
Mutation Analysis for Coq
Ahmet Celik∗, Karl Palmskog∗, Marinela Parovic∗, Emilio Jesús Gallego Arias† and Milos Gligoric∗

∗The University of Texas at Austin †MINES ParisTech

ahmetcelik@utexas.edu, palmskog@acm.org, marinelaparovic@gmail.com, e@x80.org, gligoric@utexas.edu

Abstract—Mutation analysis, which introduces artificial defects
into software systems, is the basis of mutation testing, a technique
widely applied to evaluate and enhance the quality of test
suites. However, despite the deep analogy between tests and
formal proofs, mutation analysis has seldom been considered
in the context of deductive verification. We propose mutation
proving, a technique for analyzing verification projects that
use proof assistants. We implemented our technique for the
Coq proof assistant in a tool dubbed MCOQ. MCOQ applies
a set of mutation operators to Coq definitions of functions
and datatypes, inspired by operators previously proposed for
functional programming languages. MCOQ then checks proofs of
lemmas affected by operator application. To make our technique
feasible in practice, we implemented several optimizations in
MCOQ such as parallel proof checking. We applied MCOQ to
several medium and large scale Coq projects, and recorded
whether proofs passed or failed when applying different mutation
operators. We then qualitatively analyzed the mutants, finding
many instances of incomplete specifications. For our evaluation,
we made several improvements to serialization of Coq files and
even discovered a notable bug in Coq itself, all acknowledged
by developers. We believe MCOQ can be useful both to proof
engineers for improving the quality of their verification projects
and to researchers for evaluating proof engineering techniques.

I. INTRODUCTION

Mutation analysis introduces small-scale modifications to a

software system, with each modified system version called

a mutant. Mutation analysis is widely applied to software

systems to perform mutation testing [1], where test suites

are evaluated on mutants of a system that represent faults

introduced by programmers, or are designed to give rise to

fault-like behavior. If a specific mutant induces test failures,

the mutant is said to be killed; otherwise it is said to be

live. However, if a mutant survives all tests, this may indicate

an inadequate test suite or present avenues to improve tests.

Mutants of a system can be produced in a variety of ways;

a common approach implemented for many programming

languages, including functional languages such as Haskell, is

to apply mutation operators at a level near the source code

syntax, e.g., changing + to -. An operator may intuitively

represent a particular flaw that programmers are prone to

make, such as getting the sign of an integer variable wrong.

Formal verification can offer guarantees about program

behavior and other properties beyond those of testing. In

particular, deductive verification using proof assistants is in-

creasingly used for development of trustworthy large-scale

software systems [2]–[5]. Nevertheless, just as test suites may

be inadequate, formal specifications can fail to account for

unwanted program behavior [6], [7], potentially compromising

the ability of formal verification to rule out bugs and leading

to lower trust in verified code.

Although it is regularly applied to unverified software and

during lightweight verification [8], [9], mutation analysis has

only rarely been considered for proof assistants [10], and to

our knowledge, never with formal proofs in place of tests.

We propose mutation proving, a technique for mutation

analysis of verification projects using proof assistants, suitable

for evaluating the adequacy of collections of formally proven

properties of programs. Our technique adapts and extends

mutation operators previously used to mutate Haskell pro-

grams [11], [12]. We implemented our technique for the Coq

proof assistant [13] in a tool dubbed MCOQ. Given a mutation

operator and a Coq project, MCOQ applies an instance of the

operator to a definition in Coq’s Gallina language, and then

checks all proofs that could be affected by the change.

A serious obstacle to operator-based mutation analysis in

proof assistants is the extensibility and flexibility of the

syntax used to express functions, datatypes, and properties. In

particular, Coq supports defining powerful custom notations

over existing specifications [14], and Coq’s parser can be

extended with large grammars at any point in a source file

by loading plugins [15]. These facilities are convenient for

expressing mathematical concepts, but pose a great challenge

for processing of Coq files. Moreover, definitions of functions

and datatypes, analogous to classes and methods in Java-like

languages, tend to be highly interspersed with proofs, which

are analogous to tests [16]. This precludes simple mutation

based on text replacement in source files [17].

We overcome these challenges by leveraging the OCaml-

based SERAPI serialization library [18], which is integrated

with Coq’s parser and internal data structures. We extended

Coq and SERAPI to support full serialization of all Coq files

used in large-scale projects to S-expressions (sexps) [19]. We

apply our mutation operators to the sexps we obtain, and

then deserialize and proof-check the results. To make mutation

proving feasible in practice for large-scale Coq projects, we

optimized MCOQ in several ways, e.g., to leverage multi-

core hardware for fast parallel checking of proofs affected by

changes after applying a mutation operator.

To evaluate our technique, we applied MCOQ to several

open source Coq projects, from medium to large scale. We

recorded whether a mutant was live or killed based on proofs

passing or failing, and then qualitatively analyzed a subset of

mutants, unveiling several incomplete specifications. For our

evaluation, we enhanced SERAPI and fixed several serializa-

tion issues, significantly increasing its robustness in processing

large Coq projects. We also found a notable bug in Coq related

to proof processing when applying MCOQ [20], acknowledged

and subsequently fixed by the developers [21].

1

Our technique and tool can be useful both to proof en-

gineers for directly analyzing their verification projects and

to researchers for evaluating proof engineering techniques,

analogously to how mutation testing is used to evaluate testing

techniques for functional programs [12].

We believe mutation proving is largely orthogonal to, and

complements, many other analysis techniques for proof assis-

tants, such as bounded testing [22], dependency analysis [16],

[23], counter-example generation [24], [25], property-based

testing [26], [27], and theory exploration [28]. Specifically,

these techniques do not consider “alternative worlds”, where

definitions are different from the present ones [8].

We make the following contributions:

• Technique: We propose mutation proving for verification

projects using proof assistants. We define a set of mutation

operators on definitions of functions and datatypes, inspired

by operators defined previously for functional and impera-

tive programming languages.

• Tool: We implemented mutation proving in a tool, dubbed

MCOQ, which supports Coq projects. Our tool brings sig-

nificant extensions to Coq and the SERAPI library for seri-

alization and deserialization of Coq syntax; these extensions

pave the way for other transformations of Coq code.

• Optimizations: To make mutation proving of large projects

feasible in practice, we optimized MCOQ to make it run

faster. In particular, we implemented several novel forms of

selective and parallel checking of proofs for mutants.

• Evaluation: We performed an empirical study using MCOQ

on 12 large and medium-sized open source Coq projects.

For each project, we recorded the number of generated and

killed mutants and the execution time. We qualitatively ana-

lyzed a subset of the mutants, and found several incomplete

specifications manifested as live mutants.

• Impact: Our work resulted in many improvements and

bugfixes to SERAPI, enhancing its robustness when applied

to large-scale projects and showing that complex, extensible

Coq files can be manipulated in a lightweight way. We made

several modifications to Coq itself, and these changes have

been accepted by Coq developers.

We provide supplementary material and artifacts related to

MCOQ at: http://cozy.ece.utexas.edu/mcoq

II. BACKGROUND

This section provides some brief background on the Coq

proof assistant, the SERAPI library, and mutation testing.

A. The Coq Proof Assistant

Coq is a proof assistant based on type theory [13], imple-

mented in the OCaml programming language. The specifica-

tion language of Coq, Gallina, is a small and purely functional

programming language. Proofs about Gallina specifications

are typically performed using sequences of expressions (tactic

calls) in Coq’s proof tactic language, Ltac [29]. Source files

processed by Coq are sequences of vernacular commands,

1 Require Import Arith.

2
3 Definition update {A} (st : nat → A) h (v : A) :=

4 fun n ⇒ if Nat.eq_dec n h then v else st n.

5
6 Lemma update_nop : ∀ A (st : nat → A) y v,

7 st y = v → update st y v y = st y.

8 Proof.

9 intros; unfold update; case Nat.eq_dec; auto.

10 Qed.

11
12 Lemma update_diff : ∀ A (st : nat → A) x v y,

13 x 6= y → update st x v y = st y.

14 Proof.

15 intros; unfold update.

16 case Nat.eq_dec; congruence.

17 Qed.

Update.v

Fig. 1: Example Coq source file.

each of which can contain both Gallina and Ltac expressions.

Figure 1 shows an example Coq source file which contains

a function update and two lemmas about the function. The

intended meaning of update, defined on lines 3–4, is that

it returns a new version of a given function st from natural

numbers to some type A, and this returned function maps h

to v but otherwise behaves as st.

Vernacular syntax is extensible by the user in almost ar-

bitrary ways by (1) defining notations inside Coq, e.g., []

or [::] for the empty list constructor nil, and (2) loading

plugins in Coq that extend syntax. In particular, the Ltac

language and basic decision procedures for proof automation

are implemented as a collection of plugins. Since plugins can

generally be loaded at any time when interacting with Coq,

the permitted syntax can grow dynamically as a vernacular

file is processed. Hence, writing a robust stand-alone parser

for vernacular is difficult, and will break easily as Coq evolves.

Even though Coq provides a logic of total, terminating func-

tions, Ltac allows nontermination, e.g., of proof search. Hence,

modifying a Gallina datatype or function may result in infinite

loops, in analogy with the frequent infinite loops that arise in

tests during mutation testing [1]. The mitigating practice in

mutation testing is to assign execution time thresholds for test

execution. Similarly, we set thresholds to the proof checking

time for each mutant.

The coqc tool compiles source .v files to binary .vo files

and checks all proofs. Such binary files are then loaded by Coq

when processing Require commands in .v files.

B. SERAPI and Serialization to S-expressions

SERAPI is an OCaml library and toolchain for machine

interaction with Coq [18]. SERAPI has two principal com-

ponents: (1) an interface for serialization and deserialization

of Coq syntax and internal data structures to and from S-

expressions (sexps) [19] built on OCaml’s PPX metapro-

gramming facilities [30], and (2) a protocol for building and

querying Coq files that abstracts over vernacular commands.

In effect, SERAPI overcomes the problem of robustly parsing

vernacular by directly integrating with Coq’s parsing toolchain

2

CIf

CApp CRef CApp

Qualid

Path v

CRef

Qualid

Path

Nat eq_dec

CRef CRef

Qualid

Path n

Qualid

Path h

CRef

Qualid

nPath

CRef

Qualid

Path st

Fig. 2: Sexp of if-subexpression on line 4 in Figure 1.

and internal datatypes. Since the serialization routines are

automatically generated from Coq’s own definitions using

metaprogramming, SERAPI is expected to require only mod-

est maintenance as Coq evolves. Before our work, the principal

application of SERAPI was for user interfaces for Coq, e.g.,

web-based interfaces [31].

When mutating Coq projects, we use the SERAPI sexp-

based serialization facilities, avoiding heavyweight OCaml

library development. Intuitively, a SERAPI sexp is either

an atom, representing a constant or variable name, or a

list delimited by parentheses. For example, the sexp for the

command on the first line in Figure 1 is as follows:

(VernacExpr()(VernacRequire()

(false)(((Qualid(Path)(Arith))))))

A more readable but less compact representation of sexps

is graphically as trees. For example, the tree in Figure 2

provides a simplified illustration of the SERAPI sexp for the

if-subexpression on line 4 in Figure 1.

C. Mutation Testing and Proving

We follow Papadakis et al. [1] in using mutation analysis for

the process of generating code variants, and mutation testing

for the application of this process to support software testing

and test suite improvement. In analogy with the latter, we

refer to the application of mutation analysis to support proof

development using proof assistants and improving collections

of formally proven properties as mutation proving.

Mutation analysis was proposed by Lipton, then formalized

by DeMillo et al. [32], and first applied in practice in the con-

text of software testing by Budd et al. [33]. In mutation testing,

test suites that distinguish between a mutant and the original

program, e.g., by reporting an assertion violation, leaving the

mutant killed, are judged to meet objectives. In contrast, test

suites that do not report assertion violations or other errors for

a mutant, leaving the mutant live, could be judged not to meet

objectives and may require revision. A test suite’s mutation

score is defined as the percentage of killed mutants out of

all mutants that are distinct under functional equivalence [34].

Intuitively, mutants may be viewed as containing buggy code,

and the mutation score as a measure of how well the test suite

rules out the presence of buggy code [35], [36].

How to interpret killed and live mutants in mutation proving

is less clear than for mutation testing. While there may be defi-

nitions of functions and datatypes that are nonsensical for most

purposes, a failing proof of a lemma using such definitions

does not unambiguously indicate an error or mistake (bug) in

the definitions. Coq proof scripts are often brittle [37] and fail

to produce proofs when associated definitions are changed in

trivial ways that preserve all their properties. In addition, the

goal of a proof assistant verification project may be to prove

some lemma unrelated to any specific program.

Nevertheless, live mutants may still indicate the inadequacy

of the verification harness [8] to fully meet reasonable objec-

tives. In particular, live mutants can go far beyond flagging up

completely unused definitions as in dependency analysis [23]:

they can pinpoint that certain fragments of key definitions

vacuously satisfy behavioral specifications [9], e.g., that an

ostensibly strong and complete lemma about a function can be

proven regardless of what the returned value is for a certain

range of inputs to that function. Many live mutants could

indicate the presence of such underspecification in a Coq

project, which may eventually manifest as bugs in executable

systems [6] and lead to lower trust in formally verified code.

III. TECHNIQUE

In this section, we describe our mutation approach, mutation

operators, and optimizations to mutation proving.

A. Mutation Approach

Our approach to mutation proving follows the classical

approach of defining a set of mutation operators (operator

for short) which describe classes of changes to a project.

Intuitively, an operator captures a common mistake made by

a proof engineer. When an operator is successfully applied to

a project, it generates a mutant. When the mutant has been

successfully checked, i.e., all related proofs have passed, it is

declared live. Otherwise, if proof checking fails or times out,

the mutant is considered killed. Since the notion of functional

equivalence is not applicable to many verification projects, we

use a broader definition of mutation score as the percentage

of killed mutants out of all mutants that are distinct under

syntactical equivalence.

We define operators for mutation proving as transformations

on Coq vernacular sexps. For any transformation and sexp,

it must be unambiguous and easily checkable whether the

transformation can be successfully applied or not to the sexp.

For example, if the transformation pertains to particular Coq

constants, it is applicable precisely when those constants occur

in a specific way in the sexp. Note that checking syntactical

equivalence of a target and result sexp (modulo non-essential

auxiliary data such as file line numbers) is simple and fast.

The initial step for applying any operator to a Coq verifica-

tion project is to convert all .v source files to lists of sexps.

For a specific operator op and sexp list, the steps are then

to (1) apply op sequentially to all list elements until a non-

equivalent mutant is generated, (2) check the mutated list of

sexps, (3) check all proofs in files that transitively depend on

the source file that was (indirectly) mutated. The latter three

steps are repeated for all lists of sexps until no additional

mutants can be generated using op.

3

TABLE I: List of Mutation Operators.

Category Name Description

General

GIB Reorder branches in if-else expression
GIC Reverse the order of the constructors in the definition

of an inductive type
GME Replace expression in the second match case with

the expression from the first match case

Lists

LRH Replace list with head singleton list
LRT Replace list with its tail
LRE Replace list with empty list
LAR Reorder arguments to the list append operator
LAF Replace list append expression with first argument
LAS Replace list append expression with second argument

Numbers

NPM Replace plus with minus
NZO Replace zero with one
NSZ Replace successor constructor with zero
NSA Replace successor constructor with its argument

Booleans
BFT Replace false with true

BTF Replace true with false

1 Require Import List. Import ListNotations.

2
3 Fixpoint ftmap {A B} (f:A → option B) l:list B :=

4 match l with

5 | [] ⇒ [] | a :: xs ⇒
6 match f a with

7 | None ⇒ ftmap f xs

8 | Some b ⇒ b :: ftmap f xs

9 end

10 end.

11
12 Lemma ftmap_app : ∀ A B (f: A → option B) xs ys,

13 ftmap f (xs ++ ys) = ftmap f xs ++ ftmap f ys.

14 Proof.

15 induction xs; intros; simpl in *; auto.

16 case (f a) eqn:?; simpl; auto using f_equal.

17 Qed.

18
19 Lemma ftmap_in : ∀ A B (f: A → option B) a b xs,

20 f a = Some b → In a xs → In b (ftmap f xs).

21 Proof.

22 induction xs; simpl; auto.

23 case (f a0) eqn:?; simpl; intuition congruence.

24 Qed.

Ftmap.v

Fig. 3: Example Coq source file using lists.

B. Mutation Operators

Our inspiration for Coq mutation operators came from two

sources. Primarily, we were inspired by the operators defined

by Le et al. for Haskell [11]. Secondarily, we took inspiration

from the operators in mutation frameworks for Java such as

PIT [38] and the Major framework [39], [40]. We considered

these operators through the lens of our experience from using

Coq for over 17 years (cumulative).

Table I lists our operators. For each operator, we give a

category, a short name which we will use in the rest of text, and

a short description. The General category includes operators

which are applicable regardless of whether a project uses a

specific datatype from the Coq standard library. The Lists

category includes operators which pertain to the ubiquitous

list datatype in the standard library. The Numbers category

includes operators which apply to natural numbers in their

standard linear-size Peano encoding (e.g., 2 is defined as the

successor constructor applied two times to the zero construc-

tor). Similarly, the Booleans category applies to booleans as

defined in the standard library.

In contrast to imperative languages such as Java, where

numeric datatypes are typically built-in, Gallina has only a few

native constructs, which is reflected in the limited number of

operators in the General category. Other operators require a

project to use the corresponding notations and constants from

the standard library; the associated categories therefore pertain

to the most elementary and widely used parts of the library.

To illustrate how our operators work, we give a few ex-

amples using the Coq code in Figure 1 and Figure 3. For a

more intuitive presentation, we describe the effect of operators

mostly in terms of the source code rather than sexps.

General mutation example. Applying the operator GIB to

the file in Figure 1 results in one mutant where update has

the expressions v and st n swapped on line 4. The proof of

update_nop goes through for the mutant, indicating that the

lemma does not express any fundamental property of update.

However, the proof of update_diff fails (specifically,

congruence on line 16 fails), killing the mutant. Note that

the mutation can be performed at the sexp level by swapping

the two rightmost subtrees below CIf in Figure 2.

Lists mutation examples. The source file in Figure 3 contains

a recursive function ftmap (lines 3–10) that applies a given

partial function f to a list. The two accompanying lemmas

express some basic properties about the function; in particu-

lar, ftmap_app establishes that ftmap distributes over list

append. Applying the operator LRH results in a mutant where

the singleton list [b] has replaced b :: ftmap f xs on

line 8. This mutant is killed by ftmap_app, since this

property no longer holds. Applying the operator LRT results

in a mutant where the (tail) list expression ftmap f xs has

replaced b :: ftmap f xs on line 8. This mutant survives

ftmap_app, but is killed by ftmap_in.

C. Mutation Optimizations

Mutation analysis is generally acknowledged to be a costly

process [41], [42], and this also holds true for mutation

proving. In this section, we describe several optimizations to

our basic mutation proving approach.

In mutation testing, optimizations are generally about gen-

erating faster, smarter, or fewer mutants [43], [44]. We focus

on accomplishing faster mutation, and the insight we build on

is that proof checking for mutation proving can be viewed as

a particular instance of regression proving, i.e., to check an

existing Coq project after a change has been made; similar

insights are found in regression testing [45].

Proof selection. A proof selection technique uses knowledge

of modified files (or proofs) in a project to only check impacted

files (or proofs) [16]. Since a successful application of a

mutation operator means that a sexp file was modified, we can

use change impact analysis to perform selective proof checking

during mutation proving.

4

QMutator

sexp parser

transformer

.v file

sexp file

CoqSERAPI

sercomp

compser

4 3

1

5

2

Fig. 4: MCOQ implementation architecture.

Proof checking parallelization. Unlike test execution in Java-

like languages, proof checking in proof assistants is determin-

istic, which increases the potential for parallelization on multi-

core hardware. In particular, Coq proof checking is routinely

parallelized at the file level, where the main restriction on the

degree of parallelism is the file dependency graph [46].

Mutation operator parallelization. Since we only perform

first-order mutation [47], application of one mutation operator

to a project can be performed completely independently of the

application of another operator. Hence, when the goal is to ap-

ply several operators to the same project, the outcomes can be

computed in parallel, as in mutation testing of software [43].

Mutant parallelization. Application of one mutant can be

performed completely independently of application of another

mutant. We thus also introduce a parallel mode where each

mutant is checked as a separate task.

IV. IMPLEMENTATION

In this section, we describe the components of our muta-

tion proving implementation, define and discuss our mutation

modes and procedure which use the components, and outline

the impact of our tool development on other projects.

A. Tool Architecture and Components

Our tool for mutation proving, dubbed MCOQ, is imple-

mented in OCaml, Java, and bash. Figure 4 shows an overview

of the architecture of MCOQ, and highlights how the main

components interact. During mutation proving, Coq source

files to be mutated are first given as input to our sercomp

program integrated with SERAPI 1 , which produces corre-

sponding files with lists of sexps 2 . The sexps are then handed

to our QMutator program 3 , which performs parsing and

applies the transformations corresponding to a specified mu-

tation operator. Ultimately, QMutator outputs mutated sexps

4 which become input to our compser program integrated

with SERAPI 5 . We next describe each main component of

MCOQ in detail.

sercomp: We implemented a command-line program called

sercomp on top of SERAPI which takes a regular Coq .v

source file as input and outputs the corresponding lists of

sexps. The program is now included as part of SERAPI [48].

compser: We implemented a command-line program called

compser on top of SERAPI, meant to be the inverse of

sercomp. compser takes a file with a list of sexps as input

and either produces a .vo file or simply checks every sexp.

The program is now included as part of SERAPI [48].

Coq fork: We forked the v8.9 branch of the Coq GitHub

repository corresponding to Coq version 8.9 and modified it

to expose internal data structures relevant for mutation proving

to SERAPI. We submitted our proposed changes to the Coq

repository, and the developers eventually merged them.

SERAPI: We extended SERAPI to provide serialization and

deserialization of all Coq internal data structures required to

support large projects. In particular, we added support for

serialization of Ltac syntax extensions added by the SSReflect

proof language [49] used in many projects. All of our changes

have been added to the SERAPI codebase.

QMutator: We implemented a library for transformation of

sexps produced by sercomp, and mutation operators that use

this library, in Java. We used an existing library, jsexp [50],

to parse and encode sexps. Based on our experience, imple-

menting new operators on top of our library is quick and

straightforward. On top of our library, we implemented a

program dubbed QMutator that takes sexps and an operator

name as input, and produces mutated sexps.

Runner: We implemented a program in Java and bash that

uses the above components to perform mutation proving on a

given Coq project, and then computes its mutation score.

B. Mutation Modes and Procedure

Based on the approach and optimizations in Section III, we

define four basic mutation proving execution modes:

Default: A simple mode which checks every file in a project

after a mutant is generated, by compiling .v files to .vo files

in topological order according to the file dependency graph.

RDeps: An advanced mode which checks only .v files

affected by a mutation, and caches and reverts to unmodified

.vo files to avoid the cost of generating them more than once.

Skip: An advanced mode which checks only .v files affected

by a mutation, and additionally avoids reverting .vo files.

Noleaves: A variant of Default which checks proofs in leaf

nodes in the file dependency graph but does not generate .vo

files for those files. We added this mode to explore if there

were any notable speedups gained by avoiding to write .vo

files with compser.

To realize these modes, we implemented the parameterized

mutation procedure CHECKOP shown in Figure 5 in our

Runner program. In the subprocedures called by CHECKOP,

there are several auxiliary procedures that behave differently

depending on the mode:

revertFile: For the Default and Skip modes, the file vF

is always reverted. For RDeps, vF is never reverted. For

Noleaves, vF is reverted only if it is not a leaf node in rG.

getOtherFiles: For the Default and Noleaves modes, this

procedure returns rG.topologicalSort (sV Fs − v), whereas

for the RDeps and Skip modes, the procedure instead returns

rG.topologicalSort (rG.closure({vF})− v).

5

Algorithm 1 Pseudocode of CHECKOP.

Require: op – Mutation operator
Require: P – Coq Project

1: procedure CHECKOP(op, P)
2: vFs ← P .vFiles()
3: G ← P .dependencyGraph ()
4: rG ← G.reverse()
5: sVFs ← rG.topologicalSort (vFs)
6: v ← ∅
7: for vF ∈ sV Fs do
8: v .add(vF)
9: CHECKOPVFILE(G, rG, op, sV Fs, v, vF)

10: end for
11: end procedure

Algorithm 2 Pseudocode of CHECKOPVFILE.

Require: G – Dependency Graph
Require: rG – Reverse Dependency Graph
Require: op – Mutation operator
Require: sVFs – Topologically sorted .v files
Require: v – Set of visited .v files
Require: vF – .v file

1: procedure CHECKOPVFILE(G , rG , op, sVFs , v , vF)
2: sF ← sercomp(vF)
3: mc← countMutationLocations (sF, op)
4: mi← 0
5: while mi < mc do
6: mSF ← mutate(sF, op,mi)
7: CHECKOPSEXPFILE(G, rG, sV Fs, v, vF,mSF)
8: mi← mi+ 1
9: end while

10: revertFile(vF)
11: end procedure

Algorithm 3 Pseudocode of CHECKOPSEXPFILE.

Require: G – Dependency Graph
Require: rG – Reverse Dependency Graph
Require: sVFs – Topologically sorted .v files
Require: v – Set of visited .v files
Require: vF – .v file
Require: mSF – Mutated sexp file

1: procedure CHECKOPSEXPFILE(G , rG , sVFs , v , vF , mSF)
2: if compser(mSF) 6= 0 then
3: Global.killed[op]← Global.killed[op] + 1
4: return
5: end if
6: oVFs ← getOtherFiles(G, rG, sV Fs, v, vF)
7: revertOtherFilesBefore(vF, oV Fs)
8: for oF ∈ oV Fs do
9: if coqc(oF) 6= 0 then

10: Global.killed[op]← Global.killed[op] + 1
11: break
12: end if
13: end for
14: revertOtherFilesAfter(vF, oV Fs)
15: end procedure

Fig. 5: Mutation procedure pseudocode.

revertOtherFilesBefore: For all modes except Skip, this

procedure does nothing. For the Skip mode, it reverts all files

in G.closure(oV Fs)−oV Fs−{vF}, with oV Fs defined on

line 6 in CHECKOPSEXPFILE.

revertOtherFilesAfter : For all modes except RDeps, it

does nothing. For RDeps, it reverts all files in oV Fs.

On top of the basic modes, we define four parallel modes,

which we believed could lead to significant speedups:

ParFile: This mode builds on Skip and parallelizes the for

loop in the CHECKOPSEXPFILE procedure (lines 8 to 13).

Parallelization is at the coarse-grained file level.

ParQuick: Like ParFile, this mode builds on Skip and par-

allelizes the for loop in the CHECKOPSEXPFILE procedure

(lines 8 to 13). However, parallelization is at the fine-grained

level of proofs [46], [51].

ParMutant: This mode builds on RDeps, and checks each

mutant in parallel, i.e., we parallelize the while loop in the

CHECKOPVFILE procedure (lines 5 to 9).

6-RDeps: In this mode, we organize the operators into groups

of six or less, and run groups in parallel using the RDeps

mode. We limit to six groups to match the number of cores

available in our evaluation machine.

C. Impact of Tool Development

Work on our tool implementation resulted in more than 10

merged code contributions to SERAPI. Specifically, we found

over 30 failing test cases that were all fixed. Our enhancements

to Coq itself have been merged and are set to be included in

the upcoming Coq version 8.10.0 release.

When applying mutation proving to a project (StructTact)

during our evaluation, we generated a mutant which we

checked with both coqc and compser; the mutant was killed

according to the former but not the latter. The discrepancy was

due to a serious bug in Coq related to proof processing [20],

acknowledged and subsequently fixed by the developers [21].

This shows that mutation proving development has signifi-

cantly improved general Coq tooling.

V. EVALUATION

We evaluate MCOQ by answering four research questions:

RQ1: What is the number of mutants created for large and

medium sized projects and what are their mutation scores?

RQ2: What is the cost of mutation proving in terms of the

execution time and what are the benefits of our optimizations?

RQ3: Why are some mutants (not) killed?

RQ4: How does mutation proving compare to dependency

analysis for finding incomplete and missing specifications?

We run all experiments on a 6-core Intel Core i7-8700 CPU

@ 3.20GHz machine with 64GB of RAM, running Ubuntu

18.04.1 LTS. We limit the number of parallel processes to

be at or below the number of physical CPU cores. We next

describe the studied projects, our independent and dependent

variables, and our results.

A. Verification Projects Under Study

Table II lists the Coq projects used in our evaluation; all

are publicly available. For each project, we show the project

name, the latest SHA at the time of our experiments, number

of .v files, total lines of code (LOC), specification LOC, and

proof script LOC. All LOCs are computed using the coqwc

6

TABLE II: Projects Used in the Evaluation.

Project SHA #Files LOC Spec. LOC Pr. LOC

ATBR 366ac237 42 9705 4123 5567

FCSL PCM b34fce32 12 5747 2939 2851

Flocq 7ec13200 29 24000 5955 18044

Huffman 50687911 26 5889 1878 4011

MathComp 91fa7b57 89 82323 37520 46040

PrettyParsing 189a2625 14 1907 1221 705

Bin. Rat. Numbers 7b9cc06d 37 35041 5500 29541

Quicksort Compl. 0a6eed8b 36 8809 2617 6202

Stalmarck 6932ed8a 38 11266 3552 7698

Coq-std++ 005887ee 43 13715 6882 6852

StructTact 82a85b7e 19 4341 2008 2333

TLC 4babc16c 49 23494 13217 7802

Avg. n/a 36.16 18853.08 7284.33 11470.50

Total n/a 434 226237 87412 137646

tool, which is bundled with Coq. The last two rows of the

table show the average and total values across all projects.

We selected the projects based on (1) compatibility with

Coq version 8.9, (2) their size and popularity in terms of, e.g.,

GitHub stars and usage in other Coq projects, and (3) their

inclusion of functions and datatypes that can be mutated.

B. Variables

Independent variables. We manipulate two independent vari-

ables in our experiments: operator and execution mode. For

the former, we use the 15 operators defined in Table I. For the

latter, we use the 8 execution modes described in Section IV-B.

Dependent variables. We compute three dependent variables:

mutation score, execution cost, and cost reduction. Mutation

score provides an estimate of the adequacy of formal speci-

fications; this metric is computed as the percentage of killed

mutants out of the total number of mutants minus the number

of syntactically equivalent mutants. Mutation score is either

computed per mutation operator or for all mutants at once.

Execution cost is the time needed to perform mutation proving;

this metric can also be reported per mutation operator or for

all mutants at once. Cost reduction is the percentage of time

saved using various execution modes compared to the time

needed to perform mutation proving using the Default mode.

C. Results

1) RQ1: Number of Mutants and Mutation Score: Table III

shows the total number of generated mutants for each pair of

project (row) and mutation operator (column). Additionally,

the last column shows the total number of mutants per project,

and the last two rows show the average and total number of

mutants per mutation operator. We can observe that GME

generates the most mutants, followed by NZO and NPM. On

the other hand, NSZ generates the smallest number of mutants,

followed by NSA. This indicates that explicit uses of the

natural number successor constructor were few for the projects

we used in our evaluation. Table IV shows the number of killed

mutants for each pair of project and mutation operator.

Table V shows the mutation score for all pairs of projects

and mutation operators; n/a indicates mutation score value that

cannot be computed because the number of generated mutants

is zero. The last column shows the mutation score for all

mutants in a given project, which is the metric traditionally

reported in mutation testing research; these mutation scores

vary from 76.88% (for TLC) to 99.18% (for Huffman).

Recall that mutation scores exclude (syntactically) equiv-

alent mutants. However, including equivalent mutants would

affect mutation scores only marginally: all but three projects

(ATBR, Flocq, and Bin. Rat. Numbers) had two equivalent

mutants or less. The GME operator accounted for all 24

equivalent mutants, which were due to pattern matching cases

returning the same expression.

It is important to note that mutation scores are much

higher than traditionally seen in mutation testing research.

We expected such high scores for several reasons. First, as

mentioned in Section II-C, many Coq proof scripts are brittle

and fail after only trivial changes are made to specifications.

Second, even robust proofs tend to be tightly coupled to

functions and datatypes, in effect exploring them symbolically

rather than relying only on externally observable properties

such as outputs. This is what enables proofs to, e.g., establish

properties about all members of infinite sets of datatype

instances, which is impossible for traditional unit tests. Two

projects are outliers in terms of mutation score (PrettyParsing

and TLC) and we come back to this below.

Finally, we analyzed the logs of our runs, which record the

reason for each mutant being killed, and found that only 2

mutants were killed due to timeout. These two mutants were

generated by GME and LRT.

2) RQ2: Performance: Table VI shows the proof checking

and mutation proving time (in seconds) for various execution

modes. Specifically, the second column shows time to check

the project by running the default build commands (coqc

via make) for each project. The third column shows time to

process all files in a project with sercomp. Recall that we

mutate a file by first obtaining the corresponding sexps via

sercomp, produce a mutant, and then use compser to write

a .vo file back to disk. Clearly, it would be costly to use both

sercomp and compser to proof check all the files in any

given project, so we use this combination only on the file being

mutated. The fourth column shows time to perform mutation

proving using the Default mode. The remaining columns show

execution time for mutation proving for optimized modes.

Due to performing unnecessary proof processing, the De-

fault and Noleaves modes are consistently the slowest, typ-

ically by a wide margin. Reasonably, RDeps and Skip give

consistent speedups, sometimes substantial, over the basic

modes (on average 23% over Default). Nevertheless, some

projects such as Huffman show only marginal improvement.

We expected parallel modes to perform better than the ad-

vanced sequential modes. However, ParFile and ParQuick were

only substantially faster than Skip for some large projects, such

as MathComp. This may be due to many mutants being killed

quickly before realizing the benefits of parallel checking. For

nearly all projects, ParMutant is a clear winner over 6-RDeps

and others; its average speedup over Default is 70%.

7

TABLE III: Total Number of Mutants for each Mutation Operator per Project.

Project GIB GIC GME LRH LRT LRE LAR LAF LAS NPM NZO NSZ NSA BFT BTF Total

ATBR 33 21 74 7 7 7 1 1 1 87 43 19 19 17 18 355

FCSL PCM 0 8 13 8 8 8 0 0 0 2 5 0 0 35 28 115

Flocq 39 14 93 0 0 0 0 0 0 71 54 2 2 45 62 382

Huffman 0 15 45 72 72 72 15 15 15 19 5 5 5 7 7 369

MathComp 0 10 73 58 58 58 12 12 12 114 385 0 0 136 109 1037

PrettyParsing 30 8 68 17 17 17 28 28 28 13 16 3 3 3 3 282

Bin. Rat. Numbers 2 10 52 0 0 0 0 0 0 203 79 4 4 5 6 365

Quicksort Compl. 12 15 77 104 104 104 49 49 49 27 18 30 30 6 7 681

Stalmarck 0 25 129 101 101 101 3 3 3 42 6 1 1 25 24 565

Coq-std++ 12 31 149 68 68 68 13 13 13 23 20 22 22 28 14 564

StructTact 7 3 30 9 9 9 2 2 2 12 5 5 5 2 2 104

TLC 4 36 71 38 38 38 5 5 5 23 38 33 33 20 13 400

Avg. 11.58 16.33 72.83 40.16 40.16 40.16 10.66 10.66 10.66 53.00 56.16 10.33 10.33 27.41 24.41 434.91

Total 139 196 874 482 482 482 128 128 128 636 674 124 124 329 293 5219

TABLE IV: Total Number of Killed Mutants for each Mutation Operator per Project.

Project GIB GIC GME LRH LRT LRE LAR LAF LAS NPM NZO NSZ NSA BFT BTF Total

ATBR 32 15 67 7 7 7 1 1 1 84 40 19 19 17 18 335

FCSL PCM 0 8 11 8 8 8 0 0 0 2 5 0 0 34 28 112

Flocq 37 14 77 0 0 0 0 0 0 68 54 2 2 37 58 349

Huffman 0 13 45 72 72 72 15 15 15 19 4 5 5 7 7 366

MathComp 0 8 73 58 56 58 11 12 12 113 381 0 0 135 108 1025

PrettyParsing 24 2 62 15 15 15 25 28 28 9 6 2 2 1 1 235

Bin. Rat. Numbers 2 10 47 0 0 0 0 0 0 199 75 4 4 5 6 352

Quicksort Compl. 11 11 73 96 84 104 49 49 49 26 14 29 29 6 7 637

Stalmarck 0 20 124 101 83 101 2 3 3 42 2 1 1 23 20 526

Coq-std++ 11 15 139 63 63 64 12 12 12 23 17 22 22 27 13 515

StructTact 7 2 29 9 9 9 2 2 2 12 5 5 5 1 1 100

TLC 4 16 62 38 31 38 5 5 5 12 22 22 17 18 11 306

Avg. 10.66 11.16 67.41 38.91 35.66 39.66 10.16 10.58 10.58 50.75 52.08 9.25 8.83 25.91 23.16 404.83

Total 128 134 809 467 428 476 122 127 127 609 625 111 106 311 278 4858

3) RQ3: Qualitative Analysis: To qualitatively analyze why

mutants are killed or live, we sampled live mutants to inspect

manually. To ensure diversity among inspected mutants, we

set a requirement of inspecting 10% or more of all live

mutants for each operator, and 10% of all live mutants for

each project. Due to our familiarity with the project, we also

decided to inspect all live mutants in MathComp. Initially, we

randomly chose mutants to inspect from the set of all live

mutants. When we had inspected 5% of total, we finished

the remaining MathComp mutants and used the distribution

among operators and projects for inspected mutants to sample

from underrepresented subsets.

In total, we inspected 74 live mutants, which we labeled

with precisely one of the following labels:

• UnderspecifiedDef: The live mutant pinpoints a definition

which lacks lemmas for certain cases (33 mutants).

• DanglingDef: The live mutant pinpoints a definition that

has no associated lemma (30 mutants).

• SemanticallyEq: The live mutant is semantically equiva-

lent to the original project (11 mutants).

A detailed description of each live mutant with links to

their locations in the original source code repositories can be

found in the supplementary material at the MCOQ website.

Here, we first highlight some notable live mutants labeled with

UnderspecifiedDef, and then discuss our general experience

from the analysis.

GIB mutant in Flocq: A mutant swapped the branches in

the if-else expression of the following function for addition of

binary IEEE 754 floating-point numbers:

Definition Bplus op_nan m x y := match x,y with

| B754_infinity sx, B754_infinity sy ⇒
if Bool.eqb sx sy then x

else build_nan (plus_nan x y)

The mutant reveals that a particular case of binary addition,

namely for numbers representing infinities, is not considered

by any lemma. Another live GIB mutant showed the same

problem for the analogous definition for subtraction, Bminus.

BFT mutant in StructTact: A mutant which changed false

to true in a function named before_func on lists high-

lighted that the function was weakly specified in the library:

Fixpoint before_func {A} (f : A → bool) g l :=

match l with | [] ⇒ ⊥ | a :: l’ ⇒
f a = true ∨ (g a = false ∧ before_func f g l’)

end.

Further investigation revealed five general lemmas about

before_func in Verdi Raft [4]; four of these lemmas kill

the mutant. Our changes to factor out all five lemmas to

StructTact have been merged in both projects.

8

TABLE V: Mutation Score for each Mutation Operator per Project.

Project GIB GIC GME LRH LRT LRE LAR LAF LAS NPM NZO NSZ NSA BFT BTF Total

ATBR 96.96 71.42 95.71 100.00 100.00 100.00 100.00 100.00 100.00 96.55 93.02 100.00 100.00 100.00 100.00 95.44

FCSL PCM n/a 100.00 100.00 100.00 100.00 100.00 n/a n/a n/a 100.00 100.00 n/a n/a 97.14 100.00 99.11

Flocq 94.87 100.00 90.58 n/a n/a n/a n/a n/a n/a 95.77 100.00 100.00 100.00 82.22 93.54 93.31

Huffman n/a 86.66 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 80.00 100.00 100.00 100.00 100.00 99.18

MathComp n/a 80.00 100.00 100.00 96.55 100.00 91.66 100.00 100.00 99.12 98.96 n/a n/a 99.26 99.08 98.84

PrettyParsing 80.00 25.00 91.17 88.23 88.23 88.23 89.28 100.00 100.00 69.23 37.50 66.66 66.66 33.33 33.33 83.33

Bin. Rat. Numbers 100.00 100.00 95.91 n/a n/a n/a n/a n/a n/a 98.02 94.93 100.00 100.00 100.00 100.00 97.23

Quicksort Compl. 91.66 73.33 97.33 92.30 80.76 100.00 100.00 100.00 100.00 96.29 77.77 96.66 96.66 100.00 100.00 93.81

Stalmarck n/a 80.00 96.87 100.00 82.17 100.00 66.66 100.00 100.00 100.00 33.33 100.00 100.00 92.00 83.33 93.26

Coq-std++ 91.66 48.38 94.55 92.64 92.64 94.11 92.30 92.30 92.30 100.00 85.00 100.00 100.00 96.42 92.85 91.63

StructTact 100.00 66.66 96.66 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 50.00 50.00 96.15

TLC 100.00 44.44 89.85 100.00 81.57 100.00 100.00 100.00 100.00 52.17 57.89 66.66 51.51 90.00 84.61 76.88

Avg. 94.39 72.99 95.71 97.31 92.19 98.23 93.32 99.14 99.14 92.26 79.86 92.99 91.48 86.69 86.39 93.18

TABLE VI: Proof Checking and Mutation Time in Seconds for Various Modes.

Project Checking Sercomp Default RDeps Skip Noleaves ParFile ParQuick ParMutant 6-RDeps

ATBR 45.39 131.33 2157.68 1760.27 1761.59 2155.00 1342.52 1523.21 596.21 755.40

FCSL PCM 11.75 21.95 153.22 150.88 151.12 153.47 152.02 150.79 53.33 109.51

Flocq 17.25 37.38 725.82 547.06 547.47 726.71 544.10 543.79 156.63 199.02

Huffman 7.75 11.58 188.64 185.70 186.19 188.13 181.66 207.94 62.46 72.38

MathComp 341.33 593.19 9962.99 8480.79 8482.90 9967.52 6886.28 6763.25 4053.67 3943.05

PrettyParsing 4.37 5.57 278.56 216.98 217.24 278.67 214.50 268.35 66.06 90.21

Bin. Rat. Numbers 26.29 16.95 1022.61 925.50 925.80 1022.19 894.52 889.60 264.85 578.94

Quicksort Compl. 17.66 34.33 1594.66 1064.64 1062.81 1596.87 914.65 928.41 362.38 553.53

Stalmarck 9.21 16.55 805.84 498.01 499.00 803.52 469.42 571.76 192.78 230.62

Coq-std++ 30.94 57.01 3187.80 2597.54 2597.34 3186.81 2194.68 2403.13 776.77 1137.16

StructTact 3.40 7.27 55.90 41.62 40.98 55.93 39.72 40.20 18.84 19.35

TLC 21.82 44.77 3128.85 1739.27 1738.99 3126.18 1467.15 1542.01 519.59 693.88

Avg. 44.76 81.49 1938.54 1517.35 1517.61 1938.41 1275.10 1319.37 593.63 698.58

Total 537.16 977.88 23262.57 18208.26 18211.43 23261.00 15301.22 15832.44 7123.57 8383.05

LRT mutant in MathComp: In this mutant, the last empty

list [::] is removed from an auxiliary function used by an

implementation of the merge sort algorithm:

Fixpoint merge_sort_push s1 ss :=

match ss with

| [::] :: ss’ | [::] as ss’ ⇒ s1 :: ss’

| s2 :: ss’ ⇒
[::] :: merge_sort_push (merge s1 s2) ss’

end.

In essence, mutation preserves the functional correctness of

sorting. However, the complexity of the sort function changes

from O(n log n) to O(n2). According to the author of the

function (in personal communication), Georges Gonthier, “the

key but unstated invariant of ss is that its ith item has size 2i

if it is not empty, so that merge_sort_push only performs

perfectly balanced merges.” He concluded that “without the

[::] placeholder the MathComp sort becomes two element-

wise insertion sort.”

BFT in Flocq: In this mutant, false is changed to true

in the following function:

Definition shr_1 mrs :=

let ’(Build_shr_record m r s) := mrs in

let s := orb r s in

match m with

| Zneg (xO p) ⇒
Build_shr_record (Zneg p) false s

Although there are several lemmas about shr_1 below the

definition, none of them touch this particular match case. In

fact, there are no lemmas at all about Zneg (negative integer)

cases of shr_1. This indicates that Zneg cases in shr_1

are unused elsewhere, and we found that they are actually

assumed away implicitly by guards in lemmas.

Discussion. In addition to the live mutants, we also analyzed

two killed mutants from every project by sampling uniformly

at random; all were killed by a nearby proof (same file).

PrettyParsing and TLC have the lowest mutation scores of

all projects; 83.33% and 76.88%, respectively. We expected

the utility libraries (Coq-std++, TLC, and StructTact) to have

relatively low scores, due to the greater number of functions

and datatypes than in more focused projects.

The relatively high score of Coq-std++, despite its size

in terms of LOC, may indicate that most definitions are

extensively specified. To corroborate this, the main author

of Coq-std++ emphasized in personal communication that he

consistently proves several lemmas about each new definition

added to the library. The main author of TLC explained in

personal communication that, in contrast to Coq-std++, key

lemmas about TLC definitions are sometimes placed in other

projects for reasons of convenience. The relatively low score

of PrettyParsing likely stems from that its main theorem, that

deserializing serialized “prettified” data gives correct results,

9

TABLE VII: Number of Definitions Found by Dependency

Tools With Various Parameters.

Project
grep defusage

Total
= 1 > 1 = 0 ≤ 5 ≤ 10

ATBR 115 1662 443 2266 2544 2760

FCSL PCM 42 527 82 464 532 585

Flocq 26 221 32 187 229 257

Huffman 4 82 7 63 80 90

MathComp 1054 4946 804 4616 5397 6051

PrettyParsing 3 138 16 120 139 151

Bin. Rat. Numbers 21 234 43 290 329 379

Quicksort Compl. 11 255 30 243 275 296

Stalmarck 6 264 37 229 271 304

Coq-std++ 193 645 134 664 789 869

StructTact 2 45 15 32 44 47

TLC 41 863 94 765 850 956

does not take into account most details on how prettification

is done (through functions modified by live mutants).

4) RQ4: Comparison to Dependency Analysis: As men-

tioned in Section II-C, dependency analysis is used by proof

engineers to analyze their verification projects, and may high-

light some unused definitions similar to those we labeled

DanglingDef. To enable comparing mutation proving with

dependency analysis, we used the Coq dpdgraph plugin [23]

to obtain, for each project, (1) a dependency graph of all

definitions and lemmas, and (2) a list of the names of all

definitions. We also extended dpdgraph to produce a tool

dubbed defusage that counts edges to definitions in graphs.

As a simple baseline, we used grep to record the number

of matches for each definition in each project’s .v files. The

first three columns in Table VII show the project name and

number of definitions that had exactly one and more than one

match, respectively, with grep. These can be compared to

those in the last column, which show the total number of

definitions. As a more robust alternative, we used defusage

on the dependency graph of each project, with three thresholds

in terms of number of incoming edges: 0 (unused), 5, and

10. Columns four to six in Table VII show the number of

definitions at or below each threshold for all projects.

The large discrepancies between the second and fourth

columns of Table VII indicate that the grep baseline is

both unsound and incomplete; for some projects such as

ATBR, it finds only a fraction of all unused definitions, while

for, e.g., MathComp, it finds too many unused definitions.

More importantly, none of the definitions changed by the

live mutants we manually analyzed were included among the

definitions in the second column (grep = 1). We conclude

that the grep baseline is unusable for finding incompletely

specified functions and datatypes.

While defusage produces sound and complete lists of

unused definitions, the lists are typically long, and contain

a large percentage of all definitions even with threshold 0

(e.g., for MathComp), making it hard to apply in practice.

Among definitions changed by the live mutants we labeled

with UnderspecifiedDef and DanglingDef, only 12 out of 63,

all labeled DanglingDef, are found among those in column

four (= 0). We conclude that mutation proving finds many

more fundamental flaws in Coq verification projects than

dependency analysis, and does so in a more informative,

systematic, and less noisy way.

VI. THREATS TO VALIDITY

External. Our results may not generalize to all Coq projects.

To mitigate this threat, we chose popular projects that differ

in size, number of proofs, and proof checking time. As our

infrastructure builds on Coq 8.9, we could only use projects

that work with this Coq version. We report results for a single

hardware platform, and results may differ if experiments are

run elsewhere. We ran all our experiments on two platforms,

but we reported results only for one of them (more modern)

due to space limitations. Although absolute numbers differ

across platforms, our conclusions remain unchanged. We only

analyzed a subset of killed and live mutants in our qualitative

study. Our findings could differ if we had inspected a different

set or more mutants. We mitigate this threat by systematically

sampling mutants for inspection.

Internal. Our implementation of the tool and/or scripts may

have bugs. To mitigate this threat, we performed extensive

unit testing of our code. We also checked that results were the

same across modes and that execution time differences were

negligible across several runs. Finally, during our qualitative

analysis, we validated the outcome of each mutant we studied.

Construct. Our work targets only Coq. Nevertheless, many

mutation operators described in Section III-B, e.g., all opera-

tors in the Lists category, are applicable to projects using other

proof assistants such as Lean [52] and Isabelle/HOL [53].

However, more research is needed to develop an extensive

set of mutation operators and evaluate mutation proving for

other proof assistants and deductive verification tools.

VII. LIMITATIONS AND FUTURE WORK

Mutation operator design. We implemented and exper-

imented with a mutation operator for changing the or-

der of cases in a pattern matching expression, inspired by

Le et al. [11]. However, mutants generated by this operator

were nearly always killed immediately (stillborn), since Coq

pattern matching branches tend to be completely unambigu-

ous, and the strong type system does not permit leaving

out matching cases. This illustrates the problem of defining

general operators for Gallina, as opposed to operators using the

standard library, e.g., addition for Peano arithmetic. A highly

idiomatic Coq project may benefit from using specialized

operators for the libraries it depends on.

Scope of mutation. We do not consider mutation of lemma

statements or of Ltac proof scripts. The main reason is that we

then would largely lose the analogy between mutation proving

and mutation testing, since mutation of test code is not per-

formed in the latter. Inductive predicates, which are a special

form of inductive datatypes, are arguably borderline cases,

but we included them for mutation based on their established

interpretation as cut-free higher-order Prolog programs [13].

10

Equivalence and mutation scores. Mutation testing tradition-

ally uses functional equivalence of programs in its definition

of mutation score, which makes score calculation undecidable

in general and usually necessitates using heuristics to filter

out equivalent mutants [54]. In contrast, this equivalence is

only one of many that may be considered when defining

mutation score for Coq projects. We implemented checking

of syntactical equality at the vernacular level, which preserves

proofs but is highly discriminating. It is also possible to

define and compute scores using Coq’s least discriminating

decidable notion of equivalence that always preserves proofs,

convertibility [55], or using a project-specific equivalence.

However, checking convertibility is costly, and only two of

the live mutants we labeled SemanticallyEq were convertible.

Alternative mutation approaches. While our operators are

defined and applied at the level of vernacular syntax, SERAPI

also supports serialization of data added during the elaboration

phase [56] of type checking in Coq. Additional operators

can potentially use this information to perform sophisticated

type-preserving changes to Coq definitions. However, such

operators may intuitively no longer capture mistakes that are

made by proof engineers, which our operators aim at doing.

VIII. RELATED WORK

Since, to our knowledge, ours is the first evaluation of mu-

tation analysis for proof assistants, we contrast with mutation

analysis in similar settings and other analysis techniques.

Mutation testing of functional programs. Le et al. [11], [57]

implemented a mutation testing framework for Haskell called

MuCheck, which applies mutation operators nondeterministi-

cally at the level of abstract syntax trees. Cheng et al. [12]

used MuCheck to evaluate different types of test coverage

for Haskell programs. Duregård [58] proposed a black-box

approach to mutation testing of Haskell code, on top of

the QuickCheck framework. The function under test must

be an instance of a specific type class that allows it to

be mutated (without modifying it in-place). Braquehais and

Runciman [59] presented a Haskell framework, FitSpec, that

uses mutation testing to measure adequacy of sets of properties

specified in property-testing frameworks such as QuickCheck.

FitSpec takes a black-box view of mutations, and uses instance

enumeration to produce mutants.

On one hand, black-box mutation can be applied in a

wider context than operator-based mutation, e.g., to functions

associated with native code. On the other hand, black-box

mutation sometimes requires defining explicit functions that

return mutants. While black-box mutation can be implemented

in Coq, we believe the purity of Gallina makes its advantages

modest compared to operator-based mutation.

Mutation of specifications. We took inspiration from Groce

et al. [8], who use mutation analysis to improve the process of

verification based on model checking. Ball and Kupferman [9]

consider the concept of vacuity in verification and testing,

which can be established through mutation of systems and

their specifications. Mutation proving is intuitively similar to,

but more general than, their notion of vacuity in software

checking. Efremidis et al. [60] presented a mutation framework

for Prolog with operators reminiscent of ours.

Analysis and testing in proof assistants. Berghofer and

Nipkow [61] first considered random testing to assist users of

Isabelle/HOL to specify and verify programs. Bulwahn [22]

subsequently improved the Isabelle testing facilities. A testing

framework for Coq, dubbed QuickChick, was proposed by

Paraskevopoulou et al. [26], and Lampropoulos and Pierce [10]

describe mutation testing in that framework. Blanchette and

Nipkow [24] presented a counterexample generator for Is-

abelle/HOL. Cruanes and Blanchette [25] later presented a

general tool, Nunchaku, for counterexample generation, and

showed how to adapt it to dependent type theories like Coq’s.

Johansson [28] proposed a tool for theory exploration in Is-

abelle/HOL called Hipster, which attempts to prove interesting

facts from a given set of definitions.

Testing and generation as in QuickChick and Nunchaku can

analyze specific functions and datatypes to find problematic

inputs, but lack the connection to proofs that MCOQ has. More-

over, the above techniques do not consider alternative “worlds”

with different definitions, and are thus largely complementary

to mutation proving. For example, Hipster could be applied

to mutants to reveal facts that are consequences of alternative

definitions generated by MCOQ.

IX. CONCLUSION

We proposed mutation proving, a technique for analyzing

verification projects that use proof assistants. We implemented

our technique for the Coq proof assistant in a tool dubbed

MCOQ. MCOQ applies a set of mutation operators to Coq def-

initions of functions and datatypes, inspired by our experience

and operators previously defined for functional programming

languages. MCOQ then checks proofs of lemmas affected by

operator application. To make our technique feasible in prac-

tice, we implemented several optimizations in MCOQ such as

parallel proof checking. We applied MCOQ to 12 medium and

large scale Coq projects, and recorded whether proofs passed

or failed when applying different mutation operators. We

then qualitatively analyzed the failed proofs, finding several

examples of incomplete specifications. Moreover, our work

has already had significant impact on Coq tooling, and our

tool helped to uncover a bug in Coq itself. We believe that

MCOQ can be extended in a number of ways and already be

useful for many practical tasks. We are looking forward to

see MCOQ used by proof engineers for improving the quality

of their verification projects and by researchers for evaluating

new proof engineering techniques.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their comments and

Ina Schaefer for shepherding this paper; Arthur Charguéraud,

Georges Gonthier, Farah Hariri, Kush Jain, Robbert Krebbers,

Pengyu Nie, Zachary Tatlock, James R. Wilcox, and Théo

Zimmermann for their feedback. This work was partially

supported by the US National Science Foundation under Grant

Nos. CCF-1652517 and CCF-1704790.

11

REFERENCES

[1] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. Le Traon, and M. Harman,
“Mutation testing advances: An analysis and survey,” Advances in

Computers, vol. 112, pp. 275–378, 2019.

[2] X. Leroy, “Formal verification of a realistic compiler,” Commun. ACM,
vol. 52, no. 7, pp. 107–115, 2009.

[3] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “seL4: Formal verification of an OS kernel,”
in Symposium on Operating Systems Principles, 2009, pp. 207–220.

[4] D. Woos, J. R. Wilcox, S. Anton, Z. Tatlock, M. D. Ernst, and
T. Anderson, “Planning for change in a formal verification of the Raft
consensus protocol,” in Certified Programs and Proofs, 2016, pp. 154–
165.

[5] T. Ringer, K. Palmskog, I. Sergey, M. Gligoric, and Z. Tatlock, “QED
at large: A survey of engineering of formally verified software,” Foun-

dations and Trends in Programming Languages, vol. 5, no. 2-3, pp.
102–281, 2019.

[6] P. Fonseca, K. Zhang, X. Wang, and A. Krishnamurthy, “An empirical
study on the correctness of formally verified distributed systems,” in
European Conference on Computer Systems, 2017, pp. 328–343.

[7] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in C compilers,” in Conference on Programming Language Design

and Implementation, 2011, pp. 283–294.

[8] A. Groce, I. Ahmed, C. Jensen, P. E. McKenney, and J. Holmes, “How
verified (or tested) is my code? Falsification-driven verification and
testing,” Automated Software Engineering, vol. 25, no. 4, pp. 917–960,
2018.

[9] T. Ball and O. Kupferman, “Vacuity in testing,” in Tests and Proofs,
2008, pp. 4–17.

[10] L. Lampropoulos and B. C. Pierce, “QuickChick Interface,”
2018. [Online]. Available: https://softwarefoundations.cis.upenn.edu/
qc-current/QuickChickInterface.html

[11] D. Le, M. A. Alipour, R. Gopinath, and A. Groce, “MuCheck: An ex-
tensible tool for mutation testing of Haskell programs,” in International

Symposium on Software Testing and Analysis, 2014, pp. 429–432.

[12] Y. Cheng, M. Wang, Y. Xiong, D. Hao, and L. Zhang, “Empirical
evaluation of test coverage for functional programs,” in International
Conference on Software Testing, Verification, and Validation, 2016, pp.
255–265.

[13] Y. Bertot and P. Castéran, Interactive Theorem Proving and Program De-

velopment: Coq’Art: The Calculus of Inductive Constructions. Springer,
2004.

[14] Coq Team, “Coq manual: Syntax extensions and interpretation scopes,”
2019. [Online]. Available: https://coq.inria.fr/distrib/V8.9.0/refman/user-
extensions/syntax-extensions.html

[15] ——, “Coq manual: Utilities,” 2019. [Online]. Available: https://coq.
inria.fr/distrib/V8.9.0/refman/practical- tools/utilities.html

[16] A. Celik, K. Palmskog, and M. Gligoric, “iCoq: Regression proof se-
lection for large-scale verification projects,” in International Conference
on Automated Software Engineering, 2017, pp. 171–182.

[17] A. Groce, J. Holmes, D. Marinov, A. Shi, and L. Zhang, “An extensible,
regular-expression-based tool for multi-language mutant generation,” in
International Conference on Software Engineering, Demo, 2018, pp. 25–
28.

[18] E. J. Gallego Arias, “SerAPI: Machine-Friendly, Data-Centric
Serialization for Coq,” MINES ParisTech, Tech. Rep., 2016.
[Online]. Available: https://hal-mines-paristech.archives-ouvertes.fr/hal-
01384408

[19] J. McCarthy, “Recursive functions of symbolic expressions and their
computation by machine, part I,” Commun. ACM, vol. 3, no. 4, pp.
184–195, 1960.

[20] E. J. Gallego Arias, “Coq issue #9204,” 2018. [Online]. Available:
https://github.com/coq/coq/issues/9204

[21] E. Tassi, “Coq pull request #9206,” 2018. [Online]. Available: https://
github.com/coq/coq/pull/9206

[22] L. Bulwahn, “The new Quickcheck for Isabelle: Random, exhaustive
and symbolic testing under one roof,” in Certified Programs and Proofs,
2012, pp. 92–108.

[23] A. Pacelet and Y. Bertot, “coq-dpdgraph,” 2019. [Online]. Available:
https://github.com/Karmaki/coq-dpdgraph

[24] J. C. Blanchette and T. Nipkow, “Nitpick: A counterexample generator
for higher-order logic based on a relational model finder,” in Interna-
tional Conference on Interactive Theorem Proving, 2010, pp. 131–146.

[25] S. Cruanes and J. C. Blanchette, “Extending Nunchaku to dependent
type theory,” in International Workshop on Hammers for Type Theories,
vol. 210, 2016, pp. 3–12.

[26] Z. Paraskevopoulou, C. Hritçu, M. Dénès, L. Lampropoulos, and B. C.
Pierce, “Foundational property-based testing,” in International Confer-

ence on Interactive Theorem Proving, 2015, pp. 325–343.

[27] Z. Chen, L. O’Connor, G. Keller, G. Klein, and G. Heiser, “The
Cogent case for property-based testing,” in Workshop on Programming
Languages and Operating Systems, 2017, pp. 1–7.

[28] M. Johansson, “Automated theory exploration for interactive theorem
proving,” in International Conference on Interactive Theorem Proving,
2017, pp. 1–11.

[29] D. Delahaye, “A tactic language for the system Coq,” in Logic for

Programming and Automated Reasoning, 2000, pp. 85–95.

[30] OCaml Labs, “PPX,” 2017. [Online]. Available: http://ocamllabs.io/
doc/ppx.html

[31] E. J. Gallego Arias, B. Pin, and P. Jouvelot, “jsCoq: Towards hybrid the-
orem proving interfaces,” in Workshop on User Interfaces for Theorem

Provers, 2017, pp. 15–27.

[32] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” Computer, vol. 11, no. 4,
pp. 34–41, 1978.

[33] T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Theoretical
and empirical studies on using program mutation to test the functional
correctness of programs,” in Symposium on Principles of Programming
Languages, 1980, pp. 220–233.

[34] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” Transactions on Software Engineering, vol. 37, no. 5,
pp. 649–678, 2011.

[35] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser,
“Are mutants a valid substitute for real faults in software testing?” in
International Symposium on Foundations of Software Engineering, 2014,
pp. 654–665.

[36] M. Papadakis, D. Shin, S. Yoo, and D.-H. Bae, “Are mutation scores
correlated with real fault detection?: A large scale empirical study
on the relationship between mutants and real faults,” in International

Conference on Software Engineering, 2018, pp. 537–548.

[37] A. Chlipala, “Ltac anti-patterns,” 2019. [Online]. Available: http://
adam.chlipala.net/cpdt/html/Large.html

[38] H. Coles, “PIT mutation testing,” 2010. [Online]. Available: http://
pitest.org

[39] R. Just, “The Major mutation framework: Efficient and scalable mutation
analysis for Java,” in International Symposium on Software Testing and
Analysis, 2014, pp. 433–436.

[40] R. Just, M. D. Ernst, and G. Fraser, “Efficient mutation analysis by
propagating and partitioning infected execution states,” in International

Symposium on Software Testing and Analysis, 2014, pp. 315–326.

[41] R. Gopinath, I. Ahmed, M. A. Alipour, C. Jensen, and A. Groce,
“Mutation reduction strategies considered harmful,” Transactions on

Reliability, vol. 66, no. 3, pp. 854–874, 2017.

[42] J. Zhang, L. Zhang, M. Harman, D. Hao, Y. Jia, and L. Zhang,
“Predictive mutation testing,” Transactions on Software Engineering,
2018.

[43] R. Gopinath, C. Jensen, and A. Groce, “Topsy-Turvy: A smarter and
faster parallelization of mutation analysis,” in International Conference

on Software Engineering, Demo, 2016, pp. 740–743.

[44] B. Wang, Y. Xiong, Y. Shi, L. Zhang, and D. Hao, “Faster mutation
analysis via equivalence modulo states,” in International Symposium on

Software Testing and Analysis, 2017, pp. 295–306.

[45] L. Chen and L. Zhang, “Speeding up mutation testing via regression test
selection: An extensive study,” in International Conference on Software

Testing, Verification, and Validation, 2018, pp. 58–69.

[46] K. Palmskog, A. Celik, and M. Gligoric, “piCoq: Parallel regression
proving for large-scale verification projects,” in International Symposium
on Software Testing and Analysis, 2018, pp. 344–355.

[47] Y. Jia and M. Harman, “Constructing subtle faults using higher order
mutation testing,” in International Working Conference on Source Code

Analysis and Manipulation, 2008, pp. 249–258.

[48] E. J. Gallego Arias, “SerAPI: The Coq Se(xp)rialized Protocol,” 2019.
[Online]. Available: https://github.com/ejgallego/coq-serapi

12

[49] G. Gonthier and A. Mahboubi, “An introduction to small scale reflection
in Coq,” Journal of Formalized Reasoning, vol. 3, no. 2, pp. 95–152,
2010.

[50] J. Mendez, “jsexp,” 2019. [Online]. Available: https://github.com/
julianmendez/jsexp

[51] B. Barras, C. Tankink, and E. Tassi, “Asynchronous processing of Coq
documents: From the kernel up to the user interface,” in International

Conference on Interactive Theorem Proving, 2015, pp. 51–66.
[52] L. de Moura, S. Kong, J. Avigad, F. van Doorn, and J. von Raumer, “The

Lean theorem prover (system description),” in International Conference

on Automated Deduction, 2015, pp. 378–388.
[53] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL — A Proof

Assistant for Higher-Order Logic. Springer, 2002.
[54] M. Papadakis, M. Delamaro, and Y. Le Traon, “Mitigating the effects

of equivalent mutants with mutant classification strategies,” Science of

Computer Programming, vol. 95, pp. 298–319, 2014.
[55] Coq Team, “Coq manual: Conversion rules,” 2019. [Online].

Available: https://coq.inria.fr/distrib/V8.9.0/refman/language/cic.html#
conversion-rules

[56] L. de Moura, J. Avigad, S. Kong, and C. Roux, “Elaboration in
dependent type theory,” CoRR, vol. abs/1505.04324, 2015.

[57] D. Le, M. A. Alipour, R. Gopinath, and A. Groce, “Mutation testing
of functional programming languages,” Oregon State University, Tech.
Rep., 2014.

[58] J. Duregård, “Automating black-box property based testing,” Ph.D.
dissertation, Chalmers University of Technology, 2016.

[59] R. Braquehais and C. Runciman, “FitSpec: Refining property sets for
functional testing,” in Haskell Symposium, 2016, pp. 1–12.

[60] A. Efremidis, J. Schmidt, S. Krings, and P. Körner, “Measuring cov-
erage of Prolog programs using mutation testing,” in Functional and
Constraint Logic Programming, 2019, pp. 39–55.

[61] S. Berghofer and T. Nipkow, “Random testing in Isabelle/HOL,” in
International Conference on Software Engineering and Formal Methods,
2004, pp. 230–239.

13

	Introduction
	Background
	The Coq Proof Assistant
	SerAPI and Serialization to S-expressions
	Mutation Testing and Proving

	Technique
	Mutation Approach
	Mutation Operators
	Mutation Optimizations

	Implementation
	Tool Architecture and Components
	Mutation Modes and Procedure
	Impact of Tool Development

	Evaluation
	Verification Projects Under Study
	Variables
	Results
	RQ1: Number of Mutants and Mutation Score
	RQ2: Performance
	RQ3: Qualitative Analysis
	RQ4: Comparison to Dependency Analysis

	Threats to Validity
	Limitations and Future Work
	Related Work
	Conclusion
	References

