Mutation Analysis for Coq

Ahmet Celik*, Karl Palmskog*, Marinela Parovic*, Emilio Jestis Gallego Arias’ and Milos Gligoric*
*The University of Texas at Austin TMINES ParisTech
ahmetcelik @utexas.edu, palmskog@acm.org, marinelaparovic @gmail.com, e @x80.org, gligoric @utexas.edu

Abstract—Mutation analysis, which introduces artificial defects
into software systems, is the basis of mutation testing, a technique
widely applied to evaluate and enhance the quality of test
suites. However, despite the deep analogy between tests and
formal proofs, mutation analysis has seldom been considered
in the context of deductive verification. We propose mutation
proving, a technique for analyzing verification projects that
use proof assistants. We implemented our technique for the
Coq proof assistant in a tool dubbed MC0Q. MCOQ applies
a set of mutation operators to Coq definitions of functions
and datatypes, inspired by operators previously proposed for
functional programming languages. MC0Q then checks proofs of
lemmas affected by operator application. To make our technique
feasible in practice, we implemented several optimizations in
MCoOQ such as parallel proof checking. We applied MC0OQ to
several medium and large scale Coq projects, and recorded
whether proofs passed or failed when applying different mutation
operators. We then qualitatively analyzed the mutants, finding
many instances of incomplete specifications. For our evaluation,
we made several improvements to serialization of Coq files and
even discovered a notable bug in Coq itself, all acknowledged
by developers. We believe MCOQ can be useful both to proof
engineers for improving the quality of their verification projects
and to researchers for evaluating proof engineering techniques.

I. INTRODUCTION

Mutation analysis introduces small-scale modifications to a
software system, with each modified system version called
a mutant. Mutation analysis is widely applied to software
systems to perform mutation testing [1], where test suites
are evaluated on mutants of a system that represent faults
introduced by programmers, or are designed to give rise to
fault-like behavior. If a specific mutant induces test failures,
the mutant is said to be killed; otherwise it is said to be
live. However, if a mutant survives all tests, this may indicate
an inadequate test suite or present avenues to improve tests.
Mutants of a system can be produced in a variety of ways;
a common approach implemented for many programming
languages, including functional languages such as Haskell, is
to apply mutation operators at a level near the source code
syntax, e.g., changing + to —. An operator may intuitively
represent a particular flaw that programmers are prone to
make, such as getting the sign of an integer variable wrong.

Formal verification can offer guarantees about program
behavior and other properties beyond those of testing. In
particular, deductive verification using proof assistants is in-
creasingly used for development of trustworthy large-scale
software systems [2]—[5]. Nevertheless, just as test suites may
be inadequate, formal specifications can fail to account for
unwanted program behavior [6], [7], potentially compromising
the ability of formal verification to rule out bugs and leading
to lower trust in verified code.

Although it is regularly applied to unverified software and
during lightweight verification [8], [9], mutation analysis has
only rarely been considered for proof assistants [10], and to
our knowledge, never with formal proofs in place of tests.

We propose mutation proving, a technique for mutation
analysis of verification projects using proof assistants, suitable
for evaluating the adequacy of collections of formally proven
properties of programs. Our technique adapts and extends
mutation operators previously used to mutate Haskell pro-
grams [11], [12]. We implemented our technique for the Coq
proof assistant [13] in a tool dubbed MC0OQ. Given a mutation
operator and a Coq project, MCOQ applies an instance of the
operator to a definition in Coq’s Gallina language, and then
checks all proofs that could be affected by the change.

A serious obstacle to operator-based mutation analysis in
proof assistants is the extensibility and flexibility of the
syntax used to express functions, datatypes, and properties. In
particular, Coq supports defining powerful custom notations
over existing specifications [14], and Coq’s parser can be
extended with large grammars at any point in a source file
by loading plugins [15]. These facilities are convenient for
expressing mathematical concepts, but pose a great challenge
for processing of Coq files. Moreover, definitions of functions
and datatypes, analogous to classes and methods in Java-like
languages, tend to be highly interspersed with proofs, which
are analogous to tests [16]. This precludes simple mutation
based on text replacement in source files [17].

We overcome these challenges by leveraging the OCaml-
based SERAPI serialization library [18], which is integrated
with Coq’s parser and internal data structures. We extended
Coq and SERAPI to support full serialization of all Coq files
used in large-scale projects to S-expressions (sexps) [19]. We
apply our mutation operators to the sexps we obtain, and
then deserialize and proof-check the results. To make mutation
proving feasible in practice for large-scale Coq projects, we
optimized MCOQ in several ways, e.g., to leverage multi-
core hardware for fast parallel checking of proofs affected by
changes after applying a mutation operator.

To evaluate our technique, we applied MCOQ to several
open source Coq projects, from medium to large scale. We
recorded whether a mutant was live or killed based on proofs
passing or failing, and then qualitatively analyzed a subset of
mutants, unveiling several incomplete specifications. For our
evaluation, we enhanced SERAPI and fixed several serializa-
tion issues, significantly increasing its robustness in processing
large Coq projects. We also found a notable bug in Coq related
to proof processing when applying MC0OQ [20], acknowledged
and subsequently fixed by the developers [21].

Our technique and tool can be useful both to proof en-
gineers for directly analyzing their verification projects and
to researchers for evaluating proof engineering techniques,
analogously to how mutation testing is used to evaluate testing
techniques for functional programs [12].

We believe mutation proving is largely orthogonal to, and
complements, many other analysis techniques for proof assis-
tants, such as bounded testing [22], dependency analysis [16],
[23], counter-example generation [24], [25], property-based
testing [26], [27], and theory exploration [28]. Specifically,
these techniques do not consider “alternative worlds”, where
definitions are different from the present ones [8].

We make the following contributions:

o Technique: We propose mutation proving for verification
projects using proof assistants. We define a set of mutation
operators on definitions of functions and datatypes, inspired
by operators defined previously for functional and impera-
tive programming languages.

« Tool: We implemented mutation proving in a tool, dubbed
MCo0Q, which supports Coq projects. Our tool brings sig-
nificant extensions to Coq and the SERAPI library for seri-
alization and deserialization of Coq syntax; these extensions
pave the way for other transformations of Coq code.

« Optimizations: To make mutation proving of large projects
feasible in practice, we optimized MCOQ to make it run
faster. In particular, we implemented several novel forms of
selective and parallel checking of proofs for mutants.

« Evaluation: We performed an empirical study using MCOQ
on 12 large and medium-sized open source Coq projects.
For each project, we recorded the number of generated and
killed mutants and the execution time. We qualitatively ana-
lyzed a subset of the mutants, and found several incomplete
specifications manifested as live mutants.

o Impact: Our work resulted in many improvements and
bugfixes to SERAPI, enhancing its robustness when applied
to large-scale projects and showing that complex, extensible
Coq files can be manipulated in a lightweight way. We made
several modifications to Coq itself, and these changes have
been accepted by Coq developers.

We provide supplementary material and artifacts related to
MCoQ at: http://cozy.ece.utexas.edu/mcoq

II. BACKGROUND

This section provides some brief background on the Coq
proof assistant, the SERAPI library, and mutation testing.

A. The Coq Proof Assistant

Coq is a proof assistant based on type theory [13], imple-
mented in the OCaml programming language. The specifica-
tion language of Coq, Gallina, is a small and purely functional
programming language. Proofs about Gallina specifications
are typically performed using sequences of expressions (tactic
calls) in Coq’s proof tactic language, Ltac [29]. Source files
processed by Coq are sequences of vernacular commands,

1| Require Import Arith.

2

3| Definition update {A} (st : nat — A) h (v : A) :=
4| fun n = if Nat.eg_dec n h then v else st n.
5

6| Lemma update_nop : V A (st : nat — A) vy v,

7] st y = v — update st y vy = st y.

8| Proof.

9| intros; unfold update; case Nat.eqg_dec; auto.
10| Qed.

11

12| Lemma update_diff : V A (st : nat — A) x v vy,
13| x # y — update st x vy = st y.

14| Proof.
15| intros; unfold update.
16| case Nat.eqg_dec; congruence.

17| Qed.

Update.v
Fig. 1: Example Coq source file.

each of which can contain both Gallina and Ltac expressions.
Figure 1 shows an example Coq source file which contains
a function update and two lemmas about the function. The
intended meaning of update, defined on lines 3—4, is that
it returns a new version of a given function st from natural
numbers to some type A, and this returned function maps h
to v but otherwise behaves as st.

Vernacular syntax is extensible by the user in almost ar-
bitrary ways by (1) defining notations inside Coq, e.g., []
or [::] for the empty list constructor nil, and (2) loading
plugins in Coq that extend syntax. In particular, the Ltac
language and basic decision procedures for proof automation
are implemented as a collection of plugins. Since plugins can
generally be loaded at any time when interacting with Coq,
the permitted syntax can grow dynamically as a vernacular
file is processed. Hence, writing a robust stand-alone parser
for vernacular is difficult, and will break easily as Coq evolves.

Even though Coq provides a logic of total, terminating func-
tions, Ltac allows nontermination, e.g., of proof search. Hence,
modifying a Gallina datatype or function may result in infinite
loops, in analogy with the frequent infinite loops that arise in
tests during mutation testing [1]. The mitigating practice in
mutation testing is to assign execution time thresholds for test
execution. Similarly, we set thresholds to the proof checking
time for each mutant.

The cogc tool compiles source . v files to binary . vo files
and checks all proofs. Such binary files are then loaded by Coq
when processing Require commands in . v files.

B. SERAPI and Serialization to S-expressions

SERAPI is an OCaml library and toolchain for machine
interaction with Coq [18]. SERAPI has two principal com-
ponents: (1) an interface for serialization and deserialization
of Coq syntax and internal data structures to and from S-
expressions (sexps) [19] built on OCaml’s PPX metapro-
gramming facilities [30], and (2) a protocol for building and
querying Coq files that abstracts over vernacular commands.
In effect, SERAPI overcomes the problem of robustly parsing
vernacular by directly integrating with Coq’s parsing toolchain

cis
O 0
.,
CRef o t 9 CRef O |CRef
cref\ [cref][[oualid] Q
I
ofe oje
4 oje
4 Q ofe)

Fig. 2: Sexp of if-subexpression on line 4 in Figure 1.

and internal datatypes. Since the serialization routines are
automatically generated from Coq’s own definitions using
metaprogramming, SERAPI is expected to require only mod-
est maintenance as Coq evolves. Before our work, the principal
application of SERAPI was for user interfaces for Coq, e.g.,
web-based interfaces [31].

When mutating Coq projects, we use the SERAPI sexp-
based serialization facilities, avoiding heavyweight OCaml
library development. Intuitively, a SERAPI sexp is either
an atom, representing a constant or variable name, or a
list delimited by parentheses. For example, the sexp for the
command on the first line in Figure 1 is as follows:
(VernacExpr () (VernacRequire ()

(false) (((Qualid(Path) (Arith))))))

A more readable but less compact representation of sexps
is graphically as trees. For example, the tree in Figure 2
provides a simplified illustration of the SERAPI sexp for the
if-subexpression on line 4 in Figure 1.

C. Mutation Testing and Proving

We follow Papadakis et al. [1] in using mutation analysis for
the process of generating code variants, and mutation testing
for the application of this process to support software testing
and test suite improvement. In analogy with the latter, we
refer to the application of mutation analysis to support proof
development using proof assistants and improving collections
of formally proven properties as mutation proving.

Mutation analysis was proposed by Lipton, then formalized
by DeMillo et al. [32], and first applied in practice in the con-
text of software testing by Budd et al. [33]. In mutation testing,
test suites that distinguish between a mutant and the original
program, e.g., by reporting an assertion violation, leaving the
mutant killed, are judged to meet objectives. In contrast, test
suites that do not report assertion violations or other errors for
a mutant, leaving the mutant /ive, could be judged not to meet
objectives and may require revision. A test suite’s mutation
score is defined as the percentage of killed mutants out of
all mutants that are distinct under functional equivalence [34].
Intuitively, mutants may be viewed as containing buggy code,
and the mutation score as a measure of how well the test suite
rules out the presence of buggy code [35], [36].

How to interpret killed and live mutants in mutation proving
is less clear than for mutation testing. While there may be defi-
nitions of functions and datatypes that are nonsensical for most

purposes, a failing proof of a lemma using such definitions
does not unambiguously indicate an error or mistake (bug) in
the definitions. Coq proof scripts are often brittle [37] and fail
to produce proofs when associated definitions are changed in
trivial ways that preserve all their properties. In addition, the
goal of a proof assistant verification project may be to prove
some lemma unrelated to any specific program.
Nevertheless, live mutants may still indicate the inadequacy
of the verification harness [8] to fully meet reasonable objec-
tives. In particular, live mutants can go far beyond flagging up
completely unused definitions as in dependency analysis [23]:
they can pinpoint that certain fragments of key definitions
vacuously satisfy behavioral specifications [9], e.g., that an
ostensibly strong and complete lemma about a function can be
proven regardless of what the returned value is for a certain
range of inputs to that function. Many live mutants could
indicate the presence of such underspecification in a Coq
project, which may eventually manifest as bugs in executable
systems [6] and lead to lower trust in formally verified code.

III. TECHNIQUE

In this section, we describe our mutation approach, mutation
operators, and optimizations to mutation proving.

A. Mutation Approach

Our approach to mutation proving follows the classical
approach of defining a set of mutation operators (operator
for short) which describe classes of changes to a project.
Intuitively, an operator captures a common mistake made by
a proof engineer. When an operator is successfully applied to
a project, it generates a mutant. When the mutant has been
successfully checked, i.e., all related proofs have passed, it is
declared live. Otherwise, if proof checking fails or times out,
the mutant is considered killed. Since the notion of functional
equivalence is not applicable to many verification projects, we
use a broader definition of mutation score as the percentage
of killed mutants out of all mutants that are distinct under
syntactical equivalence.

We define operators for mutation proving as transformations
on Coq vernacular sexps. For any transformation and sexp,
it must be unambiguous and easily checkable whether the
transformation can be successfully applied or not to the sexp.
For example, if the transformation pertains to particular Coq
constants, it is applicable precisely when those constants occur
in a specific way in the sexp. Note that checking syntactical
equivalence of a target and result sexp (modulo non-essential
auxiliary data such as file line numbers) is simple and fast.

The initial step for applying any operator to a Coq verifica-
tion project is to convert all . v source files to lists of sexps.
For a specific operator op and sexp list, the steps are then
to (1) apply op sequentially to all list elements until a non-
equivalent mutant is generated, (2) check the mutated list of
sexps, (3) check all proofs in files that transitively depend on
the source file that was (indirectly) mutated. The latter three
steps are repeated for all lists of sexps until no additional
mutants can be generated using op.

TABLE I: List of Mutation Operators.

Category Name Description
GIB Reorder branches in if-else expression
GIC Reverse the order of the constructors in the definition
General of an inductive type
GME Replace expression in the second match case with
the expression from the first match case
LRH Replace list with head singleton list
LRT Replace list with its tail
Lists LRE Replace list with empty list
LAR Reorder arguments to the list append operator
LAF Replace list append expression with first argument
LAS Replace list append expression with second argument
NPM Replace plus with minus
Numbers NZO Replace zero with one .
NSZ Replace successor constructor with zero
NSA Replace successor constructor with its argument
Booleans BFT Replace false With true
BTF Replace true with false
1| Require Import List. Import ListNotations.
2
3| Fixpoint ftmap {A B} (f:A — option B) l:list B :=
4| match 1 with
501 [] = [] | a:: xs =
6| match f a with
7 | None = ftmap f xs
8 | Some b = b :: ftmap f xs
9] end
10| end.

12| Lemma ftmap_app : V A B (f: A — option B) xs ys,

13| ftmap f (xs 4++ ys) = ftmap f xs 4+ ftmap f ys.
14| Proof.

15| induction xs; intros; simpl in *; auto.

16| case (f a) egn:?; simpl; auto using f_equal.
17| Qed.

18

19| Lemma ftmap_in : VA B (f: A — option B) a b xs,

200 £ a = Some b — In a xs — In b (ftmap f xs).
21| Proof.
22| induction xs; simpl; auto.
23| case (f a0) egn:?; simpl; intuition congruence.
24| Qed.

Ftmap.v

Fig. 3: Example Coq source file using lists.

B. Mutation Operators

Our inspiration for Coq mutation operators came from two
sources. Primarily, we were inspired by the operators defined
by Le et al. for Haskell [11]. Secondarily, we took inspiration
from the operators in mutation frameworks for Java such as
PIT [38] and the Major framework [39], [40]. We considered
these operators through the lens of our experience from using
Coq for over 17 years (cumulative).

Table I lists our operators. For each operator, we give a
category, a short name which we will use in the rest of text, and
a short description. The General category includes operators
which are applicable regardless of whether a project uses a
specific datatype from the Coq standard library. The Lists
category includes operators which pertain to the ubiquitous
list datatype in the standard library. The Numbers category

includes operators which apply to natural numbers in their
standard linear-size Peano encoding (e.g., 2 is defined as the
successor constructor applied two times to the zero construc-
tor). Similarly, the Booleans category applies to booleans as
defined in the standard library.

In contrast to imperative languages such as Java, where
numeric datatypes are typically built-in, Gallina has only a few
native constructs, which is reflected in the limited number of
operators in the General category. Other operators require a
project to use the corresponding notations and constants from
the standard library; the associated categories therefore pertain
to the most elementary and widely used parts of the library.

To illustrate how our operators work, we give a few ex-

amples using the Coq code in Figure 1 and Figure 3. For a
more intuitive presentation, we describe the effect of operators
mostly in terms of the source code rather than sexps.
General mutation example. Applying the operator GIB to
the file in Figure 1 results in one mutant where update has
the expressions v and st n swapped on line 4. The proof of
update_nop goes through for the mutant, indicating that the
lemma does not express any fundamental property of update.
However, the proof of update_diff fails (specifically,
congruence on line 16 fails), killing the mutant. Note that
the mutation can be performed at the sexp level by swapping
the two rightmost subtrees below CIf in Figure 2.
Lists mutation examples. The source file in Figure 3 contains
a recursive function ftmap (lines 3—-10) that applies a given
partial function £ to a list. The two accompanying lemmas
express some basic properties about the function; in particu-
lar, ftmap_app establishes that ftmap distributes over list
append. Applying the operator LRH results in a mutant where
the singleton list [b] has replaced b ftmap £ xs on
line 8. This mutant is killed by ftmap_app, since this
property no longer holds. Applying the operator LRT results
in a mutant where the (tail) list expression ftmap f xs has
replaced b ftmap £ xs online 8. This mutant survives
ftmap_app, but is killed by ftmap_in.

C. Mutation Optimizations

Mutation analysis is generally acknowledged to be a costly
process [41], [42], and this also holds true for mutation
proving. In this section, we describe several optimizations to
our basic mutation proving approach.

In mutation testing, optimizations are generally about gen-

erating faster, smarter, or fewer mutants [43], [44]. We focus
on accomplishing faster mutation, and the insight we build on
is that proof checking for mutation proving can be viewed as
a particular instance of regression proving, i.e., to check an
existing Coq project after a change has been made; similar
insights are found in regression testing [45].
Proof selection. A proof selection technique uses knowledge
of modified files (or proofs) in a project to only check impacted
files (or proofs) [16]. Since a successful application of a
mutation operator means that a sexp file was modified, we can
use change impact analysis to perform selective proof checking
during mutation proving.

/(sexp parsell

QMutator

sercomp

compser

sexp ﬁle

Fig. 4: MCOQ implementation architecture.

Proof checking parallelization. Unlike test execution in Java-
like languages, proof checking in proof assistants is determin-
istic, which increases the potential for parallelization on multi-
core hardware. In particular, Coq proof checking is routinely
parallelized at the file level, where the main restriction on the
degree of parallelism is the file dependency graph [46].
Mutation operator parallelization. Since we only perform
first-order mutation [47], application of one mutation operator
to a project can be performed completely independently of the
application of another operator. Hence, when the goal is to ap-
ply several operators to the same project, the outcomes can be
computed in parallel, as in mutation testing of software [43].
Mutant parallelization. Application of one mutant can be
performed completely independently of application of another
mutant. We thus also introduce a parallel mode where each
mutant is checked as a separate task.

IV. IMPLEMENTATION

In this section, we describe the components of our muta-
tion proving implementation, define and discuss our mutation
modes and procedure which use the components, and outline
the impact of our tool development on other projects.

A. Tool Architecture and Components

Our tool for mutation proving, dubbed MCoOQ, is imple-
mented in OCaml, Java, and bash. Figure 4 shows an overview
of the architecture of MCOQ, and highlights how the main
components interact. During mutation proving, Coq source
files to be mutated are first given as input to our sercomp
program integrated with SERAPI (1), which produces corre-
sponding files with lists of sexps 2). The sexps are then handed
to our QMutator program (@), which performs parsing and
applies the transformations corresponding to a specified mu-
tation operator. Ultimately, QMutator outputs mutated sexps
(@ which become input to our compser program integrated
with SERAPI (5). We next describe each main component of
MCOQ in detail.
sercomp: We implemented a command-line program called
sercomp on top of SERAPI which takes a regular Coq .v
source file as input and outputs the corresponding lists of
sexps. The program is now included as part of SERAPI [48].
compser: We implemented a command-line program called
compser on top of SERAPI, meant to be the inverse of

sercomp. compser takes a file with a list of sexps as input
and either produces a .vo file or simply checks every sexp.
The program is now included as part of SERAPI [48].

Coq fork: We forked the v8.9 branch of the Coq GitHub
repository corresponding to Coq version 8.9 and modified it
to expose internal data structures relevant for mutation proving
to SERAPI. We submitted our proposed changes to the Coq
repository, and the developers eventually merged them.
SERAPI: We extended SERAPI to provide serialization and
deserialization of all Coq internal data structures required to
support large projects. In particular, we added support for
serialization of Ltac syntax extensions added by the SSReflect
proof language [49] used in many projects. All of our changes
have been added to the SERAPI codebase.

QMutator: We implemented a library for transformation of
sexps produced by sercomp, and mutation operators that use
this library, in Java. We used an existing library, jsexp [50],
to parse and encode sexps. Based on our experience, imple-
menting new operators on top of our library is quick and
straightforward. On top of our library, we implemented a
program dubbed QMutator that takes sexps and an operator
name as input, and produces mutated sexps.

Runner: We implemented a program in Java and bash that
uses the above components to perform mutation proving on a
given Coq project, and then computes its mutation score.

B. Mutation Modes and Procedure

Based on the approach and optimizations in Section III, we
define four basic mutation proving execution modes:
Default: A simple mode which checks every file in a project
after a mutant is generated, by compiling . v files to . vo files
in topological order according to the file dependency graph.
RDeps: An advanced mode which checks only .v files
affected by a mutation, and caches and reverts to unmodified
.vo files to avoid the cost of generating them more than once.
Skip: An advanced mode which checks only . v files affected
by a mutation, and additionally avoids reverting . vo files.
Noleaves: A variant of Default which checks proofs in leaf
nodes in the file dependency graph but does not generate . vo
files for those files. We added this mode to explore if there
were any notable speedups gained by avoiding to write .vo
files with compser.

To realize these modes, we implemented the parameterized
mutation procedure CHECKOP shown in Figure 5 in our
Runner program. In the subprocedures called by CHECKOP,
there are several auxiliary procedures that behave differently
depending on the mode:

revertFile: For the Default and Skip modes, the file vF'
is always reverted. For RDeps, vF' is never reverted. For
Noleaves, vF' is reverted only if it is not a leaf node in rG.

getOtherFiles: For the Default and Noleaves modes, this
procedure returns rG.topologicalSort(sV F's — v), whereas
for the RDeps and Skip modes, the procedure instead returns
rG .topologicalSort(rG.closure({vF'}) — v).

Algorithm 1 Pseudocode of CHECKOP.

Require: op — Mutation operator
Require: P — Coq Project
1: procedure CHECKOP(op, P)
2: vFs < P.vFiles()

3: G < P.dependencyGraph()

4: rG < G.reverse()

5: sVFs < rG.topologicalSort (VF's)

6: v 0

7: for vF' € sVFs do

8: v.add(vF)

9: CHECKOPVFILE(G, rG, op, sV Fs,v,vF)

10: end for
11: end procedure

Algorithm 2 Pseudocode of CHECKOPVFILE.

Require: G — Dependency Graph

Require: G — Reverse Dependency Graph
Require: op — Mutation operator
Require: sVFs — Topologically sorted . v files
Require: v — Set of visited . v files
Require: vF' — .v file
1: procedure CHECKOPVFILE(G, rG, op, sVFs, v, vF)
2: sF «+ sercomp(vF)
3: me < countMutationLocations (sF, op)
4: mi < 0
5: while mi < mc do
6: mSF <+ mutate(sF, op, mi)
7: CHECKOPSEXPFILE(G, rG, sV Fs,v,vF,mSF)
8: mi < mi+1
9: end while
10: revertFile(vF)

11: end procedure

Algorithm 3 Pseudocode of CHECKOPSEXPFILE.

Require: G — Dependency Graph
Require: rG — Reverse Dependency Graph
Require: sVFs — Topologically sorted . v files
Require: v — Set of visited . v files
Require: vF' — .v file
Require: mSF — Mutated sexp file
1: procedure CHECKOPSEXPFILE(G, rG, sVFs, v, vF, mSF)

2: if compser(mSF) # 0 then

3: Global.killed[op] + Global.killed[op] + 1
4: return

5 end if

6: o0VFs « getOtherFiles(G,rG,sV Fs,v,vF)
7: revertOtherFilesBefore(vF, oV Fs)

8: for oF € oV F's do

9: if cogc(oF') # 0 then

10: Global.killed[op] + Global.killed[op] + 1
11: break

12: end if

13: end for

14: revertOtherFilesAfter(vF, oV Fs)

15: end procedure

Fig. 5: Mutation procedure pseudocode.

revertOtherFilesBefore: For all modes except Skip, this
procedure does nothing. For the Skip mode, it reverts all files
in G.closure(oV Fs)—oV Fs—{vF}, with oV F's defined on
line 6 in CHECKOPSEXPFILE.

revertOtherFilesAfter: For all modes except RDeps, it
does nothing. For RDeps, it reverts all files in oV F's.

On top of the basic modes, we define four parallel modes,
which we believed could lead to significant speedups:
ParFile: This mode builds on Skip and parallelizes the for
loop in the CHECKOPSEXPFILE procedure (lines 8 to 13).
Parallelization is at the coarse-grained file level.

ParQuick: Like ParFile, this mode builds on Skip and par-
allelizes the for loop in the CHECKOPSEXPFILE procedure
(lines 8 to 13). However, parallelization is at the fine-grained
level of proofs [46], [51].

ParMutant: This mode builds on RDeps, and checks each
mutant in parallel, i.e., we parallelize the while loop in the
CHECKOPVFILE procedure (lines 5 to 9).

6-RDeps: In this mode, we organize the operators into groups
of six or less, and run groups in parallel using the RDeps
mode. We limit to six groups to match the number of cores
available in our evaluation machine.

C. Impact of Tool Development

Work on our tool implementation resulted in more than 10
merged code contributions to SERAPI. Specifically, we found
over 30 failing test cases that were all fixed. Our enhancements
to Coq itself have been merged and are set to be included in
the upcoming Coq version 8.10.0 release.

When applying mutation proving to a project (StructTact)
during our evaluation, we generated a mutant which we
checked with both cogc and compser; the mutant was killed
according to the former but not the latter. The discrepancy was
due to a serious bug in Coq related to proof processing [20],
acknowledged and subsequently fixed by the developers [21].
This shows that mutation proving development has signifi-
cantly improved general Coq tooling.

V. EVALUATION

We evaluate MCOQ by answering four research questions:

RQ1: What is the number of mutants created for large and
medium sized projects and what are their mutation scores?

RQ2: What is the cost of mutation proving in terms of the
execution time and what are the benefits of our optimizations?

RQ3: Why are some mutants (not) killed?

RQ4: How does mutation proving compare to dependency
analysis for finding incomplete and missing specifications?

We run all experiments on a 6-core Intel Core i7-8700 CPU
@ 3.20GHz machine with 64GB of RAM, running Ubuntu
18.04.1 LTS. We limit the number of parallel processes to
be at or below the number of physical CPU cores. We next
describe the studied projects, our independent and dependent
variables, and our results.

A. Verification Projects Under Study

Table II lists the Coq projects used in our evaluation; all
are publicly available. For each project, we show the project
name, the latest SHA at the time of our experiments, number
of .v files, total lines of code (LOC), specification LOC, and
proof script LOC. All LOCs are computed using the cogwc

TABLE II: Projects Used in the Evaluation.

Project SHA #Files LOC Spec. LOC Pr. LOC
ATBR 366ac237 42 9705 4123 5567
FCSL PCM b34fce32 12 5747 2939 2851
Flocq 7Tec13200 29 24000 5955 18044
Huffman 50687911 26 5889 1878 4011
MathComp 91fa7b57 89 82323 37520 46040
PrettyParsing 18922625 14 1907 1221 705
Bin. Rat. Numbers 7b9cc06d 37 35041 5500 29541
Quicksort Compl. Oa6eed8b 36 8809 2617 6202
Stalmarck 6932ed8a 38 11266 3552 7698
Cog-std++ 005887ee 43 13715 6882 6852
StructTact 82a85b7e 19 4341 2008 2333
TLC 4babc16¢ 49 23494 13217 7802
Avg. n/a 36.16 18853.08 7284.33 11470.50
Total n/a 434 226237 87412 137646

tool, which is bundled with Coq. The last two rows of the
table show the average and total values across all projects.
We selected the projects based on (1) compatibility with
Coq version 8.9, (2) their size and popularity in terms of, e.g.,
GitHub stars and usage in other Coq projects, and (3) their
inclusion of functions and datatypes that can be mutated.

B. Variables

Independent variables. We manipulate two independent vari-
ables in our experiments: operator and execution mode. For
the former, we use the 15 operators defined in Table 1. For the
latter, we use the 8 execution modes described in Section IV-B.
Dependent variables. We compute three dependent variables:
mutation score, execution cost, and cost reduction. Mutation
score provides an estimate of the adequacy of formal speci-
fications; this metric is computed as the percentage of killed
mutants out of the total number of mutants minus the number
of syntactically equivalent mutants. Mutation score is either
computed per mutation operator or for all mutants at once.
Execution cost is the time needed to perform mutation proving;
this metric can also be reported per mutation operator or for
all mutants at once. Cost reduction is the percentage of time
saved using various execution modes compared to the time
needed to perform mutation proving using the Default mode.

C. Results

1) RQI: Number of Mutants and Mutation Score: Table 111
shows the total number of generated mutants for each pair of
project (row) and mutation operator (column). Additionally,
the last column shows the total number of mutants per project,
and the last two rows show the average and total number of
mutants per mutation operator. We can observe that GME
generates the most mutants, followed by NZO and NPM. On
the other hand, NSZ generates the smallest number of mutants,
followed by NSA. This indicates that explicit uses of the
natural number successor constructor were few for the projects
we used in our evaluation. Table IV shows the number of killed
mutants for each pair of project and mutation operator.

Table V shows the mutation score for all pairs of projects
and mutation operators; n/a indicates mutation score value that

cannot be computed because the number of generated mutants
is zero. The last column shows the mutation score for all
mutants in a given project, which is the metric traditionally
reported in mutation testing research; these mutation scores
vary from 76.88% (for TLC) to 99.18% (for Huffman).

Recall that mutation scores exclude (syntactically) equiv-
alent mutants. However, including equivalent mutants would
affect mutation scores only marginally: all but three projects
(ATBR, Flocq, and Bin. Rat. Numbers) had two equivalent
mutants or less. The GME operator accounted for all 24
equivalent mutants, which were due to pattern matching cases
returning the same expression.

It is important to note that mutation scores are much
higher than traditionally seen in mutation testing research.
We expected such high scores for several reasons. First, as
mentioned in Section II-C, many Coq proof scripts are brittle
and fail after only trivial changes are made to specifications.
Second, even robust proofs tend to be tightly coupled to
functions and datatypes, in effect exploring them symbolically
rather than relying only on externally observable properties
such as outputs. This is what enables proofs to, e.g., establish
properties about all members of infinite sets of datatype
instances, which is impossible for traditional unit tests. Two
projects are outliers in terms of mutation score (PrettyParsing
and TLC) and we come back to this below.

Finally, we analyzed the logs of our runs, which record the
reason for each mutant being killed, and found that only 2
mutants were killed due to timeout. These two mutants were
generated by GME and LRT.

2) RQ?2: Performance: Table VI shows the proof checking
and mutation proving time (in seconds) for various execution
modes. Specifically, the second column shows time to check
the project by running the default build commands (cogc
via make) for each project. The third column shows time to
process all files in a project with sercomp. Recall that we
mutate a file by first obtaining the corresponding sexps via
sercomp, produce a mutant, and then use compser to write
a .vo file back to disk. Clearly, it would be costly to use both
sercomp and compser to proof check all the files in any
given project, so we use this combination only on the file being
mutated. The fourth column shows time to perform mutation
proving using the Default mode. The remaining columns show
execution time for mutation proving for optimized modes.

Due to performing unnecessary proof processing, the De-
fault and Noleaves modes are consistently the slowest, typ-
ically by a wide margin. Reasonably, RDeps and Skip give
consistent speedups, sometimes substantial, over the basic
modes (on average 23% over Default). Nevertheless, some
projects such as Huffman show only marginal improvement.

We expected parallel modes to perform better than the ad-
vanced sequential modes. However, ParFile and ParQuick were
only substantially faster than Skip for some large projects, such
as MathComp. This may be due to many mutants being killed
quickly before realizing the benefits of parallel checking. For
nearly all projects, ParMutant is a clear winner over 6-RDeps
and others; its average speedup over Default is 70%.

TABLE III: Total Number of Mutants for each Mutation Operator per Project.

Project GIB GIC GME LRH LRT LRE LAR LAF LAS NPM NZO NSZ NSA BFT BTF| Total
ATBR 33 21 74 7 7 7 1 1 1 87 43 19 19 17 18 355
FCSL PCM 0 8 13 8 8 8 0 0 0 2 5 0 0 35 28 115
Flocq 39 14 93 0 0 0 0 0 0 71 54 2 2 45 62| 382
Huffman 0 15 45 72 72 72 15 15 15 19 5 5 5 7 70 369
MathComp 0 10 73 58 58 58 12 12 12 114 385 0 0 136 109| 1037
PrettyParsing 30 § 68 17 17 17 28 28 28 13 16 3 3 3 3] 282
Bin. Rat. Numbers 2 10 52 0 0 0 0 0 0 203 79 4 4 5 6| 365
Quicksort Compl. 12 15 77 104 104 104 49 49 49 27 18 30 30 6 7 681
Stalmarck 0 25 129 101 101 101 3 3 3 42 6 1 1 25 24 565
Coqg-std++ 12 31 149 68 68 68 13 13 13 23 20 22 22 28 14 564
StructTact 7 3 30 9 9 9 2 2 2 12 5 5 5 2 2 104
TLC 4 36 71 38 38 38 5 5 5 23 38 33 33 20 13 400
Avg. 11.58 16.33 72.83 40.16 40.16 40.16 10.66 10.66 10.66 53.00 56.16 10.33 10.33 27.41 24.41 |434.91
Total 139 196 874 482 482 482 128 128 128 636 674 124 124 329 293 | 5219
TABLE IV: Total Number of Killed Mutants for each Mutation Operator per Project.
Project GIB GIC GME LRH LRT LRE LAR LAF LAS NPM NZO NSZ NSA BFT BTF| Total
ATBR 32 15 67 7 7 7 1 1 1 84 40 19 19 17 18 335
FCSL PCM 0 8 11 8 8 8 0 0 0 2 5 0 0 34 28 112
Flocq 37 14 71 0 0 0 0 0 0 68 54 2 2 37 58 349
Huffman 0 13 45 72 72 72 15 15 15 19 4 5 5 7 7 366
MathComp 0 8 73 58 56 58 11 12 12 113 381 0 0 135 108 1025
PrettyParsing 24 2 62 15 15 15 25 28 28 9 6 2 2 1 1 235
Bin. Rat. Numbers 210 47 0 0 0 0 0 0 199 75 4 4 5 6| 352
Quicksort Compl. 111 73 9 84 104 49 49 49 26 14 29 29 6 70 637
Stalmarck 0 20 124 101 83 101 2 3 3 4 2 1 1 23 20| 526
Cog-std++ 1m 15 139 63 63 64 12 12 12 23 17 22 22 27 13| 515
StructTact 7 229 9 9 9 2 2 2 12 5 5 5 1 1| 100
TLC 4 16 62 38 31 38 5 5 5 12 22 22 17 18 11 306
Avg. 10.66 11.16 67.41 3891 35.66 39.66 10.16 10.58 10.58 50.75 52.08 9.25 8.83 2591 23.16|404.83
Total 128 134 809 467 428 476 122 127 127 609 625 111 106 311 278 | 4858

3) RQ3: Qualitative Analysis: To qualitatively analyze why
mutants are killed or live, we sampled live mutants to inspect
manually. To ensure diversity among inspected mutants, we
set a requirement of inspecting 10% or more of all live
mutants for each operator, and 10% of all live mutants for
each project. Due to our familiarity with the project, we also
decided to inspect all live mutants in MathComp. Initially, we
randomly chose mutants to inspect from the set of all live
mutants. When we had inspected 5% of total, we finished
the remaining MathComp mutants and used the distribution
among operators and projects for inspected mutants to sample
from underrepresented subsets.

In total, we inspected 74 live mutants, which we labeled
with precisely one of the following labels:

o UnderspecifiedDef: The live mutant pinpoints a definition
which lacks lemmas for certain cases (33 mutants).

o DanglingDef: The live mutant pinpoints a definition that
has no associated lemma (30 mutants).

o SemanticallyEq: The live mutant is semantically equiva-
lent to the original project (11 mutants).

A detailed description of each live mutant with links to
their locations in the original source code repositories can be
found in the supplementary material at the MCOQ website.
Here, we first highlight some notable live mutants labeled with

UnderspecifiedDef, and then discuss our general experience
from the analysis.

GIB mutant in Flocq: A mutant swapped the branches in
the if-else expression of the following function for addition of
binary IEEE 754 floating-point numbers:

Definition Bplus op_nan m x y match x,y with
| B754_infinity sx, B754_infinity sy =

if Bool.egb sx sy then x

else build_nan (plus_nan x y)

The mutant reveals that a particular case of binary addition,
namely for numbers representing infinities, is not considered
by any lemma. Another live GIB mutant showed the same
problem for the analogous definition for subtraction, Bminus.
BFT mutant in StructTact: A mutant which changed false
to true in a function named before_func on lists high-
lighted that the function was weakly specified in the library:

Fixpoint before_func {A} (f A — Dbool) g 1 :=
match 1 with | [] = L | a 1’7 =

f a = true V (g a = false A before_func £ g 1’)
end.

Further investigation revealed five general lemmas about
before_func in Verdi Raft [4]; four of these lemmas kill
the mutant. Our changes to factor out all five lemmas to
StructTact have been merged in both projects.

TABLE V: Mutation Score for each Mutation Operator per Project.

Project GIB GIC GME LRH LRT LRE LAR LAF LAS NPM NZO NSZ NSA BFT BTF|an
ATBR 96.96 7142 9571 100.00 100.00 100.00 100.00 100.00 100.00 96.55 93.02 100.00 100.00 100.00 100.00 | 95.44
FCSL PCM n/a 100.00 100.00 100.00 100.00 100.00 n/a n/a n/a 100.00 100.00 n/a n/a 97.14 100.00 | 99.11
Flocq 94.87 100.00 90.58 n/a n/a n/a n/a n/a n/a 95.77 100.00 100.00 100.00 82.22 93.54 |93.31
Huffman n/a 86.66 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 80.00 100.00 100.00 100.00 100.00 | 99.18
MathComp n/a 80.00 100.00 100.00 96.55 100.00 91.66 100.00 100.00 99.12 98.96 n/a n/a 99.26 99.08 | 98.84
PrettyParsing 80.00 25.00 91.17 88.23 88.23 88.23 89.28 100.00 100.00 69.23 37.50 66.66 66.66 33.33 33.33|83.33
Bin. Rat. Numbers 100.00 100.00 95.91 n/a n/a n/a n/a n/a n/a 98.02 94.93 100.00 100.00 100.00 100.00 | 97.23
Quicksort Compl. 91.66 73.33 97.33 9230 80.76 100.00 100.00 100.00 100.00 96.29 77.77 96.66 96.66 100.00 100.00 | 93.81
Stalmarck n/a 80.00 96.87 100.00 82.17 100.00 66.66 100.00 100.00 100.00 33.33 100.00 100.00 92.00 83.33]93.26
Coq-std++ 91.66 4838 9455 92.64 92.64 94.11 9230 92.30 92.30 100.00 85.00 100.00 100.00 96.42 92.85]|91.63
StructTact 100.00 66.66 96.66 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 50.00 50.00 | 96.15
TLC 100.00 44.44 89.85 100.00 81.57 100.00 100.00 100.00 100.00 52.17 57.89 66.66 51.51 90.00 84.61|76.88
Avg. 9439 7299 9571 97.31 92.19 9823 9332 99.14 99.14 9226 79.86 9299 9148 86.69 86.39|93.18
TABLE VI: Proof Checking and Mutation Time in Seconds for Various Modes.

Project Checking Sercomp Default RDeps Skip Noleaves ParFile ParQuick ParMutant 6-RDeps

ATBR 45.39 131.33 2157.68 1760.27 1761.59 2155.00 1342.52 1523.21 596.21 755.40

FCSL PCM 11.75 21.95 153.22 150.88 151.12 153.47 152.02 150.79 53.33 109.51

Flocq 17.25 37.38 725.82 547.06 547.47 726.71 544.10 543.79 156.63 199.02

Huffman 7.75 11.58 188.64 185.70 186.19 188.13 181.66 207.94 62.46 72.38

MathComp 341.33 593.19 9962.99 8480.79 848290 9967.52 6886.28 6763.25 4053.67 3943.05

PrettyParsing 4.37 557 278,56 21698 217.24 278.67 214.50 268.35 66.06 90.21

Bin. Rat. Numbers 26.29 16.95 1022.61 925.50 92580 1022.19 894.52 889.60 264.85 578.94

Quicksort Compl. 17.66 3433 1594.66 1064.64 1062.81 1596.87 914.65 928.41 362.38 553.53

Stalmarck 9.21 16.55 805.84 498.01 499.00 803.52 469.42 571.76 192.78 230.62

Coqg-std++ 30.94 57.01 3187.80 2597.54 2597.34 3186.81 2194.68 2403.13 776.77 1137.16

StructTact 3.40 7.27 55.90 41.62 40.98 55.93 39.72 40.20 18.84 19.35

TLC 21.82 4477 3128.85 1739.27 1738.99 3126.18 1467.15 1542.01 519.59 693.88

Avg. 44.76 81.49 1938.54 1517.35 1517.61 1938.41 1275.10 1319.37 593.63 698.58

Total 537.16 977.88 23262.57 18208.26 18211.43 23261.00 15301.22 15832.44 7123.57 8383.05

LRT mutant in MathComp: In this mutant, the last empty
list [::] is removed from an auxiliary function used by an
implementation of the merge sort algorithm:

Fixpoint merge_sort_push sl ss :=
match ss with
[ss’ | [::]
| s ss’ =

[::] merge_sort_push
end.

as ss’ = sl ss’

(merge sl s2) ss’

In essence, mutation preserves the functional correctness of
sorting. However, the complexity of the sort function changes
from O(nlogn) to O(n?). According to the author of the
function (in personal communication), Georges Gonthier, “the
key but unstated invariant of ss is that its 4th item has size 2
if it is not empty, so that merge_sort_push only performs
perfectly balanced merges.” He concluded that “without the
[: :] placeholder the MathComp sort becomes two element-
wise insertion sort.”

BFT in Flocq: In this mutant, false is changed to true
in the following function:

Definition shr_1 mrs :=

let ' (Build_shr_record m r s) := mrs in
let s := orb r s in
match m with
| Zneg (x0 p) =
Build_shr_record (Zneg p) false s

Although there are several lemmas about shr_1 below the
definition, none of them touch this particular match case. In
fact, there are no lemmas at all about Zneg (negative integer)
cases of shr_1. This indicates that Zneg cases in shr_1
are unused elsewhere, and we found that they are actually
assumed away implicitly by guards in lemmas.

Discussion. In addition to the live mutants, we also analyzed
two killed mutants from every project by sampling uniformly
at random; all were killed by a nearby proof (same file).
PrettyParsing and TLC have the lowest mutation scores of
all projects; 83.33% and 76.88%, respectively. We expected
the utility libraries (Coq-std++, TLC, and StructTact) to have
relatively low scores, due to the greater number of functions
and datatypes than in more focused projects.

The relatively high score of Coq-std++, despite its size
in terms of LOC, may indicate that most definitions are
extensively specified. To corroborate this, the main author
of Coq-std++ emphasized in personal communication that he
consistently proves several lemmas about each new definition
added to the library. The main author of TLC explained in
personal communication that, in contrast to Coq-std++, key
lemmas about TLC definitions are sometimes placed in other
projects for reasons of convenience. The relatively low score
of PrettyParsing likely stems from that its main theorem, that
deserializing serialized “prettified” data gives correct results,

TABLE VII: Number of Definitions Found by Dependency
Tools With Various Parameters.

. grep defusage
Project -1 >1|=0 <5 <10 Total
ATBR 115 1662 | 443 2266 2544 | 2760
FCSL PCM 42 527 82 464 532| 585
Flocq 26 221 32 187 229 | 257
Huffman 4 82 7 63 80 90
MathComp 1054 4946 | 804 4616 5397 | 6051
PrettyParsing 3 138| 16 120 139 151
Bin. Rat. Numbers 21 234 43 290 329| 379
Quicksort Compl. 11 255| 30 243 275| 296
Stalmarck 6 264 37 229 271| 304
Coq-std++ 193 645|134 664 789 | 869
StructTact 2 45| 15 32 44 47
TLC 41 863 | 94 765 850| 956

does not take into account most details on how prettification
is done (through functions modified by live mutants).

4) RQ4: Comparison to Dependency Analysis: As men-
tioned in Section II-C, dependency analysis is used by proof
engineers to analyze their verification projects, and may high-
light some unused definitions similar to those we labeled
DanglingDef. To enable comparing mutation proving with
dependency analysis, we used the Coq dpdgraph plugin [23]
to obtain, for each project, (1) a dependency graph of all
definitions and lemmas, and (2) a list of the names of all
definitions. We also extended dpdgraph to produce a tool
dubbed de fusage that counts edges to definitions in graphs.

As a simple baseline, we used grep to record the number
of matches for each definition in each project’s . v files. The
first three columns in Table VII show the project name and
number of definitions that had exactly one and more than one
match, respectively, with grep. These can be compared to
those in the last column, which show the total number of
definitions. As a more robust alternative, we used defusage
on the dependency graph of each project, with three thresholds
in terms of number of incoming edges: 0 (unused), 5, and
10. Columns four to six in Table VII show the number of
definitions at or below each threshold for all projects.

The large discrepancies between the second and fourth
columns of Table VII indicate that the grep baseline is
both unsound and incomplete; for some projects such as
ATBR, it finds only a fraction of all unused definitions, while
for, e.g., MathComp, it finds too many unused definitions.
More importantly, none of the definitions changed by the
live mutants we manually analyzed were included among the
definitions in the second column (grep = 1). We conclude
that the grep baseline is unusable for finding incompletely
specified functions and datatypes.

While defusage produces sound and complete lists of
unused definitions, the lists are typically long, and contain
a large percentage of all definitions even with threshold O
(e.g., for MathComp), making it hard to apply in practice.
Among definitions changed by the live mutants we labeled
with UnderspecifiedDef and DanglingDef, only 12 out of 63,
all labeled DanglingDef, are found among those in column

10

four (= 0). We conclude that mutation proving finds many
more fundamental flaws in Coq verification projects than
dependency analysis, and does so in a more informative,
systematic, and less noisy way.

VI. THREATS TO VALIDITY

External. Our results may not generalize to all Coq projects.
To mitigate this threat, we chose popular projects that differ
in size, number of proofs, and proof checking time. As our
infrastructure builds on Coq 8.9, we could only use projects
that work with this Coq version. We report results for a single
hardware platform, and results may differ if experiments are
run elsewhere. We ran all our experiments on two platforms,
but we reported results only for one of them (more modern)
due to space limitations. Although absolute numbers differ
across platforms, our conclusions remain unchanged. We only
analyzed a subset of killed and live mutants in our qualitative
study. Our findings could differ if we had inspected a different
set or more mutants. We mitigate this threat by systematically
sampling mutants for inspection.

Internal. Our implementation of the tool and/or scripts may
have bugs. To mitigate this threat, we performed extensive
unit testing of our code. We also checked that results were the
same across modes and that execution time differences were
negligible across several runs. Finally, during our qualitative
analysis, we validated the outcome of each mutant we studied.
Construct. Our work targets only Coq. Nevertheless, many
mutation operators described in Section III-B, e.g., all opera-
tors in the Lists category, are applicable to projects using other
proof assistants such as Lean [52] and Isabelle/HOL [53].
However, more research is needed to develop an extensive
set of mutation operators and evaluate mutation proving for
other proof assistants and deductive verification tools.

VII. LIMITATIONS AND FUTURE WORK

Mutation operator design. We implemented and exper-
imented with a mutation operator for changing the or-
der of cases in a pattern matching expression, inspired by
Le et al. [11]. However, mutants generated by this operator
were nearly always killed immediately (stillborn), since Coq
pattern matching branches tend to be completely unambigu-
ous, and the strong type system does not permit leaving
out matching cases. This illustrates the problem of defining
general operators for Gallina, as opposed to operators using the
standard library, e.g., addition for Peano arithmetic. A highly
idiomatic Coq project may benefit from using specialized
operators for the libraries it depends on.

Scope of mutation. We do not consider mutation of lemma
statements or of Ltac proof scripts. The main reason is that we
then would largely lose the analogy between mutation proving
and mutation testing, since mutation of fest code is not per-
formed in the latter. Inductive predicates, which are a special
form of inductive datatypes, are arguably borderline cases,
but we included them for mutation based on their established
interpretation as cut-free higher-order Prolog programs [13].

Equivalence and mutation scores. Mutation testing tradition-
ally uses functional equivalence of programs in its definition
of mutation score, which makes score calculation undecidable
in general and usually necessitates using heuristics to filter
out equivalent mutants [54]. In contrast, this equivalence is
only one of many that may be considered when defining
mutation score for Coq projects. We implemented checking
of syntactical equality at the vernacular level, which preserves
proofs but is highly discriminating. It is also possible to
define and compute scores using Coq’s least discriminating
decidable notion of equivalence that always preserves proofs,
convertibility [55], or using a project-specific equivalence.
However, checking convertibility is costly, and only two of
the live mutants we labeled SemanticallyEq were convertible.
Alternative mutation approaches. While our operators are
defined and applied at the level of vernacular syntax, SERAPI
also supports serialization of data added during the elaboration
phase [56] of type checking in Coq. Additional operators
can potentially use this information to perform sophisticated
type-preserving changes to Coq definitions. However, such
operators may intuitively no longer capture mistakes that are
made by proof engineers, which our operators aim at doing.

VIII. RELATED WORK

Since, to our knowledge, ours is the first evaluation of mu-
tation analysis for proof assistants, we contrast with mutation
analysis in similar settings and other analysis techniques.
Mutation testing of functional programs. Le et al. [11], [57]
implemented a mutation testing framework for Haskell called
MuCheck, which applies mutation operators nondeterministi-
cally at the level of abstract syntax trees. Cheng et al. [12]
used MuCheck to evaluate different types of test coverage
for Haskell programs. Duregard [58] proposed a black-box
approach to mutation testing of Haskell code, on top of
the QuickCheck framework. The function under test must
be an instance of a specific type class that allows it to
be mutated (without modifying it in-place). Braquehais and
Runciman [59] presented a Haskell framework, FitSpec, that
uses mutation testing to measure adequacy of sets of properties
specified in property-testing frameworks such as QuickCheck.
FitSpec takes a black-box view of mutations, and uses instance
enumeration to produce mutants.

On one hand, black-box mutation can be applied in a
wider context than operator-based mutation, e.g., to functions
associated with native code. On the other hand, black-box
mutation sometimes requires defining explicit functions that
return mutants. While black-box mutation can be implemented
in Coq, we believe the purity of Gallina makes its advantages
modest compared to operator-based mutation.

Mutation of specifications. We took inspiration from Groce
et al. [8], who use mutation analysis to improve the process of
verification based on model checking. Ball and Kupferman [9]
consider the concept of vacuity in verification and testing,
which can be established through mutation of systems and
their specifications. Mutation proving is intuitively similar to,
but more general than, their notion of vacuity in software

11

checking. Efremidis et al. [60] presented a mutation framework
for Prolog with operators reminiscent of ours.

Analysis and testing in proof assistants. Berghofer and
Nipkow [61] first considered random testing to assist users of
Isabelle/HOL to specify and verify programs. Bulwahn [22]
subsequently improved the Isabelle testing facilities. A testing
framework for Coq, dubbed QuickChick, was proposed by
Paraskevopoulou et al. [26], and Lampropoulos and Pierce [10]
describe mutation testing in that framework. Blanchette and
Nipkow [24] presented a counterexample generator for Is-
abelle/HOL. Cruanes and Blanchette [25] later presented a
general tool, Nunchaku, for counterexample generation, and
showed how to adapt it to dependent type theories like Coq’s.
Johansson [28] proposed a tool for theory exploration in Is-
abelle/HOL called Hipster, which attempts to prove interesting
facts from a given set of definitions.

Testing and generation as in QuickChick and Nunchaku can
analyze specific functions and datatypes to find problematic
inputs, but lack the connection to proofs that MCOQ has. More-
over, the above techniques do not consider alternative “worlds”
with different definitions, and are thus largely complementary
to mutation proving. For example, Hipster could be applied
to mutants to reveal facts that are consequences of alternative
definitions generated by MCoQ.

IX. CONCLUSION

We proposed mutation proving, a technique for analyzing
verification projects that use proof assistants. We implemented
our technique for the Coq proof assistant in a tool dubbed
MCO0Q. MCOQ applies a set of mutation operators to Coq def-
initions of functions and datatypes, inspired by our experience
and operators previously defined for functional programming
languages. MCOQ then checks proofs of lemmas affected by
operator application. To make our technique feasible in prac-
tice, we implemented several optimizations in MCOQ such as
parallel proof checking. We applied MCOQ to 12 medium and
large scale Coq projects, and recorded whether proofs passed
or failed when applying different mutation operators. We
then qualitatively analyzed the failed proofs, finding several
examples of incomplete specifications. Moreover, our work
has already had significant impact on Coq tooling, and our
tool helped to uncover a bug in Coq itself. We believe that
MCOQ can be extended in a number of ways and already be
useful for many practical tasks. We are looking forward to
see MCOQ used by proof engineers for improving the quality
of their verification projects and by researchers for evaluating
new proof engineering techniques.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their comments and
Ina Schaefer for shepherding this paper; Arthur Charguéraud,
Georges Gonthier, Farah Hariri, Kush Jain, Robbert Krebbers,
Pengyu Nie, Zachary Tatlock, James R. Wilcox, and Théo
Zimmermann for their feedback. This work was partially
supported by the US National Science Foundation under Grant
Nos. CCF-1652517 and CCF-1704790.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]
[21]

[22]

[23]

REFERENCES

M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. Le Traon, and M. Harman,
“Mutation testing advances: An analysis and survey,” Advances in
Computers, vol. 112, pp. 275-378, 2019.

X. Leroy, “Formal verification of a realistic compiler,” Commun. ACM,
vol. 52, no. 7, pp. 107-115, 2009.

G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “seL.4: Formal verification of an OS kernel,”
in Symposium on Operating Systems Principles, 2009, pp. 207-220.
D. Woos, J. R. Wilcox, S. Anton, Z. Tatlock, M. D. Ernst, and
T. Anderson, “Planning for change in a formal verification of the Raft
consensus protocol,” in Certified Programs and Proofs, 2016, pp. 154—
165.

T. Ringer, K. Palmskog, I. Sergey, M. Gligoric, and Z. Tatlock, “QED
at large: A survey of engineering of formally verified software,” Foun-
dations and Trends in Programming Languages, vol. 5, no. 2-3, pp.
102-281, 2019.

P. Fonseca, K. Zhang, X. Wang, and A. Krishnamurthy, “An empirical
study on the correctness of formally verified distributed systems,” in
European Conference on Computer Systems, 2017, pp. 328-343.

X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in C compilers,” in Conference on Programming Language Design
and Implementation, 2011, pp. 283-294.

A. Groce, I. Ahmed, C. Jensen, P. E. McKenney, and J. Holmes, “How
verified (or tested) is my code? Falsification-driven verification and
testing,” Automated Software Engineering, vol. 25, no. 4, pp. 917-960,
2018.

T. Ball and O. Kupferman, “Vacuity in testing,” in Tests and Proofs,
2008, pp. 4-17.

L. Lampropoulos and B. C. Pierce, “QuickChick Interface,”
2018. [Online]. Available: https://softwarefoundations.cis.upenn.edu/
qc-current/QuickChickInterface. html

D. Le, M. A. Alipour, R. Gopinath, and A. Groce, “MuCheck: An ex-
tensible tool for mutation testing of Haskell programs,” in International
Symposium on Software Testing and Analysis, 2014, pp. 429-432.

Y. Cheng, M. Wang, Y. Xiong, D. Hao, and L. Zhang, “Empirical
evaluation of test coverage for functional programs,” in International
Conference on Software Testing, Verification, and Validation, 2016, pp.
255-265.

Y. Bertot and P. Castéran, Interactive Theorem Proving and Program De-
velopment: Coq’Art: The Calculus of Inductive Constructions. Springer,
2004.

Coq Team, “Coq manual: Syntax extensions and interpretation scopes,”
2019. [Online]. Available: https://coq.inria.fr/distrib/V8.9.0/refman/user-
extensions/syntax-extensions.html

——, “Coq manual: Utilities,” 2019. [Online]. Available: https://coq.
inria. fr/distrib/V8.9.0/refman/practical- tools/utilities. html

A. Celik, K. Palmskog, and M. Gligoric, “iCoq: Regression proof se-
lection for large-scale verification projects,” in International Conference
on Automated Software Engineering, 2017, pp. 171-182.

A. Groce, J. Holmes, D. Marinov, A. Shi, and L. Zhang, “An extensible,
regular-expression-based tool for multi-language mutant generation,” in
International Conference on Software Engineering, Demo, 2018, pp. 25—
28.

E. J. Gallego Arias, “SerAPI: Machine-Friendly, Data-Centric
Serialization for Coq,” MINES ParisTech, Tech. Rep., 2016.
[Online]. Available: https://hal-mines-paristech.archives-ouvertes.fr/hal-
01384408

J. McCarthy, “Recursive functions of symbolic expressions and their
computation by machine, part I,” Commun. ACM, vol. 3, no. 4, pp.
184-195, 1960.

E. J. Gallego Arias, “Coq issue #9204,” 2018. [Online]. Available:
https://github.com/cog/coq/issues/9204

E. Tassi, “Coq pull request #9206,” 2018. [Online]. Available: https://
github.com/coq/coq/pull/9206

L. Bulwahn, “The new Quickcheck for Isabelle: Random, exhaustive
and symbolic testing under one roof,” in Certified Programs and Proofs,
2012, pp. 92-108.

A. Pacelet and Y. Bertot, “cog-dpdgraph,” 2019. [Online]. Available:
https://github.com/Karmaki/coq-dpdgraph

12

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

[48]

J. C. Blanchette and T. Nipkow, “Nitpick: A counterexample generator
for higher-order logic based on a relational model finder,” in Interna-
tional Conference on Interactive Theorem Proving, 2010, pp. 131-146.
S. Cruanes and J. C. Blanchette, “Extending Nunchaku to dependent
type theory,” in International Workshop on Hammers for Type Theories,
vol. 210, 2016, pp. 3-12.

Z. Paraskevopoulou, C. Hritcu, M. Dénes, L. Lampropoulos, and B. C.
Pierce, “Foundational property-based testing,” in International Confer-
ence on Interactive Theorem Proving, 2015, pp. 325-343.

Z. Chen, L. O’Connor, G. Keller, G. Klein, and G. Heiser, “The
Cogent case for property-based testing,” in Workshop on Programming
Languages and Operating Systems, 2017, pp. 1-7.

M. Johansson, “Automated theory exploration for interactive theorem
proving,” in International Conference on Interactive Theorem Proving,
2017, pp. 1-11.

D. Delahaye, “A tactic language for the system Coq,” in Logic for
Programming and Automated Reasoning, 2000, pp. 85-95.

OCaml Labs, “PPX,” 2017. [Online]. Available: http://ocamllabs.io/
doc/ppx.html

E. J. Gallego Arias, B. Pin, and P. Jouvelot, “jsCoq: Towards hybrid the-
orem proving interfaces,” in Workshop on User Interfaces for Theorem
Provers, 2017, pp. 15-27.

R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” Computer, vol. 11, no. 4,
pp. 3441, 1978.

T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Theoretical
and empirical studies on using program mutation to test the functional
correctness of programs,” in Symposium on Principles of Programming
Languages, 1980, pp. 220-233.

Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” Transactions on Software Engineering, vol. 37, no. 5,
pp. 649-678, 2011.

R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser,
“Are mutants a valid substitute for real faults in software testing?” in
International Symposium on Foundations of Software Engineering, 2014,
pp. 654-665.

M. Papadakis, D. Shin, S. Yoo, and D.-H. Bae, “Are mutation scores
correlated with real fault detection?: A large scale empirical study
on the relationship between mutants and real faults,” in International
Conference on Software Engineering, 2018, pp. 537-548.

A. Chlipala, “Ltac anti-patterns,” 2019. [Online]. Available: http://
adam.chlipala.net/cpdt/html/Large.html

H. Coles, “PIT mutation testing,” 2010. [Online]. Available: http:/
pitest.org

R. Just, “The Major mutation framework: Efficient and scalable mutation
analysis for Java,” in International Symposium on Software Testing and
Analysis, 2014, pp. 433-436.

R. Just, M. D. Ermnst, and G. Fraser, “Efficient mutation analysis by
propagating and partitioning infected execution states,” in International
Symposium on Software Testing and Analysis, 2014, pp. 315-326.

R. Gopinath, I. Ahmed, M. A. Alipour, C. Jensen, and A. Groce,
“Mutation reduction strategies considered harmful,” Transactions on
Reliability, vol. 66, no. 3, pp. 854-874, 2017.

J. Zhang, L. Zhang, M. Harman, D. Hao, Y. Jia, and L. Zhang,
“Predictive mutation testing,” Transactions on Software Engineering,
2018.

R. Gopinath, C. Jensen, and A. Groce, “Topsy-Turvy: A smarter and
faster parallelization of mutation analysis,” in International Conference
on Software Engineering, Demo, 2016, pp. 740-743.

B. Wang, Y. Xiong, Y. Shi, L. Zhang, and D. Hao, “Faster mutation
analysis via equivalence modulo states,” in International Symposium on
Software Testing and Analysis, 2017, pp. 295-306.

L. Chen and L. Zhang, “Speeding up mutation testing via regression test
selection: An extensive study,” in International Conference on Software
Testing, Verification, and Validation, 2018, pp. 58—69.

K. Palmskog, A. Celik, and M. Gligoric, “piCoq: Parallel regression
proving for large-scale verification projects,” in International Symposium
on Software Testing and Analysis, 2018, pp. 344-355.

Y. Jia and M. Harman, “Constructing subtle faults using higher order
mutation testing,” in International Working Conference on Source Code
Analysis and Manipulation, 2008, pp. 249-258.

E. J. Gallego Arias, “SerAPI: The Coq Se(xp)rialized Protocol,” 2019.
[Online]. Available: https://github.com/ejgallego/coq-serapi

[49]

[50]

[51]

[52]

[53]

[54]

[55]

G. Gonthier and A. Mahboubi, “An introduction to small scale reflection
in Coq,” Journal of Formalized Reasoning, vol. 3, no. 2, pp. 95-152,
2010.

J. Mendez, “jsexp,” 2019. [Online]. Available: https://github.com/
julianmendez/jsexp

B. Barras, C. Tankink, and E. Tassi, “Asynchronous processing of Coq
documents: From the kernel up to the user interface,” in International
Conference on Interactive Theorem Proving, 2015, pp. 51-66.

L. de Moura, S. Kong, J. Avigad, F. van Doorn, and J. von Raumer, “The
Lean theorem prover (system description),” in International Conference
on Automated Deduction, 2015, pp. 378-388.

T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL — A Proof
Assistant for Higher-Order Logic. Springer, 2002.

M. Papadakis, M. Delamaro, and Y. Le Traon, “Mitigating the effects
of equivalent mutants with mutant classification strategies,” Science of
Computer Programming, vol. 95, pp. 298-319, 2014.
Coq Team, “Coq manual: Conversion rules,”

2019. [Online].

13

[56]

(571

[58]
[59]

[60]

[61]

Available: https://coq.inria.fr/distrib/V8.9.0/refman/language/cic.html#
conversion-rules

L. de Moura, J. Avigad, S. Kong, and C. Roux, “Elaboration in
dependent type theory,” CoRR, vol. abs/1505.04324, 2015.

D. Le, M. A. Alipour, R. Gopinath, and A. Groce, “Mutation testing
of functional programming languages,” Oregon State University, Tech.
Rep., 2014.

J. Duregérd, “Automating black-box property based testing,” Ph.D.
dissertation, Chalmers University of Technology, 2016.

R. Braquehais and C. Runciman, “FitSpec: Refining property sets for
functional testing,” in Haskell Symposium, 2016, pp. 1-12.

A. Efremidis, J. Schmidt, S. Krings, and P. Korner, “Measuring cov-
erage of Prolog programs using mutation testing,” in Functional and
Constraint Logic Programming, 2019, pp. 39-55.

S. Berghofer and T. Nipkow, “Random testing in Isabelle/HOL,” in
International Conference on Software Engineering and Formal Methods,
2004, pp. 230-239.

	Introduction
	Background
	The Coq Proof Assistant
	SerAPI and Serialization to S-expressions
	Mutation Testing and Proving

	Technique
	Mutation Approach
	Mutation Operators
	Mutation Optimizations

	Implementation
	Tool Architecture and Components
	Mutation Modes and Procedure
	Impact of Tool Development

	Evaluation
	Verification Projects Under Study
	Variables
	Results
	RQ1: Number of Mutants and Mutation Score
	RQ2: Performance
	RQ3: Qualitative Analysis
	RQ4: Comparison to Dependency Analysis

	Threats to Validity
	Limitations and Future Work
	Related Work
	Conclusion
	References

