
Quantifying the Exploration of the Korat Solver
for Imperative Constraints

Alyas Almaawi, Hayes Converse, Milos Gligoric, Sasa Misailovic∗, and Sarfraz Khurshid
University of Texas at Austin, ∗University of Illinois at Urbana-Champaign

{alyas.mohammed,hayesconverse,gligoric,khurshid}@utexas.edu,misailo@illinois.edu

ABSTRACT
Tools that explore very large state spaces to find bugs, e.g., when
model checking, or to find solutions, e.g., when constraint solving,
can take a considerable amount of time before the search termi-
nates, and the user may not get useful feedback on the state of
the search during that time. Our focus is a tool that solves im-
perative constraints to provide automated test input generation
for systematic testing. Specifically, we introduce a technique to
quantify the exploration of Korat, a well-known tool that explores
the bounded space of all candidate inputs and enumerates desired
inputs that satisfy given constraints. Our technique quantifies the
size of the input space as it is explored by the Korat search, and
provides the user exact information on the size of the remaining
input space. In addition, it allows studying key characteristics
of the search, such as the distribution of solutions as the search
finds them. We implement the technique as a listener for the
Korat search, and present initial experimental results using it.

1. INTRODUCTION
Constraint solvers, e.g., propositional satisfiability (SAT) [9] or
satisfiability modulo theory (SMT) [8] solvers, form the backbone
of many software analysis and synthesis techniques [5,6,11,15,19,
22, 23]. This increasing use of solvers has in part been driven by
improvements in the core solving methods and in part by techno-
logical advances in the computation machinery that is now readily
available. Despite the advances, in many real-world application
scenarios, the constraints that arise and must be solved can be
problem instances that are particularly hard and take a long time
to solve. In such scenarios, the user may have to painstakingly
wait a long time before the solving results become available. For
many solvers, there is very little, if any, feedback to the users, on
the progress of the solver. As a result, it is typical for the users to
timeout the search after some period based on their intuition or
frustration. Unfortunately, when the search times out (or a user
terminates the search), the users often do not have much informa-
tion about what the search did, e.g., how much of the state space
was explored and how much remained to be explored.

The focus of this paper is on imperative constraints, i.e., logical
constraints that are written in an imperative language, such as
Java. To illustrate, consider a Java predicate (method) that in-
spects its input and returns true if and only if the input is valid,
i.e., satisfies the desired constraints. Such predicates are termed
repOk methods [18].

This paper introduces a technique that precisely quantifies the
search performed – in terms of the size of the input space explored
– by a solver for imperative constraints. Our specific focus is the
Korat solver for Java predicates, which is a well-known tool for
automated test generation for bounded-exhaustive testing [5].

Korat implements a backtracking search that enumerates all in-
puts within a size bound, termed finitization, such that the given
predicate returns true for each enumerated input; the set of all
such inputs is the set of all solutions, also termed valid inputs, to
the imperative constraint in the bounded input space. The finiti-
zation bounds the number of objects and values for the relevant
types and defines domains of values for each object field.

The Korat search iteratively considers many candidate inputs.
For each candidate, Korat runs repOk to check its validity. Korat
uses feedback from repOk to create the next candidate. Specifi-
cally, Korat monitors the field accesses made by repOk and sys-
tematically backtracks only on the fields that are accessed by re-
pOk, thereby creating a dynamic lexicographic ordering of the
input space and pruning from search large parts of the input
space. To optimize further, Korat restricts the search to only
non-isomorphic candidates by adapting the least number heuris-
tic [27] to dynamically break symmetries.

While this integration of field access monitoring, dynamic lexi-
cographic ordering, and isomorphism breaking is the key to the
effectiveness of the Korat search, it is also what makes comput-
ing the progress of the search challenging. In contrast, a search
that followed a static lexicographic ordering is straightforward to
characterize: each candidate’s position in the order is known stat-
ically, and since no candidate that is lexicographically smaller can
be explored later in the search, the space explored is exactly the
position of the current candidate.

We introduce the first technique that – at any point in the Ko-
rat search precisely quantifies the size of the input space that has
exhaustively been explored up to that point, and as a result, can
report the size of the input space that has yet to be explored at
any point during the search. Our key insight is two-fold: 1) each
candidate that Korat checks (using repOk) is a representative of a
class of candidates that is checked together using just one invoca-
tion of repOk and the cardinality of this class can be computed us-
ing the list of fields accessed by repOk and the finitization bounds;
2) when Korat checks candidate v and creates next candidate w,
a space of candidates is pruned from the search, and the size of
the space pruned can be computed using the two candidates v

and w together with the list of field accesses.

We embody the technique as a part of the Korat implementa-
tion (via a novel listener) and experimentally validate it using a
standard suite of subject constraints to demonstrate its efficacy.
Moreover, as a potential application of our technique, we demon-
strate how it allows studying the input space coverage of Korat as
its search progresses and it finds valid inputs for a select subject.

This paper makes the following key contributions:

1)Quantifying space covered during imperative constraint

solving. We introduce the first approach that computes the input
space covered by an imperative constraint solver as it explores the
space. 2) Embodiment in Korat. We embody our technique
in Korat, which is a well-known solver for imperative constraints.
3) Evaluation. We experimentally validate our technique using
a suite of standard subjects, and apply it to study the solution
distribution for a select subject, and report our observations.

In future work, we plan to further evaluate our approach and
its benefits in quantifying the search. We also plan to investigate
applying it for new applications, e.g., to approximate the number
of solutions, i.e., model counts, say based on using the results of
a partial search, taking into consideration the space covered, and
projecting the partial search results to the full input space.

2. ILLUSTRATIVE OVERVIEW
This section presents an illustrative example using binary trees
to describe the key elements of the Korat search [5] and gives an
overview of our technique for quantifying the input space covered.

Figure 1 declares a binary tree that has a root node and caches
the number of nodes in the size field. Each node has a left and
a right child. The predicate repOk describes the structural in-
variants that any valid binary tree must satisfy. The predicate
traverses its input structure (this), checks that it has no cycles
and that the value of size correctly states the number of nodes,
and returns false if any check fails, and true if all checks pass.
The repOk predicate is an example of an imperative constraint –
a logical constraint that is written using imperative code. The
method finBinaryTree(int, int, int) defines the space of all can-
didate inputs to consider for constraint solving, specifically each
candidate can have at most numNodes nodes, and has size range
between minSize and maxSize (inclusive). The method finBina-
ryTree(int) requires each candidate to have exactly size nodes.

Given the input constraint (repOk) and finitization (finBinary-
Tree(int)) with size set to 3, Korat uses the repOk to inspect
63 candidate structures (from a space of 16384 total structures)
and enumerates 5 solutions – each a valid non-isomorphic binary
tree with exactly 3 nodes (Figure 2).

The Korat search internally represents each candidate structure
as a vector of integer elements; the length of the candidate vec-
tor is fixed and is defined by the bound on the input size. Each
vector element represents a value of an object field; specifically
the element is an index into an array of values that define all
possible values for the corresponding field. The candidate vectors
admit a natural lexicographic order : for vectors v and w, v < w if
∃i · v[i] < w[i]∧∀j < i · v[j] = w[j] (intuitively, read the vector
elements left to right, and order smaller values before higher val-
ues). The Korat search starts with the smallest candidate in the
natural order. However, the search does not proceed in confor-
mance with the natural order. Instead, the search considers the
candidates in a dynamic lexicographic order, where the order is
based on the fields accessed by repOk executions. For example, if
repOk accesses the field at index 2 of the first candidate vector,
that field is the first to be considered for lexicographic ordering.
Moreover, if a field f is accessed with value x for candidate vector
v and the next field accessed is g, g becomes the successor of f for
lexicographic ordering. However, g may not remain the successor
of f in the dynamic lexicographic ordering throughout the search,
since for another candidate vector w(6= v) that for field f has a
value y(6= x), the next field accessed may be h(6= g), in which
case h becomes the successor of f in the lexicographic order from
that point onward in the search.

class BinaryTree {
static class Node { Node left, right; }

Node root; int size;

boolean repOk() {
if (root == null) return size == 0;
// checks that tree has no cycle
Set visited = new HashSet();
visited.add(root);
LinkedList workList = new LinkedList();
workList.add(root);
while (!workList.isEmpty()) {

Node current = (Node) workList.removeFirst();
if (current.left != null) {

if (!visited.add(current.left))
return false;

workList.add(current.left);
}
if (current.right != null) {

if (!visited.add(current.right))
return false;

workList.add(current.right);
}

}
// checks that size is consistent
return (visited.size() == size); }

static IFinitization finBinaryTree(int size) {
return finBinaryTree(size, size, size); }

static IFinitization finBinaryTree(int nodesNum,
int minSize, int maxSize) {

IFinitization f =
FinitizationFactory.create(BinaryTree.class);

IObjSet nodes =
f.createObjSet(Node.class, nodesNum, true);

f.set("root", nodes);
f.set("size", f.createIntSet(minSize, maxSize));
f.set("Node.left", nodes);
f.set("Node.right", nodes);
return f; }

}

Figure 1: Binary tree declaration, class invariant (repOk), and
finitization (finBinaryTree) [1].

N0

N1

N2

N0

N1

N2

N0

N1

N2

N0

N1

N2

N0

N1 N2

Figure 2: Five non-isomorphic binary trees with 3 nodes generated
by Korat. N0 is the root node.

For binary tree size 3, the candidate vector has 8 elements – one
each for the root and size fields of the tree, and 2 each for the left
and right fields of each of the 3 nodes (which we denote N0, N1,
and N2). Each element of the vector is an index into a domain
of values for the corresponding field. For size 3, the root field of
the tree, and the left and right fields of each of the 3 nodes take a
value from the domain [null, N0, N1, N2], and the field size takes
a value from the domain [3] that has just 1 element.

The following list shows the sequence of candidates inspected by
the Korat search starting at the first candidate (all 0’s) until the
first solution (identified by “***”) is found:

/* 1*/ 0 0 0 0 0 0 0 0 :: 0 1
/* 2*/ 1 0 0 0 0 0 0 0 :: 0 2 3 1
/* 3*/ 1 0 0 1 0 0 0 0 :: 0 2 3
/* 4*/ 1 0 0 2 0 0 0 0 :: 0 2 3 4 5 1
/* 5*/ 1 0 0 2 0 1 0 0 :: 0 2 3 4 5
/* 6*/ 1 0 0 2 0 2 0 0 :: 0 2 3 4 5
/* 7*/ 1 0 0 2 0 3 0 0 :: 0 2 3 4 5 6 7 1 ***

Each row has an identifier (in block comments) and contains a
candidate vector, the separator “::”, and the list of fields accessed
by repOk for that candidate (based on the first time repOk ac-
cesses the field). For example, for Candidate #1 (all 0s), repOk
only accesses the root and size fields and returns false since root
is null (first value in the domain [null, N0, N1, N2]) but size is
3 (first value in the domain [3]). Korat backtracks on the last
(most recent) field accessed. Since size has only 1 possible value,
Korat increments the value for the root field to create the second
candidate vector.

To illustrate coverage of input space, observe that when Korat
inspects a candidate c, c serves as a representative for a set E of
unique candidates for the Korat search such that c.repOk() ==
e.repOk() for all e ∈ E, and the field access list of each candidate
in E is identical to that of c; we term the size of set E the reach-
space. For example, for Candidate #1 Korat only reads the first
2 fields, so it represents all 4 · 4 · 4 · 4 · 4 · 4 = 4096 candidates
of the form “0 0 * * * * * *” (since each of the 6 fields that are
not accessed is either a left or a right field and has 4 possible
values). Thus, the space covered by Korat by just inspecting the
first candidate is of size 4096 (i.e., reach-space with respect to the
first candidate).

Korat may cover additional space in a single search step due to
isomorphism breaking; we term the size of this additional space
the prune-space. In particular, when Korat increments a field in-
dex, it may reset it to 0 (and backtrack) without trying all remain-
ing values for that field when those values are equivalent [27]. To
illustrate, consider the following sequence of two candidate trees
that Korat inspects:

...
/* 25*/ 1 0 0 2 3 3 0 0 :: 0 2 3 4 5
/* 26*/ 1 0 1 0 0 0 0 0 :: 0 2
...

To create Candidate #26, Korat considers incrementing the value
of the sixth field (id : 5) since that is the last field accessed but
resets it since the largest index possible is already used. Next, Ko-
rat considers incrementing the value of the fifth field (id : 4) but
also resets it. Next, Korat considers incrementing the value of the
fourth field (id : 3). Even though this field can take the value 3
according to the finitization, Korat resets it because the fields
accessed before it only use a maximum index of 1 into the corre-
sponding domain, and it suffices to try just one of the remaining
values since all unused values are interchangeable [27]. Thus, by
generating Candidate #26 Korat covers another 1 ·4 ·4 ·4 ·4 = 256
candidates of the form “1 * 0 3 * * * *”without inspecting even
one of them.

Our technique for space coverage computation supports two ex-
ecution modes: (1) to compute distribution for the number of
solutions found by Korat with respect to the size of the input
space it covers; (2) to periodically output to console the size of
the input space covered up to the end of each period. For the
first mode, the user specifies the number k of bins that partition
the input space into k equal parts. The second mode integrates
with Korat’s built-in progress reporting facility, which allows the
user to specify a number n such that after every n candidates,
it outputs the solution count and number of candidates explored
so far, and the last candidate explored. Our technique adds the
information on the input space covered to Korat’s progress report.

Figure 3 presents the distribution of the solutions that we obtain
by plotting the command line outputs. For this benchmark, it
shows that most of the solutions are concentrated between 20%
and 50% of the explored states.

0 20 40 60 80 100
0

20

40

60

80

100

%space covered

%
so
lu
ti
o
n
s
fo
u
n
d

Binary tree

size:3

Figure 3: Korat solving of the binary tree constraints.

Algorithm 1 ReachSpace Algorithm

Inputs:
Candidate Vector CV : Field→ InstanceId
List of Accessed Fields Facc : list(Field)

Output: Number of Instances in the Reached Space

1: function ReachSpace

2: countInstances← 1
3: for f ∈ fields(CV) do ⊲ Add all instances the search skipped
4: if (f /∈ Facc) then

5: countInstances← countInstances · size(instances(f))
6: end if

7: end for

8: return countInstances
9: end function

3. TECHNIQUE
Our technique is embodied by two main algorithms. One algo-
rithm, called ReachSpace, computes the space covered based on
the field access information when Korat inspects one candidate
vector (Algorithm 1). The other algorithm, called PruneSpace,
computes the space covered based on isomorphism breaking when
Korat creates the next candidate vector (Algorithm 2).

ReachSpace The algorithm quantifies the part of the visited
space as the count consisting of 1) the current instance, and 2) all
instance that are not visited because the corresponding fields were
not visited inside the repOK method.

PruneSpace The algorithm quantifies the part of the visited
space that was skipped because of the pruning. Recall that the
Korat search resets the potentially isomorphic candidate fields,
meaning that the instance identifier is equal to zero. The algo-
rithm compares two neighboring candidate vectors to estimate
the state: CVprev is the previous candidate vector and CVcur is
the subsequent candidate vector. Facc is the set of fields accessed
while executing repOK on the data structure represented by the
prev state (and that led to the computation of the structure rep-
resented by cur).

The algorithm iterates over the visited fields, starting from the
most recently accessed field, and computes the number of the
instances that were skipped due to the resetting (i.e., pruning
based on that field). The algorithm stops when it encouters the
first field that was not reset, i.e., its instance identifier is only
incremented by one.

Implementation We implemented our technique as a listener
(called TrackingListener) for the Korat search. The search notifies
the listener every time it creates a new candidate, and also when it
terminates. In addition to tracking progress of the Korat search,

Algorithm 2 PruneSpace Algorithm

Inputs:
Previous Candidate Vector CVprev : Field→ InstanceId,
Current Candidate Vector CVcur : Field→ InstanceId
List of Accessed Fields Facc : list(Field)

Output: Number of Instances Pruned by the Search

1: function PruneSpace

2: countPruned← 0
3: for f ∈ reverse(Facc) do

4: prevInstanceId← CVprev(f)
5: curInstanceId← CVcur(f)
6: if curInstanceId = prevInstanceId + 1 then

7: break

8: end if

9: if curInstanceId = 0 then ⊲ The field was reset
10: skipped← size(instances(f))− prevInstanceId− 1
11: if skipped > 0 then ⊲ Reset was isomorphism breaking
12: Fprefix ← prefix :: f , where Facc = prefix :: f :: postfix
13: reached← ReachSpace(CVprev, Fprefix)
14: countPruned← countPruned + skipped · reached
15: end if

16: end if

17: end for

18: return countPruned
19: end function

the listener also initializes bins that keep track of the distribution
of the solutions with respect to the amount of space covered. The
listener provides a constructor that allows specifying the number
of bins. We add a command-line option to attach the listener to
the Korat search. Specifically, we added the option “−−track”
that takes a numeric argument that is the number of bins desired.
The tracking option can be used together with the built-in option
“−−progress” that takes an integer argument k such that Korat
outputs its progress every k candidates checked. When both these
options are used together our listener outputs the space covered
up to that point with each progress report. We plan to release
our implementation as part of the Korat code-base [1].

4. EXPERIMENTS
This section presents results of experiments we conducted using
our prototype implementation. Our primary goal is to empirically
validate the correctness of the implementation of our technique
and study some basic characteristics of the Korat search based on
the input space coverage information computed by our technique.
In addition, we demonstrate for a select subject how our technique
enables making observations that can lead to new applications.

4.1 Subjects and methodology
We use ten subjects that are implemented for the standard Ko-
rat search and included in the standard distribution of Korat1 [1].
The subjects are heap-allocated data structures: binary tree (BT),
binomial heap (BH), disjoint set (DS), doubly-linked list (DLL),
Fibonacci heap (FH), heap array (HA), red-black tree (RBT),
search tree (ST), singly-linked list (SLL), and sorted list (SL).
We run Korat with space coverage tracking turned on and num-
ber of bins set to 40. We use all sizes between 0 and the largest
size that does not time-out. All experiments were performed on
Linux Ubuntu 18.04.2 running on an Intel Core i7-7500U CPU @
2.70GHz × 4 with 8GB RAM.

4.2 Results
Table 1 shows the results for all subjects for select sizes such that
the time taken is between 0.5 second and 216 seconds. For each

1The distribution includes one additional subject, DAG, which we
do not consider here since it does not work with the standard Ko-
rat search, rather it uses a specialized search implemented using
a listener for Korat.

Table 1: Results of Korat Search With Our Listener. All Sizes
for Which it Completes Between 0.5 and 216 Seconds are Shown.

Subj. Sz. Valid Expl. Cover Reach Prune P:R Time
[#] [#] [#] [%] [%] [s]

BT 10 1.7e4 8.2e5 7.4e21 10.3 89.7 8.7 0.9
11 5.9e4 3.2e6 6.6e24 9.3 90.7 9.8 3.2
12 2.1e5 1.2e7 7.1e27 8.5 91.5 10.8 11.8
13 7.4e5 4.8e7 8.8e30 7.8 92.2 11.8 50.5

BH 7 1.1e5 2.6e5 1e33 17.1 82.9 4.9 0.5
8 6e5 1.3e6 4.7e39 14.7 85.3 5.8 2.4
9 8.7e6 1.2e7 3.9e46 12.9 87.1 6.7 21.2

DS 5 4.2e4 4.1e5 1.1e12 87.4 12.6 0.1 0.7
6 3e6 3.3e7 5e15 88.5 11.5 0.1 23

DLL 10 5.6e5 5.6e5 4.9e36 9.1 90.9 10 0.9
11 3.5e6 3.5e6 1.6e41 8.4 91.7 11 5.9
12 2.3e7 2.3e7 7e45 7.7 92.3 12 43.5

FH 6 1.5e6 4.8e6 1.4e32 7.8 92.2 11.9 5.3
7 5e7 1.8e8 6.7e39 5.8 94.2 16.4 216.7

HA 8 1e6 5.2e6 8.1e9 100 0 0 1.9
9 1e7 5.1e7 2.4e11 100 0 0 19.6

RBT 8 64 3.2e5 7.9e33 13.8 86.2 6.2 0.8
9 122 1.5e6 5.1e39 12.2 87.8 7.2 3.9

10 260 7.5e6 5.1e45 10.9 89.1 8.2 20.7
11 586 3.9e7 7.5e51 9.8 90.2 9.2 116.1

ST 8 1.4e3 2.6e6 2.8e23 13 87 6.7 2.4
9 4.9e3 2e7 3.9e27 11.5 88.5 7.7 20.4

10 1.7e4 1.6e8 7.4e31 10.3 89.7 8.7 176.4
SLL 10 1.2e5 1.7e6 6.6e24 9.2 90.9 9.9 1.3

11 6.8e5 1.1e7 7.1e27 8.4 91.6 10.9 8.5
12 4.2e6 7e7 8.8e30 7.7 92.3 11.9 63.2

SL 10 9.2e4 9.2e5 1.9e36 16 84 5.3 0.8
11 3.5e5 3.9e6 6.3e40 14.8 85.2 5.7 3.6
12 1.4e6 1.6e7 2.7e45 13.8 86.2 6.3 16.8
13 5.2e6 6.8e7 1.4e50 12.9 87.1 6.8 73.3

subject and size, the number of non-isomorphic solutions found
by Korat (#Valid), the number of candidates explored by Korat
(#Explored), the space covered computed by our technique using
reach-space and prune-space calculations (#Cover), the percent
of space covered based on Korat’s backtracking using the field
access information (Reach[%]), the percent of space covered based
on Korat’s symmetry breaking (Prune[%]), and the total time
taken (Time[s]) in seconds are shown.

As expected, in all cases, the total space covered compute matched
the size of the input space defined by the finitization, thereby val-
idating the correctness of our implementation.

Comparison of reach-space and prune-space For all sub-
jects except disjoint set and heap array, the total reach-space is
substantially less than the total prune-space, and prune-space is
between 6.7× (for binomial heap) and 16.3× (Fibonacci heap) the
reach-space for the largest sizes used. For disjoint set, the reach-
space is 7.7× the prune-space. Disjoint set is represented using
an array of records and each record only has integer fields. Since
integers (and other primitives) are not interchangable, there are
fewer symmetries to be broken. An extreme case is heap array,
where the prune-space is 0. The data structure is an array of in-
tegers and there are no symmetries that can be broken. Overall,
symmetry breaking plays an important role in reducing the num-
ber of candidates considered by Korat. Field access monitoring
plays an even more important role since it directly contributes to
the reach-space, and in addition, is necessary to compute prune-
space since symmetry breaking on a field f requires the highest
index used on (compatible) fields accessed before f .

Distribution of solutions with respect to space covered

Next we illustrate a new potential application of our technique.
Figure 4 shows the disribution of solutions found by Korat with re-
spect to the space it covers for the binary tree subject. The results
for the five largest sizes used for evaluation are graphically plot-
ted. Specifically, each graph shows how the percent of solutions

0 20 40 60 80 100
0

20

40

60

80

100

%space covered

%
so
lu
ti
o
n
s
fo
u
n
d

Binary tree

size:9

size:10

size:11

size:12

size:13

Figure 4: Space coverage for binary tree.

found varies with the percent of input space covered. The plots for
different sizes show a similar trend: almost all solutions are found
when less than 20% of the space is covered. Such similarities can
allow estimating results, such as solution counts, by computing
results for a smaller size, performing partial exploration of the
desired size to compute a partial result, and extrapolating it to
an estimate of the desired result [2].

5. RELATED WORK
Recent work studied the distribution of solutions found by the Ko-
rat search with respect to the candidates it explored and observed
that after some initial exploration, the Korat search tends to find
solutions linearly with the candidates explored; it also identified
opportunities for estimating solution counts by observing the dis-
tribution for a smaller size and using it for a larger size [2]. In
this paper, we introduce a new metric that precisely quantifies the
space covered as the search progresses and provides new insights
into the search.

The process of creating a tool that quantifies and reports Ko-
rat’s space exploration progress requires a partial answer to the
problem of estimating the size of a backtrack search tree. This
problem was addressed by Knuth using probing samples over forty
years ago [16], which was expanded upon by others in the decades
to follow once, especially when propositional satisfiability (SAT)
solvers started to become practical [3, 9, 14,17,21].

This problem is particularly notable in the domain of symbolic
execution [15] and model checking [7], where the goal is to esti-
mate the size of the exploration tree, or more generally, graph.
The symbolic execution engine Java PathFinder (JPF) [25] has
two existing state space size estimators that provide mid-execution
progress reports: StateCountEstimator, which estimates the num-
ber of possible program states as they are explored, and JPF-
Bar [26], which estimates the search’s position in the graph based
on the number of paths discovered so far. Taleghani and Atlee [24]
created a Monte Carlo-based algorithm that estimates state-space
coverage by sending additional probes into the search space.

Since our application domain uses finitizations, the size of the
total input space is a priori knowledge. The reduced version of
the problem we address here is to determine the size of the space
of the explored space and the size that remains to be explored.
While our technique is the first to perform this sort of analysis and
reporting for an imperative constraint solver, efforts to add declar-
ative constraints to imperative languages date several decades [4],
ultimately resulting in tools such as Babelsberg/R for Ruby [10]
and Turtle++ for C++ [12]. A notable tool to enable constraint
solving using purely declarative programming is Alloy [13,20].

6. CONCLUSION
This paper introduced a technique for precisely quantifying the
size of the input space explored by the constraint solver Korat
during its systematic search. The technique was implemented as
a listener for Korat and experimentally validated using a suite
of standard Korat subjects. The technique provides exact feed-
back to the user about the size of the input space that is yet to
be explored by Korat as it executes, and allows collecting useful
statistics about the search, which can enable new approximation
methods in software analysis.

Acknowledgments
This work was partially supported by the US National Science
Foundation under Grants Nos. CCF-1652517, CCF-1703637, CCF-
1704790, and CCF-1846354.

7. REFERENCES
[1] Korat GitHub repository, 2019. https://github.com/korattest/korat.

[2] A. Almaawi, N. Dini, C. Yelen, M. Gligoric, S. Misailovic, and
S. Khurshid. A study of the solution distributions for structural
constraints using Korat. Under submission, 2019.

[3] F. A. Aloul, B. D. Sierawski, and K. A. Sakallah. Satometer: How
much have we searched? In DAC, 2002.

[4] K. R. Apt, J. Brunekreef, V. Partington, and A. Schaerf. Alma-0: An
imperative language that supports declarative programming.
Technical report, Amsterdam, The Netherlands, 1997.

[5] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated testing
based on Java predicates. In ISSTA, 2002.

[6] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems
programs. In OSDI, 2008.

[7] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled. Model Checking.
MIT Press, Cambridge, MA, USA, 1999.

[8] L. de Moura and N. Bjorner. Z3: An efficient SMT solver. In TACAS,
2008.

[9] N. Een and N. Sorensson. An extensible SAT-solver. In SAT, 2003.

[10] T. Felgentreff, A. Borning, and R. Hirschfeld. Specifying and solving
constraints on object behavior. The Journal of Object Technology,
13:1:1, 04 2014.

[11] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated
random testing. In PLDI, pages 213–223, 2005.

[12] P. Hofstedt and O. Krzikalla. TURTLE++ – a CIP-library for C++.
In INAP, pages 12–24, 2005.

[13] D. Jackson. Software Abstractions: Logic, Language, and Analysis.
The MIT Press, 2012.

[14] P. Kilby, J. K. Slaney, S. Thiébaux, and T. Walsh. Estimating search
tree size. In AAAI, 2006.

[15] J. C. King. Symbolic execution and program testing. CACM, 19(7),
1976.

[16] D. Knuth. Estimating the efficiency of backtrack programs.
Mathematics of Computation, 29(129), 1975.

[17] D. Kokotov and I. Shlyakhter. Progress bar for SAT solvers.
Unpublished manuscript, 2000.

[18] B. Liskov and J. Guttag. Program Development in Java:
Abstraction, Specification, and Object-Oriented Design. 2000.

[19] D. Marinov and S. Khurshid. TestEra: A novel framework for
automated testing of Java programs. In ASE, 2001.

[20] A. Milicevic, J. P. Near, E. Kang, and D. Jackson. Alloy*: A
general-purpose higher-order relational constraint solver. In ICSE,
pages 609–619, 2015.

[21] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an efficient SAT solver. In DAC, June 2001.

[22] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing
engine for C. In ESEC/SIGSOFT FSE, 2005.

[23] A. Solar-Lezama, R. Rabbah, R. Bod́ık, and K. Ebcioğlu.
Programming by sketching for bit-streaming programs. In PLDI,
pages 281–294, 2005.

[24] A. Taleghani and J. M. Atlee. State-space coverage estimation. In
ASE, 2009.

[25] W. Visser, K. Havelund, G. P. Brat, and S. Park. Model checking
programs. In ASE, 2000.

[26] K. Wang, H. Converse, M. Gligoric, S. Misailovic, and S. Khurshid. A
progress bar for the JPF search using program executions. In
JPF, 2018.

[27] J. Zhang. The generation and application of finite models. PhD
thesis, Institute of Software, Academia Sinica, Beijing, 1994.

