Range closest-pair search in higher dimensions*

Timothy M. Chan!, Saladi Rahul?, and Jie Xue?

! University of Illinois at Urbana-Champaign, Urbana, IL, USA
tmc@illinois.edu
2 University of Illinois at Urbana-Champaign, Urbana, IL, USA
saladi.rahul@gmail.com
3 University of Minnesota - Twin Cities, Minneapolis, Minnesota, USA
xuexx1930Qumn. edu

Abstract. Range closest-pair (RCP) search is a range-search variant of
the classical closest-pair problem, which aims to store a given set S of
points into some space-efficient data structure such that when a query
range @ is specified, the closest pair in S N @ can be reported quickly.
RCP search has received attention over years, but the primary focus was
only on R?. In this paper, we study RCP search in higher dimensions.
We give the first nontrivial RCP data structures for orthogonal, simplex,
halfspace, and ball queries in R? for any constant d. Furthermore, we
prove a conditional lower bound for orthogonal RCP search for d > 3.

1 Introduction

The closest-pair problem is one of the most fundamental problems in compu-
tational geometry and finds numerous applications in various areas, such as
collision detection, traffic control, etc. In many scenarios, instead of finding the
global closest-pair, people want to know the closest pair contained in some spec-
ified ranges. This results in the notion of range closest-pair (RCP) search. RCP
search is a range-search variant of the classical closest-pair problem, which aims
to store a given set S of points into some space-efficient data structure such that
when a query range @) is specified, the closest pair in S N @Q can be reported
quickly. RCP search has received considerable attention over the years [1, 4, 10,
11,17,18, 21, 20, 22, 23].

Unlike most traditional range-search problems, RCP search is non-decomposable.
That is, if we partition the dataset S into S; and Ss, given a query range @,
the closest pair in SN @ cannot be obtained efficiently from the closest pairs in
S51NQ and SoNQ. Due to the non-decomposability, many traditional range-search
techniques are inapplicable to RCP search, which makes the problem quite chal-
lenging. As such, despite of much effort made on this topic, most known results

* A full version of the paper is available at [6]. Work by the first author has been
partially supported by NSF Grant CCF-1814026. Work by the third author has
been partially supported by a Doctoral Dissertation Fellowship from the Graduate
School of the University of Minnesota.

are restricted to the plane case, i.e., RCP search in R2. Beyond R2, only very
specific query types have been studied, such as 2-sided box queries.

In this paper, we investigate RCP search in higher dimensions. We consider
four widely-studied query types: orthogonal queries, simplex queries, halfspace
queries, and ball queries. We are interested in designing efficient RCP data struc-
tures (in terms of space cost, query time, and preprocessing time) for these kinds
of query ranges, and proving conditional lower bounds for these problems.

Related work. The closest-pair problem and range search are both well-studied
problems in computational geometry; see [2,19] for surveys of these two topics.
RCP search was for the first time introduced by Shan et al. [17] and subse-
quently studied in [1,4,10,11, 18,21, 20,22,23]. In R?, the query types studied
include quadrants, strips, rectangles, and halfplanes. RCP search with these
query ranges can be solved using near-linear space with poly-logarithmic query
time. The best known data structures were given by Xue et al. [22], and we
summarize the bounds in Table 1. For fat rectangles queries (i.e., rectangles of
constant aspect ratio), Bae and Smid [4] showed an improved RCP data struc-
ture using O(nlogn) space and O(logn) query time. In a recent work [20], Xue
considered a colored version of RCP search in which the goal is to report the
bichromatic closest pair contained in a query range, and proposed efficient data
structures for orthogonal colored approximate RCP search (mainly in R?).

Query type| Space cost |Query time|Preprocessing time
Quadrant O(n) O(logn) O(nlog®n)
Strip O(nlogn) | O(logn) O(nlog®n)
Rectangle |O(nlog® n)| O(log” n) O(nlog™ n)
Halfplane O(n) O(logn) O(nlog®n)

Table 1. Best known results in R2

Beyond R?, the problem is quite open. To our best knowledge, the only known
results are the orthogonal RCP data structure given by Gupta et al. [10] which
only has guaranteed average-case performance and the approximate colored RCP
data structures given by Xue [20] which can only handle restricted query types
(dominance query in R? and 2-sided box query in R%).

A key ingredient in existing solutions for RCP search in R? is the candidate-
pair method. Roughly speaking, this method tries to show that among the £2(n?)
point pairs, only a few (called candidate pairs) can be the answer of some query.
If this can be shown, then it suffices to store the candidate pairs and search
the answer among them. Unfortunately, it is quite difficult to generalize this
method to higher dimensions, as the previous approaches for proving the number
of candidate pairs heavily rely on the fact that the data points are given in the
plane. This might be the main reason why RCP search can be efficiently solved
in R2, while remaining open in higher dimensions.

Our contributions. In this paper, we give the first non-trivial RCP data struc-
tures for orthogonal, simplex, halfspace, and ball queries in R?, for any constant
d. The performances of our new data structures are summarized in Table 2, where
the notation O(-) hides logn factors. All these data structures have near-linear

space cost, sub-linear query time, and sub-quadratic preprocessing time. For ex-
ample, we obtain O(n7/8) query time for two-dimensional triangular ranges, and
O(nQ/ 3) query time for three-dimensional halfspaces and two-dimensional balls
(i.e., disks).4

Furthermore, we complement these results by establishing a conditional lower
bound, implying that our O(y/n) query time bound for orthogonal RCP search
in R? for any d > 3 is likely the best possible (and in particular explaining why
polylogarithmic solution seems not possible beyond two dimensions). Specifi-
cally, we show that orthogonal RCP search in R? is at least as hard as the set
intersection query problem, which is conjectured to require fZ(\/ﬁ) query time
for linear-space structures.

Query type Source Space cost Query time Preprocessing time
Orthogonal| Theorem 1 O(n) O(y/n) O(ny/n)
Simplex Theorem 3 O(n) O(nlfl/@dz)) O(n(3d2+1)/(2d2+1>)

Halfspace | Theorem 4 O(n) O(nt=1/1ld/2D) O~(n271/<2d2>)
Ball Full version [6]| O(n) |O(n!~t/((d+DId/2]) O~(n271/<2(d+1>2))
Table 2. Performances of our new RCP data structures in R?

Overview of our techniques. Our approach for designing these new data
structures is quite different from those in the previous work. We avoid using the
aforementioned candidate-pair method. Instead, our RCP data structures solve
the problems as follows (roughly). For a given query range @, the data structure
first partitions the points in S N @ into two subsets, say K and L. The size
of L is guaranteed to be small, while K may have a large size. Then the data
structure computes the closest pair ¢ in K using some pre-stored information
and computes the closest pair ¢’ in L using the standard closest-pair algorithm
(which can be done efficiently as L is small). If the two points of the closest pair
¢* in SN Q are both in K or both in L, we are done. The only remaining case
is that one point of ¢* is in K while the other point is in L. The data structure
handles this case by finding the nearest neighbor of a in) for every a € L via
reporting all the points in) that are “near” a. Using a packing argument, we
can show that one only needs to report a constant number of points for each
a € L, and hence this procedure can be completed efficiently (since L is small).

To implement this strategy, we incorporate a number of existing geometric
data structuring techniques. For orthogonal RCP, we use range trees and adapt
an idea from Gupta et al. [10] of classifying nodes as “heavy” and “light” (origi-
nally for solving a different problem, two-dimensional orthogonal range diameter,
in near-linear space and O(\/ﬁ) query time). For simplex RCP, we use simplicial
partitions instead of range trees. For halfspace RCP, we switch to dual space and
use cuttings, similar to an idea from Chan et al. [7] (for solving a different prob-
lem, halfspace range mode, in near-linear space and O(nl’l/ d2) time). Overall,
the combination of existing and new ideas is nontrivial (and interesting, in our

* Gupta et al. [10] obtained O(y/n) query time for two-dimensional disks, but only for
uniformly distributed point sets; the general problem was left open in their paper.

opinion). Our conditional lower bound proof for three-dimensional orthogonal
RCP is similar to some previous work (for example, Davoodi et al.’s conditional
lower bound for two-dimensional range diameter [9]), and along the way, we in-
troduce a new variant of colored range searching, color uniqueness query, which
may be of independent interest.

2 Preliminaries

The first two results we need are the well-known partition lemma and cutting
lemma, both of which are extensively used for solving range-search problems.

Lemma 1. (Partition lemma [13]) Given a set S of n points in R¢ and a
parameter 1 < r < n'~° for an arbitrarily small constant § > 0, one can compute
in O(nlogn) time a partition {S1,...,S.} of S and r simplices Aq,..., A, in
R? such that (1) S; € A; for alli € {1,...,7r}, (2) |Si| = O(n/r) for all
i€ {l,...,r}, and (3) any hyperplane in R crosses O(r'='/4) simplices among
Ay, A,

Lemma 2. (Cutting lemma [8]) Given a set H of n hyperplanes in R? and
a parameter 1 < r < n, one can compute in O(nré=1) time a cutting of R? into
O(r?) cells each of which is a constant-complexity polytope intersecting O(n/r)
hyperplanes in H. In addition, the algorithm for computing the cutting stores the
cells into an O(r?)-space data structure which can report in O(logr) time, for a
specified point in © € R?, the cell containing .

We shall also use the standard range-reporting data structures for orthogonal,
simplex, and halfspace queries, stated in the following lemma;:

Lemma 3. Given a set S of n points in RY, one can build in O(nlog®® n)
time an O(nlog®M n)-space data structure which can

(a) (Orthogonal range reporting [5]) report, for a specified orthogonal box
B in R?, the points in S N B in O(log® " n+ k) time where k = |S N B;

(b) (Simplex range reporting [13]) report, for a specified simplex A in R,
the points in SN A in O(n*~Y410g®M) n + k) time where k = |S N A|;

(c) (Halfspace range reporting [14]) report, for a specified halfspace H in
R?, the points in S N H in O(nl’l/Ld/2J logo(l) n + k) query time where
k=|SNH]|

Using a multi-level data structure that combines range trees with the above
structures, we can obtain range-reporting structures for query ranges that are
the intersections of an orthogonal box and a simplex/halfspace (see the full
version [6] for a detailed proof).

Lemma 4. Given a set S of n points in R?, one can build in O(nlogo(l) n)
time an O(n logo(l) n)-space data structure which can

(a) (Box-simplex range reporting) report, for a specified orthogonal box B
and simplex A in R?, the points in SNBNA in O(logo(l) n4+m!-1/d logo(l) n+
k) time where m = |SN B| and k = |SN BN A|;
(b) (Box-halfspace range reporting) report, for a specified orthogonal box B
and halfspace H inR?, the points in SNBNH in O(logo(l) n4mt-1/1d/2] logo(l) n+
k) time where m = |SN B| and k =|SNBNH|.

3 Orthogonal RCP queries

3.1 Data structure

Let S be a set of n points in R?. In this section, we show how to build a RCP data
structure on S for orthogonal queries. First, we build a (standard) d-dimensional
range tree 7 on S. Each node u of 7 corresponds to a canonical subset of S,
which we denote by S(u). We say u is a heavy node if |S(u)| > /n. For every pair
(u,v) of heavy nodes, we compute the closest pair ¢,y in S(u) U S(v); denote
by @ the set of all these pairs. Then we build an orthogonal range-reporting data
structure D(S) on S (Lemma 3(a)). Our orthogonal RCP data structure consists
of the range tree T, the data structure D(5), and the pair set &.

Query procedure. Consider a query box B in R%. Our goal is to find the closest
pair in SN B using the data structure described above. By searching in the range
tree T, we can find ¢t = O(logo(l) n) canonical nodes cy,...,c; corresponding
to B. We have SN B = |J'_, S(c;). Let I = {i : c; is a heavy node} and I’ =
{1,...,t}\I. (See Figure 1(left).) For all i,j € I, we obtain the pair ¢c, ; from
@ and take the closest one ¢ € {¢c, ¢, : i,j € I'}. On the other hand, we compute
L = U,cp S(ci). We take the closest pair ¢ in L. Let 6 = min{|¢|,[¢’|}. For each
a € L, let O, be the hypercube centered at a with side-length 26. We query,
for each a € L, the box range-reporting data structure D(S) with O, N B to
obtain the set P, = SN, N B. After this, for each a € L, we compute a pair 1,
consisting of a and the nearest neighbor of a in P,\{a}. We then take the closest
one Y € {¢, : a € L}. Finally, if |[¢| < |¢|, then we return ¥ as the answer;
otherwise, we return ¢ as the answer.

We now verify the correctness of the above query procedure. Let ¢* = (a, b)
be the closest pair in S N B. It suffices to show that || < |¢*| or |[¢] < |¢*].
Suppose a € S(c;) and b € S(cy). If 4,5 € I, then |p| < |pe, c;| < |¢*| and we are
done. Otherwise, either i € I’ or j € I'; assume ¢ € I’ without loss of generality.
It follows that a € L. Since ¢* is the closest pair in S N B, we have |¢*| < |4
and |¢*| < |¢|, which implies that the distance between a and b is at most ¢.
Therefore, b € P,. Now we have || < |1b,] < |¢*|, which completes the proof of
the correctness.

Analysis. We analyze the performance (space, query time, and preprocessing
time) of our orthogonal RCP data structure. To this end, we first bound the
number of the heavy nodes. The lemma below follows immediately from the
well-known fact that the sum of sizes of the canonical subsets in a range tree is
O(nlog?n).

o, Rie

Fig. 1. (Left) The canonical nodes in the range tree 7 break the query box B into
thirteen disjoint regions. The green regions correspond to set I (the heavy nodes). The
orange points form the set L. For one of the points in L (denoted by a), the box O, is
shown in blue. The crucial property is that the number of points which lie in BN, is
O(1). (Right) Reduction from the set intersection query to the color uniqueness query.
The set intersection query is to test if S4 and Ss are disjoint, and the query rectangle
q for the color uniqueness query exactly contains points p4 and pj.

Lemma 5. There are O(y/nlog®Y n) heavy nodes in T.

By the above lemma, the space of the data structure is O(n logo(l) n). Indeed,
the range tree 7 and the data structure D(S) both occupy O(nlog? ' n) space,
and the pair-set @ takes O(n log?*~2 n) space as there are O(y/n1og®® n) heavy
nodes. The preprocessing time is O(n\/ﬁlogo(l) n). Indeed, building the range
tree 7 and the data structure D(S) takes O(nlog®® n) time. We claim that the
pair-set ¢ can be computed in O(n\/ﬁlogo(l) n) time. We first find the set H of
heavy nodes, which can be done in O(n logo(l) n) time by simply checking every
node of 7. For two pairs (u,v) and (u’,v’) of nodes in H, we write (u,v) =<
(u,v') if |S(u)[+]S(v)] < |S(u')|+]S(v)]. Then “<” is a partial order on H xH.
We consider the pairs of heavy nodes in this partial order from the smallest to
the greatest. For each pair (u,v), we compute ¢y as follows. If [S(u)| < 2y/n
and |S(v)| < 2y/n, we explicitly compute S(u) U S(v) and then compute ¢y,
using the standard closest-pair algorithm in O(y/nlogn) time. Otherwise, either
|S(u)| > 2¢/n or |S(v)| > 2¢/n. Without loss of generality, assume |S(u)| >
2y/n. Then the two children u; and us of u) are both heavy. Note that ¢uv
is the closest one among ¢u, v, Pus,vs Pus,u, Dy construction. Also note that
(u1,v) 2 (w,v), (ug,v) = (u,v), (u,uz) = (u,v), thus ¢u, v, dus.v, Pus,us
have already been computed when considering (u,v). With ¢u, v, Pu, v, uy,us
in hand, we can compute ¢y in O(1) time. In sum, ¢y can be computed in
O(y/nlogn) time in any case. Since |H X H| = O(nlogo(l) n), we can compute
@ in O(n\/ﬁlogo(l) n) time. This completes the discussion of the preprocessing
time. Next, we analyze the query time. Finding the canonical nodes cy,...,c;
takes O(logo(l) n) time, so does computing the index sets I and I’. Obtaining
the set {¢¢,,c; : i,j € I} and computing ¢ takes 0(log®M n) time since |I] <
tand t = O(logo(l) n). Computing ¢’ requires O(\/ﬁlogo(l) n) time, because
IL| = O(ty/n) = O(y/nlog®M n). For a point a € L, reporting the points in P,
takes O(log®Y n + |P,|) time. Therefore, computing all the P,’s can be done

in O(|L|1og®M n + > wcr |Pal) time. To bound this quantity, we observe the
following fact.

Lemma 6. |P,| = O(1) for alla € L.

Proof. We have SNB = (|J,;c; S(u;)) UL. It suffices to show that [(|J;c; S(u;))N
0.l = O(1) and |[LNO| = O(1). Both facts follow from the pigeonhole principle
readily. Indeed, we have |(U,c; S(u;)) NO,| = O(1) because ¢ is the closest pair
in J,c; S(u;) and |¢| > 6. We have [LNO| = O(1) because ¢' is the closest pair
in L and |¢/| > §. This completes the proof. O

By the above lemma and the fact |L| = O(y/n1og® Y n), we can compute all the
P,’s in O(v/nlog®® n) time. The pair ¢ can be directly obtained after knowing
all the P,’s, hence the total query time is O(y/nlog®™ n). We conclude the
following.

Theorem 1. Given a set S of n points in R?, one can construct in O(ny/n)
time an orthogonal RCP data structure on S with O(n) space and O(y/n) query
time.

3.2 Conditional hardness

In this subsection, we prove a conditional lower-bound for the orthogonal RCP
query, which shows that the upper bound given in Theorem 1 is tight, ignoring
logn factors. First, we define the following problem [15].

Problem 1. (Set intersection query) The input is a collection of sets Sy, So, ..., S
of positive reals such that Y ;- |S;| = n. Given query indices i and j, report if
S; and S; are disjoint, or not?

This problem can be viewed as a query version of Boolean matrix multipli-
cation, and is conjectured to be hard: in the cell-probe model without the floor
function and where the cardinality of each set .S; is upper-bounded by logo(l) m,
any data structure to answer the set intersection problem in O(a) time requires
2((n/a)?) space, for 1 < a <n [9,15]. In particular, any linear-space structure
is believed to require £2(1/n) time.

Next we introduce an intermediate geometric problem, which may be of in-
dependent interest:

Problem 2. (Color uniqueness query) The input is a set S of n colored points
in R2. Specifically, let C' be a collection of distinct colors, and each point p € S
is associated with some color from C. Given a query rectangle ¢, report if all the
colors are unique in S N ¢? In other words, is there a color which has at least
two points in SN ¢q?

We will perform a two-step reduction: first, reduce the set intersection query
to the color uniqueness query, and then reduce the two-dimensional color unique-
ness query to the three-dimensional orthogonal RCP query.

Reduction from set intersection to color uniqueness in R2. Given an
instance of the set intersection query, we will construct an instance of the color
uniqueness query. Let p1 = (1,1),p2 = (2,2),...,0m = (m,m), and pj = (m +
1,1),p5 = (m +2,2),...,p,, = (2m,m). Next, assign a unique color to each
distinct element in S; U S U ... U S,,. Now replace each point p; with |S;| new
points such that (a) the new points are within a distance of ¢ < 1 from p;, and
(b) each new point picks a distinct color from the colors assigned to the elements
in ;. Perform a similar operation for points p;. Let P be the collection of these
2n new points.

To answer if S; and \S; are disjoint (j < ¢), we ask a color uniqueness query
on P with an axis-aligned rectangle ¢ = [i —e,m + j +¢] X [J —¢&,i + €] (see
Figure 1(right)). If there is a color which contains two points, then we report
that S; and S; are not disjoint; otherwise, we report that S; and S; are disjoint.
The correctness is easy to see: the key observation is that ¢ exactly contains the
points of S; and S;. Therefore, S; and S; are disjoint iff all the colors are unique
in P N g. Reductions of this flavor have been performed before [3,9,12, 16].

Reduction from color uniqueness in R? to orthogonal RCP in R3. Given
an instance of the color uniqueness query, we will now construct an instance of
the orthogonal RCP query in R3. Let dpax be the maximum Euclidean distance
between any two points in S, and let ci,c,...,¢/¢| be the |C| colors in the
dataset. Then each point p = (pg, p,) € S with color ¢; is mapped to a 3-d point
P = (PzsPy, 2% dmax). Let P be the collection of these n newly mapped points.

To answer the color uniqueness query for a rectangle ¢, we will ask an or-
thogonal RCP query on P with the query box ¢ x (—o00, 00). If the closest-pair
distance is less than or equal to dpax, then we report that there is a color which
contains at least two points inside ¢; otherwise, we report that all the colors are
unique inside g. Once again, the correctness is easy to see: the key observation
is that the distance between points of different colors in P is at least 2 - dyax.

The above two reductions together implies our conditional lower bound,
which is presented in the following theorem.

Theorem 2. The orthogonal RCP query is at least as hard as the set intersec-
tion query.

4 Simplex RCP queries

Let S be a set of n points in R%, and r be a parameter to be specified shortly.
In this section, we show how to build a RCP data structure on S for simplex
queries. First, we use Lemma 1 to compute a partition {Si,...,S,} of S and
r simplices A1, ..., A, in R? satisfying the conditions in the lemma. For every
i,j € {1,...,7}, we compute the closest pair ¢; ; in S; US;; denote by & the set
of all these pairs. Then we build a box-simplex range-reporting data structure
D'(S) on S (Lemma 4(a)). Our simplex RCP data structure consists of the
partition {S1,...,S,}, the simplices Aq,..., A, the data structure D’(S), and
the pair set @.

Query procedure. Consider a query simplex A in R?. Our goal is to find
the closest pair in S N A using the data structure described above. We first
compute two index sets I = {i: A; C A}, I' ={i: A; € Aand A; N A # 0}.
(See Figure 2.) These index sets are computed by explicitly considering the r
simplices Aq,...,A,. For all 4,j € I, we obtain the pair ¢; ; from ¢ and take
the closest one ¢ € {¢;; : i, € I}. On the other hand, we compute a set
L = (Usep Si) N A by simply checking, for every i € I’ and every a € S;,
whether a € A. We take the closest pair ¢ in L. Let § = min{|¢|, |¢'|}. For each
a € L, let O, be the hypercube centered at a with side length 25. We query, for
each a € L, the box-simplex range-reporting data structure D’(S) with O, and
A to obtain the set P, = SN0, N A. After this, for each a € L, we compute a
pair 1, consisting of a and the nearest neighbor of a in P,\{a}. We then take
the closest one ¢ € {¢, : a € L}. Finally, if [¢)| < |¢|, then we return ¢ as the
answer; otherwise, we return ¢ as the answer.

We now verify the correctness of the above query procedure. Let ¢* = (a,b)
be the closest pair in S N A. It suffices to show that |¢| < |¢*| or |[¢]| < |o*|.
Suppose a € S; and b € S;. We first notice that 7,7 € TUI’. Indeed, if i ¢ TU I’
(resp., j ¢ TUI'), then A; N A =10 (resp., A; N A =0) and hence S; N A =0
(resp., S;NA = (), which contradicts the fact that a € S;NA (resp., b € S;NA).
If i,j € I, then |§| < |¢; ;| < |¢*| and we are done. Otherwise, either i € I’ or
j € I'; assume i € I’ without loss of generality. It follows that a € L. Since ¢*
is the closest pair in S N A, we have |¢*| < |¢| and |¢*| < |¢’|, which implies
that the distance between a and b is at most d. Therefore, b € P,. Now we have
|| < |ta] < |6*|, which completes the proof of the correctness.

Fig.2. I = {Al,AQ} and I/ = {A3,A4,A5,A6}.

Analysis. We analyze the performance (space, query time, and preprocessing
time) of our simplex RCP data structure. The space of the data structure is
O(nlog®Y n + r2), because D'(S) occupies O(nlog®™d)
pies O(r?) space. The preprocessing time is O(nr logo(l) n). Indeed, computing
the partition {S1,...,S,} and the simplices Aq,..., A, takes O(nlogn) time
by Lemma 1. Computing ¢;; for some fixed ¢,j € {1,...,r} can be done
in O((n/r)log(n/r)) time using the standard closest-pair algorithm, because
|S; U S;| = O(n/r). It follows that computing ¢ takes O(nrlogn) time. Fi-

n) space and ¢ occu-

nally, building the data structure D’(S) requires O(nlog®® n) time. As such,
our simplex RCP data structure can be constructed in O(nrlog®™® n) time.
Next, we analyze the query time. The index sets I and I’ are computed in O(r)
time. Obtaining the set {¢; ; : i,j € I} and computing ¢ requires O(r?) time.
The set L is computed by explicitly considering all the points in (J;.; S; in
O ;e |Si]) time. We notice that |I'] = O(r'=1/4), since each facet of A only
intersects O(rlfl/d) simplices among Aj,..., A, by Lemma 1. It follows that
Sicr 19il = O(n/rt/?), because |S;| = O(n/r). That says, L can be computed
in O(n/r'/4) time and in particular, |L| = O(n/r'/4). Once L is obtained, ¢’
can be computed in O((n/r'/4)1log(n/r'/?)) time using the standard closest-
pair algorithm. For a point a € L, reporting the points in P, takes O(logo(l) n-+
ma” Y 10g® W m, + |P,|) time where m, = [SNO,|, by Lemma 4(a). Therefore,
computing all the P,’s can be done in O(}_ ., ma Y 10g%W p + > acr | Pal)
time. To bound this quantity, we observe the following fact.

Lemma 7. }° _;, m, = O(n) and |P,| = O(1) for all a € L.

Proof. We first prove) ., mq = O(n). Consider a point p € S. Let [, be the
hypercube centered at p with side-length 2. Note that p € P, only if a € O, for
all a € L. Since ¢’ is the closest pair in L and |¢'| > §, we have LN O, = O(1)
by the pigeonhole principle. Therefore, only a constant number of points in L
is contained in p. In other words, any point p € S is contained in P, for only a
constant number of a € L, which implies) _; m, = O(n). Next, we prove that
|Pa| = O(1) for all a € L. Clearly, SN A = (|J;c; Si) U L. So it suffices to show
that |(U;c; i) NOa| = O(1) and |L NO,| = O(1). Both facts follow from the
pigeonhole principle readily. Indeed, we have [({J;c; Si) NOa| = O(1) because ¢
is the closest pair in | J;; S; and || > 0. We have [LNO,| = O(1) because ¢’ is
the closest pair in L and |¢/| > §. This completes the proof of |P,| = O(1). O

By the above lemma and Hélder’s inequality, we have

Z m(ll—l/d < O(nl—l/d|L‘1/d) -0 (n) ’

1/d2
T

which implies that computing all the P,’s takes O((nlog®™® n)/r/4*) time. The
pair ¥ can be directly obtained agter knowing all tlr12e Pa;s. Hence, the total query
time is O(r2 + (nlog®™M n)/r1/4). Setting r = n® /4" +1) gives:

Theorem 3. Given a set S of n points in R?, one can construct in O~(n(3d2+1)/(2d2+1))

time a simplex RCP data structure on S with O(n) space and O(n'=/24)) query
time.

Note that our data structure above can also handle constant-complexity poly-
tope RCP queries (with the same query procedure and query time). In other
words, the data structure can be used to report, for specified O(1) halfspaces

Hi,...,H, in R% the closest pair in SN (N, H;) in O(n*=1/(24%)) time.

10

5 Halfspace RCP queries

Let S be a set of n points in R%, and r be a parameter to be specified shortly.
In this section, we show how to build an RCP data structure on S for halfspace
queries. The same method can also result in an RCP data structure for ball
queries, using the standard lifting argument. Since halfspace query is a special
case of simplex query, the simplex RCP data structure in the last section can be
directly used to answer halfspace RCP queries. But in fact, for halfspace RCP
queries, we can achieve better bounds.

It suffices to consider the halfspaces which are regions below non-vertical
hyperplanes, namely, halfspaces of the form z4 < ayx; + -+ 4+ ag_1xq4_1. By
duality, a point @ € S maps to a hyperplane a* in the dual space (which is
also a copy of RY). Also, a non-vertical hyperplane h in the primal R? maps
to a point A* in the dual space. The property of duality guarantees that a is
above (resp., below) h iff h* is above (resp., below) a* for all @ € S and all
hyperplanes h (see Figure 3). Define H = {a* : a € S}. We use Lemma 2 to cut
RY (the dual space) into R = O(r?) cells Z1,. .., Zr each of which is a constant-
complexity polytope intersecting O(n/r) hyperplanes in H. For i € {1,..., R},
let S; = {a: a* is below =;}. We associate to the cell Z; the closest pair ¢; in
S;. Furthermore, we build a simplex range-reporting data structure D(S) on S
(Lemma 3(b)) and a box-halfspace range-reporting data structure D’(S) in S
(Lemma 4(b)). Our halfspace RCP data structure consists of the cells =1, ..., 5
(with the associated pairs ¢1,...,¢,) and the data structures D(S) and D’(S5).
The cells =1,..., =R are stored in the way mentioned in Lemma 2 (so that we
can do point location efficiently).

HNH, N
\ °
Si
/ ° ° U*
L] L]
(a) Primal plane (b) Dual plane

Fig. 3. The dataset shown in (a) consists of seven points. The dual h* of the query
hyperplane h lies inside the cell =; shown in pink in (b). The closest pair among the
black points, ¢;, is computed in the preprocessing phase itself (since the dual of the
black points is the set S;). The red points belong to set L and are explicitly reported
during the query procedure.

Query procedure. Consider a query halfspace H that is the region below a
non-vertical hyperplane h. Our goal is to find the closest pair in SN H using the
data structure described above. To this end, we first find the cell =; such that

11

h* € Z;. Let V be the set of the vertices of =;. We have V = O(1) by Lemma 2.
For every v € V, let H, be the halfspace above the non-vertical hyperplane v*
in the primal R%. Using D(S), we find the points in SN (H N H,) for all v € V
and obtain the set L = (J, oy, SN (H N H,). We take the closest pair ¢’ in L. Let
0 = min{|¢;], |¢'|} (recall that ¢, is the pair associated to =;). For each a € L,
let [J, be the hypercube centered at a with side-length 26. We query, for each
a € L, the box-halfspace range-reporting data structure D'(S) with O, and H
to obtain the set P, = SN, N H. After this, for each a € L, we compute a
pair 1, consisting of a and the nearest neighbor of a in P,\{a}. We then take
the closest one ¢ € {1, : a € L}. Finally, if |¢| < |¢;|, then we return ¢ as the
answer; otherwise, we return ¢; as the answer.

We now verify the correctness of the above query procedure. First of all,
we claim that SN H = S; U L. Indeed, we have L C S N H by definition and
S; € SN H because a* is below =; (and hence below h*) for all a € S;; this
implies S; UL C SN H. Tosee SNH C S; UL, let a € SN H be a point.
If a* is below Zj, then a € S;. Otherwise, there exists v € V such that a* is
above v. It follows that a € SN (H N H,) C L. Therefore, SN H C S; UL and
SN H =S;UL. With this observation in hand, we first show that the returned
answer is a pair in S N H. It suffices to show that both ¢; and 1 are pairs in
S N H. The two points of ¢; are both in S; and hence in SN H. To see 9 is a
pair in SN H, suppose ¥ = 9, for a € L. By definition, v, consists of a and the
nearest neighbor of a in P,\{a}. We havea € LCSNH and P, CLC SNH,
hence v is a pair in SN H. Next, we show that the returned answer is the closest
pair in SN H. Let ¢* = (a,b) be the closest-pair in S N H. It suffices to show
that |¢;| < |¢*| or || < |¢*|. If a,b € S;, then |¢;] < |¢*| and we are done.
Otherwise, assume a ¢ S; and thus a € L, without loss of generality. Since ¢* is
the closest pair in S N H, we have |¢*| < |¢;], which implies that the distance
between a and b is at most §. Therefore, b € P,. Now we have || < |¢,] < |¢*],
which completes the proof of the correctness.

Analysis. We analyze the performance (space, query time, and preprocess-
ing time) of our halfspace RCP data structure. The space of the data struc-
ture is O(nlog®® n + R), because D(S) occupies O(n) space, D'(S) occu-
pies O(nlogo(l)n) space, and storing =1,...,5g (with the associated pairs
¢1,...,0r) requires O(R) space. Next, we analyze the query time. Determining
the cell Z; takes O(logr) time by Lemma 2. For each v € V, reporting the points
in SN (HN H,) takes O(n'~*/410g® n + k,) time where k, = |S N (H N H,)|.
We claim that a* intersects =; for any a € SN (H N H,). Indeed, a* is be-
low h because a € H and is above v because a € H,. Thus, a* intersects
the segment connecting h* and v. Since h*,v € Zj, a* intersects =;. It follows
that k, = O(n/r) by Lemma 2. Furthermore, because V' = O(1), L can be
computed in O(n!=1/410g%Y n 4 S oev ko) = O(nt~1/d 1og®Y n + n/r) time
and |L| = O}, cy kv) = O(n/r). Once L is obtained, ¢’ can be computed
in O((n/r)log(n/r)) time using the standard closest-pair algorithm. For a point
a € L, reporting the points in P, takes O(log®™® nt+ma /142 log@M Ma+|Pal)

12

time where m, = |S N O,|, by Lemma 4(b). By exactly the same argument in
the proof of Lemma 7, we have the following observation:

Lemma 8.) _; m, = O(n) and |P,| = O(1) for all a € L.

By the above lemma and Hélder’s inequality, we have

1-1/|d/2] 1=1/ld/2) pi/ld2ly o
;ma <O(n L])=0 (rl/td/%))

which implies that computing all the P,’s takes O(nlog®™ n/rl/l4/2]) time.
The pair ¢ can be directly obtained after knowing all the P,’s. Hence, the total
query time is O(logr + nlog®® n/ri/14/2]) Finally, we analyze the prepro-
cessing time. The data structures D(S) and D’(S) can both be constructed in
O(nlog®M n) time by Lemma 3(b) and 4(b). The cells Zi,..., =g can be com-
puted in O(nr¢=1) time by Lemma 2. So it suffices to show how to compute
the pairs ¢1, ..., ¢g efficiently. To this end, we build a simplex RCP data struc-
ture on S as described in Theorem 3, which takes O(n34+1/Q4*+1) time. Fix
i € {1,...,R} and let V be the set of the O(1) vertices of =;. For v € V| let
H] be the halfspace below the hyperplane v* in the primal space. We claim that
Si = SN (Nyev Hy)- To see this, consider a point a € S. We have a € S; iff
a* is below =; iff v is below a* for all v € V, or equivalently, a € H, for all
v € V. Thus, S; = SN (N,ey Hy). We can then compute the closest pair ¢;
in S; using the simplex RCP data structure with the query range (), H,, (as
mentioned at the end of Section 4, our simplex RCP data structure can handle
queries which are intersections of constant number of halfspaces). Computing
¢; takes O(nl_l/(QdQ) 1og®M n) time, and hence computing all pairs ¢, ..., ¢x
takes O(Rnlfl/(z‘f) logo(l) n) time. In sum, the preprocessing time of our halfs-
pace RCP data structure is O((nrd=1 4n B4 +1)/24°+1) 4 pp1=1/2d)) 15g0W)).
Setting 7 = n'/? gives:

Theorem 4. Given a set S of n points in R?, one can construct in O~(n271/(2d2)
time a halfspace RCP data structure on S with O(n) space and O(n!~1/(dld/2]))
query time.

References

1. Mohammad Ali Abam, Paz Carmi, Mohammad Farshi, and Michiel Smid. On
the power of the semi-separated pair decomposition. Computational Geometry,
46(6):631-639, 2013.

2. Pankaj K Agarwal and Jeff Erickson. Geometric range searching and its relatives.
Contemporary Mathematics, 223:1-56, 1999.

3. Pankaj K. Agarwal, Nirman Kumar, Stavros Sintos, and Subhash Suri. Range-max
queries on uncertain data. Journal of Computer and System Sciences, 94:118-134,
2018.

4. Sang Won Bae and Michiel Smid. Closest-pair queries in fat rectangles. CoRR,
arXiv:1809.10531, 2018.

13

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Compu-
tational Geometry: Algorithms and Applications. Springer-Verlag, 2008.

Timothy Chan, Saladi Rahul, and Jie Xue. Range closest-pair search higher di-
mensions. CoRR, arXiv:1905.01029, 2019.

Timothy M. Chan, Stephane Durocher, Kasper Green Larsen, Jason Morrison, and
Bryan T. Wilkinson. Linear-space data structures for range mode query in arrays.
Theory of Computing Systems, 55(4):719-741, 2014.

Bernard Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete & Com-
putational Geometry, 9(2):145-158, 1993.

Pooya Davoodi, Michiel H. M. Smid, and Freek van Walderveen. Two-dimensional
range diameter queries. In Latin American Symposium on Theoretical Informatics
(LATIN), pages 219-230, 2012.

P. Gupta, R. Janardan, Y. Kumar, and M. Smid. Data structures for range-
aggregate extent queries. Computational Geometry, 2(47):329-347, 2014.
Prosenjit Gupta. Range-aggregate query problems involving geometric aggregation
operations. Nordic Journal of Computing, 13(4):294-308, 2006.

Haim Kaplan, Natan Rubin, Micha Sharir, and Elad Verbin. Counting colors in
boxes. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 785-794, 2007.

Jifi Matousek. Efficient partition trees. Discrete & Computational Geometry,
8(3):315-334, 1992.

Jif{f Matousek. Reporting points in halfspaces. Computational Geometry, 2(3):169—
186, 1992.

Mihai Patragcu and Liam Roditty. Distance oracles beyond the Thorup—Zwick
bound. SIAM Journal of Computing, 43(1):300-311, 2014.

Saladi Rahul and Ravi Janardan. Algorithms for range-skyline queries. In Proceed-
ings of ACM Symposium on Advances in Geographic Information Systems (GIS),
pages 526-529, 2012.

Jing Shan, Donghui Zhang, and Betty Salzberg. On spatial-range closest-pair
query. In Proceedings of Symposium on Advances in Spatial and Temporal
Databases (SSTD), pages 252-269. Springer, 2003.

R. Sharathkumar and Prosenjit Gupta. Range-aggregate proximity queries. Tech-
nical Report TR/2007/80, IIIT Hyderabad, Telangana, 2007.

Michiel Smid. Closest point problems in computational geometry. In J.-R. Sack and
J. Urrutia, editors, Handbook of Computational Geometry, pages 877-935. Elsevier
Science, Amsterdam, 1999.

Jie Xue. Colored range closest-pair problem under general distance functions.
In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 373-390, 2019.

Jie Xue, Yuan Li, and Ravi Janardan. Approximate range closest-pair search.
In Proceedings of the Canadian Conference on Computational Geometry (CCCG),
pages 282-287, 2018.

Jie Xue, Yuan Li, Saladi Rahul, and Ravi Janardan. New bounds for range
closest-pair problems. In Proceedings of Symposium on Computational Geome-
try (SoCG), pages 73:1-73:14. Schloss Dagstuhl-Leibniz-Zentrum fur Informatik
GmbH, Dagstuhl Publishing, 2018.

Jie Xue, Yuan Li, Saladi Rahul, and Ravi Janardan. Searching for the closest-pair
in a query translate. CoRR, arXiv:1807.09498, 2018.

14

