

23:2 Smallest k-Enclosing Rectangle Revisited

running time O(n log2 n + nk2 log n) for minimum area. Both de Berg et al. [17] and Kaplan

et al. [23] left as an open question whether there is a reduction from the minimum-area

problem to about Õ(n/k) instances of size O(k), where Õ hides1 polynomial factors in log n

and 1/ε. Such a reduction would readily imply an improved algorithm.

Our results

We revisit the above problems and provide significantly improved algorithms:

1. Exact smallest k-enclosing rectangle. In Section 2.1 we describe an algorithm for the

minimum k-enclosing rectangle (either area or perimeter) with running time O(n2 log n)

(see Theorem 2). It is based on a new divide-and-conquer approach, which is arguably

simpler than Kaplan et al.’s algorithm. Known reductions mentioned above then lead to

an O(n log n + nk log k)-time algorithm for computing the minimum perimeter rectangle.

2. k-sensitive running time for smallest area. In Section 2.2 we describe a reduction of the

minimum-area problem to O(n
k log n

k) instances of size O(k) (see Theorem 8). Our

reduction uses shallow cutting for 3-sided rectangular ranges [22] and is conceptually

simple.

Plugging this the aforementioned new O(n2 log n)-time algorithm leads to O(nk log n
k log k)

time algorithm for computing the minimum area k-enclosing rectangle (see Corollary 9).

Thus, our new result strictly improves upon both Kaplan et al.’s and de Berg et al.’s

results for all k, from constant to Θ(n).

The smallest enclosing rectangle problem is amenable to sampling. Kaplan et al. used

samples in an approximation algorithm, with running time Õ(n/k), that computes a rectangle

containing at least (1−ε)k points of a prescribed perimeter, where k is the maximum number

of points in any such rectangle. Similarly, using relative approximations [21], de Berg et al.

[17] showed an algorithm that computes, in Õ(n) time, a rectangle containing ≥ (1 − ε)k

points, where k is the maximum number of points in any rectangle of a prescribed area. The

“dual” problem, of approximating the minimum area rectangle containing k points seems

harder, since sampling does not directly apply to it.

1. Approximating the area of the smallest k-enclosing rectangle. In Section 2.3, we present

an approximation algorithm that computes, in O(n log n) expected time, a rectangle

containing k points of area ≤ (1 + ε)α∗, for a constant ε ∈ (0, 1), where α∗ is the

smallest-area of such a rectangle (see Theorem 13).

We next present a flotilla of related results:

1. 3-sided smallest k-enclosing rectangle. In Section 3.1 we (slightly) speed up the exact

algorithm for the 3-sided rectangles case (i.e., rectangles that must have their bottom

edge on the x-axis). The running time is O
(
n2/2Ω(

√
log n)

)
, and is obtained using known

results on the (min,+)-convolution problem [7, 28] (see Theorem 16).

2. Arbitrarily oriented smallest k-enclosing rectangle. In Section 3.2 we briefly consider the

variant where the rectangle may not be axis-aligned. We show that this problem can

be solved in O(n3 log n + n3k/2Ω(
√

log k)) time, slightly improving a previous result of

O(n3k) [15] when k is not too small.

1 We reserve the right, in the future, to use the Õ to hide any other things we do not like.

T. M. Chan and S. Har-Peled 23:3

3. Minimum-weight k-enclosing rectangle. In Section 3.3 we show how to extend our

O(n2 log n)-time algorithm to the related problem of finding a minimum-weight rectangle

that contains k points, for n given weighted points in the plane (see Theorem 17).

4. Subset sum for k-enclosing rectangle. In Section 3.4, we study the problem of finding a

rectangle that contains k points and has a prescribed weight W (or as close as one can

get to it). The running time of the new algorithm is O(n5/2 log n) (see Theorem 19).

5. Conditional lower bound. In Section 3.5, we prove that our near quadratic algorithm

for exact minimum (perimeter or area) k-enclosing rectangle is near optimal up to an

arbitrarily small polynomial factor, under a “popular” conjecture that the (min,+)-

convolution problem cannot be solved in truly subquadratic time [14].

2 Smallest k-enclosing rectangle

2.1 An exact near-quadratic algorithm

Our O(n2 log n)-time algorithm for minimum k-enclosing rectangles is based on divide-and-

conquer. It has some similarity with an O(n2)-time divide-and-conquer algorithm by Barbay

et al. [5] for a different problem (finding the minimum-weight rectangle for n weighted

points in the plane, without any k-enclosing constraint), but the new algorithm requires

more ingenuity.

We start with a semi-dynamic data structure for a 1D subproblem:

I Lemma 1. Given a set P of n points in 1D with q marked points, and an integer k, we

can maintain an O(q2)-space data structure, with O(n log n + nq) preprocessing time, that

supports the following operations:

report the shortest interval containing k points of P in O(q) time;

delete a marked point in O(q) time;

unmark a marked point in O(q) time.

Proof. Sort the points P , and let p1, . . . , pn he resulting order. Consider the (implicit)

matrix M = P − P . Formally, the entry Mij is pj − pi (we are interested only in the top

right part of this matrix) – such an entry can be computed in O(1) time directly from the

sorted point set. The optimal quantity of interest is the minimum on the kth diagonal; that

is, α(M) = mini Mi,i+k−1. When a marked point get deleted, this corresponds to deleting

a row and a column of M – the quantity of interest remains the minimum along the kth

diagonal. Such a deletion, as far as a specific entry of the top right of the matrix is concerned,

either (i) removes it, (ii) keeps it in its place, (iii) shift it one diagonal down as its moves left,

or (iv) keep it on the same diagonal as it shifts both up and left (see Figure 1).

In particular, any sequence of at most q deletions of elements can shift an entry in the

matrix at most q diagonals down. This implies that we need to keep track only of the

k, . . . , k + q diagonals of this matrix. To do better, observe that if we track the elements of

an original diagonal of interest, the deletions can fragment the diagonal into at most O(q)

groups, where each group still appear as contiguous run of the original diagonal.

To this end, let a fragment of a diagonal be either (i) a singleton entry that appears in

a row or column of a marked point, or (ii) a maximum contiguous portion of the diagonal

which does not touch any singleton entries from (i). It is easy to verify that the kth diagonal

of the matrix at any given point in time is made out of a sequence of at most 3k fragments,

where each fragment is an original fragment of one of the diagonals in the range k, . . . , k + q.

As such, instead of storing all the elements of a fragment, we only maintain the minimum

entry of the fragment (together with the information of what pairs of points it corresponds

to). After this compression, a diagonal of interest can be represented as a linked list of O(q)

SoCG 2019

T. M. Chan and S. Har-Peled 23:9

Without loss of generality, assume that all x-coordinates are in [0, 1/3]. Define a one-

dimensional quadtree interval (also known as a dyadic interval) to be an interval of the

form [m
2i , m+1

2i]. It is known that every interval of length w < 1/3 is contained in a quadtree

interval of length O(w) after shifting the interval by one of two possible values s ∈ {0, 1/3}
(this is a special case of a shifting lemma for d-dimensional quadtrees [6, 8]). Thus, suppose

that [px − α/py, px + α/py] is contained in the interval [m
2i + s, m+1

2i + s], where the length 1
2i

is equal to the smallest power of 2 greater than cα/py, for some constant c. (Note that i is

a nondecreasing function of py.) Without loss of generality, assume that 1/ε = 2E for an

integer E. Define a family of O(1/ε3) canonical rectangles of the form

[m
2i + j

2i+E + s, m
2i + j′

2i+E + s] × [−j′′εpy, py]

over all possible indices j, j′, j′′ ∈ {0, . . . , 1/ε} such that px ∈ [m
2i + j

2i+E + s, m
2i + j′

2i+E + s].

By rounding, R∗ is contained in a canonical rectangle R′ with height at most h∗+O(ε)py ≤
(1 + O(ε))h∗ and width at most

w∗ + O(ε)α/py ≤
(
1 + O(ε)

)
α/h∗,

and thus area at most (1 + O(ε))α. So, it suffices to count the number of points inside each

canonical rectangle and return the smallest area among those rectangles containing at least

k points.

To speed up range counting, observe that for canonical rectangles with the same j, j′, j′′,

the same s ∈ {0, 1/3}, and the same value for (i mod E), the portion of the rectangles above

(resp. below) ` forms a laminar family. This is because: (i) in the x-projections, if a pair

of intervals intersects, one interval must be contained in the other; (ii) as the height of

the 3-sided rectangle increases, py increases, and so i can only increase (or stay the same),

and so the width of the rectangle can only decrease (or stay the same). Thus, we can

apply Lemma 11 to compute the counts of the points inside each rectangle, for all canonical

rectangles with a fixed j, j′, j′′, s and (i mod E), in O(n) time (for each canonical rectangle,

we can use a point (px, py) ∈ P on the top edge, and a corresponding point (px, −j′′εpy)

on the bottom edge, as the designated points). The number of choices for j, j′, j′′, s and

(i mod E) is O((1/ε)3 log(1/ε)). J

I Theorem 13. Given a set P of n points in the plane, and parameters k and ε ∈ (0, 1),

one can compute a k-enclosing rectangle R′ such that area(R′) ≤ (1 + ε)opt(P, k), where

opt(P, k) is the area of the smallest axis-aligned rectangle containing k points of P . The

expected running time of the algorithm is O
(
(1/ε)3 log(1/ε) · n log n

)
.

Proof. We can use known techniques for reducing optimization problems to decision problems.

We give a self-contained description of one approach based on Chan’s randomized technique [9].

Let b be a sufficiently large constant. Divide the plane into b columns (vertical slabs)

each containing n/b points. Similarly divide the plane into b rows (horizontal slabs) each

containing n/b points. These steps take linear time by invoking a selection algorithm O(b)

times. For each quadruple τ = (c, c′, r, r′) where c and c′ are columns (with c left of c′ or

c = c′) and r and r′ are rows (with r below r′ or r = r′), consider the subproblem of finding

the smallest-area rectangle containing k points of P , subject to the extra constraints that the

left edge of the rectangle lies in c, the right edge lies in c′, the bottom edge lies in r, and the

top edge lies in r′. To solve this subproblem, it suffices to consider the at most 4n/b points

in P ∩ (c ∪ c′ ∪ r ∪ r′). To ensure that the extra constraints are satisfied, we add 4n/b copies

of the four intersection points formed by the right boundary of c, the left boundary of c′, the

SoCG 2019

23:10 Smallest k-Enclosing Rectangle Revisited

top boundary of r, and the bottom boundary of r′; and we add 16n/b to k. (Straightforward

modifications can be made in the special case when c = c′ or r = r′.) Let Pτ be the resulting

point set of size at most 20n/b points, and kτ be the resulting value of k. We thus have

opt(P, k) = min
τ

opt(Pτ , kτ).

To compute an approximation to the minimum, we consider the at most b4 quadruples

in random order τ1, τ2, . . . and keep track of an approximate minimum α with the invariant

that α ≤ min{opt(Pτ1
, kτ1

), . . . , opt
(
Pτi−1

, kτi−1

)
} < (1 + ε)α after the (i − 1)th iteration.

Let ε′ be such that (1 + ε′)2 = 1 + ε; note that ε′ = Θ(ε). At the ith iteration, we run the

approximate decision procedure for Pτi
twice, at values α and α/(1 + ε′), which allows us to

conclude one of the following:

opt(Pτi
, kτi

) ≥ α. In this case, we can continue to the next iteration and the invariant is

maintained.

α/(1 + ε′) ≤ opt(Pτi
, kτi

) < (1 + ε′)α. In this case, we reset α to α/(1 + ε′) and the

invariant is maintained.

opt(Pτi
, kτi

) < α. In this case, we recursively compute an approximation αi to the

quantity opt(Pτi
, kτi

), satisfying αi ≤ opt(Pτi
, kτi

) < (1 + ε)αi. We reset α to αi and the

invariant is maintained.

We land in the third case only if opt(Pτi
, kτi

) is the smallest among the i values opt(Pτ1
, kτ1

),

. . . , opt(Pτi
, kτi

), which happens with probability at most 1/i. Thus, the expected number

of recursive calls is bounded by the (b4)th Harmonic number
∑b4

i=1 1/i < ln(b4) + 1. The

expected running time satisfies the recurrence

T (n) ≤ (4 ln b + 1) T (20n/b) + O
(
(1/ε)3 log(1/ε) · n log n

)
,

which gives T (n) = O
(
(1/ε)3 log(1/ε) · n log n

)
when b = 1000, for example. J

3 Extensions

3.1 3-sided smallest k-enclosing rectangle

In this subsection, we give a slightly faster algorithm for the 3-sided variant of the prob-

lem, finding the smallest-area/perimeter rectangle enclosing k points, under the restriction

that the bottom edge lies on the x-axis. The improvement uses the latest result on the

(min,+)-convolution problem, and is interesting in view of a reduction in Section 3.5 in

the reverse direction, establishing essentially an equivalence of the 3-sided problem to

(min,+)-convolution.

I Problem 14. (min,+)-Convolution. Given real numbers a0, . . . , an−1, b0, . . . , bn−1, compute

c` = min`
i=0(ai + b`−i) for all ` = 0, . . . , 2n − 2.

Let Tconvol(n) be the time complexity of the (min,+)-convolution problem. As observed

by Bremner et al. [7], the problem can be reduced to (min,+)-matrix multiplication, and

using the current best result by Williams [28] (derandomized by Chan and Williams [13]),

Tconvol(n) = O(n2/2Ω(
√

log n)). We use (min,+)-convolution to speed up the preprocessing

time of the 1D data structure from Section 2.1.

I Lemma 15. The preprocessing time in Lemma 1 can be reduced to O((n/q)Tconvol(q) + q3).

T. M. Chan and S. Har-Peled 23:11

Proof. Divide the n × n matrix M vertically into n/q submatrices M1, . . . , Mn/q each

of dimension n × q. For each submatrix Mi, we consider the portions of the diagonals

k, . . . , k + q that are within Mi – each such portion will be called a chunk. We precompute

the minimum of the entries in each chunk. For a fixed i, this is equivalent to computing

minqi<j≤q(i+1)(pj+`−1 − pj) for all ` ∈ {k, . . . , k + q}. Notice that after some massaging

of the sequence (negating, reversing, and padding), this computation can be reduced to

(min,+)-convolution over O(q) elements, and can thus be done in O(Tconvol(q)) time. The

total time over all i is O((n/q)Tconvol(q)).

Recall that in the preprocessing algorithm in Lemma 1, we need to compute the minimum

of each fragment in the k, . . . , k + q diagonals. Each fragment can be decomposed into some

number of disjoint chunks plus O(q) extra elements. Over all O(q) diagonals, there are O(q2)

fragments and O(n/q · q) = O(n) chunks in total. Thus, we can compute the minima of all

fragments in O(q2 · q + n/q · q) = O(q3 + n) time, after the above precomputation of the

minima of all chunks. J

I Theorem 16. Given a set P of n points in the plane and integer k, one can compute, in

O(n2/2Ω(
√

log n)) time, the smallest-area/perimeter axis-aligned rectangle enclosing k points

of P , under the restriction that the bottom edge lies on the x-axis.

Proof. Divide the plane into n/q horizontal slabs each containing q points, for some parameter

q to be set later.

Take such a slab σ. We solve the subproblem of finding a smallest k-enclosing axis-aligned

rectangle under the restriction that the top edge is in σ and the bottom edge is on the x-axis.

To this end, we first delete all points above σ or below the x-axis. We build the 1D data

structure S in the lemma for the x-coordinates of the surviving points, where the marked

points are the q points in σ. The preprocessing time is O((n/q)Tconvol(q) + q3). Then for

each point p ∈ σ, we can compute a smallest k-enclosing axis-aligned rectangle where the top

edge has p’s y-coordinate and bottom edge is on the x-axis, by making a copy of S, deleting

all points in σ above p, and querying S. The time needed for the O(q) deletions, and for

copying S, is O(q2). The total time over all p ∈ σ is O(q3).

We return the minimum (by area or perimeter) of all the rectangles found. The overall

running time over all n/q slabs σ is

O((n/q) · ((n/q)Tconvol(q) + q3)).

With Tconvol(q) = O(q2/2Ω(
√

log q)), we can set q = n1/3, for example, and obtain the final

time bound O(n2/2Ω(
√

log q)). J

For k-sensitive bounds, we can apply the shallow cutting technique from Section 2.2

(which is easier for 3-sided rectangles) and obtain an O(n log n + nk/2Ω(
√

log k)) time bound.

3.2 Arbitrarily oriented smallest k-enclosing rectangle

We briefly consider the problem of computing a smallest-area/perimeter arbitrarily oriented

rectangle (not necessarily axis-aligned) enclosing k points. The optimal rectangle is defined

by 5 points, with one edge containing 2 points p∗
1 and p∗

2. Given a fixed choice of p∗
1 and

p∗
2, we can use a rotation and translation to make p∗

1p∗
2 lie on the x-axis and thereby obtain

a 3-sided axis-aligned rectangle problem, which can be solved in O(n log n + nk/2Ω(
√

log k))

time. Exhaustively trying all pairs p∗
1p∗

2 then gives O(n3 log n + n2k/2Ω(
√

log k)) total time.

SoCG 2019

23:12 Smallest k-Enclosing Rectangle Revisited

3.3 Minimum-weight k-enclosing rectangle

Our O(n2 log n)-time algorithm can be adapted to solve the following related problem.

(Without the k constraint, the problem has an O(n2)-time algorithm [5].)

I Theorem 17. Given a set P of n points in the plane each with a real weight, and an

integer k, one can compute, in O(n2 log n) time, the axis-aligned rectangle enclosing k points

minimizing the total weight of the points inside.

Proof. We follow the same approach as in Section 2.1, with the following differences in the

data structure of Lemma 1. For every fragment we maintain the minimum weight solution.

Using prefix sums, the entry Mi,j in the matrix contains the total weight of the elements

from i to j. As before, we break the q + 1 diagonals of entry into fragments, where each

fragment summary maintains the minimum weight encountered.

A deletion of a marked point p of weight w would result is an insertion of a fixup entry,

of value −w into a linked list of a diagonal where p appeared as a singleton (when crossing a

column of p), and a fixup entry of value +w when encountering the row column of p. The

real value of a fragment is the value stored in the fragment plus the total sum of the fixups

appearing before it in the linked list of its diagonal. As such, during query the real value

can be computed in O(q) time overall, as this list is being scanned. When we merge two

adjacent fragments separated by a singleton, we should increase the later fragment by the

fixup value at the singleton before taking the minimum. Clearly, all the operations can be

implemented in O(q) time.

Now, we can use the divide-and-conquer algorithm in the proof of Theorem 2 with

no change. J

As an application, we can solve the following problem: given n points in the plane each

colored red or blue, and an integer k, find an axis-aligned rectangle enclosing exactly k points

minimizing the number of red points inside. This is a special case of the problem in the

above theorem, where the red points have weight 1 and blue points have weight 0, and can

thus be solved in O(n2 log n) time.

Similarly, we can solve for other variants of the red/blue problem, for example, finding

a k-enclosing rectangle maximizing (or minimizing) the number of red points, or finding

a k-enclosing rectangle with exactly a given number kr of red points. (For the latter, the

following observation allows us to reduce the 1D subproblem to querying for the maximum

and minimum: given a set P of red/blue points in 1D and a value k, let Kr denote the set of

all possible values kr for which there exists an interval containing k points of P and exactly

kr red points; then Kr forms a contiguous range of integers, and thus contains all numbers

between min(Kr) and max(Kr).)

3.4 Subset sum for k-enclosing rectangle

A more challenging variant of the weighted problem is to find a rectangle enclosing exactly

k points with total weight exactly W (similar to subset sum), or more generally, find an

axis-aligned rectangle enclosing exactly k points with total weight closest to W .

We use a different approach, using a 1D data structure that is static but can “plan for” a

small number of deletions.

I Lemma 18. Given a set P of n points in 1D and integers k and q, we can build a static

data structure, with O(nq log n) preprocessing time, that supports the following type of queries

in O(q log n) time: for any subset D ⊂ P of at most q points and any weight W , find an

interval containing k points of P − D with weight closest to W .

T. M. Chan and S. Har-Peled 23:13

Proof. See full version [10]. J

I Theorem 19. Given n points in the plane each with a real weight, and given a real number

W and an integer k, one can compute, in O(n5/2 log n) time, an axis-aligned rectangle

enclosing exactly k points with total weight closest to W .

Proof. See full version [10]. J

We can further improve the running time for small k:

I Theorem 20. Given n points in the plane each with a real weight, and given a real number

W and an integer k, one can compute, in O(n2
√

k log k) time, an axis-aligned rectangle

enclosing exactly k points with total weight closest to W .

Proof. See full version [10]. J

As an application, we can solve the following problem: given n colored points in the plane

with d different colors, and integers k1, . . . , kd, with k1 + · · · + kd = k, find an axis-aligned

rectangle enclosing exactly ki points of the ith color. The problem was proposed by Barba

et al. [4], who gave an O(n2k)-time algorithm. (It may be viewed as a geometric variant of

the jumbled or histogram indexing problem for strings [11].) It is a special case of the problem

from Theorem 19: we can give points with color i a weight of M i for a sufficiently large M ,

e.g., M = n + 1, and set the target to W =
∑d

i=1 kiM
i. Since weights require O(d log n) bits,

each addition has O(d) cost, and so the running time becomes O(dn2
√

k log k). The weights

can be reduced to O(log n) bits by randomized hashing (for example, by randomly selecting

M from {0, . . . , p−1} and working with numbers modulo p for an O(log n)-bit prime p), since

there are only polynomially (i.e., O(n4)) many combinatorially different rectangles. This

way, the running time can be reduced to O(n2
√

k log k) – this improves Barba et al.’s result.

3.5 Conditional lower bounds

We can prove that the smallest-perimeter k-enclosing axis-aligned rectangle problem do

not have truly subquadratic (i.e., O(n2−δ)) algorithms, under the conjecture that (min,+)-

convolution does not have a truly subquadratic algorithm. Our proof holds for the 3-sided

version of the problem, which complements nicely with our upper bound in Section 3.1 using

(min,+)-convolution.

We describe a reduction from the following decision problem, which Cygan et al. [14]

showed does not have a truly subquadratic algorithm under the (min,+)-convolution

conjecture.

I Problem 21. (min,+)-Convolution Decision. Given real numbers a0, . . . , an−1, b0, . . . , bn−1,

and c0, . . . , cn−1, decide whether

∀` : c` ≤ min
i+j=`

(ai + bj).

I Theorem 22. If there is a T (n)-time algorithm for computing the smallest-perimeter/area

axis-aligned rectangle enclosing k points for a given set of n points in the plane and a given

number k (with or without the constraint that the bottom edge lies on the x-axis), then there

is an O(T (O(n))-time algorithm for Problem 21.

Proof. See full version [10]. J

A similar reduction holds for the minimum-weight k-enclosing rectangle problem from

Theorem 17:

SoCG 2019

23:14 Smallest k-Enclosing Rectangle Revisited

I Theorem 23. If there is a T (n)-time algorithm for computing the minimum-weight axis-

aligned rectangle enclosing k points for a given set of n weighted points in the plane and

number k (with or without the constraint that the bottom edge lies on the x-axis), then there

is an O(T (O(n))-time algorithm for Problem 21.

Proof. See full version [10]. J

A near-quadratic conditional lower bound for the minimum-weight rectangle problem

without the k constraint was given by Backurs et al. [3] (under a different “popular” conjecture

about the complexity of maximum-weight clique).

We can similarly prove that the subset-sum variant of the k-enclosing rectangle prob-

lem from Theorem 19 (or its 3-sided variant) does not have truly subquadratic algo-

rithms, under the conjecture that the convolution-3SUM problem (given real numbers

a0, . . . , an−1, b0, . . . , bn−1, c0, . . . , cn−1, decide whether c` = ai + b`−i for some i and `) does

not have a truly subquadratic algorithm (which is known to be true under the conjecture

that 3SUM for integers does not have a truly subquadratic algorithm [25]).

References

1 Alok Aggarwal, Hiroshi Imai, Naoki Katoh, and Subhash Suri. Finding k points with minimum

diameter and related problems. J. Algorithms, 12(1):38–56, 1991. doi:10.1016/0196-6774(91)

90022-Q.

2 Rossen Atanassov, Prosenjit Bose, Mathieu Couture, Anil Maheshwari, Pat Morin, Michel

Paquette, Michiel H. M. Smid, and Stefanie Wuhrer. Algorithms for optimal outlier removal.

J. Discrete Algorithms, 7(2):239–248, 2009. doi:10.1016/j.jda.2008.12.002.

3 Arturs Backurs, Nishanth Dikkala, and Christos Tzamos. Tight hardness results for maximum

weight rectangles. In Proc. 43rd Int. Colloq. Automata Lang. Prog. (ICALP), pages 81:1–81:13,

2016.

4 Luis Barba, Stephane Durocher, Robert Fraser, Ferran Hurtado, Saeed Mehrabi, Debajyoti

Mondal, Jason Morrison, Matthew Skala, and Mohammad Abdul Wahid. On k-enclosing

objects in a coloured point set. In Proc. 25th Canad. Conf. Comput. Geom. (CCCG), 2013.

URL: http://cccg.ca/proceedings/2013/papers/paper_35.pdf.

5 Jérémy Barbay, Timothy M. Chan, Gonzalo Navarro, and Pablo Pérez-Lantero. Maximum-

weight planar boxes in O(n2) time (and better). Inform. Process. Lett., 114(8):437–445, 2014.

doi:10.1016/j.ipl.2014.03.007.

6 Marshall W. Bern. Approximate closest-point queries in high dimensions. Inf. Process. Lett.,

45(2):95–99, 1993. doi:10.1016/0020-0190(93)90222-U.

7 David Bremner, Timothy M. Chan, Erik D. Demaine, Jeff Erickson, Ferran Hurtado, John

Iacono, Stefan Langerman, Mihai Pătraşcu, and Perouz Taslakian. Necklaces, convolutions,

and X + Y . Algorithmica, 69(2):294–314, 2014. doi:10.1007/s00453-012-9734-3.

8 Timothy M. Chan. Approximate nearest neighbor queries revisited. Discrete & Computational

Geometry, 20(3):359–373, 1998. doi:10.1007/PL00009390.

9 Timothy M. Chan. Geometric applications of a randomized optimization technique. Discrete

Comput. Geom., 22(4):547–567, 1999. doi:10.1007/PL00009478.

10 Timothy M. Chan and Sariel Har-Peled. Smallest k-enclosing rectangle revisited. CoRR,

abs/1903.06785, 2019. arXiv:1903.06785.

11 Timothy M. Chan and Moshe Lewenstein. Clustered integer 3SUM via additive combinatorics.

In Proc. 47th Annu. ACM Sympos. Theory Comput. (STOC), pages 31–40, 2015. doi:

10.1145/2746539.2746568.

12 Timothy M. Chan and Mihai Pătraşcu. Counting inversions, offline orthogonal range counting,

and related problems. In Proc. 21st ACM-SIAM Sympos. Discrete Algs. (SODA), pages

161–173, 2010. doi:10.1137/1.9781611973075.15.

T. M. Chan and S. Har-Peled 23:15

13 Timothy M. Chan and Ryan Williams. Deterministic APSP, orthogonal vectors, and more:

Quickly derandomizing Razborov–Smolensky. In Proc. 27th ACM-SIAM Sympos. Discrete

Algs. (SODA), pages 1246–1255, 2016. doi:10.1137/1.9781611974331.ch87.

14 Marek Cygan, Marcin Mucha, Karol Wegrzycki, and Michal Wlodarczyk. On problems

equivalent to (min, +)-convolution. In Proc. 44th Int. Colloq. Automata Lang. Prog. (ICALP),

volume 80 of LIPIcs, pages 22:1–22:15, 2017. doi:10.4230/LIPIcs.ICALP.2017.22.

15 Sandip Das, Partha P. Goswami, and Subhas C. Nandy. Smallest k-point enclosing rectangle

and square of arbitrary orientation. Inform. Process. Lett., 94(6):259–266, 2005. doi:10.1016/

j.ipl.2005.02.013.

16 Amitava Datta, Hans-Peter Lenhof, Christian Schwarz, and Michiel H. M. Smid. Static

and dynamic algorithms for k-point clustering problems. J. Algorithms, 19(3):474–503, 1995.

doi:10.1006/jagm.1995.1048.

17 Mark de Berg, Sergio Cabello, Otfried Cheong, David Eppstein, and Christian Knauer. Covering

many points with a small-area box. CoRR, abs/1612.02149, 2016. arXiv:1612.02149.

18 David Eppstein and Jeff Erickson. Iterated nearest neighbors and finding minimal polytopes.

Discrete Comput. Geom., 11:321–350, 1994. URL: http://jeffe.cs.illinois.edu/pubs/

small.html.

19 Harold N. Gabow and Robert Endre Tarjan. A linear-time algorithm for a special case of disjoint

set union. J. Comput. Sys. Sci., 30(2):209–221, 1985. doi:10.1016/0022-0000(85)90014-5.

20 Sariel Har-Peled and Soham Mazumdar. Fast algorithms for computing the smallest k-enclosing

disc. Algorithmica, 41(3):147–157, 2005. URL: https://sarielhp.org/p/03/min_disk/.

21 Sariel Har-Peled and Micha Sharir. Relative (p, ε)-approximations in geometry. Discrete

Comput. Geom., 45(3):462–496, 2011. doi:10.1007/s00454-010-9248-1.

22 Allan Grønlund Jørgensen and Kasper Green Larsen. Range selection and median: Tight

cell probe lower bounds and adaptive data structures. In Proc. 22nd ACM-SIAM Sympos.

Discrete Algs. (SODA), pages 805–813, 2011. doi:10.1137/1.9781611973082.63.

23 Haim Kaplan, Sasanka Roy, and Micha Sharir. Finding axis-parallel rectangles of fixed

perimeter or area containing the largest number of points. In Proc. 26th Annu. Euro. Sympos.

Alg. (ESA), volume 87 of LIPIcs, pages 52:1–52:13, 2017. doi:10.4230/LIPIcs.ESA.2017.52.

24 Jiří Matoušek. Reporting points in halfspaces. Comput. Geom. Theory Appl., 2:169–186, 1992.

25 Mihai Pătraşcu. Towards polynomial lower bounds for dynamic problems. In Proc. 42nd Annu.

ACM Sympos. Theory Comput. (STOC), pages 603–610, 2010. doi:10.1145/1806689.1806772.

26 Michael Segal and Klara Kedem. Enclosing k points in the smallest axis parallel rectangle.

Inform. Process. Lett., 65(2):95–99, 1998. doi:10.1016/S0020-0190(97)00212-3.

27 Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm. J. Assoc.

Comput. Mach., 22(2):215–225, 1975. doi:10.1145/321879.321884.

28 Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In Proc. 46th Annu. ACM

Sympos. Theory Comput. (STOC), pages 664–673, 2014. doi:10.1145/2591796.2591811.

SoCG 2019

	Introduction
	Smallest k-enclosing rectangle
	An exact near-quadratic algorithm
	k-sensitive running time for smallest area
	An approximation algorithm for smallest area

	Extensions
	3-sided smallest k-enclosing rectangle
	Arbitrarily oriented smallest k-enclosing rectangle
	Minimum-weight k-enclosing rectangle
	Subset sum for k-enclosing rectangle
	Conditional lower bounds

