
Orthogonal Range Reporting and Rectangle

Stabbing for Fat Rectangles

Timothy M. Chan1, Yakov Nekrich2, and Michiel Smid3

1 Department of Computer Science, University of Illinois at Urbana-Champaign
tmc@illinois.edu

2 Cheriton School of Computer Science, University of Waterloo.
yakov.nekrich@googlemail.com

3 School of Computer Science, Carleton University michiel@scs.carleton.ca

Abstract. In this paper we study two geometric data structure prob-
lems in the special case when input objects or queries are fat rectangles.
We show that in this case a significant improvement compared to the
general case can be achieved.

We describe data structures that answer two- and three-dimensional or-
thogonal range reporting queries in the case when the query range is a fat
rectangle. Our two-dimensional data structure uses O(n) words and sup-
ports queries in O(log logU + k) time, where n is the number of points
in the data structure, U is the size of the universe and k is the num-
ber of points in the query range. Our three-dimensional data structure
needs O(n logε U) words of space and answers queries in O(log logU +k)
time. We also consider the rectangle stabbing problem on a set of three-
dimensional fat rectangles. Our data structure uses O(n) space and an-
swers stabbing queries in O(logU log logU + k) time.

1 Introduction

Orthogonal range reporting and rectangle stabbing are two fundamental
problems in computational geometry. In the orthogonal range reporting
problem we keep a set of points in a data structure; for any axis-parallel
query rectangle Q we must report all points in Q. Rectangle stabbing is,
in a sense, a dual problem. We keep a set of axis-parallel rectangles in
a data structure. For a query point q we must report all rectangles that
are stabbed by q, i.e., all rectangles that contain q. A rectangle is fat if
its aspect ratio (the ratio of its longest and shortest edges) is bounded
by a constant. In this paper we consider the range reporting problem
in scenario when query rectangles are fat. We show that significant im-
provements can be achieved for this special case. We also describe a data
structure that supports three-dimensional stabbing queries on a set of fat
three-dimensional rectangles.

The range reporting problem and its variants have been studied ex-
tensively over the last four decades; see for example, [13, 8, 9, 25, 3, 2, 22,
21, 1, 15, 6, 7]. We refer to [17, 23] for extensive surveys of previous re-
sults. The best known data structure for two-dimensional point reporting
uses O(n logε n) words of space and supports queries in O(log logU + k)
time [7]. Henceforth n is the total number of geometric objects (points
or rectangles) in the data structure, k is the number of reported ob-
jects, and ε is an arbitrarily small positive constant; we assume that
all point coordinates are positive integers bounded by a parameter U .
The space usage can be reduced to linear or almost-linear at the cost
of paying a non-constant penalty for every reported point. Thus there
is an O(n)-word data structure that supports queries in O(log logU +
(k + 1) logε n) time and O(n log log n)-word data structure that answers
queries in O(log logU + k log log n) time. If we want to use linear space
and spend constant time for every reported point, then the overall query
cost is increased to polynomial: the fastest linear-space data structure re-
quires O(nε+k) time to answer a query [5]. Better results are known only
in the special case when the query range is bounded on three sides [19, 2];
there is a linear-space data structure that answers three-sided queries in
O(log logU + k) time (or even in O(1 + k) time if U = O(n)) [2]. In this
paper we show that two-dimensional orthogonal range reporting queries
can be answered in O(log logU +k) time using an O(n)-space data struc-
ture under assumption that query rectangles are fat. We also demonstrate
that the fatness assumption is profitable for three-dimensional orthogo-
nal range reporting. We show in this paper how to report all points in a
three-dimensional axis-parallel fat rectangle in O(log logU+k) time using
a O(n logε U)-word data structure. This is to be compared with the result
of Chan et al. [7] that achieves the same query time for arbitrary rectangle
queries but uses O(n log1+ε n) words of space. The third problem consid-
ered in this paper is the three-dimensional stabbing problem on a set of
fat rectangles. For a query point q we must report all rectangles that are
stabbed by q. We describe a data structure that uses O(n) words of space
and supports queries in O(logU log logU + k) time. For comparison, the
best known data structures for general rectangles use O(n log∗ n) words
of space and support queries in O(log2 n) time [24].

Our data structure for two-dimensional range reporting, described in
Sections 2 and 3, is based on quadtrees. Using a marking scheme on nodes
of a quadtree, we divide the plane into O(n/d) canonical rectangles, so
that each rectangle contains O(d) points for d = log n. For any fat query
rectangle Q, we can quickly find all canonical rectangles R satisfying Q∩

2

Reference Space Time Query Type

[7] O(n) O(log logU + (k + 1) logε n) General
[7] O(n log log n) O(log logU + k log log n) General
[7] O(n logε n) O(log logU + k) General
[5] O(n) O(nε + k) General
[19] O(n O(log n+ k) Three-sided
[2] O(n O(log logU + k) Three-sided
[10] O(n) O(log n+ k) Fat
New O(n) O(log logU + k) Fat

Table 1. Space-time trade-offs for two-dimensional range reporting. Result in line 7 is
a corollary from [10], but it is not stated there.

R 6= ∅ and report all points inQ∩R for all such R. In Section 4 we describe
a data structure that supports three-dimensional range reporting for fat
query ranges. It is based on recursive decomposition of the grid similar
to [2, 7, 15], but in our case the grid is divided into uniform cells. We
describe a data structure for stabbing queries on a set of three-dimensional
fat rectangles in Section B. This result is based on reducing a stabbing
query to O(logU) three-dimensional dominance queries. The results of
this paper are valid in the word RAM model of computation.

Related Work. A result about range reporting in two-dimensional
fat rectangles is implicitly contained in the paper of Chazelle and Edels-
brunner [10]. In [10] the authors describe a linear-space data structure for
triangular range reporting. Their data structure can report all points in
an arbitrary query triangle, provided that the sides of the triangle par-
allel to three fixed directions; queries are supported in O(log n+ k) time
where k is the number of reported points. We can represent a square as
a union of two such triangles and we can represent an arbitrary fat rect-
angle as a union of O(1) squares. Hence we can answer two-dimensional
range reporting queries for fat rectangles in O(log n + k) time and O(n)
space.

Data structures for fat convex objects are studied in e.g., [16, 12, 11,
4]. Iacono and Langerman [14] describe a data structure that supports
point location queries in a set of axis-parallel fat d-dimensional rectan-
gles. This data structure answers queries in O(log logU) time and uses
O(n log logU) space for any fixed dimension d.

3

2 Quadtree-Based Rectangular Subdivision

In this section we describe a planar rectangular subdivision that is used
by our two-dimensional data structure. To make the description self-
contained, we start with the definition of a compressed quadtree.

A quadtree TQ is a hierarchical data structure that divides the plane
into regions. Let U denote the maximum of x- and y-coordinates of
all points. We associate a square (also called a cell) square(v) to ev-
ery quadtree node v. The root of a quadtree is associated to the square
[0, U] × [0, U]. W. l. o. g. we assume that U is a power of 2. If a square
square(v) of a node v contains more than one point, then the node v has
four children. We divide square(v) into four squares of equal size and
associate them to four child nodes of v. A compressed quadtree T is a
subtree of TQ obtained by keeping only those internal nodes of TQ that
have more than one non-empty child.

Marking Nodes in a Quadtree. Let T denote a compressed quadtree
on a set of n points. Let d = log n. We mark selected nodes in T by em-
ploying the following marking scheme: (i) every d-th leaf is marked and
(ii) if an internal node u has at least two children with marked descen-
dants, then u is marked. We can mark nodes of a given quadtree T in
linear time using the following method. We will say that a node u is a
special node if exactly one child of u has marked descendants. First we
traverse the leaves of T in the left-to-right order and mark every d-th
leaf, starting with the leftmost one. Then we visit all internal nodes of
T in post-order. If a visited node u has exactly one child ui such that ui
is either marked or special, then we declare that the node u is special. If
u has two or more children that are either special or marked, then the
node u is marked. Marked nodes induce a subtree T ′ of T . T ′ has n/d
leaves. Since every internal node of T ′ has at least two children, T ′ has
at most n/d− 1 internal nodes. Hence the total number of marked nodes
is O(n/d). Similar methods for selecting nodes were previously used in
other tree-based data structures, see e.g., [20, 18].

Rectangular Subdivision. When nodes are marked, we traverse
T from the top to the bottom and divide it into O(n/d) rectangles so
that each rectangle contains O(d) points. The subdivision is produced
as follows. A direct marked descendant of a node u is a descendant u′

of u such that u′ is marked and there are no marked nodes between
u and u′. Suppose that a node u is a marked node and let u1, . . ., uf
denote its direct marked descendants. A marked node has at most 4 direct
marked descendants, therefore f ≤ 4. Let square(u) denote the cell of

4

Fig. 1. Marking nodes in a compressed quadtree for d = 8. Leaves are shown with
squares and internal nodes are shown with circles. Marked leaves and internal nodes are
depicted with filled circles and filled squares respectively. Only a part of the quadtree
is shown.

a node u. We can represent square(u) \ (∪f
i=1square(ui)) as a union

of a constant number of rectangles Rj(u). We will say that Rj(u) are
rectangles associated to the node u. See Fig. 2. There are O(n/d) marked
nodes in the quadtree. Our subdivision consists of rectangles Ri(u) for
all marked internal nodes of T and cells square(v) for all marked leaves
v of T . By dividing every marked node with marked descendants into
rectangles as described above, we obtain a sub-division of the plane into
O(n/d) rectangles. Rectangles of this subdivision will be further called
canonical rectangles.

Lemma 1. Every canonical rectangle contains O(d) points.

Proof : Consider a rectangle R(u) associated to a node u. Let u1, . . ., uf
denote the direct marked descendants of u. We can show that the set
P0 = square(u) \ (∪f

i=1square(ui)) contains O(d) points. Let L0 denote
the set of leaves in which points from P0 are stored. There are at most d
leaf nodes from L0 between ui and ui+1 for 1 ≤ i < f ; there are at most d
leaf descendants of u to the left of u1 and at most d leaf descendants of u
to the right of uf . Hence the total number of leaves in L0 does not exceed
(f + 2)d. Since R(u) ⊆ L0 and f ≤ 4, R(u) contains O(d) points. �

5

R1

R2

R3

R4

R5

R6

R7

R8

R9

Fig. 2. Subdivision of a marked cell into rectangles. Cells corresponding to direct
marked descendants are shown in black.

3 Orthogonal Range Reporting for Fat Boxes in 2-D

Data Structure. We divide the plane into canonical rectangles as de-
scribed in Section 2. For every rectangle R in this subdivision we keep
the list Lx(R) of points in R sorted by their x-coordinates and the list
Ly(R) of points in R sorted by their y-coordinates. We also keep a data
structure D(R) that supports two-dimensional range reporting queries on
points of R. Since R contains O(log n) points, we can implement D(R)
in O(log n) space so that queries are supported in O(k) time. The data
structure D(R) will be described in Section A. We will denote by P the
set of points stored in our data structure.

Orthogonal Range Queries. For simplicity we will consider the case
when the query range is a square. Any fat rectangle can be represented as
a union of O(1) squares. Consider a query Q = [a, b]× [c, d]. All canonical
rectangles that intersect Q can be divided into three categories: (i) corner
rectangles that contain a corner of Q (ii) rectangles that cut one side of Q
or are completely contained in Q; such rectangles will be called internal
rectangles (iii) rectangles that cross two opposite sides of Q, but do not
contain corners of Q; we say that such rectangles are spanning rectangles
or that type (iii) rectangles span Q. See Fig. 3.

Lemma 2. If a rectangle Q = [a, b]× [c, d] is a square, then Q is spanned

by O(1) canonical rectangles.

Proof : Suppose that a canonical rectangle R(u), associated to a node u,
spans Q. Then either (i) square(u) contains two corners of Q and Q is
not contained in square(u′) for any descendant u′ of u, or (ii) square(u)

6

1
2

3

4

5

6

7 Q

Fig. 3. Examples of different rectangles with respect to a query Q. Rectangles 1 and
2 are corner rectangles, rectangles 3, 4, 5, 6 are internal rectangles, and rectangle 7
spans Q.

contains Q but Q is not contained in square(u′) for any descendant u′ of
u.

If Q is contained in square(u) and at least one rectangle R(u) spans
Q, then Q is not contained in square(u′) for any descendant u′ of u.
Hence there is at most one cell that satisfies condition (i).

Suppose that square(u) contains two corners of Q and some rectangle
R(u) spans Q. Let us assume w.l.o.g. that Q crosses the left side ` of
square(u). Let u′ be some descendant of u. If square(u′) for a descendant
u′ of u does not touch the left side of square(u), then the distance from
` to square(u′) is greater than or equal to the size of square(u′). Hence
square(u′) does not contain two corners of Q. If square(u′) touches `
and contains two corners of Q, then there is no canonical rectangle R(u)
that spans Q. Thus there is at most one cell that satisfies condition (ii).

Since there is only one cell satisfying condition (i) and only one cell
satisfying condition (ii), the total number of canonical rectangles that
span Q is bounded by a constant.

�

A query range can overlap with a large number of internal rectangles.
But we can find all internal rectangles R, such that R ∩ Q ∩ P 6= ∅
by answering a range reporting query on a set P ′ (defined below) that
contains O(n/d) representative points for d = log n. It was shown in
Lemma 2 that a square is intersected by O(1) spanning rectangles. There
are at most four corner rectangles for any query range Q. Since there is
a constant number of corner rectangles and spanning rectangles, we can
process all of them in constant time. A more detailed description follows.

We can identify all internal rectangles (type (ii) rectangles) that con-
tain at least one point from P∩Q as follows. For every canonical rectangle,

7

we keep its topmost point, its lowermost point, its leftmost point, and its
rightmost point in the set P ′. P ′ contains O(n/d) points. We keep P ′ in
the data structure D′ that supports orthogonal range reporting queries
in O(log logU + k) time [7]. D′ uses space O(n′ logε n′), where n′ is the
number of points in P ′. Since n′ = O(n/d), D′ uses space O(n). If rect(u)
is an internal rectangle and rect(u) ∩Q ∩ P 6= ∅, then at least one of its
extreme points is in Q. We can find all such rectangles by answering the
same query Q on the set P ′. For every reported point p, we examine the
canonical rectangle Rp that contains p.

There are at most four corner rectangles. We can find corner rectangles
by keeping all canonical rectangles in the point location data structure of
Chan [6]. For each corner point q of Q, we identify the rectangle Rq that
contains q in O(log logU) time.

Rectangles that span Q are the most difficult to deal with. All points
of a spanning rectangle can be outside of Q. It is not clear how we can
find spanning rectangles R such that R ∩ Q ∩ P 6= ∅. Existence of these
rectangles is the reason why our method cannot be extended to the gen-
eral case of the orthogonal range reporting. However, by Lemma 2, a
square query range Q is spanned by O(1) canonical rectangles from our
subdivision. All rectangles that span Q can be found as follows. For a
rectangle R we denote by left(R), right(R), bot(R), and top(R) the
lower and upper bounds of its horizontal and vertical projections; that is,
R = [left(R), right(R)] × [bot(R), top(R)]. If a rectangle R spans Q,
then at least one side of R spans Q. That is, R satisfies one of the follow-
ing conditions: (i) left(R) ≤ a, right(R) ≥ b, and c ≤ top(R) ≤ d; (ii)
left(R) ≤ a, right(R) ≥ b, and c ≤ bot(R) ≤ d; (iii) a ≤ left(R) ≤ b,
bot(R) ≤ c, and top(R) ≥ d; (iv) a ≤ right(R) ≤ b, bot(R) ≤ c,
and top(R) ≥ d. We keep information about every rectangle in four
three-dimensional data structures. The data structure R1 contains a tu-
ple (left(R), right(R), top(R)) for every canonical rectangle R. R1 can
find all R that satisfy left(R) ≤ a, right(R) ≥ b, and c ≤ top(R) ≤ d.
The data structure R2 contains a tuple (left(R), right(R), bot(R)) for
every canonical rectangle R. R2 can find all R that satisfy left(R) ≤ a,
right(R) ≥ b, and c ≤ bot(R) ≤ d. Data structures R3 and R4 con-
tain tuples (left(R), bot(R), top(R)) and (right(R), bot(R), top(R))
respectively for every canonical rectangle R. R3 supports queries a ≤
left(R) ≤ b, bot(R) ≤ c, and top(R) ≥ d; R4 supports queries a ≤
right(R) ≤ b, bot(R) ≤ c, and top(R) ≥ d. Queries supported by data
structures Ri are a special case of three-dimensional orthogonal range
reporting queries, called 4-sided queries (the query range is bounded on

8

four sides). Using the result of Chan et al. [7], we can answer such queries
in O(log logU + k) time using O(n′ logε n) space where n′ = O(n/d) is
the number of tuples in Ri. If a rectangle R is returned by a query to Ri,
then R spans Q or R contains two corners of Q. If Q is a square, then we
can answer all queries on Ri described above and identify all canonical
rectangles that span Q in O(log logU + f) = O(log logU) time, where
f = O(1) is the number of canonical rectangles that span Q.

For every corner or spanning rectangle R, we find all points in R ∩Q
using the data structure D(R). Since the total number of corner and
spanning rectangles is bounded by O(1), we can find all relevant points
in O(k) time. Using data structure D′ we can find all internal rectangles
in O(log logU + nI) time where nI is the number of internal rectangles.
For every internal rectangle RI we traverse the list of points in Lx(RI) or
Ly(RI) and report all points in RI ∩Q in time O(kI) where kI = |RI ∩Q|.
The result of this section can be summed up as follows.

Theorem 1. There is a linear-space data structure that answers orthog-

onal range reporting queries in O(log logU + k) time provided the query

range Q = [a, b]× [c, d] is a fat rectangle.

4 Orthogonal Range Reporting for Fat Boxes in 3-D

In this section, we describe a data structure for 3-d orthogonal range
reporting for fat query boxes, by adopting a recursive grid approach.
Nonuniform grids have been used in previous range searching data struc-
tures by Alstrup, Brodal, and Rauhe [2] and Chan, Larsen, and Pa-
trascu [7], but we use uniform grids instead. Also, the way we use re-
cursion is a little different, and more closely resembles the recursion from
van Emde Boas trees. Each node in our recursive structure is augmented
with a general 5-sided range reporting structure; thus, our solution can
be viewed as a reduction from fat 6-sided range searching to 5-sided range
searching.

The data structure. Let P be a given set of n points in [U]3, where
[U] denotes {0, 1, . . . , U − 1}. Let r be a parameter (a function of U)
to be chosen later. Divide [U]3 into r3 grid cells, each a cube of the
form {(x, y, z) : (U/r)i ≤ x < (U/r)(i + 1), (U/r)j ≤ y < (U/r)(j +
1), (U/r)k ≤ z < (U/r)(k + 1)} for some i, j, k ∈ [r]. We call (i, j, k) the
label of such a grid cell. A grid slab refers to a region of the form {(x, y, z) :
(U/r)i ≤ x < (U/r)(i + 1)}, {(x, y, z) : (U/r)j ≤ y < (U/r)(j + 1)}, or
{(x, y, z) : (U/r)k ≤ z < (U/r)(k+1)}. A grid-aligned box refers to a box

9

whose x-, y-, and z-coordinates are all multiples of U/r. We construct our
data structure as follows:

A. For each nonempty grid cell γ, recursively build a data structure for
P ∩ γ; also store P ∩ γ as a linked list.

B. Let Γ be the set of all nonempty grid cells. Recursively build a data
structure for the labels of Γ .

C. For each grid slab σ, build Chan, Larsen, and Patrascu’s data struc-
ture [7] for P ∩ σ for 3-d 5-sided queries, which requires O(n logε n)
words of space and O(log logU) query time4.

Analysis of space. Since we use a uniform grid, we will represent the
space usage and query time as functions of the universe size U . Let s(U)
be the amortized space complexity of our data structure in bits, i.e., the
total space complexity in bits divided by the number of points n. Item A
of the data structure requires at most s(U/r) bits per point, since after
translation, each grid cell becomes [U/r]3. This ignores the space for the
linked lists, which require a total of O(n logU) bits. Item B requires at
most s(r) bits per point, since the labels lie in [r]3. Item C requires a
total of O(n logε n logU) ≤ O(n log1+ε U) bits (since n ≤ U3). Thus,

s(U) ≤ s(U/r) + s(r) +O(log1+ε U).

Query algorithm. We consider the case when the query range is
an (axis-parallel) cube; any fat query box can be expressed as a union
of O(1) cubes. Given a query cube Q, we report all points of P in Q as
follows:

1. If Q is completely contained in a grid cell γ, then recursively report
all points of P ∩ γ in Q. Otherwise:

2. Decompose Q into (at most) one grid-aligned cube Q′ and (at most)
six other boxes Q1, . . . , Q6, where each Qi is a 5-sided box in a grid
slab σi. (See Figure 4 for an analogous 2-d depiction.)

3. Recursively report all grid cells of Γ in Q′. For each reported grid cell
γ ∈ Γ , report all points in the linked list P ∩ γ.

4. For each i ∈ {1, . . . , 6}, report all points of P ∩ σi in Qi.

Analysis of query time. Let t(U) denote the running time of the
query algorithm, excluding the outputting cost (which is O(k) for k out-
put points). Step 1 takes t(U/r) time. The recursive call in step 3 takes
t(r) time. Step 2 takes O(log logU) time. Thus,

t(U) ≤ max {t(U/r) +O(1), t(r) +O(log logU)} .

4 For simplicity, we ignore the time needed to output points in this section.

10

the current best data structure for the former requires O(n logε n) space
and O(log logU+k) query time. To see the reduction, note that a 4-sided
box [x1, x2) × (−∞, y) × (−∞, z) contains the same points as the cube
[x1, x2)× [y− (x2−x1), y)× [z− (x2−x1), z), assuming that x2−x1 > U .
The assumption can be guaranteed after stretching the x-axis by a factor
of U (so that the universe is now [U2]× [U]× [U]).

References

1. P. Afshani. On dominance reporting in 3d. In Proc. 16th Annual European Sym-
posium on Algorithms(ESA), pages 41–51, 2008.

2. S. Alstrup, G. S. Brodal, and T. Rauhe. New data structures for orthogonal range
searching. In Proc. 41st Annual Symposium on Foundations of Computer Science,
(FOCS 2000), pages 198–207, 2000.

3. L. Arge, V. Samoladas, and J. S. Vitter. On two-dimensional indexability and
optimal range search indexing. In Proc. 18th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS), pages 346–357, 1999.

4. B. Aronov, M. de Berg, and C. Gray. Ray shooting and intersection searching
amidst fat convex polyhedra in 3-space. Comput. Geom., 41(1-2):68–76, 2008.

5. J. L. Bentley and H. A. Maurer. Efficient worst-case data structures for range
searching. Acta Inf., 13:155–168, 1980.

6. T. M. Chan. Persistent predecessor search and orthogonal point location on the
word RAM. ACM Trans. Algorithms, 9(3):22, 2013.

7. T. M. Chan, K. G. Larsen, and M. Patrascu. Orthogonal range searching on the
RAM, revisited. In Proc. 27th ACM Symposium on Computational Geometry,
(SoCG 2011), pages 1–10, 2011.

8. B. Chazelle. Filtering search: a new approach to query-answering. SIAM J. Com-
put., 15(3):703–724, 1986.

9. B. Chazelle. A functional approach to data structures and its use in multidimen-
sional searching. SIAM J. Comput., 17(3):427–462, 1988.

10. B. Chazelle and H. Edelsbrunner. Linear space data structures for two types of
range search. Discrete & Computational Geometry, 2:113–126, 1987.

11. M. de Berg and C. Gray. Vertical ray shooting and computing depth orders for fat
objects. SIAM J. Comput., 38(1):257–275, 2008.

12. A. Efrat, M. J. Katz, F. Nielsen, and M. Sharir. Dynamic data structures for fat
objects and their applications. Computational Geometry, 15(4):215 – 227, 2000.

13. H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and related techniques
for geometry problems. In Proc. 16th Annual ACM Symposium on Theory of
Computing (STOC 1984), pages 135–143, 1984.

14. J. Iacono and S. Langerman. Dynamic point location in fat hyperrectangles with
integer coordinates. In Proc. 12th Canadian Conference on Computational Geom-
etry, 2000.

15. M. Karpinski and Y. Nekrich. Space efficient multi-dimensional range reporting.
In Proc. 15th Annual International Conference on Computing and Combinatorics
(COCOON 2009), pages 215–224, 2009.

16. M. J. Katz. 3-d vertical ray shooting and 2-d point enclosure, range searching, and
arc shooting amidst convex fat objects. Computational Geometry, 8(6):299 – 316,
1997.

12

17. M. v. Kreveld and M. Löffler. Range Searching, pages 1–7. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2014.

18. M. Lewenstein, Y. Nekrich, and J. S. Vitter. Space-efficient string indexing for
wildcard pattern matching. In Proc. 31st International Symposium on Theoretical
Aspects of Computer Science (STACS 2014), pages 506–517, 2014.

19. E. M. McCreight. Priority search trees. SIAM J. Comput., 14(2):257–276, 1985.
20. G. Navarro and Y. Nekrich. Top-k document retrieval in optimal time and lin-

ear space. In Proc. 23rd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2012, pages 1066–1077, 2012.

21. Y. Nekrich. A data structure for multi-dimensional range reporting. In Proc. 23rd
ACM Symposium on Computational Geometry, (SoCG), pages 344–353, 2007.

22. Y. Nekrich. Space efficient dynamic orthogonal range reporting. Algorithmica,
49(2):94–108, 2007.

23. Y. Nekrich. Orthogonal Range Searching on Discrete Grids, pages 1–6. Springer
US, Boston, MA, 2008.

24. S. Rahul. Improved bounds for orthogonal point enclosure query and point location
in orthogonal subdivisions in R

3. In Proc. 26th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2015), pages 200–211, 2015.

25. D. E. Vengroff and J. S. Vitter. Efficient 3-d range searching in external memory.
In Proc. 28th Annual ACM Symposium on the Theory of Computing (STOC 1996),
pages 192–201, 1996.

A Orthogonal Range Reporting on a Small Set of Points

In this section we show how two-dimensional orthogonal range reporting
on a set of d = O(log n) points can be supported in O(k) time. Our data
structure uses space O(d), but needs an additional universal look-up table
of size o(n). That is, we can keep many instances of our data structure
for different point sets and all instances can use the same look-up table.

Lemma 3. If a set P contains d = O(log n) points, then we can keep P
in a linear-space data structure D(P) that answers two-dimensional range

reporting queries in O(k) time. This data structure relies on a universal

look-up table of size o(n).

Proof : First we observe that we can answer a query on a set P ′ that
contains at most d′ = (1/4) log n/ log log n points using a look-up table
of size o(n). Suppose that all points in P ′ have positive integer coor-
dinates bounded by d′. There are 2d

′ log d′ combinatorially different sets
P ′. For every instance of P ′, we can ask (d′)4 different queries and the
answer to each query consists of O(d′) points. Hence the total space
needed to keep answers to all possible queries on all instances of P ′ is
O(2(log d

′)d′(d′)5) = o(n) points. The general case (when point coordinates
are arbitrary integers) can be reduced to the case when point coordinates
are bounded by d′ using reduction to rank space [13, 2].

13

A query on P can be reduced to O(1) queries on sets that contain
O(d′) points using the grid approach [7, 2]. The set of points P is divided
into 4 log d columns Ci and 4 log d rows Rj so that every row and every
column contains (1/4)d/ log d points. Hence we can support range report-
ing queries on points in a row/column using the look-up table approach
described above. The top set Pt contains a meta-point (i, j) iff the inter-
section of the i-th column and the j-th row is not empty, Rj ∩ Ci 6= ∅.
Since Pt contains O(log2 d) = o(d′) points, we can also support queries
on Pt in O(k) time. For each meta-point (i, j) in Pt we store the list of
points Lij contained in the intersection of the i-th column and the j-th
row, Lij = Ci ∩Rj ∩ P .

Consider a query Q = [a, b] × [c, d]. If Q is contained in one column
or one row, we answer the query using the data structure for that col-
umn/row. Otherwise we identify the rows Rl and Rt that contain c and
d respectively (i.e., the line y = c is contained in Rb and the line y = d
is contained in Rt). We also identify the columns Cf and Cr containing a
and b. We report all points in Q∩Cl, Q∩Cr, Q∩Rb and Q∩Rt. We find
all meta-points (i, j) in Pt such that f < i < r and l < j < t; for every
found (i, j) we report all points in Lij . �

B Rectangle Stabbing in Three Dimensions

We consider the scenario when a set of fat three-dimensional rectangles
is stored in a data structure. Corners of rectangles lie on an integer grid
of size U . Given a query point q with integer coordinates, we must report
all rectangles that contain q.

Our construction is based on an uncompressed octree T . The set P (u)
for an octree node u contains all rectangles R such that: (i) R contains
at least one corner of cell(u), but (ii) R does not contain any corners of
cell(w) for any ancestor w of u. We will say that a node u is relevant

for a rectangle R if R ∈ P (u).

Lemma 4. Every fat rectangle R is stored in O(1) sets P (u).

Proof : Any fat three-dimensional rectangle R can be divided into O(1)
cubes Q1, Q2, . . ., Qf . If R satisfies conditions (i) and (ii) with respect to
some node u, then there is at least one cube Qi that satisfies conditions
(i) and (ii) for some descendant v of u. Therefore it is sufficient to show
that any cube Qi is relevant for O(1) nodes of T .

Let s denote the size of a cube Qi. There is exactly one cell size `,
such that s < ` ≤ 2s. Suppose that a cube Qi is entirely contained in

14

a size-` cell of some node u. Since s ≥ `/2, Qi contains the common
corner ν of all u’s children. Qi does not contain corners of u or any of its
ancestors. Hence Qi is relevant for at most eight children ui of u. Now
suppose that Qi contains a corner ν of some size-` cell, cell(u′1). Since
s < `, Qi intersects at most eight cells of size ` that share the common
corner ν. Every cell cell(u′i) with corner ν that intersects Qi satisfies
condition (i). Among all ancestors of u′i there is exactly one node that
satisfies both conditions (i) and (ii). Hence every Qi is relevant for at
most eight nodes. �

For each node u we keep rectangles R ∈ P (u) in data structures that
answer three-dimensional dominance queries. There is one data structure
for every corner ν of cell(u). If a rectangle R is relevant for a node u, then
cell(u) contains one corner µR of R5. If a rectangle R ∈ P (u) contains
a corner ν of cell(u), then we store R in the data structure Dν(u) that
supports stabbing queries for points q ∈ cell(u). Since rectangles R ∈ Dν

contain the corner ν of cell(u), the rectangle stabbing query is equiv-
alent to a three-dimensional dominance query in this case. Suppose, for
example, that ν is the corner with the smallest x-, y-, and z-coordinates
in cell(u). Then reporting rectangles R ∈ Dν containing the point q is
equivalent to reporting corners µR such that x(µr) ≥ x(q), y(µr) ≥ y(q),
and z(µr) ≥ z(q). See Figure 5 for an example in the 2-d case. The
linear-space data structure of Chan [6] answers three-dimensional point
reporting queries in O(log logU + k) time. Hence Dν supports stabbing
queries for points q ∈ cell(u) in O(log logU + k) time.

Given a query point q, we visit all nodes u on the path from the root
to a leaf node that contains q. In every visited node u we answer eight
dominance queries and thus report all rectangles R ∈ P (u) that contain q.
The total time to answer a query is O(logU log logU+k). Every rectangle
stabbed by q is relevant for some visited node u. Therefore our procedure
correctly reports all rectangles stabbed by q. The data structure uses
space O(n) because each rectangle is stored a constant number of times.

Theorem 3. There is an O(n)-space data structure that answers three-

dimensional rectangle stabbing queries for a set of fat rectangles on a [U]3

grid. Queries are supported in O(logU log logU + k) time.

5 To avoid tedious details we assume that every rectangle contains exactly one corner
of cell(u). The case when a rectangle R ∈ P (u) contains two or four corners of
cell(u) can be handled in a similar way.

15

µR1

µR3

µR4

µR2

µR5

ν

q

cell(u)

Fig. 5. Relevant rectangles for a quadtree in two dimensions. Relevant rectangles con-
taining the corner ν are shown with dashed lines, cell boundaries are shown with solid
lines. Point q is stabbed by R2, R4, and R5 because x(µRj

) ≥ x(q) and y(µRj
) ≥ y(q)

for j = 2, 4, 5.

16

