. For the first,

contrary to Weimann and Yuster, who constructed B′
in explicitly in O ((1/ε′)n)

time, we employ a method based on a slightly modified version of the multiple
shortest paths data structure of Klein [21].

Theorem 6 (Augmented graph) We can build B′
in in

O
(
n log n+ (1/ε′)4 log2 n

)
time.

Proof As Klein showed, we can construct an implicit representation of the
shortest-path tree T (u) of each vertex u on the boundary of the outer face
of Gin in O (n log n) total time. The order of the children w1, w2, . . . , w` of a
vertex v in T (u) is specified as follows: wi is to the left of wj if and only if vwi,
vwj , and vp are in counterclockwise order around v, where p is v’s parent in
T (u). Klein used a persistent [10] version of dynamic trees [27] to represent the
T (u)’s, so we can find the u-to-v shortest-path distance, for any v ∈ V (Gin),
in O (log n) time. We want to augment Klein’s data structure to also support
the following two queries on each T (u): (i) find the lowest common ancestor of
any two vertices; and (ii) find the level ancestor of any vertex and any level.
We can accommodate both queries in O (log n) time by merely replacing the
dynamic trees with the (persistent) top-tree structures of Alstrup et al. [1].

To build B′
in, we construct the modified version of Klein’s data structure

for Gout, after redrawing it in linear time (if needed), such that the vertices of
C lie on the outer face. We will describe how to use this data structure to find
all vertices of Gout of degree more than two in Bin; as argued before, there
are O

(
(1/ε′)4

)
such vertices. There are three cases for each pair of shortest

paths between dense portals: they (i) do not intersect, (ii) intersect only at
one vertex, or (iii) share a common subpath. For any four dense portals a,
b, c, and d, assuming without loss of generality that the latter case holds for
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4.4 Analyzing our algorithm

Approximation factor. As described in Section 4.2, we compute an O (ε∆)-

additive approximation of d
(
G

(µ)
in , G

(µ)
out, G

(µ)
)
for each node µ of the recursion

tree, where G(µ) is the graph associated with µ, and G
(µ)
in and G

(µ)
out are the

two graphs created by decomposing G(µ) as in Section 4.1. As explained in
Section 4.3, from the way we apply recursion, in each child ν of µ we have

that d
(
G

(ν)
in , G

(ν)
out, G

(ν)
)

≤ d
(
G

(µ)
in , G

(µ)
out, G

(µ)
)
+ O (ε′∆) and

∣∣∣V
(
G(ν)

)∣∣∣ ≤

(2/3)
∣∣∣V

(
G(µ)

)∣∣∣+ O
(
(1/ε′)4

)
, where ε′ = ε

/∣∣∣V
(
G(µ)

)∣∣∣
δ

for some sufficiently

small constant δ > 0. At the root κ of the recursion tree, we have G(κ) = G,

while in each leaf λ,
∣∣∣V

(
G(λ)

)∣∣∣ = Θ(N0) for some parameter N0 ≥ (1/ε)Ω(1)

to be determined later.
Thus, the additive error of our algorithm is O (ε∆) + O (

∑
i εi∆), where

εi = ε/nδ
i for some sequence n1, n2, . . . , nk that satisfies ni−1/3 ≤ ni ≤

2ni−1/3 + O
(
(1/εi)

4
)
with n1 = N and nk = Θ(N0). Since ni decreases at

least exponentially, εi grows likewise. Hence,
∑

i εi is similar to a geometric se-
ries and can be upper-bounded by the last term, which is O (εk) = O

(
ε/N δ

0

)
=

O
(
ε1+Ω(1)

)
. We conclude that the additive error is O (ε∆), implying that the

approximation factor of our algorithm is 1+O (ε). That can be refined to 1+ε
after adjusting ε by a constant factor.

Assumption 1 is true. We now show that for any two marked vertices u
and v of a graph G encountered during the recursion, we have distG [u, v] ≤
distG[u, v] ≤ distG [u, v] + ε∆.

Fix a non-leaf node ν of T and its parent µ, such that u and v are marked
in both and G(ν) = G. As explained in Section 4.3, from the way we use
recursion, we have distG(µ) [u, v] ≤ distG(ν) [u, v] ≤ distG(µ) [u, v] +O (ε′∆).

Thus, distG [u, v] ≤ distG[u, v] ≤ distG [u, v] +O (
∑

i εi∆), where εi = ε/nδ
i ,

for some sequence n1, n2, . . . , nk that satisfies ni−1/3 ≤ ni ≤ 2ni−1/3 +
O
(
(1/εi)

4
)
with n1 = N and nk = Θ(N0). As above,

∑
i εi can be upper-

bounded by ε1+Ω(1). Hence, for any two marked vertices u and v of G(µ), we
have distG [u, v] ≤ distG[u, v] ≤ distG [u, v] + O

(
ε1+Ω(1)∆

)
, thus proving (a

stronger version of) the assumption.

Running time. In a graph of size n, the running time T (n) of our algorithm
satisfies the following recurrence

T (n)≤ max
1/3≤α≤2/3

(
T
(
αn+O

(
(1/ε)4n4δ

))
+ T

(
(1− α)n+O

(
(1/ε)4n4δ

))
+

O
(
n log n+ (1/ε)5n

))
,

since the algorithm in Section 4.2 takes O
(
(1/ε)5n

)
time and Theorem 6

takes O
(
n log n+ (1/ε′)4 log2 n

)
= O

(
n log n+ (1/ε)4n4δ log2 n

)
time—the

last term is dominated by O
(
(1/ε)5n

)
when δ < 1/4.
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We choose N0 so that (1/ε)4N4δ
0 = Θ(N0), i.e., N0 = Θ((1/ε)4/(1−4δ)).

In the base case there are O (N/N0) graphs of O (N0) vertices each, so it
can be addressed in O

(
N/N0 ·N

2
0

)
= O (N0N) time [12], which is domi-

nated by O
(
(1/ε)5N

)
when δ < 1/20. Solving the recurrence gives T (N) =

O
(
N log2 N + (1/ε)5N logN

)
.

Theorem 7 (Approximate diameter) We can find a (1 + ε)-approximation
of the diameter of a non-negatively-weighted, undirected planar graph of n
vertices in O

(
n log2 n+ (1/ε)5n log n

)
time.

Remarks:

– Gawrychowski et al. [14] recently improved Cabello’s algorithm [5] for com-
puting the diameter in planar graphs exactly. Their algorithm is determin-
istic instead of randomized and requires Õ

(
n5/3

)
time instead of Õ

(
n11/6

)
.

It is likely that their techniques can be used to shave off some 1/ε factors.
– An interesting consequence of our result is that we can compute the ex-

act diameter of an unweighted planar graph in O
(
n log2 n+∆O(1)n log n

)

time, where ∆ is the diameter, simply by setting ε near 1/∆. If one wants
running time near linear in n, the best previous result we are aware of
was by Eppstein [11] and had exponential dependence in ∆ (namely, the
time bound is O

(
n2O(∆ log∆)

)
). Note that our result beats Cabello’s or

Gawrychowski et al.’s algorithm when the diameter is smaller than nδ for
some constant δ.

By keeping track throughout the algorithm of the distance of each vertex to
its farthest neighbor, we can compute a (1+ε)-approximation of its eccentricity.
Hence, we can also compute a (1 + ε)-approximation of the radius (i.e., the
minimum eccentricity) of the graph.

Corollary 1 (Approximate eccentricities, farthest neighbors, and radius)
Given a non-negatively weighted, undirected planar graph of n vertices, we can
compute a (1 + ε)-approximation of the radius and of the eccentricity of each
vertex (and an approximate farthest neighbor) in O

(
n log2 n+ (1/ε)5n log n

)

time.

5 Approximate distance oracles

To construct an approximate distance oracle in the word RAMmodel, we build
upon the general framework of the oracles of Kawarabayashi et al. [19] and
of Gu and Xu [16]. Specifically, given a non-negatively-weighted, undirected
planar graph G of N vertices and of diameter ∆, we focus in Section 5.1
on constructing a distance oracle with additive stretch O (ε∆), i.e., a data
structure that supports the following kind of queries: given for any two vertices
u and v of G, return a value d̃ with distG(u, v) ≤ d̃ ≤ distG(u, v) + O (ε∆).
Then, we can obtain a (1 + ε)-approximate distance oracle with an approach

based on sparse neighborhood covers, as explained in Section 5.2. Let ∆̃ be a
2-approximation of ∆.
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5.1 Distance oracles with additive stretch

The decomposition tree. We recursively decompose G as in Sections 4.1 and 4.3,
but now we also store the ensuing graphs in a recursive decomposition tree T
with the following properties.

– T has degree two and height O (logN).
– Each non-leaf node µ of T is associated with a graph G(µ). The graph of

each child of µ has at most 2|V
(
G(µ)

)
|/3 + O

(
(1/ε′)4

)
vertices, where

ε′ = ε/|V
(
G(µ)

)
|δ for a sufficiently small constant δ > 0. At the root κ of

T , G(κ) = G, and at each leaf, λ |V
(
G(λ)

)
| = Θ(N0) for some parameter

N0 ≥ (1/ε)Ω(1).
– Each non-leaf node µ of T is also associated with a shortest-path separator

C(µ). We call a vertex of G(µ) marked if and only if it does not lie in C(ν)

of any ancestor ν of µ. Each marked vertex of G(µ) that is not on C(µ) is
contained in the graph of one child of µ.

– Fix a non-leaf node ν of T and let µ be its parent. For each pair of
marked vertices u, v ∈ V (G(ν)), we have distG(µ) [u, v] ≤ distG(ν) [u, v] ≤
distG(µ) [u, v] +O (ε′∆).

Our data structure. In each non-leaf node µ of T , we find in linear time, as
in Section 4.2, a set P (µ) of O(1/ε) portals on C(µ), such that for any two
marked vertices u, v ∈ V

(
G(µ)

)
on different sides of C(µ),

distG(µ) [u, v] ≤ min
p∈P (µ)

(distG(µ) [u, p] + distG(µ) [p, v])

≤ distG(µ) [u, v] +O (ε∆) .

Then, we run an SSSP algorithm from each p ∈ P (µ). Let ν1 and ν2 be the
children of µ. For every marked vertex v of ν1, we create a value d̂G(µ) [v, p] ∈

[4/ε] as in Section 4. We also divide every edge weight of G(µ) by ε∆̃. Thus,

distG(µ) [u, v] ≤ ε∆̃ · min
p∈P (µ)

(d̂G(µ) [u, p] + distG(µ) [p, v])

≤ distG(µ) [u, v] +O (ε∆) .

We create a set S of O (1/ε) sites with unspecified weights in G(ν2), place
each at a vertex of P (µ). Also, we perturb the weights of the edges incident to
the sites as in Section 4.2. Then, we construct for G(ν2) and S a data structure
for Voronoi diagrams, similarly to that of Theorem 4, in O

(
(1/ε)5n

)
time. For

each marked vertex v of G(ν1), we construct an empty set P ′ and insert to it
every p ∈ P (µ), such that the last edge on the v-to-p shortest path in G(µ)

does not lie in G(ν2), which we can determine by inspecting p’s shortest-path
tree. Next, we query the data structure of Theorem 4 to construct the Voronoi
diagram in G(ν2) of a set S′ ⊆ S of sites placed at the vertices of P ′, where the
weight of each s′ ∈ S is equal to d̂G[v, vs′ ]. Notice that from the perturbation
and from the choice of P ′, we have that S′ is generic and independent. Finally,
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we build for that Voronoi diagram the vertex location data structure of [15,
Section 6]. That data structure preprocesses once in O (bn) time and space a
planar graph of n vertices and a set of b sites with unspecified weights that lie
on the boundary of its outer face to support the following operation: preprocess
any given Voronoi diagram of a subset of these sites in O (b) time and space,
such that the site that contains a given vertex can be found in O (log b) time.
In our application, b = 1/ε, so we need O ((1/ε)n) total time and space for
preprocessing all Voronoi diagrams related to the marked vertices of G(ν1).

Given two vertices u and v, we find in O (1) time the lowest node µ of T
where both are marked (that can be done with linear preprocessing time). If
none exists, u and v must reside in a leaf, and we return their shortest-path
distance by looking up the distance matrix therein (which we can precom-
pute). Else, we assume without loss of generality that u ∈ V

(
G(ν2)

)
and

v ∈ V
(
G(ν1)

)
, where ν1 and ν2 are the children of µ, and that we have com-

puted the Voronoi diagram in G(ν2) for sites and weights prescribed by v.
Then, we query, in O (log (1/ε)) time, the vertex location data structure for
that Voronoi diagram to find the site p therein whose Voronoi region contains
u. Finally, we return d̃ = ε∆̃ · (distG(µ) [v, p] + distG(ν2) [p, u]).

Additive stretch. We now show that for any two vertices u, v of G, our oracle
returns a value d̃ with distG [u, v] ≤ d̃ ≤ distG [u, v] +O (ε∆).

Fix a non-leaf node ν of T and its parent µ, such that u and v are marked in
both. From the way we use recursion, we have distG(µ) [u, v] ≤ distG(ν) [u, v] ≤
distG(µ) [u, v]+O (ε′∆), where ε′ = ε/|V (G(µ))|δ. At the root κ of the recursion

tree, G(κ) = G, while at each leaf λ,
∣∣∣V

(
G(λ)

)∣∣∣ = Θ (N0). Also, from the way

we approximate distG(µ) [u, v], we have distG(µ) [u, v] ≤ d̃ ≤ distG(µ) [u, v] +
O (ε∆).

Thus, the value d̃ that our oracle returns is such that distG [u, v] ≤

d̃ ≤ distG [u, v] + O (ε∆) + O (
∑

i εi∆), where εi = ε/nδ
i , for some se-

quence n1, n2, . . . , nk that satisfies ni−1/3 ≤ ni ≤ 2ni−1/3 +O
(
(1/εi)

4
)
with

n1 = N and nk = Θ (N0). As in Section 4.4,
∑

i εi can be upper-bounded by
O
(
ε1+Ω(1)

)
, hence yielding the lemma.

Preprocessing time and space. The preprocessing time T (n) and space S(n)
satisfy the following recurrences:

T (n)≤ max
1/3≤α≤2/3

(
T
(
αn+O

(
(1/ε)4n4δ

))
+ T

(
(1− α)n+O

(
(1/ε)4n4δ

))
+

O
(
n log n+ (1/ε)5n

))
,

S(n)≤ max
1/3≤α≤2/3

(
S
(
αn+O

(
(1/ε)4n4δ

))
+ S

(
(1− α)n+O

(
(1/ε)4n4δ

))
+

O ((1/ε)n)) .

As before, we choose N0 = Θ((1/ε)4/(1−4δ)). In the base case
there are O (N/N0) graphs of O (N0) vertices each, so we need
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O
(
N/N0 ·N

2
0

)
= O (N0N) time and space. Solving the recur-

rences gives T (N) = O
(
N log2 N + (1/ε)5N logN

)
and S(N) =

O
(
(1/ε)N logN + (1/ε)4+O(δ)N

)
. We can readjust δ by a constant fac-

tor.

Theorem 8 (Oracle of additive stretch) Given a non-negatively weighted,
undirected planar graph of n vertices and of diameter ∆, we can construct for
it an oracle of O (ε∆) additive stretch with O

(
n log2 n+ (1/ε)5n log n

)
prepro-

cessing time, O
(
(1/ε)n log n+ (1/ε)4+δn

)
space, and O (log (1/ε)) query time

for any constant δ > 0.

5.2 Approximate distance oracles

Now we show how to use our oracle of additive stretch as a building block
to construct a (1 + ε)-approximate distance oracle with an existing technique
based on sparse neighborhood covers, as done by Kawarabayashi et al. [19]
and Gu and Xu [16]. The following lemma is due to Busch et al. [3] and
Kawarabayashi et al. [19].

Lemma 7 (Sparse neighborhood covers) Given a planar graph G = (V,E) of
n vertices and an integer r, we can construct a collection of subsets Vi of V
in O (n log n) time, such that (i) the diameter of the subgraph of G induced by
each Vi is at most 24r − 18, (ii) every vertex resides in O (1) subsets Vi, and
(iii) for every vertex v, the set of all vertices at distance at most r from v is
contained in at least one of the Vi’s.

We assume without loss of generality that each edge of G has weight at least
one. That can be ensured by dividing every edge weight with the minimum.
Then, for every scale r ∈

{
20, 21, . . . , 2log∆

}
, we consider the graph G(r) that

ensues after deleting the edges of G of weight at least 24r and contracting those
of weight at most r/N2. Thus, each edge appears in the graphs of O (logN)
scales, which we can identify in that much time. Let R be the set that contains
each scale r such that G(r) has at least one edge. For each r ∈ R, we construct
G(r) and the sparse neighborhood cover of Lemma 7 for it, hence obtaining

a collection of subsets V
(r)
i . Then, for the induced graph of G(r) of each such

subset, we build our distance oracle of O (εr) additive stretch of Theorem 8.
Finally, we build the 2-approximate distance oracle of O (N logN) space and
O (1) query time of Thorup [28] inO

(
N log3 N

)
time. We assume that ε ≥ 2/N

because otherwise we can just run a linear-time SSSP algorithm [17].
Given two vertices of u and v, we obtain a 2-approximation d of the u-to-v

distance by querying the oracle of Thorup [28]. Then, we compute the most
significant bit [13] (this is where we need the assumption of the word RAM
model) of d to identify a scale r such that r/2 ≤ d ≤ r in constant time.

Finally, we visit the oracle of each of the O (1) subsets V
(r)
j that contain u,

compute an approximation d̂j of additive stretch of the u-to-v distance therein,

and set d̃ to be the minimum of the values d̂j + εr/2.



Faster Approximate Diameter and Distance Oracles in Planar Graphs 23

Approximation factor. We now show that for any two vertices u, v of G, our
oracle returns a value d̃ with distG [u, v] ≤ d̃ ≤ (1 +O (ε))distG [u, v].

We first claim that r ∈ R. To see this, recall that in G(r) all edges of
weight at least 24r have been deleted and those of weight at most r/n2 have
been contracted. Notice that the former edges do not participate in the u-
to-v shortest path in G because the length of that path is at most r. Since
the diameter of G(r) is at most 24r − 18, these edges are not used in any
shortest path therein. Let L be the largest summation of distances in any
contracted path of G(r). Since ε > 2/N , we have L ≤ r/N ≤ εr/2. The
length of the u-to-v shortest path in G is at least r/2, so not all of its edges are
contracted in G(r), i.e., r ∈ R. This also shows that distG(r) [u, v] ≤ distG [u, v] ≤
distG(r) [u, v] + εr/2.

From the first property of sparse neighborhood covers, we know that there

is at least one subset V
(r)
i that contains both u and v, such that the in-

duced subgraph of G(r) has diameter at most 24r − 18. From the third, we
have dist

G
(r)
i

[u, v] = distG(r) [u, v]. Moreover, for the u-to-v distance d̂i re-

turned by our oracle of additive stretch for G
(r)
i , we have dist

G
(r)
i

[u, v] ≤ d̂i ≤

dist
G

(r)
i

[u, v] +O (εr). Combining everything,

distG [u, v] ≤ d̂i + εr/2

≤ distG [u, v] +O (εdistG [u, v]) ≤ (1 +O (ε))distG [u, v].

By adjusting ε by a constant factor, the approximation factor of our oracle
can become 1 + ε.

Time and space analysis. The preprocessing time is dominated by the time

required to build the oracles of additive stretch for the graphs G
(r)
i associ-

ated with the sparse neighborhood cover of G(r) for each scale r ∈ R (the
same reasoning applies for the space). We can construct each such oracle in
O
(
n log2 n+ (1/ε)n log n

)
time, where n is the number of vertices of the cor-

responding graph. Since each edge of G appears in O (logN) graphs G
(r)
i , the

summation of n’s over all oracles of additive stretch is O (N logN). Therefore,
the total preprocessing time and space of our (1 + ε)-approximate oracle is
O
(
N log3 N + (1/ε)5N log2 N

)
and O

(
(1/ε)N log2 N + (1/ε)4+δN logN

)
re-

spectively. The query time is O (log (1/ε)) because we spend O (1) time to
find the appropriate scale and query O (1) oracles of additive stretch, each in
O (log (1/ε)) time.

Theorem 9 (Approximate distance oracle) We can construct a (1 + ε)-
approximate distance oracle for a non-negatively-weighted, undirected pla-
nar graph of n vertices with O

(
n log3 n+ (1/ε)5n log2 n

)
preprocessing time,

O
(
(1/ε)n log2 n+ (1/ε)4+δn log n

)
space, and O (log (1/ε)) query time in the

word RAM model, for any constant δ > 0.



24 Timothy M. Chan, Dimitrios Skrepetos

6 Conclusion

It would be interesting to investigate whether the logarithmic factors of our
near-O

(
n log2 n

)
-time approximation algorithm for the diameter of a non-

negatively-weighted, undirected planar graph of n vertices can be improved.
Another problem that remains open is reducing the space of our (1 + ε)-

approximate distance oracles to linear while keeping the query time indepen-
dent of n. Kawarabayashi et al. [18] presented oracles of linear space but nearly
O
(
log2 n

)
query time.
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